
Session 4: Algorithms and Complexity ISSAC ’22, July 4–7, 2022, Villeneuve-d’Ascq, France

The GKR Protocol Revisited: Nearly Optimal Prover-Complexity
For Polynomial-Time Wiring Algorithms and For Primality

Testing in n
1
2+o(1) Rounds

Erich L. Kaltofen
Dept. of Mathematics, NCSU and Dept. of Computer Science, Duke University

Raleigh, Durham, North Carolina, USA

ABSTRACT

The proof-of-work interactive protocol by Shafi Goldwasser, Yael

T. Kalai and Guy N. Rothblum (GKR) [STOC 2008, JACM 2015] cer-

tifies the execution of an algorithm via the evaluation of a corre-

sponding boolean or arithmetic circuit whose structure is known

to the verifier by circuit wiring algorithms that define the unifor-

mity of the circuit. Here we study protocols whose prover time-

and space-complexities are within a poly-logarithmic factor of the

time- and space-complexity of the algorithm; we call those proto-

cols ‘prover-nearly-optimal.’ We show that the uniformity assump-

tions can be relaxed fromLOGSPACE to polynomial-time in the bit-

lengths of the labels which enumerate the nodes in the circuit. Our

protocol applies GKR recursively to the arising sumcheck prob-

lems on each level of the circuit whose values are verified, and de-

ploys any of the prover-nearly-optimal versions of GKR on the con-

structed sorting/prefix circuits with log-depth wiring functions.

The verifier time-complexity of GKR grows linearly in the depth

of the circuit. For deep circuits such as the Miller-Rabin integer pri-

mality test of an =-bit integer, the large number of rounds may in-

terfere with soundness guarantees after the application of the Fiat-

Shamir heuristic. We re-arrange the circuit evaluation problem by

the baby-steps/giant-steps method to achieve a depth of =1/2+> (1) ,
at prover cost =2+> (1) bit complexity and communication and ver-

ifier cost =3/2+> (1) .

CCS CONCEPTS

• Theory of computation→ Cryptographic protocols.

KEYWORDS

cloud computing; primality testing; proof-of-work certificate;

ACM Reference Format:

Erich L. Kaltofen. 2022. TheGKRProtocol Revisited: NearlyOptimal Prover-

Complexity For Polynomial-Time Wiring Algorithms and For Primality

Testing in n
1
2 +o(1) Rounds . In Proceedings of the 47th ACM Symposium

on Symbolic and Algebraic Computation (ISSAC ’22), July 4–7, 2022, Lille,

France.ACM,NewYork, NY, USA, 10 pages. https://doi.org/10.1145/3476446.

3536183

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
the author(s) must be honored. Abstracting with credit is permitted. To copy other-
wise, or republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Request permissions from permissions@acm.org.

ISSAC ’22, July 4–7, 2022, Villeneuve-d’Ascq, France.

© 2022 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-8688-3/22/07. . . $15.00
https://doi.org/10.1145/3476446.3536183

1 INTRODUCTION

The delegation of computation to a compute service possibly in the

Internet cloud today is a universal approach for carrying out mas-

sive computations. A landmark example is the determination that

a maximum of 20 face moves are required to solve Rubik’s Cube,

which was done in a Google data center https://www.cube20.org/.

The interactive proving methodology and the breakthrough PCP

Theorem allow a verifier with moderate compute power to check

the computation of the prover. The 2008 GKR protocol by Shafi

Goldwasser, Yael T. Kalai and Guy N. Rothblum [15, 16] reduces

the number of rounds to within a poly-logarithmic factor of the

depth of the boolean circuit that can be associated with the algo-

rithm for the computation. The bare-bones version of GKR proto-

col can be realized for a prover that runs within a poly-logarithmic

factor of the time-complexity of the computation—we call such a

protocol prover-nearly-optimal—which is probabilistically checked

by the verifier in time circuit-depth× (log circuit-size)$ (1) + input-
size × (loglog circuit-size)$ (1) [7]. More recently, protocols have

been proposed that are zero-knowledge and whose prover-time-

complexity is within a constant factor of the size of the circuit that

represents the computation on the given input; see [26, 27].

The GKR proof-of-work protocol [16] works in two stages. It

first takes an algorithm represented by a Turing machine and an

input and on the prover side constructs a boolean circuit of poly-

logarithmic depth that represents the Turingmachine execution on

the given input. It is assumed that the Turing machine on an input

of = symbols from a fixed alphabet will hold $ (log=) symbols on

its auxiliary tapes. In a second stage, an interactive proof protocol

is designed for (fan-in ≤ 2) boolean circuits that are constructed

by local circuit wiring algorithms which are known to both the

prover and the verifier. One assumes that the circuit feeds data

from each level to the next and does not skip over levels, which can

be achieved by inserting passthru nodes. The circuit has numbers

assigned for each node on the ℓ-th Level as values ∈ {0, 1}Bℓ , where
Bℓ = $ (log circuit-width). One constructs a constant number of

local circuit wiring algorithms isor(ℓ, U), . . . , src1(ℓ, U), src2(ℓ, U),
which compute which arithmetic is done in the node labelled U on

Level ℓ and what are the labels on the previous level of the two ar-

guments that feed into the node. The GKR interactive bare-bones

protocol [15] is implemented for wiring algorithms whose associ-

ated boolean circuits have depth$ (log Bℓ), that is$ (loglog circuit-
width). The verifier during the protocol has to check the evalua-

tion of those boolean circuits on verifier-selected random values

in finite extension fields. In place of the wiring algorithms for the

Turing machine execution, Goldreich [13] uses the circuit for a uni-

versal Turing machine that interprets the Turing machine on the

177

Session 4: Algorithms and Complexity ISSAC ’22, July 4–7, 2022, Villeneuve-d’Ascq, France

input. The universal Turing machine circuit is again bare-bones

protocol verifiable.

The verifier time-complexity in the GKR bare-bones protocol

depends linearly on the depth of the circuit whose evaluation is

checked. Therefore, the verifier performs efficiently for problems

that belong to the complexity class NC. The verifier has to scan

each input bit and therefore has time-complexity that depends lin-

early on the input size. The transition from Turing machine algo-

rithm and universal Turing machine circuit to the bare-bones GKR

protocol incurs a time penalty for the prover: its time-complexity

grows polynomially in the Turing machine time complexity. The

exponent in the prover-time-complexity is related to the big-Oh

constant of the $ (log=) space complexity of the Turing machine.

Instead, one can consider the circuit wiring algorithms as the

computational algorithmic model. In addition, aside from using fi-

nite algebraic extension fields for boolean arithmetic during the

protocol, one can use arithmetic circuits with residues modulo a

prime number as values [25]. We will use hybrid circuits that per-

form both boolean and finite field arithmetic. The circuit wiring al-

gorithms are public, and for$ (log Bℓ)-depth wiring algorithms the

prover time-complexity can be reduced to nearly linear [6, 7, 26].

In [11] we have extended the circuit wiring model to which a

bare-bones interactive protocol applies. We give a proof-of-work

protocol for a circuit evaluation with local wiring functions that

are of time-complexity B
$ (1)
ℓ , that is, polynomial in the number of

bits of the node labels. We note that the model relaxation makes it

much easier to program an algorithm via circuit wiring algorithms.

However, in [11] we increased the prover time-complexity to cubic

in the circuit size; see Section 2.2. Here we present a prover-nearly-

optimal implementation of our extended bare-bones protocol, that

is, in prover time-complexity that is within a poly-logarithmic fac-

tor of the circuit size. In fact, the circuit wiring functions need

not be polynomial-time, they can be polynomial-depth [11]; see

Section 5. But then the prover time-complexity grows again poly-

nomially. We note that our wiring algorithms are assumed to be

of (log circuit-size)$ (1) time complexity. The classical notion of

polynomial-time-uniformity of boolean circuits allows a time com-

plexity of (circuit-size(=))$ (1) for computing the circuit for = in-

puts (cf. [1]), but then the prover space complexity and communi-

cation complexity for the circuit construction could be the same,

in the worst case.

We also show by a check-pointing technique from automatic

differentiation [17] that the prover can be realized to have a space-

complexity that is within a log-depth factor of the width of the

circuit, while remaining prover-nearly-optimal; see Section 2.4.We

note that in [26] similar space savings were implemented by the

same check-pointing idea.

The trade-offs between the uniformity that the verifier uses and

the work that the prover performs are subtle: in [24] the num-

ber of rounds in the interactive protocol is reduced to a constant

while incrementing the prover time-complexity polynomially. All

our protocols [8–10] for linear algebra are, however, prover-nearly-

optimal, some are prover-optimal. We note that we call a protocol

optimal if the prover complexity is) (=) + > () (=)), where) (=)
is the cost of the algorithm without a proof-of-work certificate

on input size =. In the literature protocols of complexity $ () (=))

have also been termed optimal, and protocols whose prover-time-

complexity is) (=)$ (1) are termed doubly-efficient.

