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ABSTRACT

We present Hermite polynomial interpolation algorithms that for
a sparse univariate polynomial f with coefficients from a field com-

pute the polynomial from fewer points than the classical algorithms.

If the interpolating polynomial f has t terms, our algorithms, re-
quire argument/value triples (o, f(w?), f’(w')) fori = 0,...,t +
[(t+1)/2] -1, where w is randomly sampled and the probability of
a correct output is determined from a degree bound for f. With f’
we denote the derivative of f. Our algorithms generalize to multi-
variate polynomials, higher derivatives and sparsity with respect
to Chebyshev polynomial bases. We have algorithms that can cor-
rect errors in the points by oversampling at a limited number of
good values. If an upper bound B > ¢ for the number of terms is
given, our algorithms use a randomly selected w and, with high
probability, [¢/2] + B triples, but then never return an incorrect
output.

The algorithms are based on Prony’s sparse interpolation algo-
rithm. While Prony’s algorithm and its variants use fewer values,
namely, 2t + 1 and t + B values f(w'), respectively, they need more
arguments o’. The situation mirrors that in algebraic error cor-
recting codes, where the Reed-Solomon code requires fewer values
than the multiplicity code, which is based on Hermite interpola-
tion, but the Reed-Solomon code requires more distinct arguments.
Our sparse Hermite interpolation algorithms can interpolate poly-
nomials over finite fields and over the complex numbers, and from
floating point data. Our Prony-based approach does not encounter
the Birkhoff phenomenon of Hermite interpolation, when a gap in
the derivative values causes multiple interpolants. We can interpo-
late from ¢ + 1 values of f and 2t — 1 values of f”.
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1 INTRODUCTION

Let f(x) be a sparse Laurent polynomial in standard basis of pow-
ers of the variable over a field K,

¢
1
flx)= E cjxefeK[x,—], Vj:cj#0,e;€Z, e1>ez>-->er. (1)
x
=

We allow negative e; from the start so that our algorithms can be
transferred to orthogonal polynomial bases [2, 12]; see Section 5.2.
The derivative of f(x) in x is defined f’(x) = 25:1 cj ejxef_l,
which is a polynomial of sparsity t or < t — 1, the latter if there are
ej = 0, possibly taken modulo the positive characteristic of the co-
efficient field K. The classical Hermite interpolation algorithm can
recover f from max(ej,0) —min(0,e;) +1 = (f1+1)+-- -+ (£ +1)
values a;; = f(j) (&) for1 < i < mand 0 < j < ¢, where

deg(f) def max(e1,0) —min(0, e;) and f(j) (x) = d/f(x)/dx/ is the
Jj-th derivative of f. Here & € K are distinct arguments. The clas-
sical Prony sparse interpolation algorithm can recover f from 2t
values & = w forw € Kand i = io,ip + 1,...,ip + 2t — 1, pro-
vided the term values w® are distinct for 1 < j < t and e; can be
computed from w®. If ey, e; are not known before interpolation,
bounds can be used; if the sparsity ¢ is not known, either an upper
bound B can be used and the number of values becomes t + B, or
t can be computed by a Monte-Carlo randomized algorithm from
2t + 1 values [16].

We shall transfer the Prony method to the Hermite interpolation
problem. If there are at most first derivatives, that is ¢ < 1, it is
Prony’s idea that the term locator polynomial

A =2+ 4127+ Q= (2= 09) - (2 — @)

@)

minimally, if squarefree, linearly generates a; def f(w*) for an ar-
bitrary integer starting index ip and i = 0, 1, ..., 2t — 1. The polyno-
mial A(z) also generates, not always minimally, a; def it F(wh*h)
fori=0,1,...,2t — 1, because xf’(x) has a termset C {x% };<j<.
Therefore, the vector sequence ([Zi ]) i>0 is minimally generated
by the term locator polynomial A(z), which can be computed by
the matrix Berlekamp-Massey algorithm [22] using 1 candidate
right generator and two candidate right auxiliary polynomials. One
could also use a sequence of 2-dimensional row vectors and com-
pute A(z) as the highest degree invariant factor of the 2 x 2 right
matrix generator polynomial, with 1 auxiliary right polynomial
[22]. Here we pursue the goal adopted from Hermite interpolation
with error correction (multiplicity code decoding) [18, 19] and de-
termine the minimum number of values and derivative values re-
quired in order to always recover the term locator polynomial A(z).
If for all arguments ' one has both a; and a;, experiments quickly
show that t + [¢/2] arguments ©"* are required. In general for r
with1 < r < t - 1, if f(©"*) is input for 0 < i < t+r —1and
f(w"*) is input for 0 < i < 2t — r — 1 one can always recover
f, for fields K of characteristic 0 or sufficiently large or randomly
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selected positive characteristic.

We now list the major differences to Prony sparse polynomial
interpolation, for the case that highest order of derivatives is = 1;
higher derivatives are discussed later.

