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Abstract 
This article provides an in-depth look at how K-12 students should be introduced to Machine 
Learning and the knowledge and skills they will develop as a result. We begin with an overview 
of the AI4K12 Initiative, which is developing national guidelines for teaching AI in K-12, and briefly 
discuss each of the “Five Big Ideas in AI” that serve as the organizing framework for the 
guidelines. We then discuss the general format and structure of the guidelines and grade band 
progression charts and provide a theoretical framework that highlights the developmental 
appropriateness of the knowledge and skills we want to impart to students and the learning 
experiences we expect them to engage in. Development of the guidelines is informed by best 
practices from Learning Sciences and CS Education research, and by the need for alignment with 
CSTA’s K-12 Computer Science Standards, Common Core standards, and Next Generation 
Science Standards (NGSS). The remainder of the article provides an in-depth exploration of the 
AI4K12 Big Idea 3 (Learning) grade band progression chart to unpack the concepts we expect 
students to master at each grade band. We present examples to illustrate the progressions from 
two perspectives: horizontal (across grade bands) and vertical (across concepts for a given grade 
band). Finally, we discuss how these guidelines can be used to create learning experiences that 
make connections across the Five Big Ideas, and free online tools that facilitate these 
experiences. 
 

Introduction 
Children today grow up surrounded by AI technologies including speech and facial recognition 
systems, intelligent assistants such as Alexa and Siri, recommender systems for products, news 
stories, and social media feeds, and nearly-autonomous automobiles with extensive driver 
assistance features. If Artificial Intelligence is truly “the new electricity” (Andrew Ng, quoted in 
Jewell, 2019) and a key component of the “fourth industrial revolution” (Qiang and Chao, 2018), 

mailto:dst@cs.cmu.edu
mailto:gmccune@ufl.edu
mailto:deborah.seehorn@outlook.com


2 

it is imperative that children understand it (Hasse, Cortesi, Lombana, & Gasser, 2019; Druga, 
Williams, Breazeal, & Resnick, 2017). Learning about AI has the potential to improve their critical 
thinking skills and increase their confidence in interacting with computing systems. Educating 
children about AI is also important for civic reasons (Ali, DiPaola, Lee, Sindato, Kim, Blumofe & 
Breazeal, 2021). Disruptive AI technologies such as opaque and possibly biased automated 
decision-making systems (Buolamwini and Gebru 2018; Kirkpatrick 2016; Selbst 2017; Van 
Brakel 2016), ubiquitous surveillance capabilities (McStay, 2020; Shachar, Gerke, & Adashi, 
2020), and realistic deepfakes raise ethical issues (Diakopoulos & Johnson, 2021; Rini, 2020) 
that should be confronted by a well-informed citizenry (Lao, 2020). 
 
K-12 AI education is also needed to develop our future workforce (Zhang, Lee, Ali, DiPaola, 
Cheng, & Breazeal, 2021). Companies recognize AI and specifically machine learning as integral 
to their ability to stay competitive, although they are still evaluating what AI can do for their 
business (Gartner, 2020; Deloitte, 2020). AI is poised to cause major shifts in the types of skills 
workers will need. Although some jobs will disappear completely due to automation, most will 
evolve to integrate AI into their daily workflow. New job opportunities will also arise to develop AI-
powered solutions to business problems and drive new innovations (Gartner, 2020). While 
specific job descriptions and titles for AI-enabled careers are yet to be determined, it is certain 
that future workers will understand the foundational building blocks of AI and be able to combine 
capabilities such as pattern recognition, prediction, image classification, cognitive search, and 
natural language understanding to solve practical problems (SAS Institute, 2018; Deloitte, 2020; 
Department of Defense, 2018, 2019).  
 
Since 2018 the AI4K12 Initiative has been developing national guidelines for teaching AI in K-12 
(Touretzky, Gardner-McCune, Martin, & Seehorn, 2019a). We hope to give students more than a 
superficial knowledge of AI terminology and applications. The guidelines provide four levels of 
engagement: (1) awareness of AI in students’ everyday lives and understanding of its societal 
impacts; (2) conceptual understanding of how AI works from a systems level perspective and at 
an algorithmic level; (3) the ethical and responsible design of automated decision-making systems 
using AI; and (4) skills for applying AI to real-world problems. We believe the combination of these 
four levels of engagement will prepare K-12 students for AI-enabled careers of the future that 
span both technical and non-technical career paths. In addition we hope to foster an appreciation 
for some of the profound ideas that underlie our current understanding of human intelligence. 
 
While our efforts focus on American students, K-12 AI education is becoming a priority world-
wide. China has mandated that all K-12 stuñdents receive instruction in AI and is pursuing a 
variety of approaches to realize this goal (Peterson, Goode, and Gehlhaus, 2021). The first AI 
textbook specifically for high school students was published in China in 2018 (China Daily, 2018), 
and was followed by a series of AI books designed for primary and secondary levels. The 
European Union is developing AI education through its Erasmus+ program, which is focusing on 
teaching AI in high schools (Universidad da Coruña, 2019). In 2022 UNESCO released a survey 
of government-endorsed AI curricula that found 11 countries with AI curricula already 
implemented (Armenia, Austria, Belgium, China, India, Republic of Korea, Kuwait, Portugal, 
Qatar, Serbia, and United Arab Emirates), and another 5 with government-endorsed curricula in 
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development (Germany, Jordan, Bulgaria, Saudi Arabia, and Serbia). The United States did not 
appear in this list because the many AI curriculum resources developed there are not government-
endorsed (UNESCO, 2022), but the report does reference both Lao’s Machine Learning 
Education Framework (Lao, 2020) and the AI4K12 guidelines (AI4K12.org). 
 
Recognizing the importance of AI education for K-12 students, the question then becomes what 
exactly do K-12 students need to learn? We drew upon the expertise of AI researchers to identify 
the content that students should learn, and of K-12 teachers to determine what students could 
learn.The guidelines for teaching machine learning we put forward in this paper also align with 
research in the learning sciences and computer science education literature on how to effectively 
promote children’s learning of complex concepts. 
 
Our current articulation of the guidelines is a series of grade band progression charts covering 
Five Big Ideas in AI in grades K-2, 3-5, 6-8, and 9-12. A draft of the chart for Big Idea 3 (Learning) 
was released for public feedback in November of 2020. In this paper we examine the content 
progression for Big Idea 3 in detail. We consider: 

● The logic behind our development of the content progression. 
● The developmental appropriateness of the guidelines, aligning them with other skills 

students are expected to have or develop within their grade band.  
● The essential insights about machine learning, automated decision making, and 

development of internal representations we hope students will acquire. 
● The kinds of learning experiences we want students to have. 
● The availability of tools to provide these experiences. 
● The relationship of machine learning to the other big ideas in AI. 

Related Work 
AI involves many complex concepts such as statistical inference, parameterized reasoners (e.g., 
decision trees or neural networks), and algorithms for adjusting those parameters (learning 
algorithms). Although research on how and what students can learn about AI at different grade 
levels is still developing, research in the learning sciences and computing education has shown 
that K-12 students can engage deeply with complex topics. There are three key insights from 
these disciplines that we think are applicable to AI Education: model building, experimentation, 
and construction of computational artifacts.  
 
(1) Model Building. Learning Sciences research has shown that as learners create or interact 
with physical or computational models of scientific phenomena, they develop and refine their own 
mental models of the phenomena (Lehrer & Schauble, 2006; Linn, 1999; Chittleborough & 
Treagust, 2009). The Learning By Design (LBD) approach (Kolodner, Crismond, Gray, and 
Holbrook, 1998) has shown that engaging in design and modeling activities enhances learning 
about complex systems through systematic exploration. For example, Hmelo-Silver (2000) 
showed that when children design artificial lungs and build partial working models of the 
respiratory system, they develop an understanding of the system. Similarly, the BodyVis project 
allows students to design interactive self-sensing wearables that display the dynamic inner-
workings of the wearer’s anatomy and allow participants to explore how their emotions affected 



4 

their physiology (Norooz, Clegg, Kang, Plane, Oguamanam, & Froehlich, 2016).These examples 
encourage us to expect that even young students, when presented with opportunities to interact 
with AI models and create their own models, will be able to develop understandings (i.e., mental 
models and explanations) of AI concepts. 
 
(2) Experimentation. Research on students’ experimentation with NetLogo’s multi-agent models 
has shown such experimentation helps students develop deep understandings of complex 
phenomena (Wilensky & Rand, 2015; Rand & Wilensky, 2008. For example, in Wilensky & Rand 
(2015) students experimented with a series of simulations of the spread of fire through a forest. 
The simulations allow students to vary the density of trees, probability of patch-to-patch spread, 
wind direction, and long distance transport of sparks (called “big jumps”). The simulations show 
that a fire's chance of reaching the opposite edge of the forest depends critically on the density 
of trees. One of the models in particular highlights the behavior of a spark as a critical parameter 
that affects the spread of the fire across unburned forest segments via big jumps. Studies of 
student’s experimentation with the simulator have shown that it helps them understand 
relationships between micro-level behavior (e.g., sparks) and the emergent macro-level behavior 
that results (e.g., spread of a forest fire) (Wilkerson, Sengupta, and Wilensky, 2008). More 
generally, studies of students experimenting with a variety of NetLogo simulations have shown 
that representing difficult or often misunderstood phenomena in terms of micro-level interactions 
better equips students to accurately describe, explain, and even predict the simulation’s behavior. 
 
A growing collection of online demonstrations allows students to experiment with AI. Google’s 
Experiments with AI collection (2022) offers fun and engaging experiences with a variety of AI 
technologies. More serious experimentation tools include visualizations of neural networks, e.g, 
TensorFlow Playground (Smilkov & Carter, 2016; Sato, 2016), CNN Explainer (Wang, Turko, 
Shaikh, Park, Das, Hohman, Kahng, & Chau, 2020 & 2021), and FaceDemo (Makwana, Wolff, 
Ratin, & Touretzky, 2022), exploration of word embeddings (Kahn, Prasad, & Veera, 2022; 
Bandyopadhyay, Xu, Pawar, & Touretzky, 2022), text generation or question answering 
demonstrations using transformer networks (InferKit, Inc., 2020; Lane, 2021b), and gridworld 
reinforcement learning simulators (IMAGINARY gGmbH, 2021; Karpathy, 2015). But few studies 
have been published to date that explore how experimentation with these tools helps students 
learn about important AI concepts. 
 
(3) Construction of computational artifacts. The Constructionist learning approach suggests 
that people learn particularly well by constructing personally meaningful artifacts (Kafai & Resnick, 
1996). The work of the MIT Media Lab has highlighted for years that we need to provide students 
access to computational tools with low floors, high ceilings, and wide walls that allow them to 
create personally relevant computational artifacts (Resnick & Silverman, 2005). This research has 
shown that creation of computational artifacts helps students apply the concepts presented to 
them and is a key driver in their actual learning of the concepts (Papavlasopoulou, Giannakos,& 
Jaccheri, 2019; Resnick, Berg, Eisenberg, 2000). For example, in MIT App Inventor, students are 
able to create mobile applications that can be deployed on Android and iOS devices. In the 
process of developing these applications they learn about event-based programming, user 
interface design principles, and short-term and long-term data storage (Turbak, F., Sherman, M., 
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Martin, F., Wolber, D. and Crawford Pokress, S., 2014). These concepts are typically taught to 
upper level undergraduates due to their complexity, but MIT App Inventor makes use and 
discussion of these concepts easy and natural (Grover & Pea, 2013; Chatzinikolakis & Papadakis, 
2014). Similarly, Scratch can be used to create games and animated stories about topics of 
personal interest. In doing so, students engage in computational thinking (e.g., problem 
decomposition and algorithm design) and make use of fundamental computing constructs such 
as loops, variables, conditionals, and functions (Brennan & Resnick, 2012). Through this process 
they develop an understanding of these concepts that is grounded in personal experience. In 
summary, when students are provided with tools to create and not just consume technology, they 
are inspired to express themselves, increase their interest in computing, and develop their 
computational identity (Pang, 2022).  
 
Extending the constructionist principles to AI education, researchers at MIT and other institutions 
have developed AI extensions to several block-based programming environments. Examples 
include AI for MIT App Inventor (Van Brummelen, Heng, & Tabunshchyk, 2021), Cognimates 
(Druga, 2018a, 2018b), Scratch Face Sensing Lab (Scratch Face Sensing Blocks, 2021; Scratch 
Team Blog, 2021), and AI blocks for Snap! (Kahn, Lu, Zhang, Winters, & Gao, 2020a, 2020b). 
These extensions allow students to create applications that incorporate AI components such as 
speech recognition, sentiment analysis, and classifiers trained via machine learning. Calypso 
(Touretzky, 2017) is another AI programming framework that evolved from a children’s game 
development language: Microsoft’s Kodu Game Lab (MacLaurin, 2011). Calypso incorporates 
speech recognition and generation, computer vision, face detection, path planning, and robot 
control. Use of these AI-enhanced programming frameworks can lead students to see themselves 
as not just programmers, but AI application developers. 
 