The transition from algorithm to certified circuit evaluation can

be adapted to proof-of-work, that is, the circuit depth can be re-

duced by the prover communicating intermediate results to the

verifier. We demonstrate the technique for proof-of-work of com-

puting % = �� mod # , where�, �, and # are =-bit integers, which

constitutes the key substep in the Miller-Rabin randomized primal-

ity test. Because repeated squaring requires Ω(=) modular multi-

plication, the boolean circuit for % has depth $ (=(log=)2). The
GKR/RRR complexity measures are given in Rows 1a and 1b of Ta-

ble 1. Our yet-to-be-achieved goal is to have a primality test whose

prover time-complexity is =2 (log=)$ (1) , whose verifier time-com-

plexity is =(log=)$ (1) , and which has $ (1) rounds of interaction.
Row 2a of Table 1 refers to the protocol of Figure 4, which is based

on modulo # squareroots and uses a private coin. Here we show

that GKR can be adapted by the baby-steps/giant-steps method

to the complexity measures of Row 2b of the Table 1. Note that

the Agarwal-Kayal-Saxena (AKS) deterministic algorithm does not

have a fast version of =2+> (1) bit complexity (cf. [2]); otherwise

AKS could be used in our discussion instead.

Table 1: Proof-of-Work primality protocol complexities
Problem Nr. prover verifier Nr. of Commun. Reference

time time rounds size

Primality/composite-
ness of =-bit integers

1a =2+> (1) =1+> (1) =1+> (1) =1+> (1) [16] on Miller-Rabin

1b =$ (1) =1+> (1) $ (1) =1+> (1) [24] on Miller-Rabin

1c =2+> (1) =1+> (1) 0 =1+> (1) Fiat-Shamir heuristic
applied to 1a. Sound-
ness unproven [5, 14].

1d =$ (1) =1+> (1) 0 =1+> (1) [19] applied to 1a.

Primality of=-bit inte-
gers

2a =2+> (1) =1+> (1) $ (1) $ (=) Figure 4; uses private
coin

Primality/composite-
ness of =-bit integers

2b =2+> (1) =3/2+> (1) =1/2+> (1) $ (=3/2) This paper, Section 3
for public coin

For interactive probabilistic proof protocols with a public ran-

domization coin, whose outcome both the verifier and the prover

can see, interaction can be replaced by a cryptographic hash func-

tion in the Fiat-Shamir [12] heuristic, which yields a proof of pri-

mality/compositeness which can be verified at a later time and

whose soundness is justified by the hardness of predicting the hash

values. Note that for protocols where interaction is replaced by the

Fiat-Shamir idea, a provable soundness requires a special design

for the hash functions and cryptographic hardness assumptions [5,

19, 23]. For Google’s Rubik’s Cube computation mentioned above,

such a proof-of-work certificate could have been produced. Row 1c

puts Fiat-Shamir in practice by placing the previous hash value as

an additional argument to the next hash operation, andmay incur a

loss of soundness [14], which is mitigated by our protocol of fewer

rounds. The papers [5, 19, 23] prove the hardness of predicting the

hash values; Row 1d is for the hash functions in [19].

2 THE GOLDWASSER-KALAI-ROTHBLUM

INTERACTIVE BARE-BONES PROTOCOL

We briefly describe the bare-bones protocol in [15, 16] (see also

[11, 25]). The protocol certifies a computation on a hybrid alge-

braic circuit that performs arithmetic in Z? for a prime number ? .

Figure 1 exhibits the possible operations on Level ℓ of the circuit.

178

Session 4: Algorithms and Complexity ISSAC ’22, July 4–7, 2022, Villeneuve-d’Ascq, France

We shall designate the level of the output node, which computes

the final value 5 , as Level 0 and the input values G3,1, . . . , G3,= as

Level 3 , where 3 is the depth of the circuit. In our circuits val-

ues at Level (ℓ + 1) get passed on to Level ℓ , and one requires

“passthru” nodes to skip over a level. Constants/additional inputs

Gℓ,: can be introduced on any level before they are used on the

next level, and need not be passed thru from input nodes G3,a . The

circuit simulates the boolean operations by arithmetic in Z? as

shown. However, the GKR protocol itself evaluates the circuit at

residues ≠ 0, 1 for the boolean input variables, which is referred

as extension [15]. Proof-of-work is possible on purely algebraic

circuits [11, 25], which speeds the protocol because then arith-

metic in Z? needs not be performed via boolean operations. Our

circuit model is hybrid in that it can perform boolean arithmetic

when the boolean nodes have 0, 1 ∈ Z? as inputs, but the circuit

also performs Z? arithmetic in nodes which are designated as field

arithmetic nodes [11]. Inside a hybrid circuit the binary values

1a , . . . , 10 for the digits of an integer can be converted to a residue

(10 + 211 + · · · + 2a1a mod ?) ∈ Z? and Z? -field arithmetic can

be done from that point on. The residue cannot be converted back

to binary representation in subsequent levels, because the magni-

tudes of the residues cannot be tested by < with arithmetic alone.

But tests for ≠ 0 and modular divisions are possible on the field

arithmetic side to some extent: see [11, Remark 2.5, Section 3].

Figure 1: Bounded fan-in hybrid algebraic extension circuit

passthru

Input bit variables ∈ {0, 1} ⊂ Z? Input variables in Z?

Output polynomial

EFE +F − EFor 1 − Eand not

E

Simulated Boolean arithmetic Regular arithmetic in Z?

E F E F

· · ·G3,8+2· · · G3,8G3,3G3,2G3,1 G3,=G3,8+1

Output 5 (G3,1, . . . , G3,=, . . . , Gℓ,: , . . .) ∈ Z? [G3,1, . . . , G3,=, . . . , Gℓ,: , . . .]

× Gℓ,: ∈ Z?+

For arguments E,F ∈ {0, 1} ⊆ Z? , the following field operations
simulate the boolean functions:

and or not equiv

EF E +F − EF 1 − E 1 + 2EF − E −F (1)

In particular, two binary integers G0 + 2G1 + · · · + 2a−1Ga−1 and

G ′0 + 2G ′1 + · · · + 2a−1G ′a−1 are equal if

equal(®G, ®G ′) =
a−1∏

8=0

equiv(G8 , G ′8) =
a−1∏

8=0

(1 + 2G8G ′8 − G8 − G ′8), (2)

which is a hybrid circuit of degree a in G0, . . . , Ga and in G ′0, . . . , G
′
a .

The width of the circuit on Level ℓ , designated bywidth(ℓ) is the
number of nodes on Level ℓ . Each node on Level ℓ is assigned a bit

vector label U ∈ {0, 1}Bℓ where Bℓ = $ (log2 (width(ℓ))). The circuit
is known to the verifier by its local wiring algorithms: isor, isand,

isnot, . . . , isplus, isminus, istimes, ispassthru, isconst, src1, src2.

For example, isor(ℓ, U) is = 1 if the node labelled U on Level ℓ is a

boolean or node, and it is = 0 otherwise. The functions src1(ℓ, U) =
V and src2(ℓ, U) = W if the nodes labelled V and W on Level (ℓ + 1)
feed their values into node U on Level ℓ . The wiring algorithms re-

turn the value 0 if the bit-pattern of U does not represent a node in

the circuit. The GKR bare-bones protocol requires that the verifier

can evaluate thewiring algorithms, that is, the circuit is uniform. In

[11] polynomial-time bit complexity in Bmax
def
= maxℓ log(width(ℓ))

is shown to suffice. More precisely, we assume:

Assumption 2.1. the verifier (and prover) can execute the wiring

algorithms for ℓ = 0, . . . , 3 − 1 (3 being the depth of the circuit) to
produce boolean circuits for isor(ℓ, U), . . . of size B$ (1)max , all in total

time 3B
$ (1)
max .

Our uniformity requirement extends the log-space uniformity

of the complexity class NC [16, Theorems 1.1 and 4.7], but even

polynomial-time uniformity can be further relaxed (see Section 5).

The GKR bare-bones protocol uses a value-lookup polynomial

for each Level ℓ

+0 = F0, +ℓ (I) def=
∑

U ∈{0,1}Bℓ
equal(I, U)Fℓ,U ,

I = (I1, . . . , IBℓ), +ℓ (0) = Fℓ,0, 1 ≤ ℓ ≤ 3, (3)

where Fℓ,U ∈ Z? is the value of the circuit at the node on Level ℓ

labelled U when evaluated on a given list of inputs. Again, if U

is not the bit pattern of a node on Level ℓ , Fℓ,U
def
= 0. For all node

labels 0 ∈ {0, 1}Bℓ we have +ℓ (0) = Fℓ,0 . The protocol certifies

+ℓ (d [ℓ]) from a certified +ℓ+1 (d [ℓ+1]) for computed values d [ℓ] ∈
Z
Bℓ
? and d [ℓ+1] ∈ ZBℓ+1? , where d [ℓ+1] is verifier-selected after d [ℓ] .

In (3) one substitutes

Fℓ,U =,ℓ (U) + isconst(ℓ, U)F [const]
ℓ,U (4)

with

,ℓ (U) def= isand(ℓ, U)+ℓ+1 (src1(ℓ, U))+ℓ+1 (src2(ℓ, U))
+ isnot(ℓ, U)

(
1 −+ℓ+1 (src1(ℓ, U))

)
+ · · ·

+ ispassthru(ℓ, U)+ℓ+1 (src1(ℓ, U)), (5)

where F
[const]
ℓ,U ∈ Z? are the input values assigned to Gℓ,: whose

nodes have labelU , withF
[const]
ℓ,U

def
= 0 for all nodeswith isconst(ℓ, U) =

0. If all wiring function circuits have depth $ (log Bmax), one can

perform an (B
$ (1)
max -verifier-time) sumcheck protocol [22] to verify

the value

+
[−const]
ℓ (d [ℓ]) def=

∑

U ∈{0,1}Bℓ
equal(d [ℓ] , U),ℓ (U) (6)

= +ℓ (d [ℓ]) −
∑

U ∈{0,1}Bℓ
equal(d [ℓ] , U) isconst(ℓ, U)F [const]

ℓ,U .