1. A total of 3t values and values of derivatives is minimally re-
quired; the Prony algorithm requires 2¢t. We assume for now
that the sparsity is input. Such an increase in the required num-
ber of values is familiar from multiplicity code decoding, but for
error correction the increase is a consequence of the Birkhoff
problem in Hermite interpolation, when there are gaps in the
inputs of the sequence of values (&), f'(&), f”(&),... ata
single &; (cf. [18, Example 1]). Here there can be gaps: in fact,
for r = 1 one has ¢ + 1 values and 2t — 1 values at derivatives
and recovers f.

2. In contrast to Prony’s algorithm, the minimal count of number
of values requires randomization in the selection of w. We have
examples where for a given o € K = C for which the term
locator polynomial A(z) in (2) is squarefree, 3¢ values are insuf-
ficient to recover f; see Example 3.3 below.

3. The number of arguments at which the algorithm computes
values and/or values at derivatives can be less than the 2t of
Prony’s algorithm, which is again familiar from the multiplic-
ity code of Hermite interpolation with error correction [18, 19].
If first derivatives (gradients) can be obtained at the arguments,
one can interpolate from #+[¢/2] distinct points. If higher deriva-
tives can be obtained, one requires even fewer points: ¢t + [¢/¢]
arguments &; for £-th order derivatives, and a total number of
values of (£ + 2)t; see Section 4.

4. For fields K of characteristic 0, and in certain situations for fields
K of characteristic p > 0 (see Step 4 below), we can compute the
term degrees e; without taking logarithms of the roots of the
term locator polynomial. In particular, we compute the term de-
grees even when evaluating at powers of a root of unity whose
order is below the degree of f, provided that the term values re-
main distinct. The idea was used before for fast sparse interpola-
tion algorithms of polynomial products [3] and of polynomials
given by straight line programs [10, 11] where the asymptotic
complexity was optimized, and the number of samples could be
increased by a constant factor.

1.1 Relation to Previous Work

Sparse approximation by possibly multivariate functions of data
that includes gradient information is a highly investigated subject,
from local piecewise spline interpolation to global compressive
sparsification by ¢£!-norm optimization [1]. The Prony algorithm,
which was originally designed for sums of exponentials [26] and
used for sparse polynomials over finite fields to decode the 1959
BCH digital error correction code, is suitable for floating point data
[6, 7]. Our algorithms for sparse polynomial Hermite interpolation
compute an exact fit, that is, can be used for scalars from a finite
field like the multiplicity error correction code [19, 23]. We note
that multiplicity code decoding has already been shown to be suit-
able for floating point data [14]. As in Hermite interpolation with
error correction, our algorithms necessarily require more data than
the Prony algorithm, but at fewer points. The reduction in the num-
ber of measurement points remains effective for higher derivatives
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(Section 4), in the multivariate setting (Section 5.1), when interpola-
tion sparse polynomials in orthogonal bases (Section 5.2) and when
correcting errors (Section 5.3). A special algorithm interpolates f

from f(1), f/(1),..., f2=D (1) [25].

2 SPARSE HERMITE INTERPOLATION

For the t-sparse Laurent polynomial f(x) (1) and all integers i
the sequences (a;)i>o with a; = f(wi‘)”) and (G;)i>o with a@; =
@"Fi 7 (0% for w € K are linearly generated by A(z) (2). There-
fore, we have forallr with1 <r <t-1

ay  ai ... A —-a;
Ao : : :
A def | a, ] ; def | —ay,
—1 Ay ... Qreg-2 © Atyr-1
Hyr . :hl‘,r for Hyr = 130 a{ z;,_l ht,r = —d: . (3)
Aot : : :

Gropet Gty . G2t_ra —azt—r1
The condition under which the term locator polynomial A is the
minimal generator can be characterized for each sequence sepa-
rately. For the sequence (a;)i>0 a necessary and sufficient condi-
tion is that the w® are distinct elements in K (see, for instance, [2,
Lemma 4.2]). We will prove in Section 3 that for randomly sam-
pled w the matrix H; - is non-singular with high probability, for all
r and all fields K of characteristic 0; for fields K of characteristic
p > 0, the statement remains valid if the prime p is sufficiently
large (see Theorem 3.2) or if p can be randomly chosen and f pro-
jected modulo p. However, det(H; ) = 0 is possible for fields K of
characteristic 0 even if all w® are distinct: see Example 3.3 below.
Our sparse Hermite interpolation algorithm randomly selects w,
checks the matrix H; , for non-singularity, and then proceeds sim-
ilar to Prony’s algorithm. Since the term exponents are computed
differently, we explicitly state the algorithm. Because the algorithm
uses f as a black box, it is useful to flag a false sparsity ¢ or erro-
neous a; or @; if that can be diagnosed.

