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ABSTRACT

Collaborative filtering (CF) methods are making an impact on our
daily lives in a wide range of applications, including recommender
systems and personalization. Latent factor methods, e.g., matrix
factorization (MF), have been the state-of-the-art in CF, however
they lack interpretability and do not provide a straightforward ex-
planation for their predictions. Explainability is gaining momentum
in recommender systems for accountability, and because a good
explanation can swing an undecided user. Most recent explainable
recommendation methods require auxiliary data such as review
text or item content on top of item ratings. In this paper, we ad-
dress the case where no additional data are available and propose
augmenting the classical MF framework for CF with a prior that
encodes each user’s embedding as a sparse linear combination of
item embeddings, and vice versa for each item embedding. Our Xpl-
CF approach automatically reveals these user-item relationships,
which underpin the latent factors and explain how the resulting
recommendations are formed. We showcase the effectiveness of
Xpl-CF on real data from various application domains. We also
evaluate the explainability of the user-item relationship obtained
from Xpl-CF through numeric evaluation and case study examples.
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1 INTRODUCTION

In the context of recommendation engines, collaborative filtering
(CF) is the process of filtering information using techniques involv-
ing collaboration among multiple viewpoints. CF models can be
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divided into neighbor-based and feature-based (e.g., latent factor)
categories; latent factor methods have been the state-of-the art
in CF. One of the very successful latent factor CF techniques is
matrix factorization (MF) due to its ability to capture correlations
and higher-order statistical dependencies across dimensions. MF
automatically predicts a person’s affinity for items by connecting
that person’s historical interests with the interests of similar users,
while taking inter-dependencies among items into account. More
specifically, given a sparse user × item rating matrix, MF uses the
observed ratings to learn dense latent representations (embeddings)
of users and items in a lower dimensional space. In the inference
phase, the unknown entry corresponding to the 𝑖𝑡ℎ user and 𝑗𝑡ℎ

item is predicted by the dot product of their embeddings. The more
similar the user’s and item’s embeddings (closer to each other in
the latent space), the larger their dot product (predicted rating).
Although this provides a geometric interpretation of the prediction
of MF, we still cannot explain how the latent vectors are formed.
MF methods tend to be black-box machine learning models that
lack interpretability and do not provide a straightforward explana-
tion for their predictions; this is the main drawback of latent factor
methods compared to neighbor-based CF.

Researchers have recently found that interpretations and ex-
plainability in recommendation systems play a significant role to
improve the transparency, persuasiveness, effectiveness, trustwor-
thiness, and user satisfaction [18]. They also enable system design-
ers to diagnose, debug, and refine the recommendation algorithm.
Interpretable recommendations are of interest in many applications,
especially in business-to-business (B2B) scenarios where the recip-
ient of the recommendation is a salesperson responsible for the
client. A salesperson has to decide whether to pursue a sales op-
portunity (i.e., recommendation), and (s)he relies on evaluating the
reasoning behind a generated recommendation [4]. Explainable rec-
ommendations have also been proven effective in business-to-client
(B2C) e-commerce settings [19].

In this work, we propose Xpl-CF, a CF approach that augments
the classical MF model with a new type of prior information. The
proposed prior not only improves the prediction accuracy of MF,
but it also underpins the latent factors and explains how the result-
ing recommendations are formed. Unlike most recent explainable
recommendation methods, Xpl-CF does not require additional data.
The main intuition behind our modeling is that a user preference
profile (latent factor) is determined by their experience with a sub-
set of items. The strength of this association can differ, e.g., a user
might strongly associate herself with Sci-Fi movies and mildly with
horror movies. Our proposed prior encodes a user’s embedding as
a sparse linear combination of item embeddings. Conversely, an
item’s embedding is determined by a subset of users (i.e., a sparse
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linear combination of user embeddings). We demonstrate the effec-
tiveness of the proposed model on real datasets from investment
and recommender system domains.