In developing the AI4K12 guidelines we’ve taken into account these insights from the learning 
sciences and incorporated numerous opportunities for students to develop models, experiment 
with mechanisms, and create computational artifacts. 

Background on the AI4K12 Guidelines 
In 2018 at the beginning of our development of the guidelines, we surveyed the EAAI (Educational 
Advances in Artificial Intelligence) proceedings archives from 2010 to 2018 and found very little 
had been published on K-12 AI education that provided even rudimentary guidance about what 
to teach K-12 students (Touretzky, Gardner-McCune, Breazeal, Martin, & Seehorn, 2019; Heinze, 
Haase, & Higgins, 2010). Most of the K-12 AI & ML publications focused on teaching K-12 
students robotics and merely mentioned that robotics provided a motivating context to teach AI 
and CS concepts, without providing explicit examples. This is not surprising given the dominance 
of LEGO, FIRST Robotics, and VEX robotics competitions, which are typically limited to simple 
color or light sensors and pre-programmed motion sequences even for the autonomous 
competitions. As a result, these robotics platforms offer students very little exposure to AI, as 
most of these robots were unable to see or hear (no camera or microphone), and offered little 
onboard processing power. Similarly our search of the SIGCSE proceedings and other computing 
education conferences in the ACM Digital Library and IEEE Xplore Digital Library resulted in few 
references to teaching AI and machine learning at the K-12 or even undergraduate level. Thus, 
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we turned to existing computer science guidelines and leaned on the expertise of K-12 CS 
educators and university AI faculty to help us assess what students were capable of 
understanding and the best ways to adapt college-level AI concepts for K-12 students and 
teachers. 
 
Existing Guidelines for K-12 Computing Education 
The K-12 Computer Science Framework (2016) and the CSTA K-12 Computer Science Standards 
(CSTA, 2017) define what K-12 students should know about computer science. They include a 
wide range of topics organized within five major concepts: (1) computing systems, (2) networks 
and the internet, (3) data and analysis, (4) algorithms and programming, and (5) impacts of 
computing. When the CSTA K-12 Computer Science Standards were released, only two 
standards referenced AI (CSTA, 2017). Both were listed in the advanced high school grade band 
within the algorithms and programming concept (Figure 1). Standard 3B-AP-08 involves 
identifying and communicating the use of AI in software and physical systems, while 3B-AP-09 
asks students to create an AI game agent.  
 

 
Figure 1. The two references to AI in the 2017 CSTA Computer Science Standards. 

 
Beyond these two explicit AI standards, there are several other standards that provide hooks for 
CS teachers to explore AI concepts, such as data collection, inference & models (e.g., 2-DA-08, 
1B-DA-07), designing computational artifacts to solve societal problems (e.g., 3A-AP-16), 
evaluation of artifacts and their impacts (e.g., 3A-IC-29), and discussion of bias in the design of 
computing systems (e.g., 2-IC-21 and 3A-IC-25). See Table 1 for expanded descriptions of these 
examples. In response to the limited coverage of AI concepts in the CSTA Computer Science 
Standards, the AI4K12 Initiative was launched in summer 2018 with the primary purpose of 
developing guidelines for what every student should know about and be able to do with AI. The 
development of these guidelines was modeled after the CSTA standards process (AAAI, 2018; 
Touretzky, 2018).  
 

Table 1. Hooks for Teaching AI within the 2017 CSTA Computer Science Standards 
Concept Subconcept Relevant CSTA Standard 

Data & Analysis Collection, 
Visualization, & 
Transformation 

2-DA-08 Collect data using computational tools and transform the data to make it more 
useful and reliable. (P6.3) 

Inference & Models 1A-DA-07 Identify and describe patterns in data visualizations, such as charts or 
graphs, to make predictions. (P4.1) 
 
1B-DA-07 Use data to highlight or propose cause-and-effect relationships, predict 
outcomes, or communicate an idea. (P7.1)  
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3A-DA-12 Create computational models that represent the relationships among different 
elements of data collected from a phenomenon or process. (P4.4) 

Algorithms & 
Programming 

Control 3A-AP-16 Design and iteratively develop computational artifacts for practical intent, 
personal expression, or to address a societal issue by using events to initiate 
instructions. (P5.2) 

Program 
Development 

Program 
Development 

1B-AP-15 Test and debug (identify and fix errors) a program or algorithm to ensure it 
runs as intended. (P6.1, P6.2) 
 
1B-AP-16 Take on varying roles, with teacher guidance, when collaborating with peers 
during the design, implementation, and review stages of program development. (P2.2) 
 
2-AP-17 Systematically test and refine programs using a range of test cases. (P6.1) 
 
3A-AP-21 Evaluate and refine computational artifacts to make them more usable and 
accessible. (P6.3) 
 
3A-AP-23 Document design decisions using text,graphics, presentations, and/or 
demonstrations in the development of complex programs. (P7.2) 

Impacts of 
Computing 

Culture 1A-IC-16 Compare how people live and work before and after the implementation or 
adoption of new computing technology. (P7.0) 
 
1B-IC-19 Brainstorm ways to improve the accessibility and usability of technology 
products for the diverse needs and wants of users. (P1.2) 
 
2-IC-21 Discuss issues of bias and accessibility in the design of existing technologies. 
(P1.2) 
 
3A-IC-25 Test and refine computational artifacts to reduce bias and equity deficits. 
(P1.2) 

Safety, Law, & 
Ethics 

3A-IC-28 Explain the beneficial and harmful effects that intellectual property laws can 
have on innovation. (P7.3) 
 
3A-IC-29 Explain the privacy concerns related to the collection and generation of data 
through automated processes that may not be evident to users. (P7.2) 
 
3A-IC-30 Evaluate the social and economic implications of privacy in the context of 
safety, law, or ethics. (P7.3) 

 
While AI and data science were becoming common in media articles and higher education 
offerings at the time we started developing the AI4K12 guidelines, very little had been defined for 
K-12 students. However, a year after we began our work, the Introduction to Data Science 
Curriculum Framework (DSCF) was released in 2019 (IDSSP, 2019). The purpose of the Data 
Science curriculum framework is “to provide specifications for the development of a modern Data 
Science Curriculum that can be customized to local requirements” and be used for students in 
their last two years of high school. (IDSSP, 2019, p. 9). As such, the DSCF framework is organized 
into two units and its learning objectives broadly focus on helping students (1) understand and 
manipulate data, (2) develop a practical understanding of when data science can be used to solve 
problems, and (3) develop skills to use data science tools and techniques to solve problems.The 
developers of the DSCF state that while the framework gives students some preliminary skills in 
using a programming language and experience with automation, the main focus is on helping 
students understand the power of the tools and the importance of managing data carefully 
(IDSSP, 2019). While the DSCF is meant as a guide to develop curriculum, its comprehensive 
articulation of learning objectives for Data Science knowledge also define what K-12 students 
should know and be able to do with data science in the current absence of standards or guidelines. 
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There are several areas of overlap between the DSCF and the treatment of machine learning and 
societal impacts of AI in the AI4K12 Guidelines. Table 2 highlights the complementary and 
overlapping areas between the two frameworks. At the intersection of the DSCF and the AI4K12 
Guidelines, there are significant overlaps in the areas of supervised and unsupervised learning 
such as: (1) selection of algorithms for classification or prediction; (2) partitioning of the dataset 
to evaluate the performance of the model; (3) creating decision tree classifiers and predictors; (4) 
training a classification or regression model; and (5) ethics of working with data and detecting and 
avoiding bias in datasets. The overlapping concepts described in the DSCF represent only a 
portion of the Big Idea 3 (Learning) concepts. The DSCF has a heavy focus on using ML to solve 
problems and using data science techniques to understand data and when to use different types 
of ML that goes beyond the AI4K12 Big Idea 3 guidelines. For example, the DSCF (1) explicitly 
asks students to pose classification and prediction questions, (2) provides explicit guidance on 
how to evaluate and measure performance of algorithms and models, and (3) provides 
opportunities for students to learn the steps in the data-handling pipeline and data wrangling 
techniques. Given the broader focus of the AI4K12 Guidelines on machine learning in general, 
the Big Idea 3 (Learning) guidelines help students understand how machine learning works 
through addressing three broad concepts: Nature of Learning, Neural Networks, and Datasets. 
The AI4K12 guidelines extend student learning beyond the learning objectives covered in the data 
science curriculum framework into understanding (1) differences between human learning and 
machine learning; (2) how neural networks are constructed and work; and (3) the difference 
between constructing versus using a reasoner.  
 
Table 2. Intersection between the Curriculum Framework for Introductory Data Science (2019) & 
AI4K12 Guidelines (AI4K12.org) 

Areas of 
Alignment 

AI4K12 Guidelines Curriculum Framework for  
Introductory Data Science (DSCF) 

(1) Selection of 
algorithms for 
classification or 
prediction 

3-A-iv: Nature of Learning: 
Constructing vs. using a reasoner 
3-A-vi.9-12 LO: Select the appropriate 
type of machine learning algorithm 
(supervised, unsupervised, or 
reinforcement learning) to solve a 
reasoning problem. 
 

Topic Area 1.3 SUPERVISED LEARNING 
Understand what sort of problems can be solved 
with classification. 

- Pose classification questions and identify situations 
that call for classification. 

- Provide an algorithm to classify categorical 
outcomes 

- Pick an algorithm to classify categorical data 
- Pick an algorithm to predict based on 1-2 features 

(2) Partitioning 
of the dataset to 
evaluate the 
performance of 
the model 

3-A-i.9-12 Unpacked: The cross-
validation set is used to avoid 
overfitting. The test set consists of 
examples that were not used during 
training or for cross-validation, so it 
provides an unbiased prediction of the 
reasoner's performance on new inputs. 
 
 
3-C-iii: Datasets: Bias 
3-C-iii.6-8 LO: Explain how the choice of 
training data shapes the behavior of the 
classifier, and how bias can be 

Topic Area 1.3 SUPERVISED LEARNING 
Understand how algorithms/models are evaluated 
to measure performance. 

- Use software to calculate misclassification rates. 
- Compare classification algorithms/models and 

decide which is the better for a given situation 
based on total misclassification rate. 

- Explain how algorithms/models can be used to 
predict numerical outcomes, and explain how a 
goodness of fit measure can be used to quantify the 
success of the prediction. 

- Understand what overfitting is. 
 
Understand how "set aside" data are used and 
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introduced if the training set is not 
properly balanced. 
 
3-C-iii.9-12 LO: Investigate imbalances 
in training data in terms of gender, age, 
ethnicity, or other demographic variables 
that could result in a biased model, by 
using a data visualization tool. 
 
 

why they are important 
- Use a set-aside data set to compare classification 

algorithms/models. 
- Use a validation dataset to compare trees for 

prediction. 

(3) Creating 
decision tree 
classifiers and 
predictors 

3-A-v: Nature of Learning: Adjusting 
internal representations 
3-A-v.3-5 LO: Analyze a game where 
one constructs a decision tree, 
describing the organization of the tree 
and the learning algorithm used to add 
nodes. 
3-A-v.6-8 LO: Compare how a decision 
tree learning algorithm works vs. how a 
neural network learning algorithm 
works. 
 

Topic Area 1.3 SUPERVISED LEARNING 
Understand what sort of problems can be solved with 
classification. 

- Understand how Classification and Regression 
Trees (CART) are used to classify. Fit a tree, 
interpret and evaluate the performance. 

- Describe an algorithm to generate a tree to predict 
numerical outcomes using 1 or 2 features/variables.  

- Fit and interpret a regression tree using software 

(4) Training a 
classification or 
regression 
model 
 
 

3-A-iii: Nature of Learning: Training a 
model 
3-A-ii.9-12 LO: Model how machine 
learning constructs a reasoner for 
classification or prediction by adjusting 
the reasoner's parameters (its internal 
representations). 
 
3-A-iii: Nature of Learning: Training a 
model 
3-A-iii.K-2 LO: Demonstrate how to train 
a computer to recognize something. 
3-A-iii.3-5 LO: Train a classification 
model using machine learning, and then 
examine the accuracy of the model on 
new inputs. 
3-A-iii.6-8 LO: Train and evaluate a 
classification or prediction model using 
machine learning on a tabular dataset. 
3-A-iii.9-12 LO: Use either a supervised 
or unsupervised learning algorithm to 
train a model on real world data, then 
evaluate the results. 

