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Abstract

Fifth-order dispersive equations arise in the context of higher-order models for phenomena
such as water waves. For fifth-order variable-coefficient linear dispersive equations, we pro-
vide conditions under which the intitial value problem is either well-posed or ill-posed. For
well-posedness, a balance must be struck between the leading-order dispersion and possible
backwards diffusion from the fourth-derivative term. This generalizes work by the first author
and Wright for third-order equations. In addition to inherent interest in fifth-order dispersive
equations, this work is also motivated by a question from numerical analysis: finite difference
schemes for third-order numerical equations can yield approximate solutions which effec-
tively satisfy fifth-order equations. We find that such a fifth-order equation is well-posed if
and only if the underlying third-order equation is ill-posed.
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1 Introduction
We study fifth-order linear constant-coefficient equations of the form

U = a(x, Duxxxxx + b, Dtxxxx + (X, Dlxrx

+d(x, Duyy +e(x, Dux + fx, Hu + h(x, 1), (1)
for given functions a, b, ¢, d, e, f, and h, subject to the initial condition

u(x,0) =ug(x). 2)
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We take the spatial variable x to be in the interval X = [0, M] for some M > 0, and
we impose periodic boundary conditions at the ends of this interval. We assume that the
coefficient functions satisfy periodic boundary conditions on X and that they are defined
for all + € [0, T], for a given value T > 0. If the coefficient b(x, t) is ever positive, then
we say that anti-diffusion or backwards diffusion is present. It is of course well known that
backwards diffusion can cause catastrophic growth of solutions, leading to instability and
ill-posedness. However, in some cases for third-order equations, dispersion has been shown
to ameliorate the growth from backwards diffusion [1,2,4,7], suggesting that the initial value
problem (1), (2) could be well-posed even in the presence of backwards diffusion. In this
paper, we will demonstrate conditions under which the initial value problem is well-posed,
as well as conditions under which the initial value problem is ill-posed.

A number of authors have studied fifth-order dispersive equations, as they have been
found to be useful as higher-order models in the theory of water waves [11], and the stronger
dispersion (that is, stronger than the third-order dispersion in the Korteweg-de Vries equation)
has been found to have stabilizing effects on solitary waves [12]. There are a number of works
on well-posedness of particular equations or particular families of equations with fifth-order
dispersion, such as [5,10], and also studies of well-posedness of families of more general
equations which include fifth-order equations [13]. These papers, though, do not explore
the central question of the present work, which is how the presence of anti-diffusion affects
well-posedness of fifth-order dispersive equations.

In addition to this interest in fifth-order equations in their own right, another motivation
for studying the well-posedness of the initial value problem for (1) comes from numerical
analysis. When finite difference schemes are used to compute solutions, higher-order equa-
tions which the numerical approximations effectively satisfy may be derived [9]. Thus, for
a third-order linear constant coefficient equation, such as those studied in [4], the effective
equations for numerical schemes would be in the class (1). By studying well-posedness of
these effective equations, guidance can be provided for design and implementation of numer-
ical methods. For some numerical schemes, nonlinear effective equations have been found
to be satisfied by the approximate solutions, such as by Goodman and Lax and by Zumbrun
[8,14]. An analysis of nonlinear equations related to (1) can be made in these cases, such
as was carried out in [3,4], with ill-posedness of the effective equations explaining in part
behavior seen in simulations.

The paper [4] considered well-posedness and ill-posedness of the initial value problem
for the family of third-order equations

Uy = a0x, Dityxy + bCx, Dityy + ECx, ity +d(x, t)u + &(x, 1).

The initial value problem was found to be well-posed under three conditions, two of which
are routine (regularity of the coefficients and nonvanishing of the leading coefficient). The
most interesting of the three conditions expresses the necessary balance between dispersion

and anti-diffusion, and is
b(y,t
/ (s ) V>0, 3)
M a(y, t)

In Sect. 3 we develop the criteria on coefficients of (1) for well-posedness and find that the
condition on the highest order terms coefficient is opposite from what was found in [4] for

the third-order variant, namely
M p(y,t
/ 00 4y <0 “)
M a(y, t)
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This difference in the required sign of the integrals on the left-hand sides of (3) and (4)
is what leads to the interesting interpretation from numerical analysis presented below in
Sect. 2. Considering the case that the sign of the integral on the left-hand side of (4) is instead
positive, we give an ill-posedness result in Sect. 4. This ill-posedness result requires a further
assumption, that the coefficients are independent of 7.

‘We note that in order for (4) to be satisfied, there must of course be some forward fourth-
order diffusion present in the problem. In the absence of leading-order dispersion (i.e., if
a = 0), the presence of any pointwise value where b > 0 would make the initial value
problem ill-posed. So, we are demonstrating that a combination of some forward diffusion and
leading-order dispersion can lead to a well-posed initial value problem even in the presence
of backwards diffusion at places in the domain. Our ill-posedness result demonstrates that
this well-posedness is not guaranteed, and it is still possible for the backwards diffusion to
overwhelm the effects of forward diffusion and dispersion.

The plan of the paper is as follows. In Sect. 2, we provide the calculations related to
numerical analysis of finite difference schemes we have mentioned in the introduction. In
Sect. 3 we prove that under certain condition, the initial value problem (1), (2) is well-posed
in Sobolev spaces H" for n > 6. In Sect. 4, we prove that in the case of time-independent
coefficients, the initial value problem is ill-posed if our condition on the balance of dispersion
to anti-diffusion is violated.

