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ABSTRACT

The proof-of-work interactive protocol by Shafi Goldwasser, Yael
T. Kalai and Guy N. Rothblum (GKR) [STOC 2008, JACM 2015] cer-
tifies the execution of an algorithm via the evaluation of a corre-
sponding boolean or arithmetic circuit whose structure is known
to the verifier by circuit wiring algorithms that define the unifor-
mity of the circuit. Here we study protocols whose prover time-
and space-complexities are within a poly-logarithmic factor of the
time- and space-complexity of the algorithm; we call those proto-
cols ‘prover-nearly-optimal’ We show that the uniformity assump-
tions can be relaxed from LOGSPACE to polynomial-time in the bit-
lengths of the labels which enumerate the nodes in the circuit. Our
protocol applies GKR recursively to the arising sumcheck prob-
lems on each level of the circuit whose values are verified, and de-
ploys any of the prover-nearly-optimal versions of GKR on the con-
structed sorting/prefix circuits with log-depth wiring functions.
The verifier time-complexity of GKR grows linearly in the depth
of the circuit. For deep circuits such as the Miller-Rabin integer pri-
mality test of an n-bit integer, the large number of rounds may in-
terfere with soundness guarantees after the application of the Fiat-
Shamir heuristic. We re-arrange the circuit evaluation problem by
the baby-steps/giant-steps method to achieve a depth of nl/2+o(1)
at prover cost nz*to(1) pit complexity and communication and ver-

ifier cost n3/2to()
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1 INTRODUCTION

The delegation of computation to a compute service possibly in the
Internet cloud today is a universal approach for carrying out mas-
sive computations. A landmark example is the determination that
a maximum of 20 face moves are required to solve Rubik’s Cube,
which was done in a Google data center https://www.cube20.org/.
The interactive proving methodology and the breakthrough PCP
Theorem allow a verifier with moderate compute power to check
the computation of the prover. The 2008 GKR protocol by Shafi
Goldwasser, Yael T. Kalai and Guy N. Rothblum [15, 16] reduces
the number of rounds to within a poly-logarithmic factor of the
depth of the boolean circuit that can be associated with the algo-
rithm for the computation. The bare-bones version of GKR proto-
col can be realized for a prover that runs within a poly-logarithmic
factor of the time-complexity of the computation—we call such a
protocol prover-nearly-optimal—which is probabilistically checked
by the verifier in time circuit-depth X (log circuit-size) () + input-
size X (loglog circuit-size)©(V) [7]. More recently, protocols have
been proposed that are zero-knowledge and whose prover-time-
complexity is within a constant factor of the size of the circuit that
represents the computation on the given input; see [26, 27].

The GKR proof-of-work protocol [16] works in two stages. It
first takes an algorithm represented by a Turing machine and an
input and on the prover side constructs a boolean circuit of poly-
logarithmic depth that represents the Turing machine execution on
the given input. It is assumed that the Turing machine on an input
of n symbols from a fixed alphabet will hold O(log n) symbols on
its auxiliary tapes. In a second stage, an interactive proof protocol
is designed for (fan-in < 2) boolean circuits that are constructed
by local circuit wiring algorithms which are known to both the
prover and the verifier. One assumes that the circuit feeds data
from each level to the next and does not skip over levels, which can
be achieved by inserting passthru nodes. The circuit has numbers
assigned for each node on the ¢-th Level as values € {0, 1}°¢, where
s = O(logcircuit-width). One constructs a constant number of
local circuit wiring algorithms isor(¢, @), ..., srcl(f, ), src2(¢, a),
which compute which arithmetic is done in the node labelled & on
Level ¢ and what are the labels on the previous level of the two ar-
guments that feed into the node. The GKR interactive bare-bones
protocol [15] is implemented for wiring algorithms whose associ-
ated boolean circuits have depth O(log s¢), that is O(loglog circuit-
width). The verifier during the protocol has to check the evalua-
tion of those boolean circuits on verifier-selected random values
in finite extension fields. In place of the wiring algorithms for the
Turing machine execution, Goldreich [13] uses the circuit for a uni-
versal Turing machine that interprets the Turing machine on the
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input. The universal Turing machine circuit is again bare-bones
protocol verifiable.

The verifier time-complexity in the GKR bare-bones protocol
depends linearly on the depth of the circuit whose evaluation is
checked. Therefore, the verifier performs efficiently for problems
that belong to the complexity class NC. The verifier has to scan
each input bit and therefore has time-complexity that depends lin-
early on the input size. The transition from Turing machine algo-
rithm and universal Turing machine circuit to the bare-bones GKR
protocol incurs a time penalty for the prover: its time-complexity
grows polynomially in the Turing machine time complexity. The
exponent in the prover-time-complexity is related to the big-Oh
constant of the O(log n) space complexity of the Turing machine.

Instead, one can consider the circuit wiring algorithms as the
computational algorithmic model. In addition, aside from using fi-
nite algebraic extension fields for boolean arithmetic during the
protocol, one can use arithmetic circuits with residues modulo a
prime number as values [25]. We will use hybrid circuits that per-
form both boolean and finite field arithmetic. The circuit wiring al-
gorithms are public, and for O(log s;)-depth wiring algorithms the
prover time-complexity can be reduced to nearly linear [6, 7, 26].

In [11] we have extended the circuit wiring model to which a
bare-bones interactive protocol applies. We give a proof-of-work
protocol for a circuit evaluation with local wiring functions that

are of time-complexity s[O(l) , that is, polynomial in the number of
bits of the node labels. We note that the model relaxation makes it
much easier to program an algorithm via circuit wiring algorithms.
However, in [11] we increased the prover time-complexity to cubic
in the circuit size; see Section 2.2. Here we present a prover-nearly-
optimal implementation of our extended bare-bones protocol, that
is, in prover time-complexity that is within a poly-logarithmic fac-
tor of the circuit size. In fact, the circuit wiring functions need
not be polynomial-time, they can be polynomial-depth [11]; see
Section 5. But then the prover time-complexity grows again poly-
nomially. We note that our wiring algorithms are assumed to be
of (log circuit-size)°(D) time complexity. The classical notion of
polynomial-time-uniformity of boolean circuits allows a time com-
plexity of (circuit-size(n))° ) for computing the circuit for n in-
puts (cf. [1]), but then the prover space complexity and communi-
cation complexity for the circuit construction could be the same,
in the worst case.

We also show by a check-pointing technique from automatic
differentiation [17] that the prover can be realized to have a space-
complexity that is within a log-depth factor of the width of the
circuit, while remaining prover-nearly-optimal; see Section 2.4. We
note that in [26] similar space savings were implemented by the
same check-pointing idea.