The definition (6) requires that src2(ℓ, U) is defined for single-ar-

gument nodes, e.g., when isnot(ℓ, U) = 1. For such nodes, the local

wiring algorithms compute src2(ℓ, U) = (1, . . . , 1) ∈ {1}Bℓ+1 . The
arising interpolants in the sumcheck protocol then have degrees

of magnitude B
$ (1)
max . The sumcheck interactions take prover time

$ (B�1
max2

Bℓ+Bℓ+1) for each Level ℓ , where the factor 2Bℓ+1 is from the

evaluations of+ℓ+1 (src1(ℓ, 0)) and+ℓ+1 (src2(ℓ, 0)) (3), and verifier
time $ (B�2

max) for constants �1,�2. For the final verification of the

sumcheck protocol, the verifier needs to check equal(d [ℓ] , A [ℓ]) ×
,ℓ (A [ℓ]) for a vector A [ℓ] ∈ ZBℓ? of random residues. For that, the

verifier requires the two values+ℓ+1 (src1(ℓ, A [ℓ])) and+ℓ+1 (src2(ℓ,
A [ℓ])) and a 2-to-1 subprotocol is used. The prover interpolates and
commits

jℓ+1 (C) def= +ℓ+1
(
C src1(ℓ, A [ℓ]) + (1 − C) src2(ℓ, A [ℓ])

)
(7)

179

Session 4: Algorithms and Complexity ISSAC ’22, July 4–7, 2022, Villeneuve-d’Ascq, France

in Z? [C] (of degree ≤ Bℓ+1) before the verifier asks for certification
of+ℓ+1 (d [ℓ+1]) for d [ℓ+1] = A∗ src1(ℓ, A [ℓ])+(1−A∗)src2(ℓ, A [ℓ]) for
a random residue A∗ ∈ Z? . The protocol proceeds to Level (ℓ + 1).
After completion on Level (ℓ + 1), the verifier checks jℓ+1 (A∗) =
+ℓ+1 (d [ℓ+1]) and,ℓ (A [ℓ]), the latter using the values jℓ+1 (0) and
jℓ+1 (1) (7), and certifies+ℓ (d [ℓ]) = +

[−const]
ℓ (d [ℓ])+∑U equal(d [ℓ] ,

U)isconst(ℓ, U)F [const]
ℓ,U . Note that the computation of

∑
U by the

verifier constitutes an input/constant scan discussed in the next

paragraph. Alternatively, instead of certifying+ℓ+1 (d [ℓ+1]) on Level
(ℓ+1), the protocol on Level (ℓ+1) certifies the linear combination

A∗+ℓ+1 (src1(ℓ, A [ℓ]))+A∗∗+ℓ+1 (src2(ℓ, A [ℓ])) for verifier-selected ran-
dom A∗, A∗∗ ∈ Z? after the values+ℓ+1 (src1(ℓ, A [ℓ])) and+ℓ+1 (src2(ℓ,
A [ℓ])) were committed by the prover [6].

Note that on Level ℓ = 3 ,
∑
U equal(d [3] , U)isconst(3, U)F [const]

3,U
constitutes the end of the GKR protocol, when isconst = 1 and

F
[const]
3,U

are values for the inputs G3,: . The verifier computations
∑
U equal(d [ℓ] , U)isconst(ℓ, U)F [const]

ℓ,U are the input/constant “scans”

which are required by the GKR protocol. Note that instead of an

input/constant, F
[const]
ℓ,U could be given to the verifier and prover

by a circuit with inputs U and depth$ (log Bmax). We will use such

inputs below: the decoder circuits (15). Last, by (2) the list of val-

ues equal(d [ℓ] , U) for all U can be computed a multiplication tree

in linear time in the number of U ’s, counting operations in Z? .

2.1 Prover-Near-Optimality for Log-Depth

Uniformity

The described protocol above has prover costS2 (logS)$ (1) , where
S is the size of the circuit whose evaluation is being certified. In

[7] the prover cost for the arising sumcheck protocols is shown

to be S(logS)$ (1) . Because we need the result in Section 2.3 be-

low, we give a brief explanation. Prover-efficient protocols for the

sumchecks for (6) are studied extensively, improving the prover-

time-complexity to$ (S) by using the multi-linearity of the value-

lookup function (3); we refer to [26, 27] and the references there.

However, our solution for polynomial-time local wiring algorithms

in Section 2.3 has the (logS)$ (1) factor even if the protocols in this
section have$ (S) prover-time-complexity. Therefore we limit our

brief discussion to the simpler earlier protocol.

First, we re-write the local wiring functions src1 and src2 as:

is_src1(ℓ, b, [) def= equal(src1(ℓ, b), [),
is_src2(ℓ, b, [) def= equal(src2(ℓ, b), [)

∈ Z? [b1, ..., bBℓ , [1, ..., [Bℓ+1].




(8)

For instance, is_src1(ℓ, U, V) is = 1 if the node labelled U on Level ℓ

takes its first value from the node labelled V at Level (ℓ + 1); for
all other node label pairs (U,W) with W ≠ V the function returns 0.

The function,ℓ (U) in (5) is re-written as,ℓ (U) =
∑

V∈{0,1}Bℓ+1∑
W ∈{0,1}Bℓ+1 �ℓ (U, V,W) with

�ℓ (U, V,W) def= isand(ℓ, U)is_src1(ℓ, U, V)is_src2(ℓ, U,W)+ℓ+1 (V)+ℓ+1 (W)

+ isnot(ℓ, U) is_src1(ℓ, U, V)W1 · · ·WBℓ+1
(
1 −+ℓ+1 (V))

)

+ · · · + ispassthru(ℓ, U) is_src1(ℓ, U, V)W1 · · ·WBℓ+1+ℓ+1 (V) .1 (9)

The term W1 · · ·WBℓ+1 guarantees that only one W in the second sum

is selected for nodes with one input; the term acts as a stand-in

second source. The sumcheck protocol (6) at Level ℓ is now a triple

sum
∑
U
∑

V
∑
W equal(d [ℓ] , U)�ℓ (U, V,W). The prover in the sum-

check protocol computes sums
∑

V [rem]
∑
W [rem]

∑
U [rem] where the

missing bits in V [rem] , W [rem] and U [rem] are evaluated at field el-

ements, both random elements chosen by the verifier and interpo-

lation arguments by the prover to turn one bit into a variable. The

protocol processes the bits of V and W before U . We shall consider

the step in the sumcheck protocol when 9 bits in V have been set to

values A = (A1, . . . , A 9) ∈ Z9? , which are fixed elements. The prover

has to compute for the plus-nodes on Level ℓ , for instance, the sum

∑

V [rem]=(A,V′) : V′∈{0,1}Bℓ+1−9

∑

W ∈{0,1}Bℓ+1

∑

isplus(ℓ,U)=1 : U ∈{0,1}Bℓ

equal(d [ℓ] , U)is_src1(ℓ, U, V [rem]) is_src2(ℓ, U,W)×
(+ℓ+1 (V [rem]) ++ℓ+1 (W)), (10)

where the only value forW in themiddle sum for which is_src2(ℓ, U,
W) ≠ 0 is W = src2(U), when is_src2(ℓ, U, src2(U)) = 1. The only

V [rem] forwhich is_src1(ℓ, U, V [rem]) can be≠ 0must have V
[rem]
9+1 =

V ′1 = src1(ℓ, U) 9+1, . . . , V [rem]Bℓ+1 = V ′Bℓ+1−9 = src1(ℓ, U)Bℓ+1 (2). The

sum therefore reduces to

∑

isplus(ℓ,U)=1 : U ∈{0,1}Bℓ
equal(d [ℓ] , U)×

is_src1(ℓ, U, (A1, ..., A 9 , src1(U) 9+1, ..., src1(U)Bℓ+1))×(
+ℓ+1 (A1, ..., A 9 , src1(U) 9+1, ..., src1(U)Bℓ+1) ++ℓ+1 (src2(U))

)
. (11)

The prover has all+ℓ+1 (src2(U)) = Fℓ+1,src2(U) , the values at node
src2(U) at Level ℓ + 1. The prover pre-computes +ℓ+1 (A, V ′) for
all V ′ ∈ {0, 1}Bℓ+1−9 , 2Bℓ+1−9 values in total. For each V ′ by (3)

+ℓ+1 (A, V ′) =
∑
[equal((A, V ′), [)Fℓ+1,[, where by (2) at most 29

terms have equal((A, V ′), [) ≠ 0, namely for those [whose last

Bℓ+1 − 9 bits agree with those of V ′. The cost to the prover to com-

pute all +ℓ+1 (A, V ′) is thus $ (2Bℓ+1) operations in Z? . With them,

the prover then can compute all sums like (11) in 2Bℓ B
$ (1)
max opera-

tions. Note that for a given V ′ the values +ℓ+1 (A, V ′) may be used

arbitrarily often, as the fan-out of the circuit is unbounded. The

prover uses a log-depth search tree data structure for the look-up.

The bits of W are processed the same way.

2.2 Polynomial-Time Local Wiring Algorithms

If thewiring function circuits isor, . . . on node label inputs of Bmax =

$ (logW) bit-length have depth B
$ (1)
max , whereW is the maximum

width of the original circuit, one cannot perform a sumcheck for

+
[−const]
ℓ (d [ℓ]) (6,10) directly and maintain (logW)$ (1) verifier-
time, because the arising degrees could be exponential in Bmax. We

use the GKR protocol recursively instead. We write

1In [16] and later papers, the term isplus(ℓ, U) is_src1(ℓ, U, V) is_src2(ℓ, U,W) , for in-
stance, is lumped into a single function ãddℓ (U, V,W) , where the tilde indicates a pos-
sible evaluation at values from an algebraic extension of a finite field.