2 Motivation from Numerical Analysis

Now we will relate this result to a third-order variant with respect to numerical analysis.
We note that a related calculation appears in [6] as motivation for study of some related
third-order dispersive equations. We consider the initial value problem

vy = a(x, gy + b(x, vy + c(x, vy +d(x, v + e(x, 1),
v(-,0) =vg € H". 3)

It was established in [4] that this initial value problem is well-posed if the coefficients are
sufficiently well-behaved (i.e. they must be sufficiently regular and the leading coefficient,
a(x, t), must be bounded away from zero) and also, taking @ > 0 without loss of generality,

if
b(y,t
/ (.0 dy >0
M a(y,1)
This condition balances dispersion and backwards diffusion.
For a fifth-order variant of (5),

wy = a(x, DWyxxxx + DX, DWixxx + (X, HWaxx +d(X, Wiy
+e(x, Dwy + f(x, Dw + h(x, 1), (6)

in addition to regularity of the coefficients and that the leading coefficient be bounded away
from zero, the additional condition is instead

M
/ ST N )
M a(y, t)

Again, we are taking @ > 0 without loss of generality. (That (7) is the condition for well-
posedness is one of the main theorems of the present work.)
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‘We consider a numerical approximation of (5) around some x; . Making Taylor expansions
of v about the base point x;, we have the following formulas:

k

_ nan . _ 292 .
v(xi_p) & Z M =v(x;) + (=2Ax)3,v(x;) + M
= n! 2
_ 393 (0. _ 404,
+( 2Ax)707v(x;) i (=2Ax)"07v(x;) I ((2Ax)4),
6 24
k _ nan . _ 292 .
v(xi_y) A Z M =v(x;) + (—AX)dv(x;) + M
= n! 2
(—Ax)Sagv(x,-) (—Ax)48;‘v(x,-) 4
+ z + 54 + 0 ((Ax)Y),
k nan 292
Ax)"0 ; Ax)=0 g
V(i) & 2 (I o) + (Avpeuin) + S0
(Ax)3v(x)  (Ax)*tu(x) 4
e > + 0 ((Ax)Y),
k nan X 202 X
o)~ Y0 BN ) 4 @anun + GAHI
= n! 2
3930 (x dad oo
+(2Ax) 63XU(xl) n (2Ax)zixv(x,) +0 ((2Ax)4).

We also have the following finite-difference approximations for spatial derivatives of v:

v(xj41) — v(xi-1)

v(xi)x R T oA

v = 2v(x) +u(x — 1)
V(Xi)xx N Ax2 s

o V(xi2) = 2v(xi41) + 2v(xi—1) — v(xi—2)
V(X)) xxx N .

2Ax3
Substituting, we find

(2Ax)?33v(x;)

v(xi)x A v(x;) + : + 0((Ax)h, ®)
2q4 .
V(e ~ 920(x) + W +0((A0)Y), ©)
and
245 X
D) & B30(xp) 4 BV (A xyh), (10)

4
Of course, in each of (8), (9), and (10), the quantity on the left-hand side is the finite-difference
approximation to the given derivative at the point x; while the first term on the right-hand
side is the true value of the given derivative at the point x;.

Using these formulas, we have a finite-difference approximation for (5):

(Ax)?33v(x;)

v~ alx,t) (aiu(x,-) + I

+ 0((Ax)4>>
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2q4 .
(e 1) (a,%v(xi) + % + 0((Ax>“))
(2Ax)?33v(x;) 4
+c(x, 1) <8xv(xi) + B I— + O((Ax) )) +d(x, v+ e(x,t).

We rewrite this to order the terms on the right-hand side by the number of derivatives on v :

2 2
() ~ (W) a30(x) + (W) aen)

(2Ax)?
6

+ (a(x, t)+c(x,t) ) Bgv(xi) + b(x, t)a)%v(xi) + c(x, )0 v(x;)

+d(x,t)v+e(x,t)+ (alx,t) + b(x,t) + c(x, t))O((Ax)4). (11)

We see that the finite-difference approximation of (5) yields an effective equation in the
form of our fifth-order variant, (6). We apply the condition (7) to our effective equation (11),
finding that for well-posedness of the initial value problem for (11), the quantity of interest

is
M (Ax) b(y f)) 1 M b(y, 1)
/ 2 dy = — / dy. (12)
M (Ax) a(y 1) 3IM Jy a(y,t)

This leads to an interesting result; assume without loss of generality that the leading
coefficient a is positive. If the quantity in (12) is positive then the initial value problem
for the original equation (5) is well-posed while the initial value problem for the effective
equation (11) (neglecting the smallest terms) is ill-posed. Alternatively, if the quantity in (12)
is negative, then the effective equation for the finite difference scheme (11) (again, neglecting
the smallest terms) is well-posed while the original initial value problem for (5) is ill-posed.

This kind of problem from numerical analysis has been observed before; Goodman and
Lax noted that a finite difference scheme for the Korteweg—de Vries equation had an effective
equation with degenerate dispersion, and they noted that the scheme worked well as long as
the solution remained away from zero [8]. This is explained theoretically by the third-order
results in [4] showing that equations with degenerate dispersion have well-posed initial value
problems when the data is away from zero, and by the ill-posedness result of [3], showing
that equations with degenerate dispersion can have ill-posed initial value problems when
solutions cross zero. A related equation arose in a similar discussion of finite difference
schemes in [14].

3 Well-posedness Theorem

In this section we prove the first of our two main theorems; this theorem states that under
three kinds of assumptions, the initial value problem (1), (2) is well-posed in sufficiently
regular Sobolev spaces.