Topic Area 1.3 SUPERVISED LEARNING 
- Understand how Classification and Regression 

Trees (CART) are used to classify. Fit a tree, 
interpret and evaluate the performance. 

- Provide an algorithm to classify categorical 
outcomes. 

 
Topic Area 2.5 UNSUPERVISED LEARNING 
- Explain the iterative process of one clustering 

algorithm such as K-means. 
- Use software to prepare data, apply K-means 

clustering and interpret the results 

(5) Nature of 
data and 
datasets 

3-A-iii: Nature of Learning: Finding 
patterns in data 
3-A-ii.K-2 LO: Identify patterns in 
labeled data and determine the features 
that predict labels. 
3-A-ii.3-5 LO: Model how supervised 
learning identifies patterns in labeled 
data. 
3-A-ii.6-8 LO: Model how unsupervised 
learning finds patterns in unlabeled data. 
 
3-C-i: Datasets: Feature sets 
3-C-i.K-2 LO: Create a labeled dataset 

Topic Area 1.3 SUPERVISED LEARNING 
Express what data are and what they are used for 
Importance of data quality 
 
Topic Area 1.7 AVOID BEING MISLED BY DATA 
To provide students with a deeper understanding of how 
to critique data and data-based claims, including an 
appreciation of the ideas of bias, confounding and 
random error. 
 
Topic Area 2.5 UNSUPERVISED LEARNING 
Distinguish between data that are appropriate for 
supervised versus unsupervised learning based on its 
structure, particularly the presence and roles of inputs 
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with explicit features to illustrate how 
computers can learn to classify things 
like foods, movies, or toys. 
3-C-i.3-5 LO: Create a labeled dataset 
with explicit features of several types 
and use a machine learning tool to train 
a classifier on this data. 
3-C-i.6-8 LO: Create a dataset for 
training a decision tree classifier or 
predictor and explore the impact that 
different feature encodings have on the 
decision tree. 
3-C-i.9-12 LO: Compare two real world 
datasets in terms of the features they 
comprise and how those features are 
encoded. 
 
3-C-iii: Datasets: Bias 
3-C-ii.3-5 LO: Illustrate how training a 
classifier for a broad concept such as 
"dog" requires a large amount of data to 
capture the diversity of the domain. 
3-C-ii.9-12 LO: Evaluate a dataset used 
to train a real AI system by considering 
the size of the dataset, the way that the 
data were acquired and labeled, the 
storage required, and the estimated time 
to produce the dataset. 
 
3-A-iv: Nature of Learning: 
Constructing vs. using a reasoner 
3-A-iv.3-5 LO: Demonstrate how training 
data are labeled when using a machine 
learning tool. 
3-A-iv.9-12 LO: Illustrate what happens 
during each of the steps required when 
using machine learning to construct a 
classifier or predictor. 

and outputs 
 
 

(6) Ethics of 
working with 
data and 
detecting and 
avoiding bias in 
datasets. 
 

3-C-ii: Datasets: Large datasets  
EU: A large dataset is typically required 
to capture the diversity of a complex 
domain and narrow down the range of 
possible reasoner behaviors. There are 
multiple ways to construct, clean, and 
verify a dataset. There can be large 
costs associated with creating the 
dataset and processing the data. 
Labeling training data is labor intensive 
and may require specialized expertise 
(e.g., spotting disease in x-rays.) Bias 
can be introduced during each step of 
dataset creation. 
 
3-C-iii: Nature of Learning: Training a 
model 
3-C-iii.K-2 LO: Examine a labeled 
dataset and identify problems in the data 
that could lead a computer to make 
incorrect predictions. 
3-C-iii.3-5 LO: Examine features and 

Topic Area 1.3 SUPERVISED LEARNING 
- Heighten awareness of how ethical issues can 

arise in the various steps of the cycle (especially in 
the data gathering stage). 

- Heighten awareness of potential dangers of 
misuse and abuse to pay specific attention to 
issues relating to data quality, questioning skills, 
and presentation skills 

 
Topic Area 1.1 SOCIAL & ETHICAL ISSUES 

- Express what data are and where they come from. 
- Identify and describe errors in decisions and 

predictions owing to faulty use of data. 
- Discuss how and when data can support making 

decisions. 
- Provide examples of the social and personal 

consequences of predictions derived from models 
built on data. 
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labels of training data to detect potential 
sources of bias.  
3-C-iii.6-8 LO: Explain how the choice of 
training data shapes the behavior of the 
classifier, and how bias can be 
introduced if the training set is not 
properly balanced. 
3-C-iii.9-12 LO: Investigate imbalances 
in training data in terms of gender, age, 
ethnicity, or other demographic variables 
that could result in a biased model, by 
using a data visualization tool. 
 
Big Idea 5 Societal Impacts 

 
Other Relevant Educational Standards 
Current K-12 standards such as the Common Core (CC) and the Next Generation Science 
Standards (NGSS) offer rigorous guidance for teaching STEM concepts, and developmentally 
appropriate introductions to inquiry, analysis, and problem-solving, that can help prepare students 
for learning AI. But they provide no AI content knowledge. The NRC Framework for K-12 Science 
Education, which informed the development of the NGSS, identifies five Science and Engineering 
Practices that align well with the skills students need to engage with AI (NRC, 2012). They are 
(1) Asking questions (for science) and defining problems (for engineering); (2) Developing and 
using models; (3) Planning and carrying out investigations; (4) Analyzing and interpreting data; 
and (5) Constructing explanations and designing solutions. For example, in the 3-5 grade band 
students are expected to be able to “develop and/or use models to describe and/or predict 
phenomena” (NRC, 2013. p. 387), which aligns well with the AI4K12 Guideline 3-A-iii which reads 
“Train a classification model using machine learning, and then examine the accuracy of the model 
on new inputs” (AI4K12.org, 2020). In addition, we identified several cross-cutting themes within 
NGSS that align well with the skills students need to engage deeply with AI concepts and 
understand how AI systems work. For example, NGSS’s “Patterns” theme provides a foundation 
in skills for observing “patterns of forms and events that guide organization and classification.” 
Observations of patterns “prompt questions about relationships and the factors that influence 
them” (NRC, 2013. p. 413). This cross-cutting theme aligns with AI4K12 Guideline 3-A-ii which 
reads “Identify patterns in labeled data and determine the features that predict labels” 
(AI4K12.org, 2020). Table 3 provides additional examples of AI-enabling practices within the 
NGSS’s Science & Engineering Practices, NRC’s Cross-cutting themes, and Common Core’s 
English and Language Arts (ELA) and Literacy standards. 
 
One of the goals of the AI4K12 Guidelines and the Five Big Ideas in AI is to equip students to 
understand, evaluate, and explain the societal impacts of AI-enabled technologies (Touretzky, 
Gardner-McCune, Martin, & Seehorn 2019b). Within the Common Core Standards (CCS) there 
are several English and Language Arts and Literacy (ELA/Literacy) standards that align well with 
this goal, such as “RI.3.3 Describe the relationship between a series of historical events, scientific 
ideas or concepts, or steps in technical procedures in a text, using language that pertains to time, 
sequence, and cause/effect (3-LS3-1)” (NGA Center for Best Practices & CCSSO, 2010b). We 
want students to understand the technical steps in developing AI-enabled systems and the places 
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where human decision-making can have immediate and long-term effects on the people who use 
those systems. For example, students should be able to identify how the choice of data used to 
train a decision-making system will impact the system’s predictions and affect the lives of the 
populations who use that system (Tourezky, Gardner-McCune, Martin, & Seehorn, 2019b).  
 
The AP Computer Science Principles Exam is one of the first computer science exams to require 
students to explain design choices, computing technologies, and algorithms at the K-12 level 
(College Board, 2020). Many of the AI4K12 Guidelines also ask students to explain concepts, 
such as 3-A-iv Constructing vs. Using a Reasoner, which reads “Explain the difference between 
training and using a reasoning model.” Guidelines like these align well with the CCS “W.3.2 Write 
informative/explanatory texts to examine a topic and convey ideas and information clearly (3-LS3-
1)” (NGA Center for Best Practices & CCSSO, 2010c). Moreover, we want students to be able to 
read critically about AI, both in news reports and in case-studies of AI technologies (Touretzky, 
Gardner-McCune, Martin, & Seehorn, 2019b). This skillset builds on CCS SL.3.4 “Report on a 
topic or text, tell a story, or recount an experience with appropriate facts and relevant descriptive 
details, speaking clearly at an understandable pace (3-LS3-1)” (NGA Center for Best Practices & 
CCSSO, 2010d). While ELA/Literacy skills are not common in computer science and technical 
courses, these skills are essential for students to be able to critically explore AI and understand 
the limits and the boundaries of their own knowledge.  
 
Table 3. Select NGSS, NRC Framework for K-12 Science, and Common Core Standards that are 
relevant to AI instruction. 

Framework Practice or Cross-
Cutting Theme 

Examples of Standards 

NGSS 
(NSTA, 2014) 
 

1. Patterns Observed patterns of forms and events guide organization and classification, and they 
prompt questions about relationships and the factors that influence them. 
 
Similarities and differences in patterns can be used to sort, classify, and analyze simple 
rates of change for natural phenomena. 

4. Systems and 
System Models 

Defining the system under study—specifying its boundaries and making explicit a model 
of that system—provides tools for understanding and testing ideas that are applicable 
throughout science and engineering. 
 
In 3-5, A system can be described in terms of its components and their interactions. 
 
In 6-8, Models can be used to represent systems and their interactions—such as inputs, 
processes and outputs—and energy, matter, and information flows within systems.  
 

Science and 
Engineering 
Practices: 
NRC 
Framework for 
K-12 Science 
Education 
(NRC, 2012) 
 

Asking Questions 
(for Science) and 
Defining Problems 
(for Engineering) 

In K-2, students can ask questions based on observations to find more information 
about the natural and/or designed world(s). 
 
In 3-5, students can ask questions that can be investigated and predict reasonable 
outcomes based on patterns such as cause and effect relationships. 

Developing and 
Using Models 

Modeling in 3–5 builds on K–2 experiences and progresses to building and revising 
simple models and using models to represent events and design solutions. 
 
Develop and/or use models to describe and/or predict phenomena. 
 

Planning and 
Carrying out 

In 6-8, students can develop and/or revise a model to show the relationships among 
variables, including those that are not observable but predict observable phenomena. 
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Investigations  
In 9-12, students can develop and/or use a model (including mathematical and 
computational) to generate data to support explanations, predict phenomena, analyze 
systems, and/ or solve problems. 

Analyzing and 
Interpreting Data 

Analyzing data in 3–5 builds on K–2 experiences and progresses to introducing 
quantitative approaches to collecting data and conducting multiple trials of qualitative 
observations. When possible and feasible, digital tools should be used. 
 
Analyze and interpret data to make sense of phenomena using logical reasoning. 

Constructing 
Explanations and 
Designing Solutions 

Generate and compare multiple solutions to a problem based on how well they meet the 
criteria and constraints of the design solution. 

Common Core ELA/Literacy RI.3.3 Describe the relationship between a series of historical events, scientific ideas 
or concepts, or steps in technical procedures in a text, using language that pertains to 
time, sequence, and cause/effect. (3-LS3-1) 
 
W.3.2 Write informative/explanatory texts to examine a topic and convey ideas and 
information clearly. (3-LS3-1) 
 
SL.3.4 “Report on a topic or text, tell a story, or recount an experience with appropriate 
facts and relevant, descriptive details, speaking clearly at an understandable pace. (3-
LS3-1) 

Five Big Ideas in AI 
With little external guidance from the literature on the content and scope of AI education for K-12 
students, the AI4K12 Steering Committee (David Touretzky, Christina Gardner-McCune, Fred 
Martin, and Deborah Seehorn) began their work in 2018 by formulating a list of “Five Big Ideas in 
AI” that would serve as the organizing framework for the guidelines (Touretzky et al., 2019a). This 
was modeled after the CSTA Computing Standards, which are organized around five major 
concepts as described earlier (CSTA, 2017). Figure 2 is an infographic illustrating the Five Big 
Ideas in AI. Summarized briefly, the ideas are: 
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Figure 2. The “Five Big Ideas in AI” infographic developed by the AI4K12 Initiative. 
 

 
1. Perception: Computers perceive the world using sensors. Perception is the extraction of 

meaning from sensory signals, using knowledge. 
 

2. Representation and Reasoning: Agents maintain representations of the world and use 
them for reasoning. Representation drives reasoning; reasoners operate on 
representations. 
 

3. Learning: Computers can learn from data. A machine learning algorithm constructs a 
reasoner by adjusting the internal representations of a reasoning model, such as a 
decision tree or a neural network. 
 