The trade-offs between the uniformity that the verifier uses and
the work that the prover performs are subtle: in [24] the num-
ber of rounds in the interactive protocol is reduced to a constant
while incrementing the prover time-complexity polynomially. All
our protocols [8-10] for linear algebra are, however, prover-nearly-
optimal, some are prover-optimal. We note that we call a protocol
optimal if the prover complexity is T(n) + o(T(n)), where T(n)
is the cost of the algorithm without a proof-of-work certificate
on input size n. In the literature protocols of complexity O(T(n))
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have also been termed optimal, and protocols whose prover-time-
complexity is T(n)°M are termed doubly-efficient.

The transition from algorithm to certified circuit evaluation can
be adapted to proof-of-work, that is, the circuit depth can be re-
duced by the prover communicating intermediate results to the
verifier. We demonstrate the technique for proof-of-work of com-
puting P = AE mod N, where A, E, and N are n-bit integers, which
constitutes the key substep in the Miller-Rabin randomized primal-
ity test. Because repeated squaring requires Q(n) modular multi-
plication, the boolean circuit for P has depth O(n(logn)?). The
GKR/RRR complexity measures are given in Rows 1a and 1b of Ta-
ble 1. Our yet-to-be-achieved goal is to have a primality test whose
prover time-complexity is n?(log n)°W | whose verifier time-com-
plexity is n(log n)9M | and which has O(1) rounds of interaction.
Row 2a of Table 1 refers to the protocol of Figure 4, which is based
on modulo N squareroots and uses a private coin. Here we show
that GKR can be adapted by the baby-steps/giant-steps method
to the complexity measures of Row 2b of the Table 1. Note that
the Agarwal-Kayal-Saxena (AKS) deterministic algorithm does not
have a fast version of n?*°(1) bit complexity (cf. [2]); otherwise
AKS could be used in our discussion instead.

Table 1: Proof-of-Work primality protocol complexities

Problem Nr.| prover | verifier | Nr.of |Commun.|Reference
time time rounds size
Primality/composite- | 1a|n2to( | pl+o() | pito() | u1+o() [16] on Miller-Rabin
ness of n-bit integers
16| nO0 | n*e@ [ 0(1) | n™°® [[24] on Miller-Rabin
1c [n2ro@ | pl+o 0 n™*°() |Fiat-Shamir heuristic
applied to la. Sound-
ness unproven [5, 14].
1d| nO0 | pl+oM 0 n™*°) [[19] applied to 1a.
Primality of n-bit inte- | 2a [n?*°(D | p+o() | O(1) O(n) |Figure 4; uses private
gers coin
Primality/composite- | 2b|n2toM [p3/2+0() [1/2+0( | O (3/2) |This paper, Section 3
ness of n-bit integers for public coin

For interactive probabilistic proof protocols with a public ran-
domization coin, whose outcome both the verifier and the prover
can see, interaction can be replaced by a cryptographic hash func-
tion in the Fiat-Shamir [12] heuristic, which yields a proof of pri-
mality/compositeness which can be verified at a later time and
whose soundness is justified by the hardness of predicting the hash
values. Note that for protocols where interaction is replaced by the
Fiat-Shamir idea, a provable soundness requires a special design
for the hash functions and cryptographic hardness assumptions [5,
19, 23]. For Google’s Rubik’s Cube computation mentioned above,
such a proof-of-work certificate could have been produced. Row 1c
puts Fiat-Shamir in practice by placing the previous hash value as
an additional argument to the next hash operation, and may incur a
loss of soundness [14], which is mitigated by our protocol of fewer
rounds. The papers [5, 19, 23] prove the hardness of predicting the
hash values; Row 1d is for the hash functions in [19].

2 THE GOLDWASSER-KALAI-ROTHBLUM
INTERACTIVE BARE-BONES PROTOCOL

We briefly describe the bare-bones protocol in [15, 16] (see also
[11, 25]). The protocol certifies a computation on a hybrid alge-
braic circuit that performs arithmetic in Z,, for a prime number p.
Figure 1 exhibits the possible operations on Level ¢ of the circuit.
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We shall designate the level of the output node, which computes
the final value f, as Level 0 and the input values x4,...,x4, as
Level d, where d is the depth of the circuit. In our circuits val-
ues at Level (£ + 1) get passed on to Level ¢, and one requires
“passthru” nodes to skip over a level. Constants/additional inputs
X¢ can be introduced on any level before they are used on the
next level, and need not be passed thru from input nodes x, ,,. The
circuit simulates the boolean operations by arithmetic in Z, as
shown. However, the GKR protocol itself evaluates the circuit at
residues # 0,1 for the boolean input variables, which is referred
as extension [15]. Proof-of-work is possible on purely algebraic
circuits [11, 25], which speeds the protocol because then arith-
metic in Z, needs not be performed via boolean operations. Our
circuit model is hybrid in that it can perform boolean arithmetic
when the boolean nodes have 0,1 € Zy as inputs, but the circuit
also performs Z,, arithmetic in nodes which are designated as field
arithmetic nodes [11]. Inside a hybrid circuit the binary values
by, ..., b for the digits of an integer can be converted to a residue
(bo +2by +--- +2Vby mod p) € Z, and Zp-field arithmetic can
be done from that point on. The residue cannot be converted back
to binary representation in subsequent levels, because the magni-
tudes of the residues cannot be tested by < with arithmetic alone.
But tests for # 0 and modular divisions are possible on the field
arithmetic side to some extent: see [11, Remark 2.5, Section 3].

Figure 1: Bounded fan-in hybrid algebraic extension circuit

Xda Xd 2 Xd3 Xd,i Xd, x+1 Xd, 1+2 XuLn
I I Il

Input blt variables € {0,1} C Z,

o R OO, CIog

Simulated Boolean arithmetic Regular arithmetic in Z,

Input varlables inZ,

Output polynomial
T

Output f(xq1,..., Xdps - > Xeks - --) € Zp[Xgas .., Xdps oo os Xpks - - -]
For arguments o, w € {0, 1} C Zj, the following field operations

simulate the boolean functions:

not
1-vo

and
ow

or
v+ w—ow

equiv
1+20w—-0v—w

@

In particular, two binary integers xo + 2x1 + - -- + 2 1x,_; and

’ ’ v—=1,.7 :
X+ 2x] +---+2V " x]_, are equal if
v—1 v—1
= =/ . ’ ’ ’
equal(x,x”) = l_[ equiv(x;, x;) = 1_[(1 +2xix] — x; — x;), (2)
i=0 i=0
which is a hybrid circuit of degree v in xy, . .., xy and in x(’), X,

The width of the circuit on Level ¢, designated by width(?) is the
number of nodes on Level . Each node on Level ¢ is assigned a bit
vector label & € {0, 1} where s, = O(log, (width(¢))). The circuit
is known to the verifier by its local wiring algorithms: isor, isand,
isnot, ..., isplus, isminus, istimes, ispassthru, isconst, srcl, src2.
For example, isor(#, a) is = 1 if the node labelled a on Level ¢ is a
boolean ornode, and it is = 0 otherwise. The functions src1(f, a) =
P and src2(¢, a) = y if the nodes labelled ff and y on Level (£ + 1)
feed their values into node & on Level ¢. The wiring algorithms re-
turn the value 0 if the bit-pattern of & does not represent a node in
the circuit. The GKR bare-bones protocol requires that the verifier
can evaluate the wiring algorithms, that is, the circuit is uniform. In

[11] polynomial-time bit complexity in smax def maxy log(width(¢))
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is shown to suffice. More precisely, we assume:

AsSSUMPTION 2.1. the verifier (and prover) can execute the wiring
algorithms for ¢ = 0,...,d — 1 (d being the depth of the circuit) to
o(1)

of size spay’ , all in total

produce boolean circuits for isor(¢, ), . ..
time dsmg ).