2.1 Algorithm for Explicit Sparsity Input

Input: Let f(x) = Z§:1 cjx® € K[x, %] witht > 2,¢cj € K, ¢cj #0,
ej € Zforall j,e; > -+ > e;. The field of scalars K is of character-
istic 0 or p > 0. The inputs are:
> The number ¢t of terms in f andanr with 1 <r <t —1;
>an element w € K, w # 0, w # 1, and
> iy € Z and values a; = f(w"*) for0 <i<t+r—1,
G = Wt f (Wt foro <i<2t—r-1
such that det(Hy,,) # 0 where Hy, is defined in (3).
Output:
> Case 1(a): K has characteristic 0 or
Case 1(b): K has characteristic p > 0 and w” # 1 for all v > 1:
c1,...,crand ey, ..., e;z.
» Case 2: K has characteristic p > 0 and 30 > 2: o = 1:

~ - X def G
c1,...,cr and €y, ..., & such that for f(x) = §'=1 c]-xef we have
ai=f (w"*1), 0<i<t+r—1 and aj=w* f/ (o), 0<i<2t—r—1.

1. Solvethetxt linear system (3) in 7. See [22, Table 1, Column 2] for
fast algorithms. Because H;, on input is non-singular, A(z) =
zt+ Z;;é Ajzl = H;’:l (z — 0%), and the roots w® are distinct.

2. Factor A(z) = H§‘=1 (z—bj) inK[z]. If A(z) does not squarefreely
factor into linear factors, return “the a;, a; do not interpolate a t-
sparse polynomial.”
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3. Solve the two transposed Vandermonde linear systems

1 ... 1 c1 ap 1 ... 1 ¢ ao
by ... by cy a; by ... by & a
: : S Il IR P : A 4)
bt bt e ar-1 N Tl B - s

See [15, Section 5] for a fast algorithm.
If there exists acj = 0, then return “the a;, a; do not interpolate a
t-sparse polynomial.”
4. Compute the term exponents éj = Cj/cj for1 < j < t.
4(a) Case K has characteristic 0:
If there exists an index j with é; ¢ 7Z or 0¥ % bj return
“the aj, a; do not interpolate a t-sparse polynomial.” Else return
.,ct and é1, . .., &, sorted in descending term degrees.
Case K has characteristic p > 0: for proper inputs, we have
ej (mod p). Therefore, if é; ¢ Zp C K, then return “the
aj, a; do not interpolate a t-sparse polynomial.”
If p > |ej| = max(ej, —ej) then ej can be computed from é;.

C1, .-
4(b)
éj =

For j = 1,...,t do verify é; or éj — p by checking wb = bj
or b P = bj; if success in the latter, &j < é; — p. Note that
w% # w% P because wP # 1.
If all checks succeed, return cy,...,c; and éi,. .., é, sorted in
descending term degrees. Note that even if bounds for ey, e;
are known, the checks verify the a;, a; by verifying the Prony
generator A.
At this point, forall j € J C {1,...,t}, ] # @, ¢j is too large to
be directly determined from e; mod p. For those j we require
an integer logarithm algorithm, as is required in the original
Prony algorithm. We have two subcases.
4(b)i. Subcase w? = 1fora 6 > 2: here Zp(w) is a finite sub-
field of K, the latter of which could be an infinite function
field. Furthermore, 6 divides |Zy(w)| = p” — 1 where v > 1.
For all j € ] compute €; € Zg, such that Wb = b; and
€j = é; (mod p).One can Chinese remainder the index (dis-
crete logarithm) of b; with base w and é; using the relatively
prime moduli & and p. Ifé; exist forall j € J, returncy, ..., c;
and éy, . .., €, sorted in descending term degrees.
Subcase w has infinite multiplicative order. For all j € ]
compute €j € Z such that 0¥ = bj and verify that é; =
éj (mod p). Ifé; are computed forall j € J, returncy,...,ct
and é1, ..., ¢, sorted in descending term degrees. For exam-
ple,if K = Zp(u) is a rational function field, €; can be deter-
mined from the degrees of b;(u) and w(u).
4(b) concluded. At this point, either Step 4(b)i or Step 4(b)ii failed
to compute a term degree for a bj. Return “the aj, a; do not
interpolate a t-sparse polynomial”

4(b)ii.

Algorithm 2.1 is the basic algorithm. If the sparsity ¢ is not known
on input, we assume to have a black box for the values of f and f”.
In an online-algorithmic way, one computes values
f(w*) [ai

def
i = wi0+if/(wio+i) =

A= (5

]eKzforizo,l,...

i

one-at-a-time and terminates in two ways.

1. oneinputs an upper bound D > deg(f) = max(e;, 0)—min(0, e;)
> e; — ep and computes the sparsity ¢ by the randomized early

termination idea in [16]. The bound D is needed to control the
probability of correctness.
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2. one inputs an upper bound B > t and stops when any further
discrepancy in the values would push the term locator polyno-
mial beyond degree B, as in the termination criterion of the ma-
trix Berlekamp-Massey algorithm in [22].