4. Natural Interaction: Intelligent agents require many kinds of knowledge in order to 
interact naturally with humans. This includes knowledge about language, “common sense” 
and cultural knowledge, and knowledge about human emotions. 
 

5. Societal Impact: AI can impact society in both positive and negative ways. Relevant 
issues include fairness, bias, and transparency of automated decision-making systems, 
economic impacts of automation, cultural aspects of living with intelligent machines, and 
applications of AI for social good 
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An informational poster designed for classroom use that describes the Five Big Ideas was 
released in 2019 and has been translated into 16 languages. These are available at the 
AI4K12.org website. 

Guidelines Development Process 
The Steering Committee assembled a Working Group composed of 16 K-12 teachers, plus 9 
individuals with other types of expertise such as AI research, CS education research, curriculum 
development, and district and state leadership. The K-12 teachers were organized in four grade 
bands (K-2, 3-5, 6-8, and 9-12). Each had multiple years of experience teaching children in their 
grade band; most were still working in the classroom (n=13), but a few had moved on to teacher 
training or administrative positions (n=3). However, most of the teachers had little or no familiarity 
with AI when they joined the project. Five people stepped down at the end of year 1, and we 
recruited three replacements. In addition, an Advisory Board was formed that eventually grew to 
a dozen members representing industry, academia, the US government, nonprofits, and overseas 
curriculum development projects (AI4K12.org, 2022). 
 
Figure 3 outlines the guidelines development process. The working group addressed the five big 
ideas one at a time. For each big idea, we held tutorial sessions to familiarize members with the 
relevant AI concepts. These were supplemented by select videos, unplugged activities, and online 
demonstrations to deepen their engagement with the concepts. Following these large group 
sessions, each grade band held its own weekly or bi-weekly video meetings, and its members 
also worked asynchronously, to develop concept treatments for the focal big idea that set out the 
major concepts and subconcepts and accompanying skills. A key contribution of the K-12 working 
group members at this stage was their evaluation of the developmental appropriateness of various 
AI concepts through alignment with content, skills, and practices used in teaching general STEM 
and CS topics. Following this grade band work, we held monthly video meetings of the entire 
Working Group where the grade bands discussed their formulations of the AI concepts and skills 
appropriate for their students. Initially these were presented as slide decks; later they were 
assembled into spreadsheets. Through discussions of the grade band work we identified key 
themes and potential misconceptions in the concept treatments, and checked alignment with 
STEM and computing concepts and socio-emotional learning goals. After the grade bands 
incorporated this feedback, the next step was to merge the four grade band concept treatments 
into a unified spreadsheet, aligning topics and language as much as possible. The result gave a 
blueprint for the level of depth at which the concepts should be addressed. The grade bands were 
given time to do cross-grade band work to smooth out the horizontal progression, and within their 
own grade band spent some time smoothing out the vertical progression.  
 
By the end of Year 2, the steering committee and advisory board recognized that our 
understanding of the concepts students should be learning had evolved over time and there were 
some concepts that were underdeveloped, others overdeveloped, and some that were missing. 
In addition, there were several places where lower grade bands were proposing more advanced 
work than the succeeding grade band, while in other places adjacent grade bands were doing the 
same thing. There were also editorial concerns about use of consistent language across the grade 
bands. Therefore, the Steering Committee drafted a revised synthesis document by starting with 
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a fresh concept list and importing ideas from the unified spreadsheet produced by the grade 
bands, aligning rows and columns to use uniform language. The synthesis document was then 
critiqued by members of the Working Group and after revisions, it was released for public 
comment. Further revisions are anticipated in response to comments received. As of this writing, 
the Big Idea 1 (Perception) progression chart is undergoing revision, and Big Ideas 2 
(Representation and Reasoning), 3 (Learning), and 4 (Natural Interaction) are undergoing public 
review. The synthesis for the Big Idea 5 (Societal Impact) is in development. 
 
 

 
Figure 3: The guidelines development process. 

 
 
The grade band progression chart for each big idea is a table in which the rows are concepts and 
subconcepts and the columns are the four grade bands. For each cell in the table, the guideline 
offers a Learning Objective (what students should be able to do) and an Enduring Understanding 
(what students should know). These are sometimes accompanied by Unpacked descriptions that 
amplify the LO or EU. Figure 4 shows the progression for the “Humans vs. machines” subconcept 
of the “Nature of Learning” main concept in the Big Idea 3 progression chart. 
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Figure 4. The progression for Big Idea 3, Concept A: Nature of Learning, subconcept i: Humans 
vs. machines. 

Big Idea 3: What Every K-12 Student Should Know About Machine 
Learning 
Big Idea 3 (Learning) is intended to immerse students in the richness and complexity of Machine 
Learning. The first step is to demystify what machine learning is and how it works. To understand 
this students need to acquire four essential insights about machine learning: 
 

1. Definition of machine learning: Machine learning allows a computer to acquire 
behaviors without people explicitly programming those behaviors. This paraphrases a 
widely-cited definition often attributed to Arthur Samuel (Wikipedia, 2021, fn. 2), who 
coined the term “machine learning” (Samuel, 1959). Using learning to induce a behavior 
is very different from the usual approach to constructing computing applications by 
explicitly programming each step. 
 

2. How machine learning algorithms work: Learning new behaviors results from changes 
the learning algorithm makes to the internal representations of a reasoning model, such 
as a decision tree or a neural network. The essential insight here is that the learning 
algorithm is constructing a reasoner. In a decision tree, this means adding new nodes. In 
a neural network it means adjusting the weights. What we want students to understand is 
that this kind of learning is a simple, mechanical process; there is no self-awareness or 
any kind of magic involved. More ambitious types of learning, such as learning new 
concepts or learning by demonstration, while the subject of current research, are not 
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included in the guidelines because they are not yet successful enough to have real-world 
impact 
 

3. The role of training data: When the reasoning model is capable of a great variety of 
behaviors, large amounts of training data are required to narrow down the learning 
algorithm’s choices. Popular accounts of machine learning often emphasize the massive 
amounts of data required, but this is not always true. Common misconceptions hold that 
high dimensional input spaces or large numbers of output classes require large training 
sets. It is actually model complexity that drives the need for data. If the desired reasoning 
behavior can be described by a simple model, a small amount of data may suffice. But 
classifiers with complex decision boundaries and function approximators with highly 
nonlinear input-output relationships cannot be realized by simple models. What we want 
students to understand is that people are able to learn from small numbers of examples 
because they use their prior knowledge and intuition to choose models that favor 
“sensible” solutions. Computers are not yet good at this. Therefore the computer must 
resort to complex models with many parameters. And accurately estimating these 
parameter values requires many training examples. Structured architectures such as 
convolutional neural networks or transformer networks are attempts to incorporate prior 
knowledge into models in ways that are sensible but not too restrictive. 
 

4. Learning phase vs. application phase: The reasoner constructed by the machine 
learning algorithm can be applied to new data to solve problems or make decisions. In the 
learning phase, the learning algorithm is constructing a reasoner using the training data. 
When it runs the reasoner on the training data and assesses the results, the focus is on 
improving the reasoner’s behavior. In the application phase the reasoner is no longer tied 
to the learning algorithm or training data. It is simply processing inputs and producing 
outputs. 
 

The Big Idea 3 progression chart (AI4K12.org, 2020) expands these essential insights by 
introducing students to three major concepts. Table 4 lists these three concepts and the 
subconcepts contained in each. 
 
Table 4. Big Idea 3 (Learning) concepts. 

(A) Nature of Learning  
i. Humans vs. machines 
ii. Finding patterns in data 
iii. Training a model 
iv. Constructing vs. using a reasoner 
v. Adjusting internal representations 
vi. Learning from experience 

(B) Neural Networks 
i. Structure of a neural network 
ii. Weight adjustment 

(C) Datasets 
i. Feature sets 
ii. Large datasets 
iii. Bias 

 
Section A: Nature of Learning 
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This first section introduces the major concepts in machine learning and the skills students need 
to develop. The latter include training a reasoning model and measuring the model’s accuracy on 
new inputs. 
 
3-A-i: Humans vs. machines. It is important for students to appreciate that machines do not learn 
the way humans do. Both people and computers can learn by finding patterns in data, but humans 
are flexible learners who also learn in other ways, such as by direct instruction, by observing 
others, by asking questions, by experimentation, or by making connections to past experience. In 
contrast, computers use specialized algorithms that learn to solve narrowly defined problems. In 
the K-8 grades we ask students to make this distinction. In 9-12 we ask them to define the three 
major categories of machine learning algorithms (supervised, unsupervised, and reinforcement 
learning) and draw analogies with human learning situations, e.g., supervised learning is like 
having a coach telling you what you’re doing wrong. 
 
3-A-ii: Finding patterns in data. This is the essence of machine learning. In K-2 and 3-5 we ask 
students to identify patterns in labeled data by inspection. In K-2 they express the rules informally, 
while in 3-5 they draw a decision tree. In 6-8 we introduce unsupervised learning and ask students 
to model how clustering works. In 9-12 we delve deeper into supervised learning and ask students 
to model how classification or prediction problems are solved by an incremental learning 
algorithm, by manually adjusting the parameters of a polynomial regression model to reduce the 
overall error. This is an analogy to the iterative gradient descent optimization used in the 
backpropagation learning algorithm, but without having to actually measure the error gradient. 
 
3-A-iii: Training a model. Every student should have the experience of training a reasoning model 
using a machine learning tool. In K-2 this would be a highly scaffolded exercise using a tool like 
Teachable Machine (Phillips, 2019) to classify gestures or sounds. In higher grades students 
might use tabular data and a tool like Machine Learning For Kids (Lane, 2021a). In 9-12 we 
emphasize working with real-world datasets, so students will be asked to train a predictor, 
classifier, or clusterer using a publicly available real-word dataset. 
 
3-A-iv: Constructing vs. using a reasoner. This row is concerned with two topics: the distinction 
between the learning phase and the application phase in machine learning (the fourth essential 
insight mentioned earlier), and, in grades 9-12, all the steps involved in constructing a reasoner 
and assessing the accuracy of the trained reasoning model, including use of cross-validation and 
test datasets. 
 
3-A-v: Adjusting internal representations. This row explores the second essential insight, that 
learning algorithms work by adjusting the internal representations of a reasoning model. In grades 
3-5 students reflect on how decision tree learning works by successively adding nodes at the 
fringe of the tree. In 6-8 they compare decision tree learning with neural network learning 
algorithms, while in 9-12 they also consider parameter adjustment in regression algorithms and 
policy adjustment in reinforcement learning. 
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3-A-vi: Learning from experience. This row covers reinforcement learning. In 3-5 we want students 
to know about some of the applications of reinforcement learning, e.g. that computers can become 
expert game players by playing against themselves. In 6-8 students are asked to explain the 
difference between supervised learning and reinforcement learning, while in 9-12 they are asked 
to select the most appropriate learning algorithm (supervised, unsupervised, or reinforcement 
learning) for various types of problems. Students should recognize that reinforcement learning is 
appropriate for sequential decision problems. 
 
Section B: Neural Networks 
As a type of reasoning model neural networks are properly included in Big Idea 2 (Representation 
and Reasoning). But due to the prominent role deep neural networks play in modern machine 
learning, and the fact that neural network reasoners are almost exclusively constructed by 
learning algorithms, we decided to cover them in Big Idea 3. 
 
3-B-i: Structure of a neural network. This row covers the neural network as a reasoning model. 
Its components include connections, weights, and units with nonlinear transfer functions. In 
grades 3-5 students are introduced to simple networks of one to three binary threshold units. In 
grades 6-8 they learn about input, hidden, and output layers, and come to see neural networks 
as “wiggly” functions that map inputs to outputs in complex ways. In grades 9-12 they learn about 
more sophisticated neural network architectures such as recurrent and convolutional networks, 
and Generative Adversarial Networks (GANs) that produce deepfakes. 
 
3-B-ii: Weight adjustment. In this row students learn how changing the weights of a neural network 
alters its behavior. In grades 3-5 they make the weight adjustments themselves to get a network 
of 1-3 units to implement a desired behavior. In grades 6-8 they learn a simple weight adjustment 
rule that applies to single-layer networks. In grades 9-12 they use a backpropagation learning tool 
such as TensorFlow Playground (Sato, 2016) to train a multilayer network and examine the 
changes that occur to the weights and hidden unit response functions. However, we do not expect 
students to learn the mathematics underlying backpropagation, as this involves vector calculus. 
What we expect them to understand is that there is an equation for calculating an error signal, 
and that this signal originates at the output layer, is propagated backward to earlier layers, and is 
used to adjust the weights coming into each layer. Machine learning electives for advanced 
students in grades 11-12 might explore backpropagation in greater depth and even derive the 
weight update equation via the chain rule, but for most students this level of detail is too much. 
 