Our uniformity requirement extends the log-space uniformity
of the complexity class NC [16, Theorems 1.1 and 4.7], but even
polynomial-time uniformity can be further relaxed (see Section 5).

The GKR bare-bones protocol uses a value-lookup polynomial
for each Level £

Vo = wo, Vg(z)dzef Z equal(z, @) we,q,
ae{0,1}5¢

z=(z1,...,25,), Ve(a) = (3)

where wg,, € Zy is the value of the circuit at the node on Level ¢
labelled o when evaluated on a given list of inputs. Again, if «

Wea, 1 <4< d,

is not the bit pattern of a node on Level ¢, we o 40, For all node
labels a € {0,1}%¢ we have V;(a) = wyq. The protocol certifies
Ve (p[”) from a certified Vp4g (p[“l]) for computed values p[” €
Z;f and plf+1l e Z;f“, where plf*1] is verifier-selected after plf].
In (3) one substitutes

[const]

we,q = We(a) +isconst(¢, a)w (4)
with
We (@) Cl=efisand({’, @) Vey1(srel(€, @) Vey1(sre2(t, a))
+isnot(£, a) (1 — Ve1 (srel(t, @))) +
+ ispassthru(¢, @) Ve41(srel (¢, @), (5)

[const]

where w ta

€ Zy are the input values assigned to x;; whose
. def
nodes have label o, with w ([fsmt] 20 for all nodes with isconst(¢, a) =

0. If all wiring function circuits have depth O(log smax), one can

O(1)

perform an (s, -verifier-time) sumcheck protocol [22] to verify

the value
Vfl_mmt] (Pm)déf Z equal(pl), o) Wy () (6)
ae{0,1}%¢
= V[(p[l’]) _ Z equal(p , @) isconst (e, a)w[const]
aef{0,1}5¢

The definition (6) requires that src2(¢, @) is defined for single-ar-
gument nodes, e.g., when isnot(¢, ) = 1. For such nodes, the local
wiring algorithms compute src2(f, a) = (1,...,1) € {1}%+1. The
arising interpolants in the sumcheck protocol then have degrees
of magnitude sméx) The sumcheck interactions take prover time
O(s ggxzs’””l) for each Level ¢, where the factor 25¢+1 is from the
evaluations of Vp41 (srcl(¢, a)) and Vpy1 (src2(¢, a)) (3), and verifier
time O(sglzax) for constants Cy, Cy. For the final verification of the
sumcheck protocol, the verifier needs to check equal(p[f] rlely x
We (r[€1) for a vector rlf] € Z;f of random residues. For that, the
verifier requires the two values Vpi1 (srcl(?, r1€1)) and Vpyq (sre2(e,

rlf1)) and a 2-to-1 subprotocol is used. The prover interpolates and
commits

ee1 () Vor (¢ sre1(e, 7ty + (1 - ) srea(e r ) ()
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in Zp[t] (of degree < sp41) before the verifier asks for certification
of Vi1 (p[”l]) for p[“l] = r*srel (6, rlifh) +(1=r*)src2(e, r1f1) for
a random residue r* € Z,. The protocol proceeds to Level (£ + 1).
After completion on Level (£ + 1), the verifier checks yp4+1(r*) =
Vgﬂ(p[“l]) and Wg(r[[]), the latter using the values yp4+1(0) and
xex1(1) (7), and certifies Ve (p[1) = V7" (51014 5, equal(p!*],

a)isconst(?, a)wgcsnsq, Note that the computation of ), by the

verifier constitutes an input/constant scan discussed in the next
paragraph. Alternatively, instead of certifying Vp41(p [£+1]) on Level
(£+1), the protocol on Level (£+1) certifies the linear combination
Va1 (stel (6, rIE)) 47 Voy (ste2 (¢, r 1)) for verifier-selected ran-
domr*,r*™* € Z, after the values Vp11 (src1(¥, rlf1)) and Vpyq (sre2(e,
rlf1)) were committed by the prover [6].

Note that on Level £ = d, ), equal(p [d], a)isconst(d, a)wgcznsq

constitutes the end of the GKR protocol, when isconst = 1 and

[const] , re values for the inputs x4 ;. The verifier computations

> equal(p (], @)isconst(, a) W{E,csnst]

which are required by the GKR protocol. Note that instead of an
[const]
{,a

by a circuit with inputs @ and depth O(log smax). We will use such
inputs below: the decoder circuits (15). Last, by (2) the list of val-
ues equal(p (], ) for all a can be computed a multiplication tree
in linear time in the number of ’s, counting operations in Z,.

are the input/constant “scans”

input/constant, w could be given to the verifier and prover

2.1 Prover-Near-Optimality for Log-Depth
Uniformity

The described protocol above has prover cost S?(log 8$)°W  where
S is the size of the circuit whose evaluation is being certified. In
[7] the prover cost for the arising sumcheck protocols is shown
to be S(log S)O(l). Because we need the result in Section 2.3 be-
low, we give a brief explanation. Prover-efficient protocols for the
sumchecks for (6) are studied extensively, improving the prover-
time-complexity to O(S) by using the multi-linearity of the value-
lookup function (3); we refer to [26, 27] and the references there.
However, our solution for polynomial-time local wiring algorithms
in Section 2.3 has the (log 8)OW factor even if the protocols in this
section have O(S) prover-time-complexity. Therefore we limit our
brief discussion to the simpler earlier protocol.
First, we re-write the local wiring functions src1 and src2 as:

is_srcl(£, &, 1) Cl=efequal(srcl(t’, ,n),
is_src2(£, &, 1) d:efequal(srcz(l’, &,n)
S Zp [f], veey §S€’ 015 eens ’75€+1]'

For instance, is_src1(¢, a, f) is = 1 if the node labelled « on Level ¢
takes its first value from the node labelled f at Level (¢ + 1); for
all other node label pairs (e, y) with y # f the function returns 0.
The function We(a) in (5) is re-written as We(a) = Xgeo,1)sen
Zye{o,l}SM F(a, B,y) with

®

Fe(at, B, y) Eisand (¢, @)is_srel (£, &, Bis_sre2(£, &, y)Ves1 (B)Ver1 (1)