We briefly explain both algorithms, assuming that the scalar
field K is of characteristic 0 or p > deg(f) + 1. For the random-
ized early termination algorithm in Item 1 we consider the infinite
Hankel matrix with 2-dimension vector entries

Ao A1 Az
A; Ay As ...
Hoo = | Ay A3 Ay ...

(6)

As in [16] we can prove that for symbolic w = x all k X k leading
principal submatrices are non-singular for iy # 0; see Theorem 3.5
below. Therefore, for a randomly selected w € S C K, 0 ¢ S and
1 ¢ S, the first singular leading principal submatrix is at dimension
t + 1, and t is computed with probability > 1 — (%t3 + %t)(el -
e)/IS| = 1- (%t3 + %t)D/|S|; see Corollary 3.2. One computes
£+ [(t+1)/2] values of f and ¢ + | (¢ + 1)/2] values of f.

If B > t is input, one can stop, with the assumption that Hy [;/27
is non-singular, which for random w is achieved with high proba-
bility,! after computing the values a; for i = 0,...,[t/2] + B -1
and g; fori=0,...,[t/2| +B—1, 2B+t values in total. We give the
argument when t = 0 (mod 2) without appealing to the matrix
Berlekamp-Massey stopping criterion [22]. For the matrix

Ay Ay A Ay

: : : . € KEB-OX(1+1) oy
AB-t/2-1 AB-1]2 - ABttj2-2 AB+t]2-1
the algorithm generates the (¢ + 1) st column by a linear combina-
tion of the first ¢t columns, which corresponds to the term locator
polynomial A(z) = zf + A;—1z"~1 + --- + A¢. The column relation
is determined by the first t rows and verified by the next 2B — 2t
rows. We suppose now that the column relation fails in a subse-
quent row [AL Ars1 Arsi-1 ALH] where L > B—t/2.

We only consider a discrepancy in the first row, that is,

def
0=Aoap +---+A—1ap44-1 +apy # 0. 8
As in [21, Proof of Lemma 2], we have
Ap Ay . Ap- 10...0 A O ...0
A1 o A Am 01...0 A A .0
Az/z—l A3t‘/2—1 o ALvec 00 ... 1Aq Ara oo
azjz ... A3t ar+t 00 ...0 1 A4pq ...
At/241 --- A3¢/241 --- AL+t+1 00 0 0 1
a.L aL'+t .- aL+}VI—1 00 0 0 0 1
PHy /50 0 0
0036 def
= o R E where M= t+(L—%+1)=L+%+1, 9)
5% P a (row-)permutation matrix;

note that the matrices in (9) are of dimension MXM, with M > B+1.
By the assumption that det(H,;/;) # 0 and § # 0 the first matrix
factor in (9) is a non-singular matrix, because the upper triangular
second matrix factor and the right-side block lower triangular ma-
trix are both non-singular. Therefore, the last column of the first
factor in (9) is linearly independent of the previous columns and

'In Example 3.3 a deterministic version using a high order root of unity for ¢ is
discussed.



Session 13: Sparse Polynomial Interpolation

cannot be linearly generated by the previous columns, implying
that the degree of the generator would have to be > M > B+ 1.
The cases where t =1 (mod 2) and/or when the discrepancy is at
ar+¢ are done similarly.

We briefly consider when Hy [;/57 is singular, that is, the ran-
domly selected w is unlucky,” for instance, an  in Example 3.3 or
an o with 0% = w® for yu # v. For a k < t one has computed a
linear combination A of the first k columns that gives the (k+1)’st
column at the first 2B—k (k even) or 2B—k—1 (k odd) rows of He (6),
using 2B+k values a;, a;. If the top left k X k matrix is singular, one
has verified that w as unlucky, but one still may recover f if B > t.
For the column relation A, Algorithm 2.1, Steps 2-4 are executed.
If the algorithm fails to compute an interpolant, one has verified
k < t. An example is B = t and w as in Example 3.3: k <t — 1 and
the (k +1)’s column in H; [4/2 is linearly dependent on the first
k columns, but the 2B + k < 3t — 1 values do not determine the
term locator polynomial. However, Algorithm 2.1 may compute a
k-sparse polynomial h(x) that fits the a;, a; for i < [k/2]+B, for ex-
ample, if 0% = w® = w® for distinct ey, ey, ex (cf. [2, Lemma 4.2])
and f(x) = cux% + cyx® + ¢, x®, h(x) = (cy + ¢y + cxc)x% with
€uCe, +evCe, +e€xCe, = eﬂ(cgy +Ce, +Ce,.) # 0. The computed inter-
polant h(x) fits the a; = f(w™*) = h(w*), a; = @O ' (0™*) =
@R’ (w'*) for all i > [k/2]+ B, because if there were a discrep-
ancy with the values of f, f”, the next linear generator would have
degree > B by a matrix factorization similar to (9) after permuting
rows so that the top left k X k matrix is non-singular, and could not
be the term locator polynomial for f. Therefore, unlike the early
termination strategy of Item 1 (cf. [12, example after the proof of
Theorem 4.3]), from a bound B > ¢ no interpolant is returned that
does not fit the infinite sequence of evaluations of f.