Theorem 1 Let T > 0 be given. Let n € N satisfying n > 6 be given. Let ug € H"(X) be
given. Assume the following conditions hold:
(A1) The coefficients have the following regularity:

e a(x,1) € C([0,T]; C"Y),
o a;(x,t) € C([0,T]; C"),
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b(x,1) € C([0, T]; C"%),
bi(x,t) € C([0,T]; C™),
c(x, 1) € C(0, T]; C™),
d(x,t) € C(0, T]; C™),
e(x,1) € C([0, T]; C™M),
fx, 1) e C(0,T]; CM),
h(x,t) € L0, T]; H").

(A2) The leading coefficient a(x, t) is bounded away from 0, i.e. there exists a > 0 such
that for all x and t, we have la(x,t)| > a > 0.
(A3) For all t, the coefficients a and b satisfy

/ Yoo
M la(y, l)l
Then there exists a unique solution u € C([0, T]; H" (X)) to the initial value problem

(1), (2). Moreover, the solution gains regularity in the sense that u € L2([0, T1; H"2(X))
as well.

Remark 2 We stress that the sign of @ is not important—it may either be positive or negative—
but assumption (A2) expresses that we must have a bounded away from zero. There are
multiple different ways to see that the sign is unimportant; most directly, by changing the
spatial variable x to — x, one sees that the coefficient of the fifth-order term changes sign while
the coefficient of the fourth-order term does not. Thus any well-posedness theory (which must
balance the fifth-order and fourth-order terms against each other) may not rely on this leading
sign. Another way is to understand the role that dispersion plays; the fifth-order term causes
dispersion in the equation, and the sign of the leading coefficient determines whether wave
packets move to the left or the right. The fourth-order term, depending on its sign, has the
potential to cause backward parabolic growth. If a wavepacket is in a “growth region” (i.e.,
a region in which b(x, t) > 0), the amount of growth depends on the amount of time the
wavepacket is in this region. This amount of time is related to the coefficient a(x, #), which
keeps the wave packet in motion. To avoid unbounded growth, it does not matter if the wave
packet moves through this “growth region” to the left or to the right, as long as it keeps
moving.

Since the sign of @ is immaterial, to simplify notations we will henceforth and without
loss of generality take a(x, ) > 0. If instead a(x, t) < 0, then only trivial changes to the
proofs are necessary.

The proof of Theorem 1 will be by the gauged energy method. In order to make our energy
estimates, then, we need to introduce the gauge. We do not choose the exact gauge we will
use right now, but we do specify the properties we wish to be satisfied by our gauge. We want
the function g, to have the following properties:

(C1) gp € C([0, T]; C"*9) and 9,g, € C([0, T]; C™),
(C2) There exist constants A; > 0, Ay > O such that A < g, < A3, and
(C3) g, and its first n — 1 spatial derivatives satisfy periodic boundary conditions.

Given such a g,,, we define v through the equation
u=vgy(x,t).

We then have the following lemma on the equivalence of regularity of # and v :
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Lemma 3 Assume g, satisfies the assumptions (C1)—(C3). Then u € C([0, T]; H") if and
only ifv € C([0, T]; H"). Moreover, there is a constant Cq > 1, depending only on norms
of gn, such that
Cy' sup |lullgn < sup |[vllgn < Cg sup fullpn.
1€[0,T] 1€[0,T] 1€[0,T]

The proof of this lemma is straightforward and is omitted.

Of course the point is that a favorable choice of g, will allow energy estimates to be made
for v; we look now at the evolution equation for v:

v = a(x, HVxxxxx + 0O, D Vxxex + 0, HVxxx

+5z(x,t)vxx —}-é(x,l‘)vx+f(x,t)v+l_1(x,t), (13)
where the new coefficients are given by
- a
b=5a25" 4 p,
8n
aZgn Ox &n
¢ = 10a22= +4b +c,
&n 8n
< 33g,, azgn 0x&n
d = 10a—*>~ + 6b—*>~ + 3¢ +d,
8n &n 8n
a4 a3 a2 B
=508 ap 8t | 3 B8 g8,
&n 8n &n 8n
o =0 O3gn | Oten | Olgn | ,0%gn | 0x&n
f= +at—+b— 4= +d>"—+e + f, (14)
8n 8n 8n 8n &n &n
and, finally,
- h
h=—.
8n

Remark 4 We now remark on the strategy of proof for Theorem 1. For a particular choice of
gauge, g,, we prove the existence and uniqueness of solutions for the initial value problem
for (13). This immediately implies existence and uniqueness of solutions for the initial value
problem (1), (2). The proof of existence for (13) starts with introduction of an approximate
system, and then Lemma 5 below gives existence of solutions for the approximate system
on a very short time interval. A uniform bound for the approximate solutions is proved
in Proposition 6 below, and this yields a uniform time of existence for the approximate
solutions. The proof of existence is then able to be carried out. Uniqueness is then proved in
Proposition 8 below.

Before we perform our energy estimates we must introduce an approximate problem. To
this end we define the operator X, to be a truncation operator acting on Fourier series. If we
have the Fourier series for a function f,

f@ =) fie',

k=—00

then we define &, by

X)) = D fre'™.

k=—m
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The following properties of A}, will be useful for our energy estimates:

o Xy (0x f) = 0x (X f),

o foralls € N, || X 8y f)ll st < m|| X fllas,
o [y gXufdx = [y(Xng)f dx,

o Xpf =X2F,

o foralls € N, ||y fllgs < | fllus.