Section C: Datasets 
In the past decade, progress in machine learning has produced dramatic advances in artificial 
intelligence applications including speech recognition, computer vision, and machine translation. 
These advances have resulted from the ability to train large models on massive datasets. But in 
some cases, training on problematic datasets has produced systems that exhibit bias against 
certain classes of persons. Thus, it is important to understand how the choice of dataset affects 
the outcome of a machine learning experiment. 
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3-C-i: Feature sets. This row introduces the idea of describing training instances as collections of 
features and explores how the choice of feature encoding can influence learning. In grades 9-12 
students may examine real-world datasets (e.g., demographic or financial data) and compare the 
encoding schemes used. 
 
3-C-ii: Large datasets. This row examines why large datasets are needed for complex problems, 
and investigates techniques and costs of labeling large amounts of training data. Students may 
explore historically and scientifically significant datasets that are browsable online, such as the 
ImageNet and Coco datasets for object recognition. In grades 9-12 they may evaluate large public 
datasets to estimate their size and the cost of assembling, cleaning, and labeling the data. 
 
3-C-iii: Bias. This row explores the effects of bias in a training set, a topic which is further explored 
in Big Idea 5 (Societal Impact). One common source of bias results from use of a non-
representative sample, e.g., training a face detector on a dataset skewed heavily toward 
Caucasian males may not produce acceptable performance when the detector is tested on other 
types of people. Another potential source of bias results from the learning algorithm picking up on 
correlations that reduce the classification error rate for the training set but result in disparate 
treatment of certain groups based on historical factors that, for reasons of fairness, should not be 
considered in decision making. In grades 9-12 students are exposed to data exploration 
techniques that can uncover imbalances in a training set. 

Experiences We Want Students to Have 
Training a model. We tell students that machines learn by finding patterns in data. One way they 
can experience this firsthand is by training a classifier to discriminate between classes they 
already understand. For example, a student could use Google’s Teachable Machine (Phillips, 
2019) to construct a visual classifier to distinguish between a peace sign, a thumbs up gesture, 
and a “no gesture” baseline condition. Good recognition rates can be achieved with training 
images that take only a couple of minutes to collect. This is a compelling demonstration of a 
computer making complex discriminations that feel intuitive to the student. The computer seems 
“smart”. A crucial follow-up experiment is to test the robustness of the classifier by seeing how 
well it does if the student makes the gestures with their other hand, or with their hand held upside-
down, or while wearing different clothing. The computer may seem less smart after exposing its 
limited generalization abilities. This is an example of how experimentation can lead students to a 
deeper understanding of complex phenomena. 
 
Learning an unfamiliar concept from labeled examples. Visual classifiers built from deep neural 
networks, like Teachable Machine, are black boxes: their internal representations are not 
observable. There is another kind of machine learning experience we want students to have, 
where the representations are visible. We want them to understand what it “feels like” to discover 
patterns in data, i.e. to be the learner, learning to perform a classification task by exposure to 
labeled examples. For this we must choose classes the student is not already familiar with, so 
that their learning will be driven purely by the training data, not prior knowledge. This can be done 
as early as K-2 by asking students to learn a discrimination between cartoon drawings of fish, 
some of which are labeled “poisonous” and some labeled “safe”. The fish have a variety of 
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attributes such as body color, head color, head shape, fin shape, etc. Categories can be simple 
(e.g., purple fish are poisonous), but for older students they can be made arbitrarily complex (e.g., 
purple fish with square heads, or red fish with either round heads or yellow tails, are poisonous). 
As the space of admissible hypotheses grows, more training examples are required to determine 
the correct one. In K-2 students are only required to verbalize the rule they come up with, but in 
later grades we may ask them to express their reasoning more formally, such as by constructing 
a decision tree, which we discuss next. 
 
Constructing a decision tree using labeled data. We can revisit the experience of concept learning 
in more depth in grades 3-5 by having students construct actual decision trees to perform the 
classification. This exposes them to the idea of formalizing knowledge as a data structure, and 
the tree is an example of an internal representation used by a reasoner. At this stage we’re still 
using cartoon images where the feature set is implicit. At the next stage, grades 6-8, we introduce 
students to the notion of designing an explicit feature set for describing training instances. For 
example, they might invent a set of features for describing toys, or movies. At this stage they can 
be introduced to an automated decision tree learning tool such as MachineLearningForKids 
(Lane, 2021a), and can examine the decision trees that it constructs. Since they are able to create 
their own training sets, they can experiment to see how changes in the training data are reflected 
in changes to the decision tree. 
 
Manual parameter optimization for regression learning (simulating how a neural net learns by 
weight adjustment). Decision tree learning is a good place to start because symbolic data 
structures are more intuitive, but a lot of the heavy lifting in machine learning today is done by 
neural networks trained by gradient descent learning algorithms. So another kind of experience 
we want students to have is what it “feels like” to optimize a nonlinear function by parameter 
tuning. We can do this without introducing gradients, and we would like students to adjust multiple 
parameters without having to deal with multidimensional inputs. So rather than have them adjust 
the weights of a neural net, we envision them solving a regression problem such as visually fitting 
a cubic polynomial to a plot of noisy data by tweaking sliders controlling its coefficients. Students 
could be asked to visually judge the quality of the fit, or they could be given some assistance in 
the form of a continuous display of sum squared error. This exercise would help students 
intuitively appreciate the complexity of searching a high dimensional parameter space and of 
working with nonlinear functions, and the strategy of searching the space by making small 
changes. The hope is that they would develop a mental model of gradient descent optimization 
that they can apply to their understanding of neural networks without having to delve into the 
complexities of the backpropagation learning rule. 
 
Exploring historically important datasets. Certain datasets have played a prominent role in the 
development of machine learning. Inviting students to explore these datasets online helps them 
connect with the history of the field, and gives them a feel for the complexities of the training sets 
used to solve real-world problems. Examples include the MNIST dataset of handwritten digits 
(LeCun et al., 2021), the ImageNet dataset used in many image classification competitions (Deng 
et al., 2009), and the CoCo object detection, segmentation, and captioning dataset (Lin et al., 
2014). Both ImageNet and Coco have web interfaces that facilitate online browsing. 
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Training on real-world datasets. One of the themes we emphasize in the 9-12 grade band is the 
use of real-world datasets to show students how the concepts they’re studying apply to problems 
in everyday life. Thus, when students in grades 9-12 are asked to train a decision tree classifier 
or a neural network regression model, we suggest that they do so in the context of solving a 
problem of practical importance using real data. This could be financial, medical, socioeconomic, 
or consumer data. The growing interest in high school data science courses, and in broadening 
K-12 mathematical education to include more statistics, aligns with this goal. Online machine 
learning repositories such as Kaggle offer public domain datasets suitable for these exercises. 

Tools For Exploring Machine Learning in K-12 
Several types of software tools support the learning experiences we want students to have. First, 
we distinguish between “black box” demonstrations that allow students to train a classifier, 
predictor, or clusterer but provide no insight into its operation, and “glass box” demonstrations 
that expose the reasoning model’s internal representations and allow students to observe how 
they change with training. 
 
The quintessential black box machine learning demonstration is Teachable Machine (Phillips, 
2019). It allows untrained users to quickly train a visual classifier using webcam images or audio 
input. Internally it combines a pre-trained deep neural network architecture called MobileNet with 
some trainable weights at the output layer, but users have no way of knowing this. Another popular 
tool for training various types of classifiers is MachineLearningForKids (Lane, 2021a), which is 
based on the IBM Watson AI service. Although mainly a black box demo, in cases where decision 
tree learning is used, MachineLearningForKids does offer a way to graphically display the 
decision tree. Code.org’s AI Lab is another easy to use machine learning tool that does not require 
programming (Code.org, 2021). It uses a k-nearest neighbors algorithm rather than decision 
trees, and it can perform either classification or prediction. AI Lab includes a collection of built-in 
datasets but also allows users to upload their own data from a CSV file. 
 
What students get from black box learning demonstrations is, first of all, the experience of deciding 
on a set of classes and assembling a training set of labeled examples. And second, a chance to 
test the success of their training by measuring the trained model’s performance on test inputs. In 
addition, some of these tools include an option to export the trained classifier as a module that 
can be incorporated into a JavaScript, Python, Scratch, or MIT App Inventor program, thus 
allowing students to build AI-powered artifacts of their own. See Gresse von Wangenheim et al. 
(2021) for a review of 16 interactive machine learning tools for K-12. 
 
A prime example of a glass box demonstration is Google’s TensorFlow Playground, which 
provides a visualization of a multi-layer neural network classifier undergoing training via the 
backpropagation learning algorithm. To facilitate visualization, the input domain is restricted to 
points in the (x,y) plane, and there are just two classes, represented by a single output unit. The 
user can control the number of hidden layers and the number of units in each layer. Both the 
weights between units and the response functions of the hidden units are graphically represented 
and change as learning progresses. The tool includes built-in training sets for four classification 
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problems of increasing complexity, from simple linearly-separable clusters, to circle/surround, to 
XOR, to nested spirals. 
 
Glass box demonstrations give insight into how the algorithm works. In the case of TensorFlow 
Playground, students can see hidden units develop their response functions as training 
progresses, and they will observe that units in later layers develop more complex decision 
boundaries by building on the units in earlier layers. The drawback to glass box demonstrations 
is that they are typically limited to toy problems that are amenable to visualization. But some tools 
in this category may provide a window into more complex models, e.g., an online implementation 
of a convolutional neural network for digit recognition might display all the feature maps.  
 
Hybrid approaches are also possible. Hitron et al. (2019) present evidence that uncovering just 
selected aspects of a black box machine learning exercise, giving students a rough mental model 
of the process, results in enhanced understanding. 

Relationship to the Other Big Ideas in AI 
Big Idea 2, Representation and Reasoning, sets the stage for Big Idea 3 by introducing the notions 
of classes of reasoning problems (classification, prediction, etc.) and families of reasoning 
algorithms for solving those problems. Big idea 2 also encompasses the relationship between 
reasoning and representation, which mirrors that of algorithms and data structures in computer 
science: representations drive reasoning, and reasoning algorithms operate on representations. 
Machine learning then introduces a new class of algorithm, the learning algorithm, that operates 
on a reasoner’s internal representations. 
 
There is also substantial contact between Big Idea 3 and Big Idea 5, Societal Impact, due to 
concerns about the use of machine learning tools to construct automated decision making 
systems that may negatively impact people’s lives, e.g., systems that score credit or employment 
applications or predict criminal recidivism rates. Problems with these systems can result from the 
use of biased or unrepresentative training data, or from the use of historically accurate training 
data that reflects the results of past societal biases against certain marginalized groups. 
 
In Big Idea 1, Perception, we define “perception” as the extraction of meaning from sensory 
signals using knowledge. Machine learning is now the dominant approach for constructing these 
extraction mechanisms. Speech understanding and visual object recognition are two examples of 
perceptual tasks that have become significantly more reliable in the last decade as a result of 
advances in neural network learning. 
 
Big Idea 4, Natural Interaction, covers a broad range of topics including natural language 
understanding, emotion recognition, and commonsense reasoning. As with perception, recent 
progress in machine learning has led to advances in some of these areas. For example, many 
state of the art natural language applications, including machine translation and question 
answering systems, are built using neural networks trained on huge corpuses. 
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Desired Implementation of the AI4K12 Guidelines into Classrooms 
Full implementation of the guidelines in the U.S. will require changes to state education standards 
to amend the requirements for universal K-12 computing education that are gradually being 
adopted today. Throughout the elementary grades (K-5) the guidelines are designed to be 
integrated into existing course work, as there are few opportunities to take a stand-alone elective 
in these grades. We envision AI being taught in K-2 through unplugged activities, teacher-guided 
demonstrations, and interactive experiences with AI technologies such as Alexa. This also holds 
for grades 3-5, but as students begin programming in block-based frameworks such as Scratch, 
they can take advantage of AI extensions to these frameworks to incorporate capabilities such as 
speech or object recognition into their programs, allowing them to discover simple truths about 
AI.  
 
Starting in middle school (grades 6-8) we imagine that students might have the opportunity to take 
a stand-alone AI elective course or for AI to be integrated into existing programming courses. In 
grades 9-12, students can take stand-alone AI and computing courses and/or enroll in AI or 
computing Career Technical Education (CTE) pathways commonly offered at US-based high 
schools. CTE pathways are designed to help students explore their career interests and prepare 
for either college or employment. They consist of 3-4 courses that must be completed alongside 
industry certifications to verify students’ knowledge. CTE courses often attract a broad audience 
because they equip students with employable skills. Statewide CTE pathways in AI have been 
implemented in both Florida (Florida Department of Education, 2022) and Georgia (Georgia 
Department of Education, 2021). An AI exam for CTE students is available from Certiport (2021) 
as part of their IT Specialist Certification program. 
 