2 RELATEDWORK

Explainable recommendation methods can be grouped into two
broad types: post-hoc and embedded methods. In post-hoc ap-
proaches, explanations and recommendations are generated from
separate models [9, 10, 12]. Embedded methods, on the other hand,
aim to explain the recommendation model itself [7, 19]. Here we
focus on the embedded category; we refer the reader to [18] for
an in-depth literature review. In the case of neighbor-based CF
methods, the recommendations are directly based on similarities
between users and/or items [13], which also serve to explain the rec-
ommendation in a rather straightforward way - but these methods
are far from the state-of-art in terms of quality of recommendation.
The explanation task is trickier with latent factor models. Their in-
ternal decision processes cannot be directly interpreted by humans,
since by finding lower dimensional representations of users and
items they abstract away from the interactions between users and
items [12]. The two predominant approaches in the recommenda-
tion literature are: i) adding constraints to the latent factor models
(our approach belongs to this class), and ii) using external data.

In the latter category, external data such as product reviews
(e.g., in TF/IDF form) and rating data are jointly factored with
shared latent factors via topic modelling [2] or coupled MF [19].
For instance, in the case of topic modeling, the learned latent topics
can be leveraged to provide an interpretation of the latent factors.
Although exploiting additional information provides valuable in-
sight, such information is not always available - especially in B2B
settings. Moreover, if the additional sources used for explanation
are not correlated with the rating data, then the explanations will
not accurately reflect the reasons for the recommendation and will
degrade the rating prediction accuracy.

Closest to our work is the Explainable MF (EMF) approach in [1].
EMF is a constrained latent factor model that modifies the cost
function of MF by penalizing the Euclidean distance of the latent
vectors of similar users and items. The similarity is predefined by a
user × item similarity matrix and is measured by the ratio of the
neighbors of user 𝑖 who have rated item 𝑗 - the neighborhood is cal-
culated using cosine similarity. EMF is essentially a hybrid method
between neighbor- and feature-based CF. Although EMF has the
advantage of not requiring extra data views to generate explana-
tions, it still employs a rather restrictive predefined neighborhood
model. We point out that EMF explains the recommendation via
the distance in the latent space and does not attempt to explain the
embeddings of users/items. Xpl-CF, on the other hand, explains
the embedding of a user in relation to item embeddings and vice
versa. In contrast to [1], the explainability relationships in Xpl-CF
are automatically revealed by the model and not predefined apriori.

3 PROPOSED METHOD

3.1 Formulation

Assume we have a data matrix X ∈ 𝑅𝑁×𝑀 , with the user × item
rating data. The matrix factorization CF models assume that X can
be approximated using low-rank factor matrices, i.e., X ≈ AB𝑇 ,

where rows of A ∈ R𝑁×𝑅 and B ∈ R𝑀×𝑅 are the embeddings of
users and items, respectively, and 𝑅 ≤ min(𝑁,𝑀) is the matrix
rank. After obtaining A and B, the unknown rating of the 𝑖𝑡ℎ user
for the 𝑗𝑡ℎ item is predicted by the dot product of their embeddings,
i.e., X(𝑖, 𝑗) = a𝑖b𝑇𝑗 . In other words, the MF model produces latent
representations of users and items in a lower dimensional space. If
a user likes an item, the distance between their embeddings will be
small and therefore their dot product is larger.

In the original data domain, the user-item relationships are clear:
users are represented by their ratings of a subset of items, and items
are represented by ratings given by a subset of users. However, the
user-item relationships are not clear in the latent space. Why is the
embedding of a user (or item) more/less similar to certain items
(users)? Our framework addresses this question. In our proposed
formulation, we rely on MF to obtain user and item embeddings and
impose a prior on these embeddings. The prior encodes each user’s
embedding as a sparse linear combination of item embeddings, and
vice versa for each item embedding. This leads to the following
problem formulation.

min
A,B,S,Z

∥Ω ⊙ (X − AB𝑇 )∥2𝐹 + 𝜇𝑎 ∥A − SB∥
2
𝐹

+ 𝜇𝑏 ∥B − ZA∥2𝐹 + 𝜆1
𝑇 (S + Z𝑇 )1

s.t. S,Z𝑇 ≥ 0

(1)

where ⊙ is the element-wise product, and Ω is a zero-one matrix
indicating the availability of the corresponding entries in X. 1 is a
vector of all ones of the appropriate size and 𝜇𝑎 ≥ 0, 𝜇𝑏 ≥ 0, and
𝜆 ≥ 0 are regularization hyper-parameters. The first term in (1)
is the least squares data fitting, while the second and third terms
represent the user-item relationships in the latent space. The last
term is introduced to promote sparsity in S and Z (𝑙1 norm with
non-negativity boils down to the sum of entries).