180

Session 4: Algorithms and Complexity ISSAC ’22, July 4–7, 2022, Villeneuve-d’Ascq, France

�ℓ (U, V,W, _1, _2) def= isand(ℓ, U) is_src1(U, V) is_src2(U,W) _1_2 +
isnot(ℓ, U) is_src1(U, V) W1 . . . WBℓ+1 (1 − _1) + · · · +

ispassthru(ℓ, U) is_src1(U, V) W1 . . . WBℓ+1 _1, (12)

and perform a proof-of-work GKR interactive protocol for

+
[−const]
ℓ (d [ℓ]) =

∑

U ∈{0,1}Bℓ

∑

V∈{0,1}Bℓ+1

∑

W ∈{0,1}Bℓ+1

(
equal(d [ℓ] , U)×

�ℓ
(
U, V,W,+ℓ+1 (V)︸ ︷︷ ︸

_1

,+ℓ+1 (W)︸ ︷︷ ︸
_2

))
. (13)

Note that (13) is an equality, where +
[−const]
ℓ (d [ℓ]) is defined in

(6). The function

�ℓ (G1, . . . , GBℓ︸ ︷︷ ︸
b

, GBℓ+1, . . . , GBℓ+Bℓ+1︸ ︷︷ ︸
[

, GBℓ+Bℓ+1+1, . . . , GBℓ+2Bℓ+1︸ ︷︷ ︸
g

, _1, _2)

def
= equal(d [ℓ] , b)�ℓ

(
b, [, g, _1, _2) (14)

under the triple sum in (13) can be represented as a circuit with

input bits b8 = U8 for 1 ≤ 8 ≤ Bℓ and [9 = V 9 , g 9 = W 9 for 1 ≤
8 ≤ Bℓ+1 and the two input field element values _1 = +ℓ+1 (V) and
_2 = +ℓ+1 (W), which depend on the bits of V and W . In addition,

the circuit for �ℓ accesses a common pool of constants d
[ℓ]
8 for

1 ≤ 8 ≤ Bℓ .

Figure 2: Circuit for sumcheck via GKR (see text). ©E. Kaltofen

d
[ℓ]
8

+ +

+

Con-

+
[−const]
ℓ (d [ℓ])

�ℓ (U, V,W,+ℓ+1(V),+ℓ+1(W))

WBℓ+1U1 +ℓ+1(W)
Level !

stants

The circuit which computes +
[−const]
ℓ (d [ℓ]) in (13) is sketched

in Figure 2. There are fℓ
def
= Bℓ + 2Bℓ+1 + 2 inputs to each of the

2Bℓ+2Bℓ+1 copies of the circuit for �ℓ , one for each value of (U, V,W).
Note that fℓ is the number of variables of �ℓ in (14). Each in-

put is itself a “decoder” [11] circuit, each with fℓ + f ′ℓ input bits

G1, . . . , GBℓ+2Bℓ+1+2, G
′
1, . . . , G

′
f′ℓ
, where f ′ℓ = ⌊log2 (fℓ − 1)⌋ + 1 repre-

sents the number of bits in an integer \̄ =
∑f′ℓ
:=0

\:2
: which indi-

cates which of the fℓ values are to be output by the decoder. The

node labels for the output nodes of the decoder circuits on Level !,

which are the inputs for the � ’s, are (U, V,W, a) for 0 ≤ ā ≤ fℓ − 1.
We therefore have the following value look-up function for Level !:

+! (I1, . . . , IBℓ+2Bℓ+1 , I′1, . . . , I′f′ℓ) =
∑

U ∈{0,1}Bℓ

∑

V∈{0,1}Bℓ+1

∑

W ∈{0,1}Bℓ+1

equal(I, (U, V,W))
((fℓ−3∑

\̄=0

equal(I′, binary-digits(\̄)
︸ ︷︷ ︸

\

) (U, V,W)\̄+1
)

+ equal(I′, binary-digits(fℓ − 2)) +ℓ+1 (V)

+ equal(I′, binary-digits(fℓ − 1)) +ℓ+1 (W)
)
, (15)

where (U, V,W)\̄+1 is the (\̄+1)’st entry in the (Bℓ+2Bℓ+1)-dimensional

vector (U, V,W). The function computes

+! (0,1, 2, a) =




08 , 1 ≤ 8 ≤ Bℓ for 0 ≤ ā < Bℓ ,

1 9 , 1 ≤ 9 ≤ Bℓ+1 for Bℓ ≤ ā < Bℓ + Bℓ+1,
2: , 1 ≤ : ≤ Bℓ+1 for Bℓ + Bℓ+1 ≤ ā < Bℓ + 2Bℓ+1,
+ℓ+1 (1) for ā = Bℓ + 2Bℓ+1 = fℓ − 2,
+ℓ+1 (2) for ā = Bℓ + 2Bℓ+1 + 1 = fℓ − 1,
0 for ā ≥ Bℓ + 2Bℓ+1 + 2 = fℓ

(invalid label), (16)

which are the required inputs for the circuits for �ℓ (ā denotes the

integer corresponding to digits in the bit-vector a). When the GKR

protocol for the circuit in Figure 2, which is the sumcheck of Level ℓ

in the original circuit evaluation proof-of-work problem, reaches

Level !, +! (d, d ′) in (15) needs to be certified for d ∈ ZBℓ+2Bℓ+1?

and d ′ ∈ Zf
′
ℓ

? . Here a standard sumcheck protocol can be used,

because the degrees of the function under the triple sum in the

entries of U, V,W are of order$ (Bmax), which is true for+ℓ+1 (V) and
+ℓ+1 (W) by their definitions (3). Again, the verifier at the conclusion
of the sumcheck protocol for +! (d, d ′) checks the function under

the triple sum for random field elements substituted for the bits in

(U, V,W), and therefore needs the values +ℓ+1 (A [1]) and +ℓ+1 (A [2]),
which is accomplished by the 2-1 protocol (7) described above. The

protocol then can proceed to Level (ℓ + 1) in the original circuit.

We finally explain that the circuit wiring functions for the cir-

cuit of Figure 2 can be computed from the circuits for isor(ℓ, U), . . .
in such a way that their degrees are $ (log(Bmax)); note that Bmax

denotes the maximum number of digits in the node labels in the

original hybrid circuit. The node labels in each of the 2Bℓ+2Bℓ+1
copies for �ℓ (14,12) are all prefixed by those (U, V,W) for which
they compute the value. In each box the nodes then have the same

label suffixes Ū , which are of magnitude B
$ (1)
max because the circuit

for �ℓ has by our uniformity assumption size B
$ (1)
max . We denote by

B̄max the number of bits in those labels, which is B̄max = $ (log(Bmax)).
The prover and verifier compute the maps for the wiring functions

from the circuit for �ℓ : for instance, isor(:̄, Ū) maps to the values

of isor for each node labelled Ū at Level :̄ in the circuit for�ℓ . Now

if the local Level :̄ in the 2Bℓ+2Bℓ+1 boxes for �ℓ in Figure 2 corre-

sponds to global Level : in the entire circuit of Figure 2, we have

the corresponding wiring function

isorFigure 2 circuit for Level ℓ (:, U, V,W, Ū) =∑

\ ∈{0,1}B̄max

equal(Ū, \)isor(:̄, \) . (17)

By (2), the degree in Ū in (17) is B̄max, that is,$ (log(Bmax)). We have

the following for the protocol in [11].

Theorem 2.1. Our modified GKR bare-bones protocol under the

polynomial-time uniformity Assumption 2.1 for the circuit� of sizeS,

181

Session 4: Algorithms and Complexity ISSAC ’22, July 4–7, 2022, Villeneuve-d’Ascq, France

widthW and depth 3 for which proof-of-work certification is per-

formed, uses 3 (logS)$ (1) rounds, and in terms of arithmetic oper-

ations in Z? has verifier time-complexity $ (3 (logS)$ (1) + =tot),
where =tot is the the number of inputs/constants to the circuit, which

is = in Figure 1 plus the number of the Gℓ,: ’s for ℓ < 3 . The prover

time-complexity is 3W3 (logS)$ (1) using the sumchecks of Sec-

tion 2.1. The protocol is Monte-Carlo randomized and requires ? =

3 (logS)$ (1) for a soundness probability ≥ 1/2. Specifically, for a
boolean circuit with = input and constant bits, whose size is S =

=$ (1) and whose depth is 3 (=) and whose wiring functions have bit-
time-complexity (log=)$ (1) , the protocol has prover bit-time-com-

plexity3 (=) S3 (log=)$ (1) , verifier time-complexity$ (3 (=) log(=)�1

+ =(loglog=)�2) for constants �1,�2, and 3 (log=)$ (1) rounds.

In Section 2.3 below we show how to modify the circuit in Fig-

ure 2 so that the prover time-complexity reduces to S(logS)$ (1) ;
however, the log-depth wiring circuits isor, . . . will be much more

complicated.