AI is also being incorporated into more general computing courses. Exploring Computer Science 
(ECS), an introductory high school computing curriculum designed to attract a broad range of 
students to computing, offers an optional AI module that teachers can integrate into their course 
(Clark, 2019). Likewise, Carnegie Mellon’s Python-based CS Academy includes an optional AI 
module in the CS2 course that introduces students to classification, prediction, and neural 
networks (CMU CS Academy, 2021). We also imagine that AI can be integrated into existing AP 
Computer Science Principles and AP CS A courses, though this has not yet occurred. 
 
Discussion of AI should not be confined to computing courses. AI topics intersect with many parts 
of the curriculum, including mathematics, language arts, science, social studies, music, and art. 
Introducing AI in these areas will require first educating non-CS teachers about these topics. For 
example, art teachers will be excited to learn how machine learning-powered tools allow humans 
to partner with machines to explore new avenues for creative expression. Examples include 
neural style transfer (Dumoulin, Shlens, and Kudlur, 2017), line drawing to image translators 
(Isola, Zhu, Zhou, and Efros, 2017), and text-to-image transformers (Saharia et al., 2022). 

Conclusion 
In this paper we have described the process of developing the AI4K12 Guidelines and painted an 
ambitious picture of what AI in K-12 could look like. We have also presented a novel view of how 
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machine learning should be taught to K-12 students. First, our approach emphasizes the 
distinction between a reasoning model and a learning algorithm. The job of the learning algorithm 
is to construct a reasoner. It does this by adjusting the parameters of a reasoning model based 
on training data. This framing of the learning process as parameter adjustment covers a wide 
range of reasoning models, including decision trees, neural networks, k-means clustering, and Q-
table driven action selection. 
 
Second, when considering the kinds of learning experiences students should have, we include 
not just training a reasoner, but also being the learning algorithm: trying to find patterns in data, 
or trying to adjust model parameters to minimize output error. We believe this will help students 
develop better mental models of how learning algorithms work. 
 
Third, while machine learning was once considered an advanced topic in computer science, the 
grade band progression chart developed by the AI4K12 Working Group shows that even K-2 
students can begin learning the rudiments of this subject, such as recognizing patterns in a data 
set. If AI literacy is the new computer literacy, kindergarten is not too early to start. 
 
The AI4K12 guidelines propose a content progression — one that has not yet been tested in 
classrooms. Future research in AI education will need to develop more detailed learning 
progressions to describe how students approach these concepts, how their understanding 
develops over time, and the types of misconceptions they are prone to. 

Acknowledgments 
We are grateful to our colleague Fred Martin, now an emeritus member of the AI4K12 Steering 
Committee, for his important contributions to launching the AI4K12 Initiative and formulating the 
Five Big Ideas. We also thank the members of the AI4K12 Working Group and Advisory Board 
for their diligent efforts in developing the guidelines. 
 

Declarations 
Funding: This work was supported by the National Science Foundation under Grant No. DRL-
1846073. 
 
Competing interests: The authors have no relevant financial or non-financial interests to 
disclose.  



27 

 

References 
 
AAAI (2018). AAAI Launches “AI for K-12” Initiative in collaboration with the Computer Science 
Teachers Association (CSTA) and AI4All. https://aaai.org/Pressroom/Releases/release-18-
0515.pdf 
 
AI4K12.org (2020). Big Idea 3 - Learning - K-12 Learning Progression. Release for Public 
Review November 19, 2020.  
https://ai4k12.org/wp-content/uploads/2021/01/AI4K12-Big-Idea-3-Progression-Chart-Working-
Draft-of-Big-Idea-3-v.11.19.2020.pdf 
 
AI4K12.org (2022) Working Group and Advisory Board Members. https://ai4k12.org/working-
group-and-advisory-board-members/ 
 
Ali, S., DiPaola, D., Lee, I., Sindato, V., Kim, G., Blumofe, R., & Breazeal, C. (2021). Children as 
creators, thinkers and citizens in an AI-driven future. Computers and Education: Artificial 
Intelligence, 2, 100040. 
 
Bacchini, D., & Magliulo, F. (2003). Self-image and perceived self-efficacy during adolescence. 
Youth and Adolescence, 32, 337–350. 
 
Baird, A. A., & Fugelsang, J. A. (2004). The emergence of consequential thought: Evidence 
from neuroscience. In S. Zeki & O. Goodenough (Eds.), Law and the brain (pp. 245–258). New 
York, NY: Oxford University Press. 
 
Bandyopadhyay, S., Xu, J., Pawar, N., & Touretzky, D. (2022). Interactive Visualizations of 
Word Embeddings for K-12 Students. Proceedings of the AAAI Conference on Artificial 
Intelligence, 36(11), 12713-12720. https://doi.org/10.1609/aaai.v36i11.21548 
 
Beane, J. A. (1990) A middle school curriculum: from rhetoric to reality, National Middle School 
Association, Columbus, Ohio. 
 
Berger, K. S. (2008). The Developing Person Through the Life Span. 7th Edition. United 
Kingdom: Palgrave Macmillan. 
 
Bergin, D. A. & Bergin, C. C. (2012). Child and Adolescent Development: In Your Classroom 
(2nd ed.). Stamford, CT: Cengage Learning.  
 
Brennan, K., & Resnick, M. (2012). New Frameworks for Studying and Assessing the 
Development of Computational Thinking. Proceedings of the 2012 Annual Meeting of the 
American Educational Research Association, Vol. 1, Vancouver, 13-17 April 2012, 25 p. 
http://scratched.gse.harvard.edu/ct/files/AERA2012.pdf 

https://aaai.org/Pressroom/Releases/release-18-0515.pdf
https://aaai.org/Pressroom/Releases/release-18-0515.pdf
https://ai4k12.org/wp-content/uploads/2021/01/AI4K12-Big-Idea-3-Progression-Chart-Working-Draft-of-Big-Idea-3-v.11.19.2020.pdf
https://ai4k12.org/wp-content/uploads/2021/01/AI4K12-Big-Idea-3-Progression-Chart-Working-Draft-of-Big-Idea-3-v.11.19.2020.pdf
https://ai4k12.org/working-group-and-advisory-board-members/
https://ai4k12.org/working-group-and-advisory-board-members/
https://doi.org/10.1609/aaai.v36i11.21548


28 

 
Buolamwini, J., & Gebru, T. (2018). Gender shades: Intersectional accuracy disparities in 
commercial gender classification. Proceedings of the 1st Conference on Fairness, 
Accountability and Transparency, in Proceedings of Machine Learning Research 81:77-91. 
Available from https://proceedings.mlr.press/v81/buolamwini18a.html. 
 
Certiport (2021) AI Exam - Part of the IT Specialist Certification program. Retrieved from 
https://certiport.pearsonvue.com/Certifications/ITSpecialist/Certification/Overview 
 
Chatzinikolakis, G., & Papadakis, S. (2014). Motivating K-12 students learning fundamental 
Computer Science concepts with App Inventor. 2014 International Conference on Interactive 
Mobile Communication Technologies and Learning (IMCL2014), 152-159. 
 
China Daily (2018). First AI textbook for high school students released. Available online at 
https://www.chinadaily.com.cn/a/201806/11/WS5b1de85fa31001b82571f4ca.html. Accessed 
June 30, 2022. 
 
Chittleborough, G. D., & Treagust, D. F. (2009). Why models are advantageous to learning 
science. Educación química, 20(1), 12-17. 
 
Clark, B. (2019). Exploring Computer Science (ECS) Alternate Curriculum Unit: Artificial 
Intelligence. https://www.exploringcs.org/for-teachers-districts/artificial-intelligence 
 
CMU CS Academy (2021). Our Curriculum. Carnegie Mellon University School of Computer 
Science, accessed August 18, 2022. https://academy.cs.cmu.edu/course-info  
 
Code.org (2021) AI and Machine Learning Module. https://studio.code.org/s/aiml-2021 
College Board (2020). AP Computer Science Principles: Course and Exam Description. 
https://apcentral.collegeboard.org/pdf/ap-computer-science-principles-course-and-exam-
description.pdf 
 
CSTA (2017). Computer Science Teachers Association (CSTA) K-12 Computer Science 
Standards, Revised 2017. https://www.csteachers.org/page/standards 
 
Davey, C. G., Yucel, M., & Allen, N. B. (2008). The emergence of depression in adolescence: 
Development of the prefrontal cortex and the representation of reward. Neuroscience and 
Behavioral Reviews, 32, 1–19. 
 
Deloitte (2020). Thriving in the era of pervasive AI: Deloitte’s State of AI in the Enterprise. 
Deloitte AI Institute and Deloitte Center for Technology, Media & 
Telecommunications.https://www2.deloitte.com/content/dam/Deloitte/cn/Documents/about-
deloitte/deloitte-cn-dtt-thriving-in-the-era-of-persuasive-ai-en-200819.pdf 
 

https://proceedings.mlr.press/v81/buolamwini18a.html
https://www.chinadaily.com.cn/a/201806/11/WS5b1de85fa31001b82571f4ca.html
https://www.exploringcs.org/for-teachers-districts/artificial-intelligence
https://academy.cs.cmu.edu/course-info
https://studio.code.org/s/aiml-2021
https://apcentral.collegeboard.org/pdf/ap-computer-science-principles-course-and-exam-description.pdf
https://apcentral.collegeboard.org/pdf/ap-computer-science-principles-course-and-exam-description.pdf
https://www.csteachers.org/page/standards
https://www2.deloitte.com/content/dam/Deloitte/cn/Documents/about-deloitte/deloitte-cn-dtt-thriving-in-the-era-of-persuasive-ai-en-200819.pdf
https://www2.deloitte.com/content/dam/Deloitte/cn/Documents/about-deloitte/deloitte-cn-dtt-thriving-in-the-era-of-persuasive-ai-en-200819.pdf


29 

Deng, J., Dong, W., Socher, R., Li, L.-J., and Li, F.-F. (2009) ImageNet: A large-scale 
hierarchical image database. 2009 IEEE Conference on Computer Vision and Pattern 
Recognition, 2009, pp. 248-255. https://doi.org/10.1109/CVPR.2009.5206848  
 
Department of Defense (2018) Summary of the 2018 Department of Defense Artificial 
Intelligence Strategy: Harnessing AI to Advance our Security and Prosperity. 
https://media.defense.gov/2019/Feb/12/2002088963/-1/-1/1/SUMMARY-OF-DOD-AI-
STRATEGY.PDF 
 
Department of Defense (2019) Campaign for an AI Ready Force. 
https://media.defense.gov/2019/Oct/31/2002204191/-1/-
1/0/CAMPAIGN_FOR_AN_AI_READY_FORCE.PDF 
 
Diakopoulos, N., & Johnson, D. (2021). Anticipating and addressing the ethical implications of 
deepfakes in the context of elections. New Media & Society, 23(7), 2072–2098. 
https://doi.org/10.1177/1461444820925811 
 
Druga, S. (2018a). Growing up with AI : Cognimates : from coding to teaching machines. M.Eng 
thesis, Elect. Eng. Comput. Sci., Massachusetts Inst. of Technol., Cambridge, 20188. Retrieved 
from 
https://stefania11.github.io/assets/pdf/MIT_Thesis_Growin_up_with_AI_Stefania_Druga_2018.p
df 
 
Druga, S (2018b) Cognimates [Online Web Application]. Retrieved from 
http://cognimats.me/home/ 
 
Druga, S., Williams, R., Breazeal, C., & Resnick, M. (2017). "Hey Google is ii OK if I eat you?" 
Initial Explorations in Child-Agent Interaction. 595-600. 
 