We note these properties without proof.
We now incorporate X}, into our equation for v to make a sequence of approximations.
Our approximate initial value problem is given by

U;n = Xm <aXm (v?xxxx) + B‘Xm (v)rcnxxx)

FEX (V) + d Xy (V) + eX V) + £, (V™) + iz), (15)
V" (x,0) = vo(x). (16)

We have existence of solutions for this sequence of approximations, and this is the content
of our next lemma.

Lemma5 Forall m € N there exists a Ty, > 0 such that there exists v™ € C1([0, T,,1; H")
which solves the initial value problem (15), (16).

We omit the proof of Lemma 5; the proof uses the Picard Theorem. That the right-hand
side of (15) is Lipschitz follows from the properties of our operator X}, and the regularity of
the coefficients.

The time of existence guaranteed by Lemma 5 for our approximations v, unfortunately
depends badly on the approximation parameter m. To be able to take the limit as m goes to
infinity, we must prove that these approximations exist on the common time interval [0, T'].
This requires proving an energy estimate which is uniform with respect to m.

Proposition 6 For the given T > 0, there exists k > 0 such that for allm € N, the approxi-
mate solutions v are in C ([0, T]; H™), with the bound

0™ 130 < k(llvoll 3 + D). (17)

Proof We define an energy functional,
1
E=3 /(v'")2 + (3"v™)? dx.
This functional is equivalent to the square of the H"-norm of v,,.
We take the time derivative of the energy:

dE

dt
The first term on the right-hand side can be easily bounded since we know that n > 6 and
that the highest derivative in 9,v™ is of fifth order:

:/umu;"+(a§u’")(agv;") dx.

/v”vi" = / [Xm(v”)<a(x)?€m(v;’§m)+l5(x)?6n(v;"xxx)+5(X)Xm(vfxx)
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+d(X) X (V) 4 2(0) X (V) + f (X)X (V™) + ﬁ(ﬂ)] dx < C(E+1).
This immediately implies
dE n_.m n_.m
ZﬁC(E+1)+/(8xv )(@7v") dx. (18)

We must still bound the integral on the right-hand side of (18), which we expand using
(15):

/(8;1 vm)(a)}: U;n) dx = / |:Xm (a)rctvm) (a)’cl (a (X)Xm (v)rc”xxxx) + B(X)Xm (v)rcnxxx)
+E(X) X (V) + d () Xy (V1) + E(x) X (V1)

+f )X (") + fz(x)))} dx
=I+1+1I+1V+V+VI+VII (19)

Here, the term / corresponds to the contribution of the coefficient a, the term /1 corresponds
to the contribution of the coefficient b, and so on, through the term V 11 which corresponds
to the contribution of the coefficient /.

We expand the term /, by using the product rule:

I :/Xm(a;}u’")a;;(axm(afm) dx
= / a(@" 3 X, (V™))" Xy, (V™) dx 4 n / (3a) (324X, (V™)) 7 X (V™) dx
+<Z> / (®2a) (97753 2, (™)) 0" Xy (v™) dx
+<§) f (@3a) (8722, (V™)) 8" Xy (u™) dx

+<Z) / @) (91 2 (™)) 8" X,y (v dx

+n§ <’;) / (@ X (™) (07 @) (077 X, (™)) dix. (20)
j=0
We next similarly expand the term 7 :
11 = /(ajgxm(um))a;; (b3t X, (V™)) dx
+ / b (372, (v™)) 82 X,y (V™) dx +n / (3D (3073 X, (V™)) 37 X (V™) dx
+<Z> / (2b) (9722, (™)) 8" X,y (u™) dx

+<Z> / (@35) (071 X, (™)) 8" X, (™) dx

n—4
+3 (’J’) / (@ %, (") (087 B) B X (™)) dx. @1
j=0
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We can expand the other terms in the same fashion; a number of the resulting terms are
bounded in terms of the energy. All the terms in the final summations on the right-hand sides
of (20) and (21) can be bounded by C E since at most n derivatives of X}, (v™") appear there.
We can also integrate by parts in terms in the form y (x) (8;,”'] X, (v’")) 97 X (v™), and then
bound the result by CE. The term VI can be immediately bounded by C E'/2, which can
then be bounded by C(E + 1).

After making these further expansions and bounding those terms which we have just
described, we are left with the following:

% <CE+1) +/a (a;+5xm(um)) "X,y (V™) dix
+/ [ndxa(x) +b(x)] (37X, (™)) 32X, (V™) dx
+/ [(Z) Bga(x) +ndb(x) + E(x)] (8;’+3Xm(ym)) X (V") dx

+/ [(Z)aia(x) + <Z>8§E(X) +ndyc(x) + J(x)} (a;‘“)(m(vm)) 8" X, (u™) dx.
(22)

To estimate the remaining terms, we will first rewrite them using some identities based on
the product rule, and then we will choose our gauge. The identities we use are the following
(we state this for a general function V, but will use it above for V = 97 X, v).