The variables S and Z reveal the user-item relationships in the
latent space and explain the resulting recommendations. For easier
interpretability, we model S and Z as element-wise non-negative.
Assume that a𝑖 and s𝑖 are rows in A and S, respectively. Then,
a𝑖 = s𝑖B and s𝑖 is a sparse vector that selects (and scales) some item
embeddings to form user 𝑖’s embedding. The motivation behind
this assumption is that the features that the user cares about are
characterized by her experience and knowledge about a subset of
items. Similarly, b𝑗 = z𝑗A assumes that the item embedding is
characterized by a subset of user embeddings.

3.2 Explainability Analysis

In this subsection, we present how Xpl-CF can be used to explain a
recommendation. The prediction of a value in X, 𝑥𝑖 𝑗 , is

𝑥𝑖 𝑗 = a𝑖b𝑇𝑗 ≈ s𝑖Bb𝑇𝑗 (2a)

≈ s𝑖ZAA𝑇 z𝑇𝑗 = u𝑖AA𝑇 z𝑇𝑗 (2b)

where in (2a), the recommendation boils down to the similarity
between the target item b𝑗 and a subset of items selected by s𝑖 .
Because s𝑖 is fixed across all items for user 𝑖 , we can interpret
this subset of items as the “lens" that user 𝑖 sees all items through.
Equation (2b) provides another intriguing insight by explaining the
prediction as a (sparse) linear combination of user × user similarity
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encoded in AA𝑇 - note that vector u𝑖 := s𝑖Z may be dense. In the
same vein, we can write

𝑥𝑖 𝑗 = b𝑗a𝑇𝑖 ≈ z𝑗Aa𝑇𝑖 (3a)

≈ z𝑗SB(s𝑖B)𝑇 = v𝑗BB𝑇 s𝑇𝑖 (3b)

where v𝑗 := z𝑗S. The prediction in (3a) is explained as the similarity
between the target user with a subset of users selected by the model,
whereas (3b) explains the prediction as a (sparse) linear combination
of item × item similarity. Combining (2a) and (3a), we can say

𝑥𝑖 𝑗 = a𝑖b𝑇𝑗 ≈ s𝑖B(z𝑗A)𝑇 = s𝑖BA𝑇 z𝑇𝑗 (4)

where each prediction is explained through a sparse linear combina-
tion of user-item similarity encoded in BA𝑇 . Thus, the explanation
associated with a recommendation can list the items (and users if
applicable) that contribute to the prediction the most (i.e., items
with highest values in s𝑖 ). Another benefit of S and Z is that they
can be used to extract communities in the latent space. For instance,
a community includes users whose embeddings are characterized
by the same items; however, this is out of the scope of this paper
and we leave it for future work.

3.3 Model Engineering

We add two modifications to the problem formulation in (1). The
first point we address is the scaling between the low-rank factors A
and B. Since the embedding of a user is a linear combination of item
embeddings and vice versa, it is important for A and B to be within
the same scale. Thus, we constrain the columns of A and B to be on
the unit 𝑙2 norm ball. We introduce a diagonal matrix to allow us
to fix the scale without loss of generality of the factorization model
[16], i.e., X ≈ ADB𝑇 , where D is a diagonal matrix.

The second addition to the model is the user and item bias terms.
These biases capture how well an item is rated compared to the
average, across all items. Similarly, a user’s bias corresponds to the
user’s tendency to give better/worse ratings relative to the average.
Taking these points into account, we obtain the following:

min
A,B,d,a,b,S,Z

∥Ω ⊙ (X − ADB𝑇 − a1𝑇 − 1b𝑇 )∥2𝐹 + 𝜆1
𝑇 (S + Z𝑇 )1

+ 𝜇𝑎 ∥A − SB∥2𝐹 + 𝜇𝑏 ∥B − ZA∥
2
𝐹 + 𝜂 (∥d∥

2 + ∥a∥2 + ∥b∥2)

s.t. S,Z𝑇 ≥ 0, D = Diag(d)
∥A(:, 𝑟 )∥2 = ∥B(:, 𝑟 )∥2 = 1, ∀𝑟 ∈ [𝑅]