Dumoulin, V., Shlens, J., and Kudlur, M. (2017) A learned representation for artistic style. 
International Conference on Learning Representations (ICLR) 2017. 
https://doi.org/10.48550/arXiv.1610.07629 
 
Florida Department of Education (2022) Artificial Intelligence (AI) Foundations High School CTE 
Curriculum Framework. Retrieved from https://www.fldoe.org/academics/career-adult-
edu/career-tech-edu/curriculum-frameworks/2022-23-frameworks/engineering-technology-
edu.stml  
 
Gartner (2020) Future-Proof Your Talent Strategy: How Artificial Intelligence (AI) is evolving the 
workforce. https://www.gartner.com/en/human-resources/research/talentneuron/future-proof-
your-talent-strategy 
 

https://doi.org/10.1109/CVPR.2009.5206848
https://media.defense.gov/2019/Feb/12/2002088963/-1/-1/1/SUMMARY-OF-DOD-AI-STRATEGY.PDF
https://media.defense.gov/2019/Feb/12/2002088963/-1/-1/1/SUMMARY-OF-DOD-AI-STRATEGY.PDF
https://media.defense.gov/2019/Oct/31/2002204191/-1/-1/0/CAMPAIGN_FOR_AN_AI_READY_FORCE.PDF
https://media.defense.gov/2019/Oct/31/2002204191/-1/-1/0/CAMPAIGN_FOR_AN_AI_READY_FORCE.PDF
https://doi.org/10.1177/1461444820925811
https://stefania11.github.io/assets/pdf/MIT_Thesis_Growin_up_with_AI_Stefania_Druga_2018.pdf
https://stefania11.github.io/assets/pdf/MIT_Thesis_Growin_up_with_AI_Stefania_Druga_2018.pdf
http://cognimates.me/home/
https://doi.org/10.48550/arXiv.1610.07629
https://www.fldoe.org/academics/career-adult-edu/career-tech-edu/curriculum-frameworks/2022-23-frameworks/engineering-technology-edu.stml
https://www.fldoe.org/academics/career-adult-edu/career-tech-edu/curriculum-frameworks/2022-23-frameworks/engineering-technology-edu.stml
https://www.fldoe.org/academics/career-adult-edu/career-tech-edu/curriculum-frameworks/2022-23-frameworks/engineering-technology-edu.stml
https://www.gartner.com/en/human-resources/research/talentneuron/future-proof-your-talent-strategy
https://www.gartner.com/en/human-resources/research/talentneuron/future-proof-your-talent-strategy


30 

Georgia Department of Education (2021) Artificial Intelligence High School CTAE Curriculum 
Frameworks. Retrieved from https://www.gadoe.org/Curriculum-Instruction-and-
Assessment/CTAE/Pages/cluster-IT.aspx 
 
Gresse Von Wangenheim, C. G., Hauck, J. C. R., Pacheco, F. E., and Bertonceli Bueno, M. F. 
(2021) Visual tools for teaching machine learning in K-12: A ten-year systematic mapping. 
Education and Information Technologies, April 2021. https://doi.org/10.1007/s10639-021-10570-
8 
 
Grover, S., & Pea, R. March). Using a discourse-intensive pedagogy and android's app inventor 
for introducing computational concepts to middle school students. In Proceeding of the 44th 
ACM technical symposium on Computer science education (pp. 723-728). 
 
Hasse, A., Cortesi, S., Lombana, A., & Gasser, U. (2019). Youth and artificial intelligence: 
Where we stand. Berkman Klein Center Research Publication, 20193. 
 
Heinze, C.A., Haase, J., and Higgins, H. (2010). An Action Research Report from a Multi-Year 
Approach to Teaching Artificial Intelligence at the K-6 Level. Proceedings of the First AAAI 
Symposium on Educational Advances in Artificial Intelligence. AAAI Publications, 
 
Hitron, T., Orlev, Y, Wald, I., Shamir, A., Erel, H., and Zuckerman, O. (2019) Can children 
understand machine learning concepts? The effect of uncovering black boxes. CHI 2019, May 
4-9, 2019. https://doi.org/10.1145/3290605.3300645 
 
Hmelo, C. E., Holton, D. L., and Kolodner. J. L. (2000) Designing to learn about complex 
systems. The Journal of the Learning Sciences 9, 3 (2000), 247–298. 
 
IDSSP Curriculum Team (2019). Curriculum Frameworks for Introductory Data Science. 
http://idssp.org/files/IDSSP_Frameworks_1.0.pdf. ISBN: 978-0-646-80819-2  
 
IMAGINARY gGmbH (2021) Reinforcement Learning [Online Web Application]. Retrieved from 
https://imaginary.github.io/reinforcement-learning-2/exhibit.html?lang=en. 
 
InferKit, Inc. (2020) Demo - InferKit [Online Web Application]. Accessed at 
https://app.inferkit.com/demo. 
 
Isola, P. Zhu, J.-Y., Zhou, T., and Efros, A. A. (2017) Image-to-image translation with conditional 
adversarial networks. Computer Vision and Pattern Recognition (CVPR) 2017. 
https://doi.org/10.48550/arXiv.1611.07004 
 
Jewell, C. (2019) Artificial Intelligence: the new electricity. WIPO Magazine, issue 3 (June), 
[Online]. Available: https://www.wipo.int/wipo_magazine/en/2019/03/article_0001.html  
 
K–12 Computer Science Framework. (2016). Retrieved from http://www.k12cs.org 

https://www.gadoe.org/Curriculum-Instruction-and-Assessment/CTAE/Pages/cluster-IT.aspx
https://www.gadoe.org/Curriculum-Instruction-and-Assessment/CTAE/Pages/cluster-IT.aspx
https://doi.org/10.1007/s10639-021-10570-8
https://doi.org/10.1007/s10639-021-10570-8
https://doi.org/10.1145/3290605.3300645
http://idssp.org/files/IDSSP_Frameworks_1.0.pdf
https://imaginary.github.io/reinforcement-learning-2/exhibit.html?lang=en
https://app.inferkit.com/demo
https://doi.org/10.48550/arXiv.1611.07004
https://www.wipo.int/wipo_magazine/en/2019/03/article_0001.html
http://www.k12cs.org/


31 

 
Kafai, Y., Proctor, C., and Lui, D. (2019) From theory bias to theory dialogue: Embracing 
cognitive, situated, and critical framings of computational thinking in K-12 CS education. ICER 
‘19, August 12-14, 2019, Toronto, Canada. https://doi.org/10.1145/3291279.3339400 
 
Kafai, Y. B., & Resnick, M. (1996). Constructionism in practice: Designing, thinking, and learning 
in a digital world. Mahwah, N.J: Lawrence Erlbaum Associates. 
https://doi.org/10.4324/9780203053492 
 
Kahn, K., Lu, Y., Zhang, J., Winters, N., & Gao, M. (2020a). Deep Learning Programming by All. 
Proceedings of Constructionism Conference 2020, Dublin, Ireland. 
 
Kahn, K., Lu, Y., Zhang, J., Winters, N., & Gao, M. (2020b). Programming word embeddings in 
Snap! Retrieved from 
https://ecraft2learn.github.io/ai/publications/Programming%20word%20embeddings%20in%20S
nap.pdf 
 
Kahn, K., Prasad, R., & Veera, G. (2022). AI Snap! Blocks for Speech Input and Output, 
Computer Vision, Word Embeddings, and Neural Net Creation, Training, and Use. Proceedings 
of the AAAI Conference on Artificial Intelligence, 36(11), 12861-12861. 
https://doi.org/10.1609/aaai.v36i11.21568 
 
Karpathy, A. (2015) GridWorld: Dynamic Programming Demo (REINFORCEjs) [Online Web 
Application] - Retrieved from 
https://cs.stanford.edu/people/karpathy/reinforcejs/gridworld_dp.html 
 
Kirkpatrick, K. (2016). Battling algorithmic bias: How do we ensure algorithms treat us fairly? 
Communications of the ACM, 59(10), 1617. 
 
Kolodner, J. L., Crismond, D., Gray, J., Holbrook, J., and Puntambekar, S. (1998). Learning by 
design from theory to practice. In Proceedings of the international conference of the learning 
sciences, Vol. 98. 16–22. 
 
Kuhn, D. (2009). Adolescent thinking. In R. Lerner & L. Steinberg (Eds.), Handbook of 
adolescent psychology (3rd ed.). Hoboken, NJ: John Wiley and Sons. 
 
Lane, D. (2021a) Machine Learning for Kids: A Project-Based Introduction to Artificial 
Intelligence. San Francisco, CA: No Starch Press. 
 
Lane, D. (2021b) Quiz show. Student worksheet from the collection at MachineLearningforKids. 
Accessed at https://machinelearningforkids.co.uk/#!/worksheets. 
 
Lao, N. (2020) Reorienting machine learning education towards tinkerers and ML-engaged 
citizens. Doctoral thesis, Massachusetts Institute of Technology. Cambridge, MA. 

https://doi.org/10.1145/3291279.3339400
https://doi.org/10.4324/9780203053492
https://ecraft2learn.github.io/ai/publications/Programming%20word%20embeddings%20in%20Snap.pdf
https://ecraft2learn.github.io/ai/publications/Programming%20word%20embeddings%20in%20Snap.pdf
https://cs.stanford.edu/people/karpathy/reinforcejs/gridworld_dp.html
https://machinelearningforkids.co.uk/#!/worksheets


32 

https://dspace.mit.edu/handle/1721.1/129264 
 
LeCun, Y., Cortes, C., and Burges, C. J. C. (2021) The MNIST database of handwritten digits. 
Available at http://yann.lecun.com/exdb/mnist/. Accessed May 16, 2021. 
 
Lehrer, R., & Schauble, L. (2006). Cultivating Model-Based Reasoning in Science Education. In 
R. K. Sawyer (Ed.), The Cambridge handbook of: The learning sciences (pp. 371–387). 
Cambridge University Press 
 
Lewis, C. (1981). How adolescents approach decisions: Changes over grades seven to twelve 
and policy implications. Child Development, 56, 1479–1498. 
 
Lin, T. Y., Maire, M., Belongie, S., Hays, J., Perona, P., Ramanan, D., Dollár, P., and Zitnick, C. 
L. (2014) Microsoft COCO: Common Objects in Context. In: Fleet D., Pajdla T., Schiele B., 
Tuytelaars T. (eds) Computer Vision – ECCV 2014. ECCV 2014. Lecture Notes in  
Computer Science, vol 8693. Springer, Cham. https://doi.org/10.1007/978-3-319-10602-1_48 
 
Linn. M. C. (2000) Designing the Knowledge Integration Environment, International Journal of 
Science Education, 22:8, 781-796, DOI: 10.1080/095006900412275 
 
MacLaurin, M. (2011) The Design of Kodu: A tiny visual programming language for children on 
the Xbox 360. In Proceedings of the 38th Annual ACM SIGPLAN-SIGACT Symposium on 
Principles of Programming Languages, POPL '11 (Austin, Jan. 26-28). ACM Press, New York, 
2011, 241–245. 
 
Makwana, J., Wolff, M., Ratin, B., and Touretzky, D. S., (2022).Face Demo - TinyYoloV2 Face 
Detection [Online Web Application]. Retrieved From https://www.cs.cmu.edu/~dst/FaceDemo/. 
 
Manning, M. L. (1993). Developmentally appropriate middle level schools. Olney, MD: 
Association for Childhood Education International.  
 
McStay, A. (2020). Emotional AI, soft biometrics and the surveillance of emotional life: An 
unusual consensus on privacy. Big Data & Society. https://doi.org/10.1177/2053951720904386 
National Research Council (2013a) Appendix F:Science and Engineering Practices in the Next 
Generation Science Standards. In the Next Generation Science Standards: For States, by 
States. Washington, DC: The National Academies Press. https://doi.org/10.17226/18290. 
https://www.nap.edu/read/18290/chapter/12 
 
National Governors Association Center for Best Practices & Council of Chief State School 
Officers. (2010a). Common Core State Standards. Washington, DC 
 
National Governors Association Center for Best Practices & Council of Chief State School 
Officers. (2010b). Common Core State Standards (RI 3.3). Washington, DC  
http://www.corestandards.org/ELA-Literacy/RI/3/ 

https://dspace.mit.edu/handle/1721.1/129264
http://yann.lecun.com/exdb/mnist/
https://doi.org/10.1007/978-3-319-10602-1_48
https://doi.org/10.1080/095006900412275
https://www.cs.cmu.edu/%7Edst/FaceDemo/
https://doi.org/10.17226/18290
https://www.nap.edu/read/18290/chapter/12
http://www.corestandards.org/ELA-Literacy/RI/3/


33 

 
National Governors Association Center for Best Practices & Council of Chief State School 
Officers. (2010c). Common Core State Standards (W 3.2). Washington, DC  
http://www.corestandards.org/ELA-Literacy/W/3/ 
 
National Governors Association Center for Best Practices & Council of Chief State School 
Officers. (2010d). Common Core State Standards (SL 3.4). Washington, DC  
http://www.corestandards.org/ELA-Literacy/SL/3/ 
 
National Research Council. (2012). A Framework for K-12 Science Education: Practices, 
Crosscutting Concepts, and Core Ideas. Committee on a Conceptual Framework for New K-12 
Science Education Standards. Board on Science Education, Division of Behavioral and Social 
Sciences and Education. Washington, DC: The National Academies Press. 
 