1 5 5
VVircer = 503(VH) = Z83(VD) + S8 (V2).
2 2 2
1
vaxxx = Eaﬁ(vz) - 28;%(‘/)(2) + szx’
1 3
VViee = 585("2) - 5ax(vj‘),
1
VVi = Eaf(vz) - V2
Using these, (22) becomes
dE <C(E+1)
dt —
1 5 5
+ / a(x) (Eai[(a;'xmv’")z] - 5a)%[(a;:“%w"’)z] + Eax[(a;:”?cmvm)z]) dx

+ / [ndya(x)+b(x)] (%ai[(aﬁxmvmﬁ] — 202" ™) + (B;‘Jrz)(mvm)z) dx

+/ [(")afa(x) + ndyeb(x) +E(x)] Ga,%[(a;gxmu’")z] - %8x[(8§+1/\’mvm)]2> dx

2
n 3 n 25 _ -
+/ 3 dya(x) + (2 dyb(x) + noxc(x) +d(x)
(%a)%[(a,’zxmv"’ﬁ - [(a;'“?cmv'")]z) dx. (23)

The first term in each of the integrals on the right-hand side of (23) can be bounded in
terms of the energy, after performing the appropriate number of integrations by parts. For the
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remaining terms in each integral we perform some further integrations by parts, leading us
to the following:

dE 5 _
o SCE+D +/ <<n — 5) ax + b) (072, 0™ dx + / Bl X, 0™ dx,

where we have made the definition

1= (136 () (32 ()54 (s

We now add and subtract, introducing a function ad (with § to be defined) with the intention
of having it control the term with the (n + 1)-st derivatives:

”;—If <C(E+1) +/ ((n - %) ax +b— aS) (072 ,0™]* dx
+ / ad[0" 2 X, v"? dx + / Bl X, 0™ dx. (24)
For the final integral on the right-hand side of (24), we integrate by parts as follows:
/ﬂ(a§+lxmv’")2 dx = —/(ﬁa;'“xmu’")x(agxmu’")dx.

We apply the derivative and integrate by parts again to find the following:

Bx
2

—/ﬁ(a;;”)cmvm)(a;’xmum)dx.

/,3(3;;+1Xmu’")2 dx = (8" X v™)? dx

The first integral on the right-hand side is bounded in terms of the energy, and for the second
integral on the right-hand side, we use Young’s inequality with parameter € > 0. We combine
this with the second integral on the right-hand side of (24), finding the bound
/a&[&f"'z)(mvm]z + BIO" T X, 0™ dx < C(E + 1)
1
+ / ad[3" 2 X, 0™ + €[0"T2 X, 0™ 4 — (B X, v™)? dx.
€

Since the energy controls up to n spatial derivatives, we may bound the final term on the
right-hand side by the energy:

/ a3 (O[22, 0"+ B[ Ao
<CE+D+ [ a8 (x)[3" 22, 0™ + €[0"T2 A, 0™ dx.

We recall that we have taken inf, a(x) > 0, and we then note that as long as §(x) <

ﬁ < Otheintegral in the right-hand side will be non-positive. This leads to the following
bound:

/aB(x)[3;'+2vam]2 + B[ A, 0™ dx < C(E +1).
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Using this with (24), we now have

%?5cw+n+/(G—gymm+am—wu0wﬁhwﬂfm.

If we had (n — %) a, +b—as = 0 then our energy estimate would be complete. Substituting
for b from (14), we see that we seek 8 such that

0x &n
8n

+b—ad=0.

<n — §> dca(x) + Sa

This equation may be integrated. We do so, and we solve for the gauge, g, :

n 1 (*(b
gn=a2 D exp {—7/ <f - 8) dx/} : (25)
5 0 a

We then make a favorable choice of §(¢), so as to maintain periodic boundary conditions for
8n:

M
(1) = %/0 de. (26)

We still must choose the value of € above. Now that we have defined §, we have the condition

/ < —€ <0
M 1nf a(x)

So, we take € > 0 such that

L (M b(x, 1) .
sup — dx inf a(x) ) < —e.
refo,711 M Jo a(x, 1) xe[0,M]

(Recall here that the first factor on the left-hand side is strictly negative, and the second factor
on the left-hand side is strictly positive.)
We have therefore demonstrated the bound

dE<cw+n
dt — '

This immediately implies that the energy remains bounded over the time interval [0, T'].
(Note that we have fundamentally used the fact that ﬁ f % < 0; without this, we could not
control the energy.) O

Remark7 The proof also establishes that A;,v™ is uniformly bounded in the space
L2([0, T]; H"*?). This fact will be used later.

Having established that the approximate solutions exist on a common time interval, we
now work to take the limit as m goes to infinity.

Using the uniform bound (17) and the approximate evolution equations (15), we have the
uniform bound for the time derivatives,

sup /" ()]l Lo < k([volln + 1).
1€[0,7]

The uniform bound (17) also implies that v is uniformly bounded. Thus {v™} is a uniformly
bounded and equicontinuous family of functions on the domain [0, M] x [0, T]. By the
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Arzeala-Ascoli theorem there exist a function v* € C([0, M] x [0, T]) such that (taking a
subsequence, which we do not relabel)

. m __ * =
im [V — "¢ o, mixpo.71) = 0-

Looking at n” € [0, n) we can use a typical Sobolev interpolation inequality,

’
n

’ ;1= .o
W™ =™ g < 0™ = 0™ o " 0™ = 0™ | g,

The convergence in C ([0, M] x [0, T']) implies convergence in L2([0, M]) at each time, and
the bound (17) applies to v as well as v™ . From this we can see that {v"} is a Cauchy
sequence in C([0, T']; H ”/), and is therefore convergent of course, and the limit must be v*.
So, for all n € [0, n'),

v* e C([0, T]; H").

Furthermore, we know {v”} is bounded in H" at each time, so there exists a weak limit in
H". We call this weak limit v** € L°°([0, T]; H"). By the uniqueness of limits we know
v = v*, thus

v¥ e L0, T]; H™).