+isnot(6, a) is_srcl(€, @, B)y1 -« - Y50y (1 = Ver1(B)))

+--- +ispassthru(f, &) is_src1(£, &, B)y1 - - - Vs Ver1 (B).1 - (9)
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The term y; - - - y5,,, guarantees that only one y in the second sum
is selected for nodes with one input; the term acts as a stand-in
second source. The sumcheck protocol (6) at Level £ is now a triple
sum Yo Xig 2y equal(p[”, a)Fe(a, B,y). The prover in the sum-
check protocol computes sums ), plrem] Zy[rem] D qlrem] Where the
missing bits in glrem] ylreml apg glreml are evaluated at field el-
ements, both random elements chosen by the verifier and interpo-
lation arguments by the prover to turn one bit into a variable. The
protocol processes the bits of f and y before a. We shall consider
the step in the sumcheck protocol when j bits in f have been set to
values r = (rq,..., rj) [S Z;,, which are fixed elements. The prover
has to compute for the plus-nodes on Level ¢, for instance, the sum

plreml=(r,p): pre{0,1}%e+1~J y€{0,1}°¢+1 isplus(f,a)=1: a€{0,1}¢
equal(p [[], a)is_srcl(?, a, ﬁ[rem]) is_sre2(f, a, y)X
(Vert (B™) + Verr (). (10)
where the only value for y in the middle sum for which is_src2(#, ,

y) # 0is y = src2(a), when is_src2(¢, a, src2(at)) = 1. The only
plreml for which is_src1 (£, a, f*™)) can be # 0 must have ,B][.rem]

+1
i

= srcl(f, a)s,,, (2). The
sum therefore reduces to

[rem] _ ,/
Sert T Fsp—j

srcl(f, ) jyts .- -s

equal(p!*], a)x
isplus(¢,a)=1: a€{0,1}5¢

is_src1(f, @, (11,.... 7, s1c1(@) j1, ..., STCL(X)s5p,; ) )X

(11)

(Ves1(r1, oo rj, srel(@) j41, .. STC1(®)sp,, ) + Vort (src2())).

The prover has all Vp+1(src2(a)) = wpiq gre2(a)» the values at node
src2(a) at Level ¢ + 1. The prover pre-computes Vpy1(r, f7) for
all B/ € {0,1}5e+17J, 25tn17J values in total. For each S’ by (3)
Ver1(r, B') = Ly equal((r, f), n) wes1,y, where by (2) at most 2J
terms have equal((r, '), n) # 0, namely for those n whose last
sp+1 — J bits agree with those of . The cost to the prover to com-

pute all Vpy1(r, f7) is thus O(2°¢+!) operations in Z,. With them,

the prover then can compute all sums like (11) in 2% sgg() opera-

tions. Note that for a given f’ the values V41 (r, f”) may be used
arbitrarily often, as the fan-out of the circuit is unbounded. The
prover uses a log-depth search tree data structure for the look-up.
The bits of y are processed the same way.

2.2 Polynomial-Time Local Wiring Algorithms

If the wiring function circuits isor, . . . on node label inputs of spax =
O(log ‘W) bit-length have depth sge(‘,l(), where ‘W is the maximum
width of the original circuit, one cannot perform a sumcheck for
V[[_mmt] (p[[]) (6,10) directly and maintain (log W)O(l) verifier-
time, because the arising degrees could be exponential in smax. We
use the GKR protocol recursively instead. We write

!In [16] and later papers, the term isplus (¢, &t)is_src1 (¢, a, B)is_src2 (¢, a, y), for in-
stance, is lumped into a single function add, («, f, y), where the tilde indicates a pos-
sible evaluation at values from an algebraic extension of a finite field.
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Ge(a, By, A1, A2) défisand(t’, a) is_srcl(e, B) is_src2(a, y) A1z +
isnot(¢, a) is_srel(at, f) y1.. . Yspy (1= A1) +-- -+

ispassthru(?, &) is_src1(a, f) y1 .. . ¥s;iy A1, (12)

and perform a proof-of-work GKR interactive protocol for

Vf[—const] (P [[]) _
Z (equal(p el a)x

aef{0,1}5¢ fe{0,1}5e+1 ye{0,1}5e+1

Ge @ .1, Vess (B, Ve (v) ). (13)

A A2

Note that (13) is an equality, where Vt,[_consﬂ (plt1) is defined in
(6). The function

Hp(x1,. .., X5y Xsy41, - - ooy X 4250000 A1, A2)

———
3 n ‘

f
Eequal(pl, OGe(&n. A k) (19)

s Xsptspy1> Xsp+spp+1s -

under the triple sum in (13) can be represented as a circuit with
input bits & = a; for 1 < i < spandn; = fj,7; = yjfor1 <
i < spy1 and the two input field element values A1 = Vpy1(f) and

A2 = Vpy1(y), which depend on the bits of § and y. In addition,
[¢]

the circuit for Hy accesses a common pool of constants p; * for

1 <1< sy
Figure 2: Circuit for sumcheck via GKR (see text). ©E. Kaltofen

eI 10 L1

A Vs, "ijy) ‘ ‘
\ \ Pi

Hy(a, B, v, Ves1(B), Verr (v)) Y

V[[—const] (p[[])
The circuit which computes Vt,[_COHSt] ( pm) in (13) is sketched

in Figure 2. There are op dzefst: + 2s¢+1 + 2 inputs to each of the
25e+2Se41 copies of the circuit for Hy, one for each value of (a, §,y).
Note that o, is the number of variables of Hy in (14). Each in-
put is itself a “decoder” [11] circuit, each with oy + o} input bits
X1y oo Xspb25 4142 X - - .,x(’rz, where o} = |log,(or —1)] + 1 repre-

sents the number of bits in an integer § = Z/(:io 02K which indi-
cates which of the oy values are to be output by the decoder. The
node labels for the output nodes of the decoder circuits on Level L,
which are the inputs for the H’s, are (a, f,y,v) for 0 < ¥ < o7 — 1.
We therefore have the following value look-up function for Level L:

’ ’
Vi(z1,.. <3 Zsp+25p415 210 - - "Zo*;) =
ae{0,1}5¢ fe{0,1}5e+1 ye{0,1}5e+1

Con-
stants
[€]
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o3
equal(z, (a, f, y))(( Z equal(z’, binary-digits(0)) (e, B, y)éﬂ)
6=0 —_—

0
+ equal(z’, binary-digits(oy — 2)) Vp41(B)

+ equal(z’, binary-digits(ap — 1)) Vpy1 (y)), (15)

where (o, f,7) g, is the (0+1) st entry in the (sp+2s741)-dimensional
vector (a, f,y). The function computes

aj, 1 <i<sp
bj,lSjSS[.H
Cly 1 <k <spp1

for 0 < 7 < s,
for sy < 7 < sp + Sp+1,

for sy +sp41 <V <sp+2s
Vi(ab,c,v) = £+ Se41 13 0+15

Ver1(b) for ¥ = sp + 2sp41 = 07 — 2,
Ves1(c) forv=sp+2sp1+1=0p—1,
0 for v > sy + 2sp41 + 2 = oy