2.3 Prover-Near-Optimality for

Polynomial-Time Local Wiring Algorithms

We now show how to perform all sumchecks (6), namely,
∑

U ∈{0,1}Bℓ
equal(d [ℓ] , U),ℓ (U), ,ℓ (U) defined in (5), (18)

in S(logS)$ (1) prover time and 3 (logS)$ (1) verifier time count-

ing operations in Z? , for all Levels ℓ in total. We assume circuits

for the local circuit wiring functions isor, . . . are of size (logS)$ (1)
and can be computed by the prover and verifier for each level in

(logS)$ (1) time; here S is the size of the original circuit whose

evaluation is to be certified, and 3 is its depth.

We first briefly describe a summation-tree circuit of size S2 ×
(logS)$ (1) for (18) for a given Level ℓ . For each node label U ∈
{0, 1}Bℓ we compute in parallel circuits from the decoder-supplied

inputs U1, . . . , UBℓ (cf. (15)) the values for src1(ℓ, U) and src2(ℓ, U).
Each of those circuit boxes (cf. Figure 2) has size B

$ (1)
ℓ by assump-

tion, and outputs the block of bits U1, . . . , UBℓ , src1(ℓ, U), src2(ℓ, U).
On that output level we also have decoders for V1, . . . , VBℓ+1 ,+ℓ+1 (V)
for all V ∈ {0, 1}Bℓ+1 . Next, we compute for each U the two values

+ℓ+1 (src1(ℓ, U)) =
∑

V∈{0,1}Bℓ+1
equal(src1(ℓ, U), V)+ℓ+1 (V),

+ℓ+1 (src2(ℓ, U)) =
∑

V∈{0,1}Bℓ+1
equal(src2(ℓ, U), V)+ℓ+1 (V), (19)

using two summation trees. Note that the bits for V needed for the

equal’s are available from the decoders that produce the V1, . . . , VBℓ+1 ,

+ℓ+1 (V) blocks of values. The src2 local circuit wiring functions,

which are determined on that level by the placement of those blocks,

locate those bits. The corresponding circuits essentially match sub-

blocks of bits and have depth$ (log Bmax). With the values (19) the

circuit computes in parallel for each U the terms equal(d [ℓ] , U) ×
,ℓ (U) in the sum (18) and then sums up those values in a final

summation tree (cf. Figure 2).

The soft-quadratic size solution described in the previous para-

graph replaces the dictionary lookup of the values +ℓ+1 (A1, ..., A 9 ,

src1(U) 9+1, ..., src1(U)Bℓ+1) and +ℓ+1 (src2(U)) of (11), which are ex-

ecuted by the prover in Section 2.1, by the linear-size search (19)

done on the circuit after computing the src1 and src2 values. Note,

however, that ultimately dictionary look-ups are still executed by

the prover, because each level of the soft-quadratic size circuit

for (18) needs to be processed by the GKR protocol of Section 2.1.

Figure 3: Prover’s soft-linear time sumcheck (18) computation (see text).
©E. Kaltofen

. . .

. . .

. . .

. . .

+ℓ+1(V)V1 VBℓ+1UBℓU1

Layer A

Layer C

Layer B

Layer D

Layer E

. . .

. . .

src2(ℓ, U)

Fill-in +ℓ+1(V)’s at V = src2(ℓ, U) by parallel prefix

Fill-in +ℓ+1(V)’s at V = src1(ℓ, U) by parallel prefix

src1(ℓ, U)

Sort with key src1(ℓ, U), V

Sort with key src2(ℓ, U), V

Summation tree

∑
U∈{0,1}Bℓ equal(d [ℓ], U),ℓ (U)

U1 UBℓ

notV equal(d [ℓ], U),ℓ (U) Layer F

Constants

d
[ℓ]
8

We can avoid the quadratic size blow-up by using sorting net-

works to locate the values of V matching to src1(U) and src2(U).
In Figure 3 we display the overall layout of the circuit for (18). On

Layer A we have computed blocks of values (notV, addr0, addr1,
addr2,V1,V2). If the bit notV = 1, the block is equal (1, U, src1(U),
src2(U), 0, 0) and if notV = 0, the block is equal (0, 0, . . . , 0, V, V,
+ℓ+1 (V),+ℓ+1 (V)). Note that node values can be duplicated on a

subsequent level as passthru nodes with the same src1. Next, the

circuit sorts the blocks according to the key (addr1, notV) values.
We can use a Batcher sorting network of size$ ((2Bℓ + 2Bℓ+1) B2max)
and depth$ (B2max), counting comparators. The local circuit wiring

functions in the Batcher sorting network use simple integer arith-

metic on the node labels and are of depth $ (log Bmax). At Layer B
each block (0, 0 . . . , 0, V, V,+ℓ+1 (V),+ℓ+1 (V)) is followed by blocks

(1, U, src1(U), src2(U), 0, 0) with src1(U) = V , which are followed

by (0, 0 . . . , 0, V + 1, V + 1,+ℓ+1 (V + 1),+ℓ+1 (V + 1)), where V + 1 is
the binary representation of V incremented by 1. At Layer C the

blocks with notV = 1 have their V1 nodes filled-in by +ℓ+1 (V) =
+ℓ+1 (src1(U)) from the closest block to the left with notV = 0.

The fill-in is performed on a parallel prefix circuit. An additional

bit ‘is_filled’ is added to each block at Layer B, and initialized to

is_filled = 0 if notV = 1 and is_filled = 1 if notV = 0. The parallel

prefix uses the following binary operation on a pair of blocks:

(notV, addr0, addr1, addr2,V1,V2, is_filled) ◦
(notV′, addr0′, addr1′, addr2′,V1′,V2′, is_filled′)

= (notV′, addr0′, addr1′, addr2′,V1[new] ,V2′, is_filled[new]), (20)

182

Session 4: Algorithms and Complexity ISSAC ’22, July 4–7, 2022, Villeneuve-d’Ascq, France

where V1[new] = V1, is_filled[new] = is_filled if is_filled′ = 0 and

V1[new] = V1′, is_filled[new] = 1 = is_filled′ if is_filled′ = 1. The

operation ◦ is associative and is familiar from carry look-ahead ad-

dition/pointer jumping. Again, the parallel prefix circuit has a reg-

ular layout and local circuit wiring functions of depth$ (log Bmax).
The size of the parallel prefix circuit is$ (2Bℓ +2Bℓ+1) and the depth
is $ (Bmax), counting ◦’s.

The sorting and fill-in is repeated with the key (V, notV) and
(src2(U), notV) in the blocks in the addr2,V2 positions. At Layer E

we have in the blockswith notV = 1 the values (1, U, src1(U), src2(U),
+ℓ+1 (src1(U)),+ℓ+1 (src2(U))). We now can for each block compute

by parallel circuits the argument equal(d [ℓ] , U),ℓ (U) in the sum

(18). The bit notV allows setting the values for the blocks with

notV = 0 to zero. By the Assumption 2.1 the circuit of Figure 3 has

size (2Bℓ + 2Bℓ+1)B$ (1)max , depth B
$ (1)
max , and local circuit wiring func-

tions src1, . . . of depth $ (log(Bmax)), to which the prover-nearly-

optimal bare-bones GKR protocol of Section 2.1 can be applied. The

scan across the (Bℓ+1+1)2Bℓ+1 decoder circuits for the V8 and+ℓ+1 (V)
values before Layer A (cf. (15)) is a sumcheck protocol, which can

be performed in prover-time-complexity 2Bℓ+1B
$ (1)
max by the algo-

rithm of Section 2.1 (cf. (10)). The protocol ends in the verification

of a single+ℓ+1 (A1, . . . , ABℓ+1) on the next level of the original circuit,
and no 2-1 protocol (7) is required. Of course, the 2-1 protocols are

needed in the GKR verification of the circuit of Figure 3. The sum-

check scan across the decoder circuits for the U8 -bits at the top of

the circuit in Figure 3 ends by the verifier computing the value of

the decoder circuit at a random value in Z
Bℓ+B′ℓ
? , where Bℓ + B ′ℓ with

B ′ℓ = ⌊log(Bℓ − 1)⌋ + 1 is the number of input bits to the decoders.

Our main result can be stated as follows.

Theorem 2.2. In Theorem 2.1 one may replace the prover time-

complexity by S(logS)$ (1) while all other complexity measures re-

main the same with different $ (1) and �1,�2 constants.

2.4 Prover-Nearly-Optimal Space Complexity

We finally analyze the space complexity for the prover. The circuit

size is S, the depth 3 and the widthW. The prover can, at the cost

of an additional $ (log(3)) factor in time-complexity, reduce the

intermediate space to$ (W log(3)). The technique is well-known
in the reverse mode of automatic differentiation [17]. We sketch

the technique. The idea is to only store (“checkpoint”) the values of

each node at Level ⌊3/2⌋, where 3 is the depth of the entire circuit,

from which values at the Output-Level 0 to Level ⌊3/2⌋ − 1 are

recursively determined. The values at Level (⌊3/2⌋+1) to the Input-
Level 3 are then freshly computed from the inputs, again storing

only values at half the depths. The strategy stores the values for

at most$ (log(3)) different checkpoint levels, and each value is re-

computed at most log(3) times. The latter can be shown as follows:

re-computation of a value at Level ℓ2, which is not a checkpoint, is

triggered if the values at Level (ℓ1+1) are needed, when the values
at the nearest-towards-output checkpoint Level ℓ1 were used in the

sum-check protocol for Level (ℓ1 − 1) and afterwards their storage
released. During re-computation of the values at Level (ℓ3 − 1), . . .,
Level ℓ2, . . ., Level (ℓ1+1), where Level ℓ3 is the nearest checkpoint
towards input, the values at Level ℓhalf, ℓhalf = ⌊(ℓ1 + ℓ3)/2⌋, Level
⌊(ℓ1+ℓhalf)/2⌋, . . . are stored. Therefore, the depth (ℓ3−ℓ1), which is

the distance of the checkpoint levels between which the unstored

Level ℓ2 lies, is at least halved every time a value on Level ℓ2 is

re-computed.