We next may conclude that v* solves the initial value problem. We denote the right-hand
side of (15) as BB,,; of course, 3,, involves at most five derivatives of v". We similarly denote
the right-hand side of (13) as B[v]. Integrating (15) in time, and using (16), we have

t
V" (1) = o +/ B (-, 7) dr.
0

Since B, involves at most five derivatives and we have uniform convergence with more
regularity than this, we may pass to the limit in the integral. We know of course that the limit
of v™ is v*, and thus we see that

t
v, 1) = v+ / Bv*](, 7) dr.
0

Thus v*(0) = v and v* satisfies (13).

We now are able to conclude also that v* € L2([0, T']; H"*?). We noted in Remark 7
that the proof of Proposition 6 implies that the family Aj,v™ is bounded with respect to m
in L2([0, T; H "+2). Since this is a Hilbert space, we conclude that X}, v, has a weak limit
in this space. We know, however, that in less regular spaces, X,,v™ converges to v*. By
uniqueness of limits, we conclude that v* € L2([0, T); H"?).

All that remains is to show v* € C([0, TT; H"). Since v* € L2([0, T]; H"?), we see
that for almost every ¢ € [0, T], we have v*(-, 1) € H"t2 Let t > 0 be such a time. Then
we can re-run the existence argument in its entirety using v*(-, 7) € H"*? as the initial
condition. Call this new solution v**. We have v** € C([z, T]; H"/+2) for all n’ € [0, n).
By uniqueness of solutions (to be proven in Proposition 8 below), it must be the case that
v** = v*. Since 7 can be taken arbitrarily close to zero, this proves that v* is continuous in
H" for any t € (0, T']. Showing right-continuity of the solution in H” at time zero is all that
remains.

That v* is bounded in H" at all times implies that v* is weakly continuous in time, and
thus

[v*C-, 0) [l gn < liminf [[v* (., ) || .
t—0t
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Our energy estimates imply

limsup [[v*(, )| g < [V*C, 0) [l gn.
=0t
Combining these, and the weak continuity in time, we conclude that the solution is indeed
continuous in time in H". This completes the proof of existence of solutions in Theorem 1.
It remains to establish the uniqueness result of Theorem 1; this will follow immediately
from the following proposition.

Proposition8 Leru; € C([0, T]; H"(X)) and uy € C([0, T]; H" (X)) be two solutions of
(1), each with initial data in H". Then we have the estimate

sup lup —uzllz2 < cllui(-, 0) —ua (-, 0| z2. 27
1€[0,T]

Proof We consider the difference of the two solutions, w = u; — uy. Since the Eq. (1) is
linear, w satisfies almost the same equation, just with 4 replaced with zero. So we have

w; = al(x, t)wxxxxx + b(x, DWyxxx + C(x» t)wxxx + d(xv t)wxx + e(x, l)wx + f(x7 Hw.

We may follow the arguments of Proposition 6 to define a gauge. The choice of gauge depends
on the regularity we choose to estimate, and we are only making an estimate in L2 at present.
Thus the gauge is given by (25) but with n replaced with zero. Specifically, we have

1 (/b
gozal/zexp{—f/ <7—8> dx’}.
5 0 a

Give the gauge, we define v as before, i.e. w = vgo. We define the energy to be

Eq :/ v? dx,
X

and (again, following the arguments of Proposition 6) we find

E < cE, (28)
dr = h
Note that in Proposition 6, we had % < c¢(E + 1). We do not have a constant on the right-
hand side of the present bound (28) because in the present case the term /4 has been replaced
by zero. Gronwall’s inequality applied to (28) now implies the desired bound. O

4 lll-posedness Result

As we have mentioned in the introduction, we also have an ill-posedness result when the
fourth-order backwards diffusion is stronger. The following is our second main theorem.
(We remark again that without loss of generality we are taking a > 0.) We state the theorem
under the assumption that the coefficients are C*° (as was done in [4]) for simplicity. We
make Remark 10 afterwards regarding relaxing this assumption.

Theorem 9 Let Lu be given by the right-hand side of (1), and let § be defined as in (26)
above. Assume that the coefficients a,b,c,d, e, f, and h are in C*. If § > 0 and if the
coefficients a, b, c,d, e, f, and h do not depend on t, then the operator L has a sequence of
eigenvalues whose real parts go to infinity. Thus the initial value problem (1), (2) is ill-posed.
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Proof Todemonstrate ill-posedness we will start by showing it for a special case with constant
dispersion,

Up = Uyxxxx + Olxxxx + o) Uyxy +do(X)uyx +eo(Xuy + fo(x)u + ho(x), (29)
taken with data
u(x,0) = ug(x) € H".

After treating this case, the general case will follow by a change of variables.
First we will show that L, for the linear operator L associated with (29), has a sequence
of eigenvalues A ; for which

lim |2 ;] = oo.
j—00

This is straightforward since L is a relatively compact perturbation of the operator 37 + I, as
long as the coefficients cg, do, o, fo, and hg are in L?. Thus we know Oess (L) = aess(a)? +
I) = . This can be shown by choosing 6 € C which is not a eigenvalue of 33; then, the
inverse operator (83 — 6)~ ! is a bounded operator defined for all f € H°.