(invalid label), (16)

which are the required inputs for the circuits for Hy (v denotes the
integer corresponding to digits in the bit-vector v). When the GKR
protocol for the circuit in Figure 2, which is the sumcheck of Level ¢
in the original circuit evaluation proof-of-work problem, reaches
Level L, Vi(p, p’) in (15) needs to be certified for p € Z;,”ZSM

and p’ € Z7¢. Here a standard sumcheck protocol can be used,
because the degrees of the function under the triple sum in the
entries of @, B, y are of order O(smax), which is true for V41 () and
Ve+1(y) by their definitions (3). Again, the verifier at the conclusion
of the sumcheck protocol for Vi (p, p”) checks the function under
the triple sum for random field elements substituted for the bits in
(@, B,y), and therefore needs the values Vp4q (r[11) and Vpyq (r[21),
which is accomplished by the 2-1 protocol (7) described above. The
protocol then can proceed to Level (£ + 1) in the original circuit.
We finally explain that the circuit wiring functions for the cir-
cuit of Figure 2 can be computed from the circuits for isor(¢, ), . ..
in such a way that their degrees are O(log(smax)); note that smax
denotes the maximum number of digits in the node labels in the
original hybrid circuit. The node labels in each of the 25+2St+1
copies for Hy (14,12) are all prefixed by those (a, f,y) for which
they compute the value. In each box the nodes then have the same

label suffixes @, which are of magnitude sgg{) because the circuit

for Hy has by our uniformity assumption size sgg,l(). We denote by
Smax the number of bits in those labels, which is Smax = O(log(Smax))-
The prover and verifier compute the maps for the wiring functions
from the circuit for Hy: for instance, m(l@, @) maps to the values
of isor for each node labelled @ at Level k in the circuit for Hp. Now
if the local Level k in the 25¢*25¢+1 boxes for Hy in Figure 2 corre-
sponds to global Level k in the entire circuit of Figure 2, we have
the corresponding wiring function

isOrFigure 2 circuit for Level ¢ (k. @, By, @) =
Z equal(a, 0)isor(k, 0).
0 {0.1)5max

By (2), the degree in @ in (17) is Smax, that is, O(log(smax)). We have
the following for the protocol in [11].

17)

THEOREM 2.1. Our modified GKR bare-bones protocol under the
polynomial-time uniformity Assumption 2.1 for the circuit C of size S,
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width ‘W and depth d for which proof-of-work certification is per-
formed, uses d (log 8)°W rounds, and in terms of arithmetic oper-
ations in Zp has verifier time-complexity O(d (log $)°W 4 nigy),
where nyot is the the number of inputs/constants to the circuit, which
is n in Figure 1 plus the number of the x; . ’s for £ < d. The prover
time-complexity is dW3(10gS)O(1) using the sumchecks of Sec-
tion 2.1. The protocol is Monte-Carlo randomized and requires p =
d (1og S)°Y for a soundness probability > 1/2. Specifically, for a
boolean circuit with n input and constant bits, whose size is S =
n°W and whose depth is d(n) and whose wiring functions have bit-
time-complexity (log n°W  the protocol has prover bit-time-com-
plexityd(n) S3 (log n)0W, verifier time-complexity O(d(n) log(n)1
+ n(loglog n)2) for constants C1, Co, and d (log n)°® rounds.

In Section 2.3 below we show how to modify the circuit in Fig-
ure 2 so that the prover time-complexity reduces to S(log 8$)°0W),
however, the log-depth wiring circuits isor, . . . will be much more
complicated.

2.3 Prover-Near-Optimality for
Polynomial-Time Local Wiring Algorithms
We now show how to perform all sumchecks (6), namely,

Z equal(p[[], a) We(a), We(a) defined in (5),
ae{0,1}5¢

(18)

in S(log 8)°0M prover time and d (log 8)OW verifier time count-
ing operations in Zy, for all Levels ¢ in total. We assume circuits
for the local circuit wiring functions isor, . . . are of size (log S )O(l)
and can be computed by the prover and verifier for each level in
(log 8)°(M) time; here S is the size of the original circuit whose
evaluation is to be certified, and d is its depth.

We first briefly describe a summation-tree circuit of size S? x
(log 8)OW for (18) for a given Level ¢. For each node label a €
{0, 1}*¢ we compute in parallel circuits from the decoder-supplied
inputs a1, ..., as, (cf. (15)) the values for src1(¢, ) and src2(f, @r).
Each of those circuit boxes (cf. Figure 2) has size s?(l) by assump-
tion, and outputs the block of bits ay, . . ., as,, src1(4, a), src2(¢, ).
On that output level we also have decoders for f, . . ., Bs,.,, Ves1(B)
for all § € {0, 1}5¢+1. Next, we compute for each & the two values

2

pe{0,1}5e+1

2

pe{0,1}5e+1

using two summation trees. Note that the bits for  needed for the
equal’s are available from the decoders that produce the 1, . . ., fs,,,,
Ve+1(B) blocks of values. The src2 local circuit wiring functions,
which are determined on that level by the placement of those blocks,
locate those bits. The corresponding circuits essentially match sub-
blocks of bits and have depth O(log smax). With the values (19) the
circuit computes in parallel for each « the terms equal( pl[ 1 a) x
We(a) in the sum (18) and then sums up those values in a final
summation tree (cf. Figure 2).

The soft-quadratic size solution described in the previous para-
graph replaces the dictionary lookup of the values Vpyq(r1, ..

Ver1(srel(t, a)) = equal(srcl(4, a), B) Ves1(B),

Ve (ste2 (£, a)) = equal(se2(£, ), ) Vs (B, (19)

w T,
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srcl(a) j+1, ..., Sr1(@)s,,, ) and V1 (src2(a)) of (11), which are ex-
ecuted by the prover in Section 2.1, by the linear-size search (19)
done on the circuit after computing the src1 and src2 values. Note,
however, that ultimately dictionary look-ups are still executed by
the prover, because each level of the soft-quadratic size circuit
for (18) needs to be processed by the GKR protocol of Section 2.1.

Figure 3: Prover’s soft-linear time sumcheck (18) computation (see text).