3 PROBABILISTIC ANALYSIS

We prove that for random « the matrix H;  in (3) is non-singular
with high probability. The exact statement is given in Theorem 3.2
below. The method follows that of the early termination proof for
the Prony algorithm in [16]. We shall first prove that for the value
x and evaluations a;(x) = f(x*%) and @;(x) = x%*ix
(r (x)|x:x,-0+,-) fori = 0,1,... the corresponding symbolic matrix

w =

H; r(x) € K[x, %] is non-singular, at least for a field K of charac-
teristic 0. We have the following matrix factorization:

[e4)) o1 ... O
def | a1 ar ... Apsron
Her = aQ o @1 | T
QAt—r-1 Ot—p ... Aot—r—2
I
Clﬁlo 0 0 1 ﬁl {71
io -1
0 Czﬁz .. 0 16 ... H
Wyr _ o . (10)
B : o .- i
0 0 .. ctﬁ;(’ 1B ... By

where Wy, is defined in (11) below for k = t and f; = x% are
the Laurent terms in f. The last 2 matrix factors in (10) are non-
singular because f, = x% # f, = x®” for 1 <y < v < t and the
last factor is a transposed Vandermonde matrix. We prove that the
first factor, W; , is non-singular by virtue that the highest degree
term has a non-zero coefficient. The proof is by induction on the
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dimension.

THEOREM 3.1. Letk > 1,0 < r < k and let

1 1 1

B B2 Pr
: : : r rows

def ﬁr—l ﬁr—l . ﬁr—l 1 kexk
we T ez PN

e1f e2fs exPr

. . . k —r rows
elﬂ{é—r—l eZﬁéc‘—r—l ekﬁ]li—r—l

where Bj = x® are Laurent terms withe; € Z forall 1 < j < k with
e1 >ez>--->eandej # 0 forr <k/2and1< j<k-2r. Then
the leading monomial of det(Wj. ) in the variable x is:

k=2r min(r, k-r)-1 k-1 '
sen(TTe)( ] (s erca) [ 147
v=1 p=0 j=1

(12)
where the first product in (12) is= 1 fork < 2r and the second product
in (12) is=1 forr = 0 orr = k, and where the sign is
(=1)Lk/2)+Lr/2]
(=1)k=Tr/21

k

for0<r<
ork<rsk,
2

U(k,r): (_l)rk/4-|:(_1)k/2+tk/4J: (13)
k-Tk - _k
(=1)k—Tk/4] for k=0 (mod 2) and r=73,
and where the exponents are
k-j-1
n(k,r,j) = max([+1, max(r,k —r) — j). (14)
We have n(k,r, j) 2 n(k,r,j+1) forall j with1 < j <k-1.
Specifically, for r = [k/2] the leading monomial is:
(DT (o1 = e2)(e3 — ea) -+ (e—1 — €) X
(Bip2) 7 (Bspa) /272 - (Brosfra) if K is even,  (15)

(=D (e — e3)(eg — e5) -+« (e_q — ) pF/271 x

(Bos) F+VI272(Byps) FHVI273 o (B 3B y) if K is odd.  (16)
Fork =1 (mod 2) andr = | k/2] the leading monomial is:

(-1) [(k_l)/ﬂel(ez —e3)(ea —es) - (e —ex)
BEDI (B KD (B sfry). (17)

Proor. The formulas are proven by induction with minor ex-
pansion along the first column of W, in (11), as if arising by them-
selves.? See Section 7. O

The condition that ej # 0 for r < k/2 and j < k — 2r in Theo-

rem 3.1 is required so that the factor ]_[Tji((o’k_zr) ey #0in (12). If
there is an index j* < k with ej» = 0, which over Z implies e < 0,
that is, there are terms with negative degree, the corresponding j*-
th column in Wy, in (11) contains zeros, and the leading monomial
changes. Note that for e = 0 the leading monomial (12) is valid
for r > 1 because the factor e; only appears for r = 0, in which
case det(Wj ) = 0. The case in which an ej« = 0 for j* < k can be

reduced to Theorem 3.1 as follows:

2See the proof of Theorem 4.1 for a full explanation.
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COROLLARY 3.1. Letk > 1 and

1 1 1 1 1
B B 1 B Br
r—1 r:—I : r:—I r:—l
whinder| P R/ P
kr e eji_g 0 €41 ex
e1f cepfia 0 e firg o exPi
Lef ™ e B 0 e BT e

]k)(k (18)
where fj = x° are Laurent terms withej € Z forall 1 < j < k with
ep > - >ejr1 > ejr =0 > ejryy > - > e; note that fj- = 1.
Let t(k,r, j*, j) be the permutation on {1,..., k} with

1 k
€Z[x, =" 1<r< 1< <k-2r,
x 2

wet j forj<j*—=1orj>k-2r+2,
w(k,r, j NS4 forj=k-2r+1, (19)
j+1 forj*<j<k-2r.
Then the leading monomial ofdet(Wk[j:]) in the variable x is:
k—2r min(r, k—-r)—1
(_l)k—Zr—J +1U(k, r)( 1_[ er(kr.j*, v)) X ( 1_[ (
v=1 p=0
k-1 (kr)
T,
er(k,r,j* k—2u—1) ~ er(k,r,j*,k—Zy))) l_[ﬁf(k’,j*,j), (20)
Jj=1

where =1 and ej+=0, and where o is defined in (13) and n in (14).