3 PROOF OF PRIMALITY

In Figure 4 we describe an interactive protocol that certifies an =-

bit integer # to be a prime number. The protocol has =2 (log=)$ (1)
prover time-complexity, =(log=)$ (1) verifier time-complexity us-

ing the Tonelli-Shanks Algorithm and in � rounds achieves fail-

ure probability ≤ 1/2� , because for composite ? = @1@2 with

GCD(@1, @2) = 1 there are at least 4 squareroots by the Chinese

Remainder Theorem. The check that :
√
? ∉ Z for : ≥ 2 can be

done by the algorithms in [4, 21] in =(log=)$ (1) bit operations.
Since the randomly sampled A8 , which are uniformly and indepen-

dently distributed (u.i.d.), must remain unknown to the prover, the

Fiat-Shamir [12] heuristic cannot remove interaction. That would

be quite important, so that a proof of primality can be stored for

verification at a future time.

Figure 4: Protocol for primality with a private verifier coin

Prover Verifier

? ≥ 3 a prime number

Check that :
√
? ∉ Z for all :=2, ..., ⌊log2 (?)⌋

for 8 = 1, 2, . . . , 100 do

Compute 18 with
08←−− 08 = (A28 mod ?), A8

u.i.d.←−−−↪ Z? privately

128 ≡ 08 (mod ?) 18−−→ 18
?
== (±A8 mod ?)

We now realize the Miller-Rabin primality/compositeness test

by baby-steps/giant-steps for a protocol of the complexity mea-

sures in Line 2a of Table 1, which uses a public coin. The Miller-

Rabin primality test for an integer # with = = ⌊log2 (#)⌋ + 1 bi-

nary digits computes�� mod # for random residues� ∈ Z# with

GCD(�, #) = 1 and exponents � ≤ # − 1. The boolean circuit for

thosemodular exponentiations has sizeS = $ (=2 log(=) loglog(=))
with Schönhage-Strassen integermultiplication and depth3 = $ (=
log(=)2) with repeated modular squaring and Cook’s long divi-

sion algorithm. The GKR proof-of-work protocol has prover time-

complexity =2 (log=)$ (1) , verifier time-complexity =(log=)$ (1)
and = (log=)$ (1) rounds. We show how to reduce the number of

rounds to
√
=(log=)$ (1) by increasing the verifier time-complexity

to=3/2 (loglog=)$ (1) . The prover time-complexity stays=2 (log=)$ (1) .
Both the prover’s and the verifier’s space complexity is $ (=3/2).

We write � = 10 + 112 + · · · + 1=−12=−1 with 18 ∈ {0, 1} in radix

' = 2_ ,

� =

∑̀

8=0

�8'
8 , ' = 2_, 0 ≤ �8 ≤ ' − 1,

_ = ⌈
√
= − 1 ⌉, ` = ⌊

√
= − 1 ⌋, _` + _ − 1 ≥ = − 1. (21)

Figure 5 shows the layout of the “baby steps/giant steps” circuit

that tests the value % = (�� mod #) communicated by the prover

to the verifier before the GKR protocol for correctness. The prover

also communicates the residues � [8] = (�'8
mod #) for 1 ≤ 8 ≤

`−1. The initial residue is� [0] = �, which for theMiller-Rabin test

is a random residue chosen by the verifier. The ` parallel (↑ ' mod

)-sub-circuits compute �̃ [8+1] = ((� [8])' mod #) for 0 ≤ 8 ≤

183

Session 4: Algorithms and Complexity ISSAC ’22, July 4–7, 2022, Villeneuve-d’Ascq, France

` − 1 by _ squarings modulo # . The equal(�̃ [8] , � [8]) on the next

circuit layer check in parallel the computed values against the com-

mitted values, except for (� [`−1])' mod # . The residue �̄ [8] = 0

if the check fails, which causes the computed %̃ = 0 and the com-

parison to % produce 0, namely failure. If all committed powers

� [8] ≡ �'8 ≡ �28_ (mod #) then �̄ [8] = (�'8
mod #) for all

1 ≤ 8 ≤ ` − 1.
Figure 5: Primality proof-of-work circuit (see text) ©E. Kaltofen

�[8] =
(�'8 mod #)

#�[0]
. . .

�0

↑ �0 mod #
. . .

#
. . .

. . .

. . .

#
. . .

�[1]

equal(�̃[2], �[2])�[2]

�̄[2]

. . .
�̃[2] # �[2]

↑ ' mod #

↑ �2 mod #

�2

. . .

#�[0]
. . .

. . .

equal(�̃[1], �[1])�[1]
. . .

#�̄[1]

↑ ' mod #

. . .
#�̃[1] �[1]

↑ �1 mod #

�1

. . .

#
. . .

�̄[`]

↑ �` mod #
. . .

�`

�[`−1] #

↑ ' mod #
. . .

. . .
#

. . .

. . .

. . .

#
. . .

. . .
#

↑ ' mod #

�[`−2]

�̃[`−1] �[`−1]

�̄[`−1]

. . .

�`−1

↑ �`−1 mod #

equal(�̃[`−1], �[`−1])�[`−1]

Multiplication tree modulo #

%̃ % = (�� mod #)

equal(%̃, %)

The next layer of (↑ �8 mod #)-sub-circuits computes in paral-

lel (�̄ [8])�8 mod # ≡ ��8'
8 (mod #) for all 0 ≤ 8 ≤ `, or 0 if the

equal failed. In Figure 5, the �8 are inputs to the powering by re-

peated squarings, although their bits could have been incorporated

as constants in each box with the appropriate isconst wiring func-

tions. Finally, the circuit computes %̃ = (∏`
8=0 (�̄ [8])�8 mod #) ≡

∏`
8=0�

�8'
8 (mod #) and compares the computed value %̃ with

the committed value % = (�� mod �).
Let " (=) = = log(=) loglog(=) be the Schönhage-Strassen inte-

ger multiplication complexity function (there are smaller theoreti-

cal values today [18]). The prover time complexity for computing

all bit values in the circuit of Figure 5 inclusive the communicated

residues % and � [8] for 1 ≤ 8 ≤ ` − 1 is

$ (`" (=) log(')
︸ ︷︷ ︸
�̃ [8] ,8=1,...,`

+ `=
︸︷︷︸
equal

+ `" (=) log(max
8

�8)
︸ ︷︷ ︸
↑�8 mod #,8=0,...,`

+ `" (=)
︸ ︷︷ ︸

tree product

), (22)

which is $ (=" (=)); the size of the circuit is also $ (=" (=)). The
depth of the circuit of Figure 5 is $ (_(log=)2) with _ = $ (√=),
where the depth (log=)2 is from the Cook $ (" (=))-time division

with remainder algorithm using the $ (log(=))-deep Schönhage-

Strassen multiplication circuit. The GKR protocols to certify the

values adds a factor (log=)$ (1) or$ (1) to the prover time-complex-

ity. The verifier time-complexity is dominated by the input scans.

There are four such scans, the bits of � [8] twice, and the bits of

�8 and % . The verifier scan over the � [8] can be reduced to a sin-

gle scan by passing the values from the Input-Level through to

the equal-Level, which makes the circuit wiring functions for the

(↑ ' mod #)-blocks a bit more complicated, and disallows inde-

pendent certification of each of the ` powering subcircuits. There

are `= bits for all� [8] , and the input scans take =3/2 (loglog=)$ (1)

bit operations, as the modulus ? for the field Z? over which the

GKR protocol is performed is ? = (log=)$ (1) ; the circuit labels

have Bmax = $ (log=) bits. Note that the protocol without the in-
put scans has verifier time complexity

√
=(log=)$ (1) .

Remark 3.1. If GCD(�, #) > 1 then the prover can take advan-

tage of the GCD-free basis [20] for (�, #): the prover computes and

communicates integers "1 ≥ 2, . . . , ": ≥ 2 with GCD("8 , " 9) =
1 for all 1 ≤ 8 < 9 ≤ : and exponents ℓ1 ≥ 0, . . . , ℓ: ≥ 0 and

<1 ≥ 0, . . . ,<: ≥ 0 such that � =
∏:

8=1"
ℓ8
8 and # =

∏:
8=1"

<8

8 ,

that in =(log=)$ (1) bit operations [3]. The modular power % =

�� mod # is then computed by the Chinese remainder algorithm:

each residue �� mod "
<8

8 for<8 ≥ 1 is computed by the prover

as "ℓ8�
8 (�/"

ℓ8
8)� mod "

<8

8 . The second power is to a base which

is relatively prime to the modulus "<8

8 , and the above protocol is

used if ℓ8� < <8 : (�� mod "
<8

8) = "
ℓ8�
8

(
(�/"ℓ8

8)� mod "
<8−ℓ8�
8

)
.

By Section 2.4 for the circuit of Figure 5, which hasW = =3/2 ×
(log=)$ (1) and3 = =1/2 (log=)$ (1) , the prover space complexity is

=3/2 (log=)$ (1) while the time complexity stays =2 (log=)$ (1) . In
that case, namely of verifying �� mod # , the prover and verifier

can compute a circuit for�1�2 mod # and with that circuit derive

the circuit wiring functions for the powering circuit of Figure 5.