In fact, the operator (37 — 6)~! is a bounded map from H® — H?>. This means the the
resolvent set of L is nonempty. We take Q in the resolvent and let the operator L be given
by L = (L — Q)~'. We know that L is a bounded linear map from L? — H?>. We know
H? is compactly embedded in L? so we know L is a compact map from L? to itself. This
implies that L has a non-zero sequence of eigenvalues {11 ;j} with a corresponding sequence
of eigenfunctions {u ;} such that lim; , . u; = 0. So we have the following relations:

Luj = pju;,
(L—O)"uj=pjuy,

1
L(uj): (Q-I-MJ)MJ

It is easy to see that lim; o0 |Q + u%' = o0 since limj, « u; = 0. This is our sequence of

eigenvalues of L so we call O + ;% =A;.

For such an eigenvalue A of L, we let u be the associated eigenfunction such that [|u|| ;> =
1. Then we have uLu = Auu and thus, after integrating,

/ U(Uyxxxx + Othxxxx + co(X)uyxy +do(X)uyy +eo(X)uy + fo(x)u) dx = A.
X

We see by integration by parts that [y il xxxxx dX = — [y llxxxxxtt dx, thus it must be
that R f x Ultxxrxx dx = 0. (Note that here 2z indicates the real part of the complex number
z.) Also by integration by parts, we see that fX USUyyyx AX = S§||Uyy ||iz. Looking at the real
part of A, then, we see

M) = 8lluxx 72 + Cr.
where Cp is given by
Cr=%R |:/ u(co(X)uxxx + do(X)uxx + eo(x)uy + fO(x)u)dx:| .
X
We can then easily see that

ICrI < ki(llux s + lull?2) = ki lux 2, + k1.
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Thus we have for § > 0 that
RO = Slluexl2e — killuxl?s — ki = —k, (30)
for an appropriate ki > 0. Continuing, we see that
RO + ki lluxll 7o + ki = Sllurell72,

and thus we may conclude

57RO + K lluxl72 4+ k1) = el 31)
Now we bound the imaginary part of A. To begin, we introduce the decomposition
S = /X Ulyyexxdx + Cy, (32)
where
Cr=3 [/;( u(co(X)ixxx + do(x)uxy + eo(X)ux + folx)u) dX} . (33)

Integrating by parts and using the Cauchy-Schwarz inequality on the first term of the right-
hand side of (32), we have

/ Ullyxxxx dX :/ UxylUyxx dx < ety ll L2 Mot |l 2
X X

With an eye toward C;, we make the following calculation:
/ co(X)Uttyyx + do(X) ey + eo(x)utuyx + fo(x)uu dx
X
= / —co(X)itxuxy + (do(x) — cox(X))tttixx + eo(xX)uuy + fo(x)iu dx
X

= / —co(X)ityttyy — (do(x) — cox (X)) lxuy
X
+(eo(x) — dox (x) + coxx (X)) tttty + fo(x)uu dx.
We take the imaginary part of this, finding
Cr=3 |:/ —co(X)utxttxx + (e0(x) — dox (X) + coxx (X)) Uty dx:| .
X

Using the Cauchy-Schwarz inequality we conclude
Cr < kalluxll g2 lluxxll 22 + k3lluxll 2
Putting this together, we have
ISOI] = MNecxx | L2 x| 2 4 k2l g2 x|l L2 4 k3 llux]l 2. (34)

Next we take the equation Lu = Au, and we take the inner product with u :
}”/ Uyu dx = / iy (Uyyxxx + SUyxxx + o) Uxyx + do(X)uxx + eo(X)uy + fo(x)u) dx.
X X

Integrating by parts shows that the first term on the right-hand side is equal to |lu Xxx||iz;
thus, we have

2 - -
2 xxx ”LZ = )‘/ iyu dx — / Uy (Sttyxxx + Co(X)Uxxx
X X
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+do(X)uxx + eo(X)uy + fo(x)u) dx. (35)

Integrating by parts demonstrates that A [y iyu dx = —A [y ituy dx,soRA [y iixu dx =0,
and similarly 8 [y dixttxxer dx = —8 [ lixexxity dx, s0 RS [y dictixery = 0. Combining
this with (35) yields

ll24xxx ”iz =-R {/X iy (co(X)txxx +do(X)tyy + eog(X)uy + fo(x)u) dx} .

We manipulate the integral on the right-hand side by integrating by parts and using the
Cauchy-Schwarz inequality, finding

/ iy (co(X)uxxx +do(X)uyy + eo(xX)uy + fo(x)u) dx
X

= / —co(X)uxxttyx + (do(x) — cox (X)) uxxity + eo(X)uytix + folx)uuy, dx
X

< kil g2 + kol ll g2 il 2 + kalluxll7 2 + Kallu 2
Letting ¢ = max(ky, k2, k3, ka), we rewrite this as
ltxex 2 < qlurxllz2 + loexll 2 el g2 + N2 + luellz2). (36)
We next find a bound for ||uy||;2. We begin by introducing the notation
eikxlft(k)

on = (k)"
kEZ)\ (0}

Using this notation, we integrate the equation Auut_o = Luui_» :

)”/ u_udx = / U2 Uyxxxx + Sthyxxx + CO(X)Uxxx
X X
+do(X)uxy +eo(ux + folx)u) dx.

Considering the real part, we see that R( [y il _2Uxxxxx dx) = 0and R( [y Sutyxxxil 2 dx) =
—Oluy IIi2 by integration by parts. We therefore have the following:

5||Mx||2Lz = /}; u—2(co(®)uxxx +do(X)uxy +eo(x)ux + (fo(x) +R(A)u) dx.