Proor. All terms in det(Wj,) when keeping e; and f; as vari-
ables factor like the lead term in (12) using a different variable or-
dering for the f;. Substituting the variable f; = x®r(krj%) and
the variable ej with the numeric value e; (g, j= j) all terms corre-
sponding to a variable orderings for the ; which place 8« before
the (k — 2r + 1)-st position and which would have on evaluation
a higher degree in x have a zero cofficient because of the factor
]_[’f;fr ey in (12). O

Note that W;, or Wt[f] can be non-singular even if there is a
pair e, = e, with y # v: for instance in (16) if e; = e2. The matrix
H; r is then singular by virtue that the Vandermonde factor in (10)
is singular.

THEOREM 3.2. Let f,t,r, i be as in the input specifications of Al-
gorithm 2.1. Let K be a field of characteristic 0 or p > deg(f) +1 =
max(eq, 0) — min(es, 0) + 1. Suppose the element w is randomly and
uniformly selected from a finite set S C K with0 ¢ Sand1 ¢ S
of cardinality |S|. Then the probability that Hy , in (3) and Step 1 is
non-singular is > 1 — (t — 1)%(e; — e;) /S|

Proor. By the matrix factorization (10) and by Theorem 3.1
and Corollary 3.1 the det(H;,,) # 0, both in characteristic 0 and

p = deg(f) + 1, the latter because the coefficients of the lead-
[

ing monomials of W; - (12) and Wtf] (20) are non-zero modulo p.
It remains to estimate the degree in x of the leading and trailing
monomial of both det(W; ;) and the determinant of the transposed
Vandermonde factor (10). Note that the diagonal factor in (10) is
non-singular for all w € S. The degree of the leading monomial in
det(W;,r) is by (12,20)
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- t—2
< Y lentr) <Y (e —j+)(t-j-1)
Jj=1 j=1

)

- é(t 1) (t-2) (e —t+3). (21)

By reversing the monomial order f; < ... < f; we have (-1) X
the degree of trailing monomial in det(W;,) to be bounded from
below by —(t — 1) (t — 2)(3e; — t +3) /6. For the determinant of the
right transposed Vandermonde factor the corresponding bounds
are +t(t — 1)(3e; — t + 2)/6 for j = 1,t. Summing the two dif-
ferences of the upper and lower bounds yields a degree bound
(t—1)2(ey — e;). Sharper bounds can be derived for a given r from
the first estimate in (21). O

ExampPLE 3.3. When computing the determinant of W;, as a
polynomial in x one obtains values w € K for which w® # w® for
all1 < p < v < t but for which det(H;,,) = 0 (Where H; , is defined
in (3)). For example for t =3,r = 1and ez = e; — 1,e3 = 1 — 2 we
have

1 1 1
det(W3,1) = det( €l e;—1 e1—2

e1x® (e;—1)x¢17! (e;-2)x¢172

=—x2(x—1)(e1x —e1 +2). (22)

Therefore, for v = 1- % we have det(H; ) = 0and fi(x) = c1x*1 +

cox€ Ly egx€172

cannot be interpolated froma; = fi( (1- %)i ) for
i=ip,...,ig+3and a; = (1-%)7{( (1—6%)")fori =ip,...,i0+4
Ifwé{0,1,-1,1- %} Algorithm 2.1 interpolates fi from 9 values.
Here » # —1 because one needs 0! # w® = w72,

We give a second example with an equal number of a; and a;.
Lett = 4,r = 2,e2 = e1 —1,e3 = e1 — 5,e4 = e1 — 6. Then
det(Wy2) = —x26 "1 (x2 4 3x + 1) (x* + x3 +6x% + x +1) (x — 1)*. For
of 6 vectors is insufficient to interpolate f5(x) = c1x® + cox~1 +
c3x€170 + ¢4x€ 7% Note that for w = 2, Algorithm 2.1 interpolates
f> from 12 values, which is fewer values than the classical Hermite
algorithm for e; > 12.