The node values which are stored can be intermediate `+1 residues
of powers modulo # , which further simplifies the protocol.

4 CONCLUSION

Uniformity assumptions on families of boolean circuits that are pa-

rameterized with the number = of input bits and which evaluate to

functions such as “is a squarefree integer” turn the circuits into al-

gorithms. Proof-of-work of an evaluation at a given input reduces

the verifier complexity by assuming efficient algorithms for com-

puting the circuit structure. Because proof-of-work can be applied

to the uniformity algorithms themselves, uniformity assumptions

can be high in terms of complexity, say uniform of polynomial-

depth. Prover-near-optimality can be retained by use of prover-

nearly-optimal GKR protocols on the circuits with Batcher sorting

networks.

Moreover, the proof-of-work protocol can

adapt the circuit evaluation problem to reduce

depth of the circuit. The prover can communi-

cate values at intermediate levels to the verifier,

which then become inputs to the verifier which

are checked against the computed values; cf. the

figure on the right. The depth of the proof-of-

work circuit then is the maximum depth between

the checkpoints.

C
o
m
m
u
n
icated

v
erifi

er
in
p
u
ts

We have shown how to use the technique for reducing the depth

of the Miller-Rabin primality-test circuit of an =-bit integer by a

factor of
√
= while retaining prover-near-optimality.

Our original motivation comes from computations that have rel-

atively narrow width but large depth: the training phase of neural

networks. There the weights in the network are adjusted sequen-

tially by testing each item in the training set. Our question is: how

does a prover certify that the training was done with all items?

184

Session 4: Algorithms and Complexity ISSAC ’22, July 4–7, 2022, Villeneuve-d’Ascq, France

ACKNOWLEDGMENTS

I thank Jean-Guillaume Dumas for discussions on the GKR proto-

col. I also thank Yael Kalai and the reviewers of two versions of the

paper for their comments, in particular on Fiat-Shamir’ing GKR.

This research was supported by the National Science Founda-

tion under Grant CCF-1717100.

Note added on June 5, 2022: Paragraph before Section 2.1: G3,: ←→
G8 and ~ 9 .

REFERENCES
[1] P. M. Beame, S. A. Cook, and H. J. Hoover. 1986. Log depth circuits for division

and related problems. SIAM J. Comput. 15 (1986), 994–1003.
[2] Daniel Bernstein. 2007. Proving Primality in Essentially Quartic Random Time.

Math. Comput. 76, 257 (July 2007), 389–403. URL: http://cr.yp.to/papers.html.
[3] Daniel J. Bernstein. 2005. Factoring into coprimes in essentially linear time. J.

Algorithms 54, 1 (2005), 1–30. URL: https://doi.org/10.1016/j.jalgor.2004.04.009.
[4] Daniel J. Bernstein, Hendrik W. Lenstra, Jr., and Jonathan Pila. 2007. Detecting

perfect powers by factoring into coprimes. Math. Comp. 76 (2007), 385–388.
[5] Ran Canetti, Yilei Chen, Justin Holmgren, Alex Lombardi, Guy N. Rothblum,

Ron D. Rothblum, and Daniel Wichs. 2019. Fiat-Shamir: from practice to theory.
In Proceedings of the 51st Annual ACM SIGACT Symposium on Theory of Comput-
ing, STOC 2019, Phoenix, AZ, USA, June 23-26, 2019, Moses Charikar and Edith
Cohen (Eds.). ACM, 1082–1090. URL: https://ia.cr/2018/1004, https://doi.org/10.
1145/3313276.3316380.

[6] Alessandro Chiesa, Michael A. Forbes, and Nicholas Spooner. 2017. A Zero
Knowledge Sumcheck and its Applications. Electron. Colloquium Comput. Com-
plex. 24 (2017), 57. URL: https://eccc.weizmann.ac.il/report/2017/057.

[7] Graham Cormode, Michael Mitzenmacher, and Justin Thaler. 2012. Practical
verified computation with streaming interactive proofs. In Innovations in The-
oretical Computer Science 2012, Cambridge, MA, USA, January 8-10, 2012, Shafi
Goldwasser (Ed.). ACM, 90–112. URL: https://doi.org/10.1145/2090236.2090245.

[8] Jean-Guillaume Dumas and Erich L. Kaltofen. 2014. Essentially Optimal Inter-
active Certificates In Linear Algebra. In ISSAC 2014 Proc. 39th Internat. Symp.
Symbolic Algebraic Comput., Katsusuke Nabeshima (Ed.). Association for Com-
puting Machinery, New York, N. Y., 146–153. URL: http://users.cs.duke.edu/
~elk27/bibliography/14/DuKa14.pdf.

[9] Jean-Guillaume Dumas, Erich Kaltofen, David Lucas, and Clément Pernet. 2020.
Elimination-based certificates for triangular equivalence and rank profiles. J.
Symbolic Comput. 98 (May–June 2020), 246–269. Special Issue on ISSAC 2017;
Mohab Safey El Din, Chee Yap editors. URL: http://users.cs.duke.edu/~elk27/
bibliography/18/DKLP18.pdf, https://doi.org/10.1016/j.jsc.2019.07.013.

[10] Jean-Guillaume Dumas, Erich Kaltofen, Emmanuel Thomé, and Gilles Villard.
2016. Linear Time Interactive Certificates for the Minimal Polynomial and the
Determinant of a SparseMatrix. In ISSAC’16 Proc. 2016 ACM Internat. Symp. Sym-
bolic Algebraic Comput., Markus Rosenkranz (Ed.). Association for Computing
Machinery, New York, N. Y., 199–206. URL: http://users.cs.duke.edu/~elk27/
bibliography/16/DKTV16.pdf.

[11] Jean-Guillaume Dumas, Erich L. Kaltofen, Gilles Villard, and Lihong Zhi. 2017.
Polynomial Time Interactive Proofs For Linear Algebra with Exponential Ma-
trix Dimensions And Scalars Given by Polynomial Time Circuits. In ISSAC ’17
Proc. 2017 ACM Internat. Symp. Symbolic Algebraic Comput., Michael Burr (Ed.).
Association for Computing Machinery, New York, N. Y., 125–132. In mem-
ory ofWen-tsunWu (5/12/1919–5/7/2017). URL: http://users.cs.duke.edu/~elk27/
bibliography/17/DKVZ17.pdf.

[12] Amos Fiat and Adi Shamir. 1986. How to Prove Yourself: Practical Solutions to
Identification and Signature Problems. In Advances in Cryptology - CRYPTO’86
(Lect. Notes Comput. Sci., Vol. 263), A. M. Odlyzko (Ed.). Springer, 186–194. URL:
https://link.springer.com/chapter/10.1007/0-387-34799-2_18.

[13] Oded Goldreich. 2018. On Doubly-Efficient Interactive Proof Systems. Founda-
tions and Trends® in Theoretical Computer Science 13, 3 (2018), 158–246. URL:
http://dx.doi.org/10.1561/0400000084.

[14] Shafi Goldwasser and Yael Tauman Kalai. 2003. On the (In)security of the Fiat-
Shamir Paradigm. In 44th Symposium on Foundations of Computer Science (FOCS
2003), 11-14 October 2003, Cambridge, MA, USA, Proceedings. IEEEComputer Soci-
ety, 102–113. URL: https://eprint.iacr.org/2003/034.pdf, https://doi.org/10.1109/
SFCS.2003.1238185.

[15] Shafi Goldwasser, Yael Tauman Kalai, and Guy N. Rothblum. 2008. Delegating
computation: interactive proofs for muggles. InAnnual ACM Symp. Theory Com-
put. 2008, Cynthia Dwork (Ed.). ACM Press, 113–122. URL: https:doi.acm.org/
10.1145/1374376.1374396.

[16] Shafi Goldwasser, Yael Tauman Kalai, and Guy N. Rothblum. 2015. Delegating
Computation: Interactive Proofs for Muggles. J. ACM 62, 4 (2015), 27:1–27:64.
URL: http://doi.acm.org/10.1145/2699436.

[17] A. Griewank. 1992. Achieving logarithmic growth of temporal and spatial com-
plexity in reverse automatic differentiation. Optimization Methods & Software 1
(1992), 35–54.

[18] David Harvey and Joris van der Hoeven. 2021. Integer multiplication in time
$ (=log=) . Annals of Mathematics 193, 2 (2021), 563 – 617. URL: https://doi.org/
10.4007/annals.2021.193.2.4.

[19] Ruta Jawale, Yael Tauman Kalai, Dakshita Khurana, and Rachel Zhang. 2021.
SNARGs for Bounded Depth Computations and PPAD Hardness from Sub-
Exponential LWE. In Proceedings of the 53rd Annual ACM SIGACT Symposium
on Theory of Computing (Virtual, Italy) (STOC 2021). Association for Computing
Machinery, New York, NY, USA, 708–721. URL: https://doi.org/10.1145/3406325.
3451055, https://eprint.iacr.org/2020/980.

[20] E. Kaltofen. 1985. Sparse Hensel lifting. In EUROCAL 85 European Conf. Comput.
Algebra Proc. Vol. 2 (Lect. Notes Comput. Sci.), B. F. Caviness (Ed.). Springer Verlag,
Heidelberg, Germany, 4–17. URL: http://users.cs.duke.edu/~elk27/bibliography/
85/Ka85_eurocal.pdf.