(5)

3.4 Optimization

The formulation in (5) is non-convex and a very challenging op-
timization problem. An additional challenge stems from the fact
that X is partially observed. We employ a carefully designed al-
ternating optimization (AO) algorithm. The proposed algorithm
leverages the Alternating Direction Method of Multipliers (ADMM)
and utilizes parallel computing, computation caching, and warm-
start to provide a scalable and efficient implementation. The high
level algorithmic strategy is to employ AO to update A, B, d, a, b,
S and Z one at a time, while fixing the others. Let us consider the
subproblem w.r.t. A. We introduce an auxiliary variable Ã to handle

the unit 𝑙2 norm ball constraint. The ADMM updates for A are:

Ã(:, 𝑖) ← min
Ã(:,𝑖)

1
2
∥X𝑠 (𝑖,J𝑖 )𝑇 − B̃(J𝑖 , :)Ã(:, 𝑖)∥2𝐹 +

𝜇𝑎

2
∥Ã(:, 𝑖)𝑇−

S(𝑖, :)B∥2𝐹 +
𝜌𝑎

2
∥A(𝑖, :) − Ã(:, 𝑖)𝑇 + U(𝑖, :)∥2𝐹 , ∀𝑖 ∈ [𝑁 ] (6a)

A(:, 𝑟 ) ← A𝑢 (:, 𝑟 )/∥A𝑢 (:, 𝑟 )∥2, ∀𝑟 ∈ [𝑅] (6b)

U← U + A − Ã𝑇 (6c)

where X𝑠 = X− a1𝑇 − 1b𝑇 , B̃ = BD, A𝑢 = Ã𝑇 −U and J𝑖 is the set
of items that have observations for user 𝑖 . Equation (6b) is a simple
column scaling, whereas (6c) is the dual variable update. Problem
(6a) is a weighted least squares problem (weighted by the binary
matrix Ω). An important implication is that (6a) corresponds to
solving 𝑁 separable least squares problems, which enables parallel
computation. One point that requires more care is handling the
missing entries in X (or the zeros in Ω). The way we handle this
is by removing the equations that correspond to the indices of the
missing entries, i.e., we remove rows in B̃ and entries in X𝑠 (𝑖, :)
when solving for each Ã(:, 𝑖). Moreover, for each least squares
problem, we do not compute the matrix inversion explicitly. Instead,
the Cholesky decomposition of a Gram matrix is computed. Then,
back and forward substitution steps are performed to obtain Ã(:, 𝑖).
Matrix B is updated using the ADMM in the same fashion as A
with the appropriate transpose.

Next, we update vector d by by minimizing (∥x(T ) − K(T , :
)d∥2

𝐹
+ 𝜂∥d∥22) w.r.t d, where K = B ⊗ A, ⊗ is the Khatri–Rao

product, x = vec(X𝑠 ) and T is the set of observed entries in x.
Next, we update the bias variables for users and items. The update

for the bias of user 𝑖 , a(𝑖), corresponds to solving:

min
a(𝑖)

1
2
∥X𝑏 (𝑖,J𝑖 )𝑇 − 1a(𝑖)∥2𝐹 +

𝜂

2
(a(𝑖))2 (7)

where X𝑏 = X − ADB𝑇 − 1b𝑇 . The items’ biases in b are updated
similarly. Note that the updates of the bias variables across users
(and items) are independent; thus, they can be computed in parallel.

Finally, we update the latent mapping variables S and Z using the
ADMM (we present the update of S as a running example). We omit
the terms in (5) that do not include S and introduce an auxiliary
variable S̃ to split the effort of handling the least squares terms and
the non-negativity constraint. The ADMM updates for the resulting
problem are the following:

S̃← min
S̃

𝜇𝑎

2
∥A𝑇 − B𝑇 S̃∥2𝐹 + 𝜆1

𝑇 S̃1 + 𝜌𝑠

2
∥S − S̃𝑇 + V∥2𝐹 (8a)

S← argmin
S≥0

∥S − S̃𝑇 + V∥2𝐹 (8b)

V← V + S − S̃𝑇 (8c)

Equation (8b) is a simple element-wise non-negative projection
(i.e., zero out the negative elements in S̃𝑇 − V). Equation (8c) is the
dual variable update. Similar to the case of A, the update in (8a)
corresponds to solving 𝑁 separable least squares problems that can
be solved in parallel. Unlike (6a), the 𝑁 problems in (8a) share the
same mixing matrix B𝑇 . This means that we need to compute the
Cholesky decomposition of (𝜇𝑎BB𝑇 + 𝜌𝑠 I) only once1.