Ds

©F. Kaltofen

}0‘1

0

as, sx{cz((, a) ‘

\ T
srcl (¢, o)
1 L

25w v ¢

. 1 Layer A
Sort with key src1(¢, @),
_—
_—
[ . ] L e [ ] Layer B
‘ Fill-in V;41(f)’s at f = srcl(¢, ) by parallel prefix
) Layer C
Sort with key src2(¢, @),
_—=
_—
[ . ] L ] e [ ] Layer D
‘ Fill-in V41 (f)’s at f = src2(£, a) by parallel prefix ‘
[ U I 1 . [ 1 Layer E
‘ ‘ ‘ ‘ ‘ ‘ o ‘ ‘ Constants
[e]
o I I Pi
notV equal(pl’l, @) W;(a) Layer F
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Summation tree

215(0,1)31 equal(Plfl, a)Wy(a)

We can avoid the quadratic size blow-up by using sorting net-
works to locate the values of f matching to src1(a) and src2(a).
In Figure 3 we display the overall layout of the circuit for (18). On
Layer A we have computed blocks of values (notV, addr0, addr1,
addr2, V1, V2). If the bit notV = 1, the block is equal (1, @, src1(a),
src2(@), 0,0) and if notV = 0, the block is equal (0,0,...,0,5,f,
Ve+1(B), Ve+1(B)). Note that node values can be duplicated on a
subsequent level as passthru nodes with the same srcl. Next, the
circuit sorts the blocks according to the key (addrl, notV) values.
We can use a Batcher sorting network of size O( (25¢ +25¢+1) 52, )
and depth O(s2,,,), counting comparators. The local circuit wiring
functions in the Batcher sorting network use simple integer arith-
metic on the node labels and are of depth O(log smax). At Layer B
each block (0,0...,0, 8, B, Ve+1(B), Ve+1(p)) is followed by blocks
(1, a, srel(a@), sre2(ea), 0,0) with srcl(a) = f, which are followed
by (0,0...,0,8+ 1,8+ 1, Ve (B+ 1), Ver1 (B + 1)), where S+ 1 is
the binary representation of § incremented by 1. At Layer C the
blocks with notV = 1 have their V1 nodes filled-in by Vpy1(f) =
Ves1(srcl(a)) from the closest block to the left with notV = 0.
The fill-in is performed on a parallel prefix circuit. An additional
bit ‘is_filled’ is added to each block at Layer B, and initialized to
is_filled = 0 if notV = 1 and is_filled = 1 if notV = 0. The parallel
prefix uses the following binary operation on a pair of blocks:

(notV, addr0, addr1, addr2, V1, V2, is_filled) o
(notV’, addr0’, addr1’, addr2’, V1’, V2, is_filled”)

(notV’, addr0’, addr1’, addr2’, V1 [new] v/ s fillednew! ), (20)
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where V1[PeW] = v is_filled["eV] = is_filled if is_filled’ = 0 and
V1wl = vi7is_filled™eV] = 1 = is_filled” if is_filled’ = 1. The
operation o is associative and is familiar from carry look-ahead ad-
dition/pointer jumping. Again, the parallel prefix circuit has a reg-
ular layout and local circuit wiring functions of depth O(log smax)-
The size of the parallel prefix circuit is O(2°%¢ + 25¢+1) and the depth
is O(smax), counting o’s.

The sorting and fill-in is repeated with the key (S, notV) and
(src2(a), notV) in the blocks in the addr2, V2 positions. At Layer E
we have in the blocks with notV = 1 the values (1, &, src1(«), src2(a),
Ves1(srel(@)), Vey1 (sre2(a))). We now can for each block compute
by parallel circuits the argument equal(p[f], a)Wp(a) in the sum
(18). The bit notV allows setting the values for the blocks with
notV = 0 to zero. By the Assumption 2.1 the circuit of Figure 3 has
size (2%¢ + 23f+1)s$§,13, depth sgg(), and local circuit wiring func-
tions srcl, ... of depth O(log(smax)), to which the prover-nearly-
optimal bare-bones GKR protocol of Section 2.1 can be applied. The
scan across the (sp+1+1)2%¢+1 decoder circuits for the f; and Vp41 (f)
values before Layer A (cf. (15)) is a sumcheck protocol, which can
be performed in prover-time-complexity 25¢+! sgg() by the algo-
rithm of Section 2.1 (cf. (10)). The protocol ends in the verification
ofasingle Vpy1(r1,...,rs,,) onthe next level of the original circuit,
and no 2-1 protocol (7) is required. Of course, the 2-1 protocols are
needed in the GKR verification of the circuit of Figure 3. The sum-
check scan across the decoder circuits for the a;-bits at the top of
the circuit in Figure 3 ends by the verifier computing the value of

the decoder circuit at a random value in Z;’H", where sp + sé with
sp = |log(sy — 1)] + 1 is the number of input bits to the decoders.
Our main result can be stated as follows.

THEOREM 2.2. In Theorem 2.1 one may replace the prover time-
complexity by S(log 8)°W while all other complexity measures re-
main the same with different O(1) and C1, Cy constants.

2.4 Prover-Nearly-Optimal Space Complexity

We finally analyze the space complexity for the prover. The circuit
size is S, the depth d and the width ‘W. The prover can, at the cost
of an additional O(log(d)) factor in time-complexity, reduce the
intermediate space to O(“W log(d)). The technique is well-known
in the reverse mode of automatic differentiation [17]. We sketch
the technique. The idea is to only store (“checkpoint”) the values of
each node at Level | d/2], where d is the depth of the entire circuit,
from which values at the Output-Level 0 to Level |d/2] — 1 are
recursively determined. The values at Level (| d/2]+1) to the Input-
Level d are then freshly computed from the inputs, again storing
only values at half the depths. The strategy stores the values for
at most O(log(d)) different checkpoint levels, and each value is re-
computed at most log(d) times. The latter can be shown as follows:
re-computation of a value at Level ¢, which is not a checkpoint, is
triggered if the values at Level (¢ + 1) are needed, when the values
at the nearest-towards-output checkpoint Level ¢; were used in the
sum-check protocol for Level (#; — 1) and afterwards their storage
released. During re-computation of the values at Level (3 —1),.. .,
Level £, ..., Level (1 +1), where Level #3 is the nearest checkpoint
towards input, the values at Level #,,1f, fhair = L (&1 + £3)/2], Level
L(&1+8na16) /2], . . . are stored. Therefore, the depth (£3—¢;), which is
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the distance of the checkpoint levels between which the unstored
Level ¢, lies, is at least halved every time a value on Level ¢ is
re-computed.

3 PROOF OF PRIMALITY

In Figure 4 we describe an interactive protocol that certifies an n-
bit integer N to be a prime number. The protocol has n? (log n)0 (M
prover time-complexity, n(log n) 9 verifier time-complexity us-
ing the Tonelli-Shanks Algorithm and in C rounds achieves fail-
ure probability < 1/2€, because for composite p = g1q2 with
GCD(q1,q2) = 1 there are at least 4 squareroots by the Chinese
Remainder Theorem. The check that {/p ¢ Z for k > 2 can be
done by the algorithms in [4, 21] in n(log n)9M) bit operations.
Since the randomly sampled r;, which are uniformly and indepen-
dently distributed (u.i.d.), must remain unknown to the prover, the
Fiat-Shamir [12] heuristic cannot remove interaction. That would
be quite important, so that a proof of primality can be stored for
verification at a future time.