National Research Council. (2013) Appendix G: Crosscutting Concepts in the Next Generation 
Science Standards. In the Next Generation Science Standards: For States, by States. 
Washington, DC: The National Academies Press. https://doi.org/10.17226/18290. 
https://www.nap.edu/read/18290/chapter/13 
 
Norooz, L., Clegg, T. L., Kang, S., Plane, A. C., Oguamanam, V., & Froehlich, J. E. (2016). 
“That’s your heart!”: Live Physiological Sensing & Visualization Tools for Life-Relevant & 
Collaborative STEM Learning. Singapore: International Society of the Learning Sciences. 
 
NSTA (2014). NGSS - Matrix of Cross Cutting Concepts. National Science Teaching 
Association. Downloaded from https://static.nsta.org/ngss/MatrixOfCrosscuttingConcepts.pdf 
 
Oyserman, D., Bybee, D., Terry, K., & Hart-Johnson, T. (2004). Possible selves as roadmaps. 
Journal of Research in Personality, 38, 130–149. 
 
Pang, N. (2022) Computational Action in Action: Process and Tools that Empower Students to 
Make a Real-world Impact Using Technology, M.Eng thesis, Elect. Eng. Comput. Sci., 
Massachusetts Inst. of Technol., Cambridge, 2022. Retreived from 
http://appinventor.mit.edu/assets/files/NicolePang_MEng_Thesis.pdf 
 
Papavlasopoulou, S., Giannakos, M. N., & Jaccheri, L. (2019). Exploring children's learning 
experience in constructionism-based coding activities through design-based research. 
Computers in Human Behavior, 99, 415-427.https://doi.org/10.1016/j.chb.2019.01.008 
 
Petersen, D., Goode, K., and Gehlhaus, D. (2021) AI Education in China and the United States: 
A Comparative Assessment. Center for Security and Emerging Technology, Georgetown 
University. https://doi.org/10.51593/20210005 
 
Phillips, K. (2019) Teachable Machine 2.0 makes AI easier for everyone. Google AI blog, 
November 7, 2019. https://blog.google/technology/ai/teachable-machine/ 

http://www.corestandards.org/ELA-Literacy/W/3/
http://www.corestandards.org/ELA-Literacy/SL/3/
https://doi.org/10.17226/18290
https://www.nap.edu/read/18290/chapter/13
http://appinventor.mit.edu/assets/files/NicolePang_MEng_Thesis.pdf
https://doi.org/10.1016/j.chb.2019.01.008
https://doi.org/10.51593/20210005
https://blog.google/technology/ai/teachable-machine/


34 

 
Qiang, Y. and Chao, W. (2018) "The Fourth Revolution," The UNESCO Courier, no. 3, [Online]. 
Available: https://en.unesco.org/courier/2018-3/fourth-revolution. 
 
Rand, W. & Wilensky, U. (2008). NetLogo Simple Machine Learning model. 
http://ccl.northwestern.edu/netlogo/models/SimpleMachineLearning. Center for Connected 
Learning and Computer-Based Modeling, Northwestern Institute on Complex Systems, 
Northwestern University, Evanston, IL. 
 
Resnick, M., Silverman, B. (2005). Some reflections on designing construction kits for kids. In 
Proceedings of the Conference on Interaction Design and Children. ACM, 117–122. 
https://doi.org/10.1145/1109540.1109556 
 
Resnick, M., Berg, R., and Eisenberg, M. (2000) Beyond black boxes: Bringing transparency 
and aesthetics back to scientific investigation. The Journal of the Learning Sciences 9, 1 (2000), 
7–30. 
 
Rini, Regina (2020). Deepfakes and the Epistemic Backstop. Philosophers' Imprint 20 (24):1-16. 
Available on PhilArchive: https://philarchive.org/archive/RINDAT 
 
Saharia, C., Chan, W., Saxena, S., Li, L., Whang, J., Denton, E., Ghasemipour, S. K. S., Ayan, 
B. K., Mahdavi, S. S., Lopes, R. G., Salimans, T., Ho, J., Fleet, D. J., and Norouzi, M. (2022) 
Photorealistic text-to-image diffusion models with deep language understanding.  
https://doi.org/10.48550/arxiv.2205.11487 
 
Samuel, A. (1959) Some studies in machine learning using the game of checkers. IBM Journal 
of Research and Development. 3 (3): 210–229. CiteSeerX 10.1.1.368.2254. 
doi:10.1147/rd.33.0210. 
 
SAS Institute (2018). Artificial Intelligence for Executives.  
https://www.sas.com/content/dam/SAS/en_us/doc/whitepaper1/artificial-intelligence-for-
executives-109066.pdf 
 
Sato, K. (2016) Understanding neural networks with TensorFlow Playground. July 26, 2016. 
Retrieved from https://cloud.google.com/blog/products/ai-machine-learning/understanding-
neural-networks-with-tensorflow-playground 
 
Schick, B. (2014). Early Elementary Years – Ages 6 – 8 - Cognitive/Social Development and 
Educational Interpreting - Interpreters and Children - Educational Interpreters - Classroom 
Interpreting. Retrieved September 29, 2014. Retrieved from: 
http://www.classroominterpreting.org/interpreters/children/cognitive/earlyelem.asp 
 

https://en.unesco.org/courier/2018-3/fourth-revolution
https://doi.org/10.1145/1109540.1109556
https://philarchive.org/archive/RINDAT
https://doi.org/10.48550/arxiv.2205.11487
https://en.wikipedia.org/wiki/CiteSeerX_(identifier)
https://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.368.2254
https://en.wikipedia.org/wiki/Doi_(identifier)
https://doi.org/10.1147%2Frd.33.0210
https://www.sas.com/content/dam/SAS/en_us/doc/whitepaper1/artificial-intelligence-for-executives-109066.pdf
https://www.sas.com/content/dam/SAS/en_us/doc/whitepaper1/artificial-intelligence-for-executives-109066.pdf
https://cloud.google.com/blog/products/ai-machine-learning/understanding-neural-networks-with-tensorflow-playground
https://cloud.google.com/blog/products/ai-machine-learning/understanding-neural-networks-with-tensorflow-playground
http://www.classroominterpreting.org/interpreters/children/cognitive/earlyelem.asp


35 

Selbst, A. D. (2017) Disparate Impact in Big Data Policing . 52 Georgia Law Review 109 
(February 25, 2017), Available at SSRN: https://ssrn.com/abstract=2819182 or 
http://dx.doi.org/10.2139/ssrn.2819182 
 
Shachar, C., Gerke, S., & Adashi, E. Y. (2020). AI surveillance during pandemics: ethical 
implementation imperatives. Hastings Center Report, 50(3), 18-21. 
Selbst, A. D. (2017). Disparate impact in big data policing. Ga. L. Rev., 52, 109. 
 
Smilkov, D., and Carter, S. (2016). TensorFlow Playground [Online Web Application]. Retrieved 
from https://playground.tensorflow.org 
 
Steinberg, L. (2009). Adolescent development and juvenile justice. Annual Review of Clinical 
Psychology, 5, 459–485. doi:10.1146/annurev.clinpsy.032408.153603. 
 
Touretzky, D. S. (2017) Computational thinking and mental models: From Kodu to Calypso. 
2017 IEEE Blocks and Beyond Workshop (B&B), Raleigh, NC. October 9-10, 2017. 
https://doi.org/10.1109/BLOCKS.2017.8120416 
 
Touretzky, D. S. (2018). Developing K-12 Education Guidelines for Artificial Intelligence. 
National Science Foundation ITEST Award DRL-1846073. 
https://www.nsf.gov/awardsearch/showAward?AWD_ID=1846073 
 
Touretzky, D. S., Gardner-McCune, C., Breazeal, C., Martin, F., and Seehorn, D. (2019) A year 
in K-12 AI education. AI Magazine 40(4):88-90, Winter 2019. 
https://doi.org/10.1609/aimag.v40i4.5289 
 
Touretzky, D. S., Gardner-McCune, C., Martin, F., and Seehorn, D. (2019a) Envisioning AI for 
K-12: What should every child know about AI? Proceedings of AAAI-19. 
https://doi.org/10.1609/aaai.v33i01.33019795 
 
Touretzky, D. S., Gardner-McCune, C., Martin, F., and Seehorn, D. (2019b) “K-12 Guidelines for 
Artificial Intelligence: What Students Should Know”, session at ISTE 2019 (June 23-26, 2019, in 
Philadelphia, PA). https://ai4k12.org/news/presentations-and-papers/ 
 
 
Turbak, F., Sherman, M., Martin, F., Wolber, D. and Crawford Pokress, S. (2014) Events-first 
programming in App Inventor, Journal of Computing Sciences in Colleges, vol. 29, no. 6, Jun, 
2014, pp 81-89. 
 
UNESCO (2022) K-12 AI Curricula: A mapping of government-endorsed AI curricula. Available 
online at https://unesdoc.unesco.org/ark:/48223/pf0000380602 
 
Universidad da Coruña (2019) AI+: Developing an Artificial Intelligence curriculum adapted to 
European high schools. https://aiplus.udc.es/ 

https://playground.tensorflow.org/
https://doi.org/10.1109/BLOCKS.2017.8120416
https://www.nsf.gov/awardsearch/showAward?AWD_ID=1846073
https://doi.org/10.1609/aimag.v40i4.5289
https://doi.org/10.1609/aaai.v33i01.33019795
https://ai4k12.org/news/presentations-and-papers/
https://unesdoc.unesco.org/ark:/48223/pf0000380602
https://aiplus.udc.es/


36 

 
van Brakel, R. (2016) Pre-Emptive Big Data Surveillance and its (Dis)Empowering Consequences: 
The Case of Predictive Policing. In B. van der Sloot, D. Broeders, & E. Schrijvers (Eds.), Exploring 
the Boundaries of Big Data. Amsterdam, NL: Amsterdam University Press, pp. 117-141. Available at 
SSRN: https://ssrn.com/abstract=2772469 or http://dx.doi.org/10.2139/ssrn.2772469 
 
Van Brummelen, J., Heng, T., & Tabunshchyk, V. (2021) Teaching tech to talk: K-12 
conversational artificial intelligence literacy curriculum and development tools. In Proceedings of 
the AAAI Conference on Artificial Intelligence (Vol. 35, No. 17, pp. 15655-15663). 
 
Wang, J., Turko, R., Shaikh, O., Park, H., Das, N., Hohman, F., Kahng, M., and Chau, P. 
(2020). CNN Explainer [Online Web Application]. Developed 
Retrieved from https://poloclub.github.io/cnn-explainer/ 
 
Wang, Z.J., Turko, R., Shaikh, O., Park, H., Das, N., Hohman, F., Kahng, M., & Chau, D. 
(2021). CNN Explainer: Learning Convolutional Neural Networks with Interactive Visualization. 
IEEE Transactions on Visualization and Computer Graphics, 27, 1396-1406. 
 
Wikipedia (2021) “Machine learning.” See footnote 2, suggesting that the phrase “without being 
explicitly programmed” may be a paraphrase of what Arthur Samuel actually said. 
https://en.wikipedia.org/wiki/Machine_learning, accessed May 5, 2021. 
 
Wilensky, U. & Rand, W. (2015). Introduction to Agent-Based Modeling: Modeling Natural, 
Social and Engineered Complex Systems with NetLogo. Cambridge, MA. MIT Press. 
 
Wilkerson, M. H., Sengupta, P., & Wilensky, U. (2008, June). Perceptual supports for 
sensemaking: a case study using multi agent based computational learning environments. In 
Proceedings of the 8th International Conference on International Conference for the Learning 
Sciences, Volume 3 (pp. 151-152). 
 
Zhang, H., Lee, I., Ali, S., DiPaola, D., Cheng, Y., & Breazeal, C. (2021). Integrating Ethics and 
Career Futures with Technical Learning to Promote AI Literacy for Middle School Students: An 
Exploratory Study. International Journal of AI Education. 
 

https://ssrn.com/abstract=2772469
https://ssrn.com/abstract=2772469
https://ssrn.com/abstract=2772469
https://dx.doi.org/10.2139/ssrn.2772469
https://poloclub.github.io/cnn-explainer/
https://en.wikipedia.org/wiki/Machine_learning

	Abstract
	Introduction
	Related Work
	Background on the AI4K12 Guidelines
	Five Big Ideas in AI
	Guidelines Development Process
	Big Idea 3: What Every K-12 Student Should Know About Machine Learning
	Experiences We Want Students to Have
	Tools For Exploring Machine Learning in K-12
	Relationship to the Other Big Ideas in AI
	Desired Implementation of the AI4K12 Guidelines into Classrooms
	Conclusion
	Acknowledgments
	Declarations
	References