1Code is available at https://github.com/FaisalAlmutairi/explainable_recommendation.
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Table 1: Matrix completion error of all methods.

R = 10 R = 50 R = 100

Data Model RMSE MAE RMSE MAE RMSE MAE

B
2
B

BMF 1.2026 0.8547 1.2100 0.8565 1.2334 0.8704
AdaErr 1.4536 1.0230 1.4391 1.0142 1.4593 1.0496
EMF 1.2373 0.8843 1.2360 0.8821 1.2231 0.8598

Xpl-CF 1.2482 0.8779 1.1915 0.8392 1.1892 0.8339

M
L
1
0
0
K

BMF 0.9228 0.7261 0.9188 0.7245 0.9158 0.7228
AdaErr 0.9432 0.7514 0.9326 0.7422 1.1119 0.9244
EMF 0.9393 0.7504 0.9355 0.7491 0.9339 0.7479

Xpl-CF 0.9123 0.7150 0.9132 0.7182 0.9156 0.7166

Table 2: Explanability evaluation using ML100K (R = 10).

k = 10 k = 15 k = 20

RMSE MAE RMSE MAE RMSE MAE
BMF 0.9228 0.7261 0.9228 0.7261 0.9228 0.7261

BMF-RandU 0.9342 0.7348 0.9433 0.7412 0.9521 0.7476
BMF-S 0.9452 0.7432 0.9598 0.7544 0.9756 0.7660

BMF-RandI 0.9414 0.7383 0.9550 0.7467 0.9705 0.7565
BMF-Z 0.9569 0.7498 0.9822 0.7659 1.0064 0.7815

Table 3: List of movies that explain the prediction of “Get Shorty”.

User 1 (𝑈 1) User 2 (𝑈 2)
Alphaville Showgirls
Showgirls Ready to Wear (Pret-A-Porter)

Striking Distance Vampire in Brooklyn
Dead Presidents Miami Rhapsody
Bloodsport 2 Party Girl
Fair Game The Fog

High School High Four Days in September
Steel Little Big League

The Jackal Free Willy 3: The Rescue
April Fool’s Day Exit to Eden

4 EXPERIMENTAL RESULTS

Datasets:We evaluate Xpl-CF using the following datasets. i) B2B
[17], an investor holding-position dataset (an example of B2B appli-
cations). The data are organized into a company vs investor matrix
where the entries are the percentage of shares that one investor
holds in each company among all the shares issued. We use the
data as collected and preprocessed in [17]. ii) ML100K [3], a movie
rating dataset and a popular baseline in recommender systems lit-
erature. It contains ∼ 105 ratings. The original data only include
users with at least 20 ratings. We also filter out movies with less
than 20 ratings.
Baselines: We evaluate Xpl-CF against the following baselines. i)
BMF, a matrix factorization approach with rank-1 factors specified
to capture items’ and users’ biases [6, 11] implemented using Sto-
chastic Gradient Descent (SGD). Our approach in (5) boils down
to BMF when 𝜇𝑎 = 𝜇𝑏 = 0. ii) AdaErr, a CF model based on MF
with a learning rate that adaptively adjusts based on the prediction
error [8]. iii) EMF, an explainable CF model based on MF [1]; see
Sec. 2 for more details.
Matrix Completion: In order to evaluate the quality of the em-
beddings, we take a generic approach by evaluating the embedding
quality on the matrix completion task. The philosophy is: if the
embeddings predict missing data with high accuracy, then they must
be good representations of items and users. Accurate prediction, e.g.,
predicting holding-positions in the B2B dataset, not only gives a
relative ranking of the likelihood of interest, but it also enables
deriving useful information (e.g., percentage of investment). We
split each dataset into 5 equal folds. After training the models on 4
folds, we test the trained models on the held-out fold. The hyper-
parameters of all methods are chosen via cross validation (10% of
training data). Due to random initialization, the results can differ
for different runs; thus, after choosing the hyper-parameters, we
run the training and testing on each fold 20 times and report the