Figure 4: Protocol for primality with a private verifier coin
Verifier
p = 3 a prime number

Prover

fori=12...,

Compute b; with & aj = (rl.2 mod p), r; &5 Zp privately

b? = q; (mod p) LR b; =~ (+r; mod p)

We now realize the Miller-Rabin primality/compositeness test
by baby-steps/giant-steps for a protocol of the complexity mea-
sures in Line 2a of Table 1, which uses a public coin. The Miller-
Rabin primality test for an integer N with n = |log,(N)] + 1 bi-
nary digits computes AF mod N for random residues A € Zy with
GCD(A, N) =1 and exponents E < N — 1. The boolean circuit for
those modular exponentiations has size S = O(n? log(n) loglog(n))
with Schonhage-Strassen integer multiplication and depth d = O(n
log(n)?) with repeated modular squaring and Cook’s long divi-
sion algorithm. The GKR proof-of-work protocol has prover time-
complexity n? (log n)°() | verifier time-complexity n(log n)0 )
and n (log n)o(l) rounds. We show how to reduce the number of
rounds to vn(log n)0M by increasing the verifier time-complexity
ton3/?
Both the prover’s and the verifier’s space complexity is o(n*/?).

We write E = by + b12 + - - - + by_12" " with b; € {0, 1} in radix
R=2%,

H
E:ZB,—R’,R:ZA, 0<B;<R-1,
i=0

A=[Vn—-1], pu=|Vn—-1], Ap+A-12n-1. (21)

Figure 5 shows the layout of the “baby steps/giant steps” circuit
that tests the value P = (A¥ mod N) communicated by the prover
to the verifier before the GKR protocol for correctness. The prover
also communicates the residues Al = (AR mod N) for1 < i <
p—1.The initial residue is A (0] - A, which for the Miller-Rabin test
is a random residue chosen by the verifier. The u parallel (T R mod
N)-sub-circuits compute Ali+l] = ((A[i])R mod N) for 0 < i <

(loglog n)©(M) The prover time-complexity stays n? (log n)0W
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(AR mod N) -
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4 — 1 by A squarings modulo N. The equal(g li1 Alily on the next
circuit layer check in parallel the computed values against the com-
mitted values, except for (AlP=1HR mod N. The residue Al = 0
if the check fails, which causes the computed P = 0 and the com-
parison to P produce 0, namely failure. If all committed powers
Alll = AR = 427 (mod N) then Alil = (AR" mod N) for all
1<i<p-1

Figure 5: Primality proof-of-work circuit (see text) ©E. Kaltofen

[t v ] ] v ] [N |

IRES

TRmodl+T “TRmod

\ ‘\TRmO\d}N \
\

AT ) 6] ]

}equal(ﬂ”,A[”)Am equal(ﬂ“’”,Al”’”)}A[ -

I

lequal (A2, Al21)Al2] --

‘TRmod1+'
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bit operations, as the modulus p for the field Z; over which the
GKR protocol is performed is p = (log n)°(); the circuit labels
have smax = O(logn) bits. Note that the protocol without the in-
put scans has verifier time complexity n(logn)© (1.

REMARK 3.1. If GCD(A, N) > 1 then the prover can take advan-
tage of the GCD-free basis [20] for (A, N): the prover computes and
communicates integers My > 2,..., M > 2 with GCD(M;, M;) =
1foralll < i < j < k and exponents #; > 0,...,4 > 0 and
mi > 0,...,m; > 0such that A = ]_[éclei[" and N = ]_[leMim',
that in n(log n)OM bit operations [3]. The modular power P =
AF mod N is then computed by the Chinese remainder algorithm:
each residue AF mod Mimi for m; > 1 is computed by the prover
as MfiE(A/Mf")E mod Mimi. The second power is to a base which
is relatively prime to the modulus Mim i, and the above protocol is

[a0] o] [A0] ] 4] ] [a4n (4] v e,
‘ T Bp mod N ‘ ‘ T B; mod N ‘ ‘ T B, mod N ‘ - ‘ T By-1 mod N ‘ ‘TB,,modN ‘

used if GE < my: (AF mod M™) = M;"* ((A/M;")F mod M"~0F).

Multiplication tree modulo N

equal(ﬁ, P)

The next layer of (T B; mod N)-sub-circuits computes in paral-
lel (AlI1YBi mod N = ABiR" (mod N) forall 0 < i < p, or 0 if the
equal failed. In Figure 5, the B; are inputs to the powering by re-
peated squarings, although their bits could have been incorporated
as constants in each box with the appropriate isconst wiring func-
tions. Finally, the circuit computes P= (H‘;lzo (A“])Bi mod N) =
HI;:O ABiR (mod N) and compares the computed value P with
the committed value P = (AF mod E).

Let M(n) = nlog(n) loglog(n) be the Schénhage-Strassen inte-
ger multiplication complexity function (there are smaller theoreti-
cal values today [18]). The prover time complexity for computing
all bit values in the circuit of Figure 5 inclusive the communicated
residues P and Alil for 1 < i < p—1is

O(uM(n)log(R)+ un +puM(n)log(max B;)+ uM(n) ), (22)
—_———————— —— 1 —_———

_ N —
Alili=1,..p equal tree product

TB; mod N.,i=0,...,u

which is O(nM(n)); the size of the circuit is also O(nM(n)). The
depth of the circuit of Figure 5 is O(A(logn)?) with A = O(+/n),
where the depth (log n)? is from the Cook O(M(n))-time division
with remainder algorithm using the O(log(n))-deep Schonhage-
Strassen multiplication circuit. The GKR protocols to certify the
values adds a factor (log n)o(l) or O(1) to the prover time-complex-
ity. The verifier time-complexity is dominated by the input scans.
There are four such scans, the bits of Alil twice, and the bits of
B; and P. The verifier scan over the Alil can be reduced to a sin-
gle scan by passing the values from the Input-Level through to
the equal-Level, which makes the circuit wiring functions for the
(T R mod N)-blocks a bit more complicated, and disallows inde-
pendent certification of each of the y powering subcircuits. There
are pn bits for all Alil and the input scans take n3/2 (loglog n)0 M
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By Section 2.4 for the circuit of Figure 5, which has ‘W = n3/2 x
(log n)©°W andd = n!/2 (log n) 9 the prover space complexity is
n3/2(log n)?() while the time complexity stays n?(logn)®V) . In
that case, namely of verifying AF mod N, the prover and verifier
can compute a circuit for AjA2 mod N and with that circuit derive
the circuit wiring functions for the powering circuit of Figure 5.
The node values which are stored can be intermediate y+1 residues
of powers modulo N, which further simplifies the protocol.