[21] Erich Kaltofen and Mark Lavin. 2010. Efficiently Certifying Non-Integer Powers.
Computational Complexity 19, 3 (Sept. 2010), 355–366. URL: http://users.cs.duke.
edu/~elk27/bibliography/09/KaLa09.pdf.

[22] Carsten Lund, Lance Fortnow, Howard Karloff, and NoamNisan. 1992. Algebraic
Methods for Interactive Proof Systems. J. ACM 39, 4 (Oct. 1992), 859–868. URL:
http://doi.acm.org/10.1145/146585.146605.

[23] Chris Peikert and Sina Shiehian. 2019. Noninteractive Zero Knowledge for NP
from (Plain) Learning with Errors. In Advances in Cryptology - CRYPTO 2019
- 39th Annual International Cryptology Conference, Santa Barbara, CA, USA, Au-
gust 18-22, 2019, Proceedings, Part I (Lecture Notes in Computer Science, Vol. 11692),
Alexandra Boldyreva and Daniele Micciancio (Eds.). Springer, 89–114. URL:
https://eprint.iacr.org/2019/158, https://doi.org/10.1007/978-3-030-26948-7_4.

[24] Omer Reingold, Guy N. Rothblum, and Ron D. Rothblum. 2016. Constant-Round
Interactive Proofs for Delegating Computation. Electronic Colloquium on Com-
put. Complexity. Report No. 61. URL: https://eccc.weizmann.ac.il/report/2016/
061/.

[25] Justin Thaler. 2013. Time-Optimal Interactive Proofs for Circuit Evaluation. In
CRYPTO ’13 (Lect. Notes Comput. Sci., Vol. 8043), Ran Canetti and Juan A. Garay
(Eds.). Springer, 71–89. URL: = https://doi.org/10.1007/978-3-642-40084-1_5.

[26] Riad S. Wahby, Ioanna Tzialla, Abhi Shelat, Justin Thaler, and Michael Walfish.
2018. Doubly-Efficient zkSNARKs Without Trusted Setup. In 2018 IEEE Sympo-
sium on Security and Privacy, SP 2018, Proceedings, 21-23 May 2018, San Francisco,
California, USA. IEEE Computer Society, 926–943. URL: https://doi.org/10.1109/
SP.2018.00060.

[27] Tiancheng Xie, Jiaheng Zhang, Yupeng Zhang, Charalampos Papamanthou, and
Dawn Song. 2019. Libra: Succinct Zero-Knowledge Proofs with Optimal Prover
Computation. In Advances in Cryptology - CRYPTO 2019 - 39th Annual Inter-
national Cryptology Conference, Santa Barbara, CA, USA, August 18-22, 2019,
Proceedings, Part III (Lecture Notes in Computer Science, Vol. 11694), Alexandra
Boldyreva and Daniele Micciancio (Eds.). Springer, 733–764. URL: https://doi.
org/10.1007/978-3-030-26954-8_24.

5 APPENDIX: BEYOND POLYNOMIAL-TIME

CIRCUIT-UNIFORMITY

We briefly discuss the uniformity model in [11]. For a computable

function, which is parameterized by the number = of input bits,

such as testing if an =-bit integer is a squarefree number, a family

of circuits of sizeS(=), widthW(=) and depth 3 (=) that computes

the function for each= becomes algorithmic by virtue of the circuit

wiring algorithms. We also assume that the used constants, which

are bits, are the same for all circuits, which means that there is a

fixed number of them. Our protocols in Sections 2.2 and 2.1 have

assumed that the prover and verifier can compute (logW(=))$ (1) -
size circuits for those functions isor= (ℓ, U), . . ., where = is now also

an input to the functions; note that we have Bmax = $ (logW(=)).
Then the prover complexity is soft-linear in the sizeS(=) of the cir-
cuits in the family. The GKR verification of the circuit evaluation

of Figure 2 uses the wiring functions (17), where isor, . . . are the

wiring functions of the circuits for�ℓ (14,12), and are therefore de-

rived from the circuits of the wiring functions isor= (ℓ, b), . . . of the
original family of circuits. In short, isor, . . . are the wiring functions

of the wiring functions. We observed in [11] that in (12) the circuits

185

Session 4: Algorithms and Complexity ISSAC ’22, July 4–7, 2022, Villeneuve-d’Ascq, France

for isor, . . . need only be of depth B
$ (1)
max and size 2$ (Bmax) , the latter

of which is of order S(=)$ (1) , provided their own circuit wiring

functions isor, . . . can be constructed by the prover and verifier and

have depth$ (log(Bmax)). Then in (17) we have B̄max = $ (Bmax), the
degrees of isor, . . . are of order B

$ (1)
max and the sumcheck protocol at

Level : in Figure 2 can include the bits of \ in (17) [11, Assump-

tion 2.2]. The prover complexity will remain S(=)$ (1) and the ver-
ifier complexity $ (3 (=) (logS(=))�3 + =(loglogS(=))�4) for con-
stants �3,�4, and there are still 3 (=) (logS(=))$ (1) rounds.

The process of iterating GKR on the sumchecks need not stop

at the isor, . . .wiring algorithms, that is, the assumption that those

have depth $ (log(Bmax)). If at selected place those isor, . . . have

size and depth B
$ (1)
max , GKR could again be iterated for the arising

sumchecks.

6 APPENDIX: NOTATION

This appendix is not included in the ISSAC Proceedings.

Notation (in alphabetic order):

◦ the associative prefix operator that fills-in

the values of +ℓ+1 (V) for matching V =

src8 (ℓ, U) (20)
?
== verifier check for equality in interactive

protocol
u.i.d.←−−−↪ randomly uniformly independently dis-

tributed sample

� the base of the modular power

� [8] = (�'8
mod #)

0, U the integer label of a circuit node at Level ℓ

(3)
˜addℓ (U, V,W) GKR’s orginal circuit wiring function: see

Footnote1

and,or,not,. . . the arithmetic extension functions simulat-

ing boolean logic (1)

�8 the digits of the exponent � in radix '

1, V an integer label of a circuit node at

Level (ℓ + 1) (see text after (8))
�1,�2, . . . constants in complexity estimates

2,W an integer label of a circuit node at

Level (ℓ + 1) (see text after (8))
3, 3 (=) the depth of the circuit

� the exponent of the modular power

equal the arithmetic extension function testing if

two boolean vectors are the same (2)

�ℓ (U, V,W) GKR’s orginal sumcheck argument (right

factor) (9)

�ℓ (U, V,W, _1, _2) GKR’s original sumcheck argument (right

factor), parameterized with values from

Level (ℓ + 1) (12)
�ℓ (U, V,W, GKR’s orginial sumcheck argument

+ℓ+1 (V),+ℓ+1 (W)) as a circuit (14)

Notation continued (in alphabetic order):

isand, isor, isnot, the wiring functions testing the arithmetic

. . . , isconst function of a node (arguments: level ℓ ,

node label U)

is_src1(ℓ, U, V), the wiring functions testing the labels V,W

of the nodes on Level (ℓ + 1)
is_src2(ℓ, U, V) if they feed into Node U on Level ℓ (8)

isor, . . . the wiring functions testing the aritmetic

function of a node in the circuit for the sum-

check problem (17)

ℓ a level in the circuit: ℓ = 0 is the output

level, and ℓ = 3 the input level

_1, _2 the input variables for the values on the pre-

ceeding level in �ℓ

" (=) the complexity of multiplying two =-bit in-

tegers

the modulus of the modular power

= a parameter for the size of the input

? a prime number

' the radix of the exponent �

A [ℓ] the final random selection in the sumcheck

protocol on Level ℓ

d [ℓ] the argument from the 2-to-1 homotopy

passed from Level (ℓ − 1)
S, S(=) the size of the circuit

Bℓ the number of bits in the node labels on

Level ℓ

Bmax = max0≤ℓ≤3 Bℓ
src1(ℓ, U), the wiring functions computing the labels

of the nodes on Level (ℓ + 1)
src2(ℓ, U) that feed into Node U on Level ℓ

src1, . . . the wiring functions for the feeder node la-

bel in the circuit for the sumcheck problem

(Figures 2 and 3)

) (=, . . .) time-complexities of algorithms on inputs

of size =

+! (I, I′) the input decoder circuit for

�ℓ (b, [, g, _1, _2) (15,16)
+
[−const]
ℓ (I) the value-lookup polynomial at Level ℓ ex-

clusive input/constant values (6)

,ℓ (U) the polynomial which computes Fℓ,U from

values on Level (ℓ + 1) (5)
W,W(=) the width of the circuit

Fℓ,U the value computed on a given input in

Node U at Level ℓ (see text after (3))

F
[const]
ℓ,U the value of the input variable Gℓ,: at

Node U on Level ℓ (see text after (5))

Gℓ,: the input variables at Level ℓ (see Figure 1)

jℓ (C) the symbolic homotopy (7)

Z? the integer residues {0, . . . , ?−1}modulo ?

I the variable for the node label in +ℓ (I) (3)

186

	Abstract
	1 Introduction
	2 The Goldwasser-Kalai-Rothblum Interactive Bare-Bones Protocol
	2.1 Prover-Near-Optimality for Log-Depth Uniformity
	2.2 Polynomial-Time Local Wiring Algorithms
	2.3 Prover-Near-Optimality for Polynomial-Time Local Wiring Algorithms
	2.4 Prover-Nearly-Optimal Space Complexity

	3 Proof of Primality
	4 Conclusion
	Acknowledgments
	References
	5 Appendix: Beyond Polynomial-Time Circuit-Uniformity
	6 Appendix: Notation