We continue to integrate by parts, yielding

Slluxll?, = 9%{ / co(X)uxu + (3cox + do(x))uou + (eo(x) + 2dox + coxx)u—1ux dx
X

+ /;((fO(x) + eox + doxx + coxxx +RO))u_2u dx}~

Considering the first term on the right-hand side, we may estimate it as follows:

9‘%{/ co(x)ﬁxu} dx l/ co(X)ixu + co(x)itu, dx
X 2 Jx

l/ Oy (co(x)itu) — cp(x)uu dx
2 Jx

1
_ _E/Xc()(x)ﬁu dx < pillull?.
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Since ||u||2L2 = 1, we use this to conclude
Slluxl, < p1 + 9“{ / (3cox + do(x))uou + (eo(x) + 2dox + coxx)i—1ux dx
X

+./X(fO(X) + eox + doxx + coxxx + RA))u_2u dx}-

From Parseval’s identity and the definition of u_,, it is clear that [|u_,l|l;2 < |lu|l>.

Using this together with the Cauchy-Schwarz inequality, we have the existence of constants
pi such that

%{ / (Beox + do(x))ingu + (eo(x) + 2dox + coxx )11ty dx
X

+ /X(fo(x) + eox + doxx + Coxxx + ROA))u—2u dx}
< (p2+ p3+ pa+ RIAD ul7..
Setting P = Zi: | Pn» We conclude
Sllucl?, < P+ RIAL 37

‘We now combine the bounds (31), (36), and (37) on derivatives of # with the bound on the
imaginary part of the eigenvalue (34). This implies that the imaginary part of the eigenvalue
A is bounded in terms of its real part. Recall that we also know that the real part cannot go
to negative infinity by (30). We also know that there is a sequence of eigenvalues of L for
which |A, | = oo. For this to be true we must have that R[),,] — oo. Thus we have proven
our result fora = 1 and b = 6.

Now that we have proven ill-posedness for a special form of L (i.e. when a = 1 and
b = §), we will show that through a change of variables we can treat the general case. We
start by defining

D(x) = /Oxa*%(y) dy.

In making this definition, we recall that a is bounded away from zero; this implies that &

is invertible. Note that d®/dx = a_% (x). We next define v(z) where u(x) = v(®(x)), i.e.
v(z) = u(®~'(z)). Using again the definition of the operator L applied to «, namely

Lu = alyyxxx + bllyxyx + Cllxxy +duyy + euy + f“y
and applying the change of variable, we see that
Lu = a(vuzud)/s) + Uzzzz(loaq)/Sq)” + bd>/4) + C1Vzzz +divz; +erv; + fu. (38)

(The explicit equations for the trailing coefficients are omitted as their specific form is not
entirely relevant for our purposes, although they are specified in Remark 10 below.)
Using the definition of @, we rewrite (38) as

Lu =vz 7z + Uzzzz(loaq)B(DN + b¢/4) + C1Vzz; +div; +e1v; + f1v.
We calculate the coefficient of the fourth-order term, using the definition of ® :

10a 3" + bd™* = a7 (x)(b(x) — 2d'(x)).
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We introduce the variable z = ®(x), and introduce the function I'(z) defined through the
equation

@) =a P 0)bw) —2d'(x).
Defining M’ through the equation ®(M’) = M, we have

M oM
/ I'(z)dz = / (@)D (x) dx.
0 0

This implies that

M M
/ I'(z)dz = / a”! xX)(b(x) — 2d’'(x)) dx = M5(x).
0 0

We introduce the notation I' = %8, and we define the operator L through

LV = Vyzz7; + U722:1(2) + €102z +d1 0z, + €10, + fiv.

Since L is simply a change of variables away from L, we know they have the same eigenvalues.
We next use our gauge, i.e. we change again to v = vg, with g as described in our energy

estimates:
—1 [z _
g=exp{—/ I‘(s)—Fds}.
5 Jo

We may then calculate that if LV = A0, then

Vzzzzz + Vzzzz (5% + F(Z)) + Cavzzz + davy; + v + fov = Av.

(We note again that formulas for the coefficients ¢z, da, €2, and f> can be found below in
Remark 10.) We can simplify the coefficient of the fourth derivative,

5% +T() = (—(I'(z) =) + I'(z) = I.
Then our eigenvalue problem becomes

Vzzzzz + Dvzzr + €Uz + davys + €207 + fov = Av.

This is the same form of the operator that was studied at the beginning of this proof. This
completes the proof of ill-posedness for the general case. O

Remark 10 As we said before beginning the proof of Theorem 9, we will comment now
on the regularity needed for the coefficients in the proof of our ill-posedness theorem. The
argument at the beginning of the proof, relating to a relatively compact perturbation, required
coefficients to be in L2. Specifically, the coefficients ¢, da, e, and f, must be in L?. The
formulas for these coefficients are

1092g  4T'g,

c) = + +c1,
g g
1093 692 3¢
dy = zg+ zg+ lgz-i-d],
g g
594 4193 3¢102 2d
ey = zg+ zg+ ]zg+ 18z ,
g g g g
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g Ta‘g 183 d1d3%2g e
=28 T8 A58 %8 A% g
g g g g g

We then must give the formulas for the coefficients c1, d1, e1, and fi; these are

f2

¢ = 10a®? " 4 154D’ D"* 4+ 6bD* D" + D,

di = 10a®”"®" + 5a®'d"" + b®"? + 4bP' D" + 3cd' D" + d D7,
e] :aq)/////+bd)////+cq)///+dd)//+ed)/’

fi=171.

The formulas for g, ®, and I are given in the proof of Theorem 9.

Our assumption that all the coefficients be C* is clearly sufficient, but of course lower
regularity assumptions are possible as long as one may conclude that c¢;, d», €3, and f> are
in L2,
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