4 CONCLUSION

Uniformity assumptions on families of boolean circuits that are pa-
rameterized with the number n of input bits and which evaluate to
functions such as “is a squarefree integer” turn the circuits into al-
gorithms. Proof-of-work of an evaluation at a given input reduces
the verifier complexity by assuming efficient algorithms for com-
puting the circuit structure. Because proof-of-work can be applied
to the uniformity algorithms themselves, uniformity assumptions
can be high in terms of complexity, say uniform of polynomial-
depth. Prover-near-optimality can be retained by use of prover-
nearly-optimal GKR protocols on the circuits with Batcher sorting
networks.

Moreover, the proof-of-work protocol can
adapt the circuit evaluation problem to reduce
depth of the circuit. The prover can communi-
cate values at intermediate levels to the verifier,
which then become inputs to the verifier which
are checked against the computed values; cf. the
figure on the right. The depth of the proof-of-
work circuit then is the maximum depth between
the checkpoints.

We have shown how to use the technique for reducing the depth
of the Miller-Rabin primality-test circuit of an n-bit integer by a
factor of 4/n while retaining prover-near-optimality.

Our original motivation comes from computations that have rel-
atively narrow width but large depth: the training phase of neural
networks. There the weights in the network are adjusted sequen-
tially by testing each item in the training set. Our question is: how
does a prover certify that the training was done with all items?

syndur 19YLI2A PajesTUNUILIO))
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5 APPENDIX: BEYOND POLYNOMIAL-TIME
CIRCUIT-UNIFORMITY

We briefly discuss the uniformity model in [11]. For a computable
function, which is parameterized by the number n of input bits,
such as testing if an n-bit integer is a squarefree number, a family
of circuits of size S(n), width ‘W (n) and depth d(n) that computes
the function for each n becomes algorithmic by virtue of the circuit
wiring algorithms. We also assume that the used constants, which
are bits, are the same for all circuits, which means that there is a
fixed number of them. Our protocols in Sections 2.2 and 2.1 have
assumed that the prover and verifier can compute (log "W(n))o(l) -
size circuits for those functions isor,, (¢, @), . . ., where n is now also
an input to the functions; note that we have spax = O(log W (n)).
Then the prover complexity is soft-linear in the size S(n) of the cir-
cuits in the family. The GKR verification of the circuit evaluation
of Figure 2 uses the wiring functions (17), where isor, ... are the
wiring functions of the circuits for Hy (14,12), and are therefore de-
rived from the circuits of the wiring functions isorp (¢, £), . .. of the
original family of circuits. In short, isor, . . . are the wiring functions
of the wiring functions. We observed in [11] that in (12) the circuits
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for isor, . . . need only be of depth sgéi)

and size 20(max) | the latter
of which is of order S (n)o(l), provided their own circuit wiring
functions isor, . . . can be constructed by the prover and verifier and
have depth O(log(smax)). Then in (17) we have Smax = O(Smax), the
degrees of isor, . . . are of order sr?l;(ul() and the sumcheck protocol at
Level k in Figure 2 can include the bits of 8 in (17) [11, Assump-
tion 2.2]. The prover complexity will remain S (n)°(M and the ver-
ifier complexity O(d(n) (log S(n))* + n(loglog S(n))<*) for con-
stants C3, C4, and there are still d(n) (log S(n))o(l) rounds.

The process of iterating GKR on the sumchecks need not stop
at the isor, . . . wiring algorithms, that is, the assumption that those
have depth O(log(smax)). If at selected place those isor, . .. have
size and depth sﬁf,}(), GKR could again be iterated for the arising
sumchecks.

6 APPENDIX: NOTATION

This appendix is not included in the ISSAC Proceedings.

Notation (in alphabetic order):

o the associative prefix operator that fills-in
the values of Vp41(f) for matching f =
srci(¢, a) (20)

verifier check for equality in interactive

protocol

Ld’ randomly uniformly independently dis-
tributed sample

A the base of the modular power

Alfl = (AR mod N)

a,a the integer label of a circuit node at Level ¢

) 3)

adde(a, B,y) GKR’s orginal circuit wiring function: see
Footnotel

and,or,not,. .. the arithmetic extension functions simulat-
ing boolean logic (1)

B; the digits of the exponent E in radix R

b, p an integer label of a circuit node at
Level (£ + 1) (see text after (8))

C1,Co,. .. constants in complexity estimates

% an integer label of a circuit node at
Level (£ + 1) (see text after (8))

d,d(n) the depth of the circuit

E the exponent of the modular power

equal the arithmetic extension function testing if
two boolean vectors are the same (2)
Fe(a, B,y) GKR’s orginal sumcheck argument (right

factor) (9)

GKR’s original sumcheck argument (right
factor), parameterized with values from
Level (£ + 1) (12)

GKR’s orginial sumcheck argument

as a circuit (14)

Ge(a, By, A1, A2)

H[(OC, ﬁ’ Ys
Ve+1(B), Ve+1(y))
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Notation continued (in alphabetic order):

isand, isor, isnot,
...,isconst

is_srcl(¢, a, f),

is_src2(¢, a, )
isor, ...

S, S(n)
se

Smax

srcl(t, @),

src2(, a)
srcl,...

T(n,...)
Vi(z,z')

V([fconst] (z)

We(a)

W, W(n)
We,a

[const]
ta

Xtk
xe(t)
Zp

z

the wiring functions testing the arithmetic
function of a node (arguments: level ¢,
node label @)

the wiring functions testing the labels f,y
of the nodes on Level (£ + 1)

if they feed into Node & on Level ¢ (8)

the wiring functions testing the aritmetic
function of a node in the circuit for the sum-
check problem (17)

a level in the circuit: £ = 0 is the output
level, and ¢ = d the input level

the input variables for the values on the pre-
ceeding level in H,

the complexity of multiplying two n-bit in-
tegers

the modulus of the modular power

a parameter for the size of the input

a prime number

the radix of the exponent E

the final random selection in the sumcheck
protocol on Level ¢

the argument from the 2-to-1 homotopy
passed from Level (£ — 1)

the size of the circuit

the number of bits in the node labels on
Level ¢

=maXg<p<d Se

the wiring functions computing the labels
of the nodes on Level (£ + 1)

that feed into Node « on Level ¢

the wiring functions for the feeder node la-
bel in the circuit for the sumcheck problem
(Figures 2 and 3)

time-complexities of algorithms on inputs
of size n

the input  decoder
He(&,n,1, 41, A2) (15,16)
the value-lookup polynomial at Level ¢ ex-
clusive input/constant values (6)

the polynomial which computes wy , from
values on Level (£+ 1) (5)

the width of the circuit

the value computed on a given input in
Node «a at Level ¢ (see text after (3))

the value of the input variable x,; at
Node « on Level ¢ (see text after (5))

the input variables at Level ¢ (see Figure 1)
the symbolic homotopy (7)

the integer residues {0, ..., p— 1} modulo p
the variable for the node label in V;(z) (3)

circuit for
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