We do not know if a root of unity w € C for which w% # ¢
forall 1 < p < v < t always yields det(H;,) # 0. A root of unity
© € Cofprime order > (t—1)%(e;—e;)+2 always has det(H; ;) # 0
by Theorem 3.2. O

REMARK 3.4. Corollary 3.1 considers Wk[]r 'l (18) as a polynomial
matrix with integer coefficients. When takfng its determinant mod-
ulo the characteristic p > 2 of the coefficient field K of f in (1), the
coefficient of the term (20) can map to zero. However, a lower de-
gree term will survive if there exists a permutation r on {1, ..., k}

_ in(r, k-r)-1

suchthat(l_[]f/:fr er(v))([—[zl:lg(r ) (er(k—Zp.—l)_eT(k—z,u))) £
0 (mod p). Note that it is possible that det(Wk[jr ]) = 0 (mod p)
for distinct term values w® # w® forall1 < pg < v < ¢, for

instance, ife; = e3 =0 (mod p) andr =1. O

The next theorem is used for estimating the probability of suc-
cess when computing the sparsity t by the randomized early ter-
mination strategy.

THEOREM 3.5. Let K be a field of characteristic 0 or p > deg(f) +
1 = max(e, 0) — min(es, 0) + 1. Then Hy [x/27 € K[x]®<k (10) is
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non-singular for iy # 0 and forallk = 1,2,...,t.

Proor. The proof follows directly from [16]. The highest order
term in Hy [x/2 is for even k, for example, by the Cauchy-Binet
argument of [16, Proof of Theorem 4] and by (15)

iptk—1+k/2—1 pig+k—2+k/2—1 pig+k—3+k/2-2 pig+k—4+k/2—2
1 ﬁz ﬂ3 ﬁ4
. plo+3+1 pig+2+1 pig+1 pig
B Bl BB
We note that in [8, Theorem 4.1] the condition iy # 0 is removed
for the Prony algorithm for fields K of characteristic # 2, but we do

not know if the argument can be generalized to H ¢ /27 for k > 2.
m]

(23)

We now give a very rough estimate on the probability that for a
random @ the matrices Hy, /2] are non-singular for all 1 < k < t.

COROLLARY 3.2. Let f,t,r, iy be as in the input specifications of
Algorithm 2.1. Let K be a field of characteristic0 or p > deg(f)+1 =
max(eq, 0) — min(ez, 0) + 1. Suppose the element w is randomly and
uniformly selected from a finite set S C K with0 ¢ Sand1 ¢ S
of cardinality |S|. Then the probability that Hy [x/2) in (3) is non-
singular for allk with1 <k < tis>1— (35 + 2t)(e1 —e) /IS].

Proor. Each det(Hj [x/2)) has degree < (k — 1)%(e1 — €;) +

k(e1 — e;) by the estimates in the proof of Theorem 3.2 and (10),

P B7E (cf. (23)). The sum for all

k=1, tisit(t—1)(2t = 1)+ §t(t +1) = 33+ ¢. Note that
the bound is not sharp. O

after removing the factor f

4 HIGHER DERIVATIVES

The algorithm generalizes to higher derivatives. We only discuss
the case when the highest derivative values are second derivatives,
and the derivative values are evenly distributed. We suppose that
second derivatives values a; = w2(i°+i)f"(wi°+i) fori =0,1,...
are also available for interpolation. The linear system (3) in Step 1
now is

Hp 1/ po /3141 A = Bt /3 0p0 /3 41 (24)

with pp = p1 = 0fort = 0 (mod 3), po = 1,p1 = O fort =
1 (mod 3), po = 1,p1 = 1for t = 2 (mod 3), and where the aug-
mented coefficient matrix [Hy,r r, | bt r,r,] of (24) is (25):

ag ai ar-1 —a
Ary—1 ary Arg+t—2 —Aro+t-1
o a ar-1 —a;
. . . . (25)
ar,—1 ar, Ary+t-2 —0ry+t-1
ao a ar-1 —at
L At—ry—r1—1 At—ro—ry - - - Q2t—rg—r1 =2 | —A2t—ry—r1—1 ]

In total, we need 4t values at t+[t/3] arguments & = ©™*%. The co-
efficient matrix Hy r, r, in (25) is with high probability non-singular
by Theorem 4.1 below, which corresponds to (15,16) in Theorem 3.1
above.
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THEOREM 4.1. Let k > 1 and let where §; = x are Laurent
terms withej € Z forall1 < j < k withe; > eg > -+ > ey. Then
the leading monomial in the variable x of det(Wi | k/3 |+, |k/3)+1c;)>

where Wi . . € Z[x, %]ka, 0<ry<k,0=<r <k-—ryis(26),

1 1 1
B B2 Br
r(-)fl r(.)fl ﬂr(.)fl
1 2 k
ey () (73
eip1 ez ex P
: : : . (206)
-1 -1 -1
e e, erfy
ei(e—1) ez(e2—1) ex (ex—1)
er(er-1)p ez(e2-1) B2 ex (ex—1) Br
k—ro—r1—1 ro—ri-1 ero-ri-1
Ler(er—1)B; 7 ex(e-1)f 0T e 0T

is the following ifk = 0 (mod 3) and ko = k1 = 0:

k=2 k-1
O (T o= e (e =) ) [] (v = evin))
p=1 v=2

p#=1 (mod 3) k/3-1 v=2 (;wd 3)