average error of the total 100 experiments. Table 1 shows the Root
Mean Square Error (RMSE) and the Mean Absolute Error (MAE)
with various ranks R (number of features). Explainable methods
usually suffer from accuracy-interpretability trade-off, which can
be seen by comparing the explainable method EMF and BMF. Nev-
ertheless, Xpl-CF significantly improves all the baselines, especially
when 𝑅 = 10 with ML100K and when 𝑅 = {50, 100} with B2B. The
fact that Xpl-CF improves BMF suggests that the data follow the
proposed prior.
Explainability Evaluation: There is no well-defined methodol-
ogy for evaluating the model’s explainability. There are two main
approaches in the literature: online and offline. Online evaluation
tests the performance by adding explanation to the recommenda-
tion loop on a live recommendation platform, e.g., e-commerce
website [15, 19]. Offline evaluation usually either quantifies the
importance of the explanation provided by the model [7], or demon-
strates the quality of the explainability by examples [5, 14] - we
adopt both strategies. Following the approach in [7], we remove
the 𝑘 ratings in the training data with the highest values in s𝑖 (for
each user). Then, we train a BMF model using the resulting training
set - we call this model BMF-S. We perform the same strategy and
remove the 𝑘 ratings with the highest values in z𝑗 for each item
(we call it BMF-Z). Table 2 shows that the performance degradation
of BMF-S and BMF-Z (relative to BMF) is significantly higher com-
pared to when we randomly remove 𝑘 training ratings from each
user (BMF-RandU) or from each item (BMF-RandI). This suggests
that the items (users) identified by S (Z) are important in defining
a user (item).

We chose two users from ML100K data: 𝑈 1 who has a clear
interest in action, adventure and thriller movies and𝑈 2who is more
interested in comedy and romance - we determine their interest
based on movies they have rated. Table 3 shows the list of movies
that explain the rating prediction for “Get Shorty” for these two
users. To generate these explanations, we selected the top 20 movies
with the highest values in s𝑖 for 𝑈 1 and 𝑈 2 (we denote these sets
as S𝑈 1 and S𝑈 2, respectively). Then, in Table 3, we list the top 10
movies with the highest values in B(S𝑈 1, :)b𝑇𝑗 for𝑈 1 (and similarly
for 𝑈 2). These explanations are based on (2a); note that in this
case s𝑖 is user-specific, while b𝑗 is item-specific. Get Shorty is an
action and comedy movie. We highlight action/adventure/thriller
movies in red, while comedy movies are in blue. One can see that
the prediction is explained from an action viewpoint for 𝑈 1, while
it is explained by comedy movies for 𝑈 2. Note that our model uses
the rating data only and does not have access to the movies’ genres.

5 CONCLUSION

In this paper, we proposed Xpl-CF, a CF model that augments the
classical MF framework for CF with a prior that encodes each user’s
embedding as a sparse linear combination of item embeddings, and
vice versa for each item embedding. Xpl-CF not only improves
the prediction accuracy of MF, but it also automatically reveals
the user-item relationships in the latent space (without requiring
additional data). These relationships underpin the latent factors
and explain how the resulting recommendations are formed.
Acknowledgments: N. Sidiropoulos was partially supported by
NSF IIS-1908070.

Short Paper Track  CIKM ’21, November 1–5, 2021, Virtual Event, Australia

2850



REFERENCES

[1] Behnoush Abdollahi and Olfa Nasraoui. 2016. Explainable matrix factorization
for collaborative filtering. In Proceedings of the 25th International Conference
Companion on World Wide Web. 5–6.

[2] Yang Bao, Hui Fang, and Jie Zhang. 2014. Topicmf: Simultaneously exploiting
ratings and reviews for recommendation. In Proceedings of the AAAI Conference
on Artificial Intelligence, Vol. 28.

[3] F Maxwell Harper and Joseph A Konstan. 2015. The movielens datasets: History
and context. Acm transactions on interactive intelligent systems (tiis) 5, 4 (2015),
1–19.

[4] Reinhard Heckel, Michail Vlachos, Thomas Parnell, and Celestine Dünner.
2017. Scalable and interpretable product recommendations via overlapping
co-clustering. In 2017 IEEE 33rd International Conference on Data Engineering
(ICDE). IEEE, 1033–1044.

[5] Yifan Hu, Yehuda Koren, and Chris Volinsky. 2008. Collaborative filtering for
implicit feedback datasets. In 2008 Eighth IEEE International Conference on Data
Mining. Ieee, 263–272.

[6] Yehuda Koren. 2008. Factorization meets the neighborhood: a multifaceted
collaborative filteringmodel. In Proceedings of the 14th ACM SIGKDD international
conference on Knowledge discovery and data mining. 426–434.

[7] Carolin Lawrence, Timo Sztyler, and Mathias Niepert. 2020. Explaining Neural
Matrix Factorization with Gradient Rollback. arXiv preprint arXiv:2010.05516
(2020).

[8] Dongsheng Li, Chao Chen, Qin Lv, Hansu Gu, Tun Lu, Li Shang, Ning Gu, and
Stephen M Chu. 2018. Adaerror: An adaptive learning rate method for matrix
approximation-based collaborative filtering. In Proceedings of the 2018 World
Wide Web Conference. 741–751.

[9] Huafeng Liu, Jingxuan Wen, Liping Jing, Jian Yu, Xiangliang Zhang, and Min
Zhang. 2019. In2Rec: Influence-based interpretable recommendation. In Pro-
ceedings of the 28th ACM International Conference on Information and Knowledge
Management. 1803–1812.

[10] Namyong Park, Andrey Kan, Christos Faloutsos, and Xin Luna Dong. 2020. J-
Recs: Principled and Scalable Recommendation Justification. arXiv preprint
arXiv:2011.05928 (2020).

[11] Arkadiusz Paterek. 2007. Improving regularized singular value decomposition
for collaborative filtering. In Proceedings of KDD cup and workshop, Vol. 2007.
5–8.

[12] Georgina Peake and Jun Wang. 2018. Explanation mining: Post hoc interpretabil-
ity of latent factor models for recommendation systems. In Proceedings of the 24th
ACM SIGKDD International Conference on Knowledge Discovery & Data Mining.
2060–2069.

[13] Badrul Sarwar, George Karypis, Joseph Konstan, and John Riedl. 2001. Item-based
collaborative filtering recommendation algorithms. In Proceedings of the 10th
international conference on World Wide Web. 285–295.

[14] Sungyong Seo, Jing Huang, Hao Yang, and Yan Liu. 2017. Interpretable convo-
lutional neural networks with dual local and global attention for review rating
prediction. In Proceedings of the eleventh ACM conference on recommender systems.
297–305.

[15] Yiyi Tao, Yiling Jia, Nan Wang, and Hongning Wang. 2019. The facT: Taming
latent factor models for explainability with factorization trees. In Proceedings
of the 42nd International ACM SIGIR Conference on Research and Development in
Information Retrieval. 295–304.

[16] Bo Yang, Xiao Fu, and Nicholas D Sidiropoulos. 2016. Learning from hidden
traits: Joint factor analysis and latent clustering. IEEE Transactions on Signal
Processing 65, 1 (2016), 256–269.

[17] Bo Yang, Kejun Huang, and Nicholas D Sidiropoulos. 2020. Identifying Poten-
tial Investors with Data Driven Approaches. In Proceedings of the 2020 SIAM
International Conference on Data Mining. SIAM, 235–243.

[18] Yongfeng Zhang and Xu Chen. 2018. Explainable recommendation: A survey
and new perspectives. arXiv preprint arXiv:1804.11192 (2018).

[19] Yongfeng Zhang, Guokun Lai, Min Zhang, Yi Zhang, Yiqun Liu, and Shaoping
Ma. 2014. Explicit factor models for explainable recommendation based on
phrase-level sentiment analysis. In Proceedings of the 37th international ACM
SIGIR conference on Research & development in information retrieval. 83–92.

Short Paper Track  CIKM ’21, November 1–5, 2021, Virtual Event, Australia

2851


	Abstract
	1 Introduction
	2 Related Work
	3 Proposed Method
	3.1 Formulation
	3.2 black Explainability Analysis
	3.3 Model Engineering
	3.4 Optimization

	4 Experimental Results
	5 Conclusion
	References