(B3j—2Bsj-1B3)*>7;  (27)
=1

J
ifk =1 (mod 3) andxyp =1 andk; =0:

k-2 k-1
(+1) ( 1_[ (e,u - ep+1)(e,u - e,u+2))( 1_[ (ev — ev+1)) X
p=2 v=3

p#=2 (mod 3) (k-1)/3-1 v=0 (r_nod 3)
P N ja
ﬂf b/ 1_[ (B3j—1P3jB3j+1) V37T (28)
Jj=1

ifk =2 (mod 3) andxp =1andk; = 1:

k=2 k-1
-1 ( ﬂ (e = €e1) (e = er) ) [ (ev = evs1)) X

p#=0 (mod 3) (k-2)/3-1 v=1 (r_nod 3)
(B1fpa) k23 1_[ (B3 Psjai Bajea) DT (29)
j=1

ProoF. As for Theorem 3.1, the proof is by induction on k. We
write FLM(k, ro, r1; €1, . . ., ex) for the formal leading monomial of
det(Wy ,.r,), when the e; coefficients are symbols. The terms f;
shall retain their numeric degrees. For k = 0 (mod 3) we obtain
as the formal leading monomial:

FLM(k, k/3,k/3;e1, ..., ex) =
k/3-1 k/3-1 k/3-1
1 2 3
det(| et e i et )X
e(ei-DA ey (e )T es(es-1) i
FLM(k - 3,k/3 - 1,k/3 — 1;e4,...,e). (30)

Note that the sign in (30) is proper: it takes 3 row exchanges to
move the rows k/3, 2k/3 and k to rows 1, 2,3, and then k/3 — 4 ex-
changes to move the original row 1, which now is in row k/3, back
to row 4, 2k/3 — 5 exchanges to move the original row 2, which
is now in row 2k/3, back to row 5, and k — 6 exchanges to move
the original row 3, which is now in row k, back to row 6. The Van-
. . L k/3-1 ok/3-1 pk/3-1
dermonde determinant in (30) is = (-1)§; B A (e1 —

e2)(e1—e3)(e2—e3) which by (27) for k—3 and exponents ey, . . ., ex
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proves (27) for k. The leading monomial formulas (28, 29) are proven
similarly. O

The remainder of Section 2, performing early termination (Item 1)
or having a bound B > ¢t (Item 2), carries over. Theorem 4.1 gener-
alizes to derivative of order > 3 via its proof.

5 VARIANTS

The Prony algorithm for sparse polynomial interpolation has been
used in many settings. One of the first is the multivariate version in
[4].In [24] the algorithm was deployed for Chebyshev and Pochham-
mer polynomial bases, which in [12] was generalized to Chebyshev
bases of Second, Third and Fourth Kind. The numerical condition-
ing and stability has been studied extensively, as the algorithm
builds exponential and harmonic sparse function approximations
(see [6] and the references given). Digital error correction, that is,
removing catastrophically false values, which is different from de-
noising the data, was introduced for the Prony algorithm in [5, 17],
and for orthogonal bases in [2]. The state-of-the art for error cor-
rection in sparse univariate interpolation today is [20]. All those
adaptations can be transferred to sparse Hermite interpolation.

5.1

The Prony algorithm is transferred to multivariate polynomials in
[4]. We explain the transfer to sparse interpolation with values of
partial derivatives, that on the case of bivariate polynomials:

Multivariate Sparse Hermite Interpolation

t

.
f(x1,x2) = Z ijlj’1

=

.
x,"* € K[xy, x2],

Vj:cj #0, (ej,l, e]‘,z) e 72
The corresponding values are

aj = f(w;OH

10+1) and a;

10+i(3f(X1, x2)
@

X1

10+z)
xl=(,<)l xz

Again, the sequence ( [ ]),>0 is linearly generated by the term
Ej 1

locator polynomial A(z) =[]} = 1(z= 2] ) and for randomly
selected w1, w2 the matrix H;  (3) is non-singular with high prob-
ability, as indicated in the proof of Theorem 3.1. The technique in
Step 4 in Algorithm 2.1 can possibly determine the e; ;’s without
a logarithm, but a logarithm computation is required for the e; »’s
like in Steps 4(b)i and 4(b)ii. For fields K of characteristic p > 0,
one may need an additional algorithm for computing e; 1, e; 2 from
bj = wfj’lwzj ?: in [4] w1, wy are chosen different prime numbers
for K = Cso that the b;’s are distinct and the ej,1, ej,2’s are recover-
able, but for fields K of characteristic 0 we can obtain e;; directly
from the derivative values and ej as a logarithm. In summary,
the sparse multivariate Hermite interpolation algorithm recovers
f(x1,x2) from 3t values, which include values at a partial deriva-
tive in one of the variables, at ¢ + [¢/2] distinct arguments for f.
Last, we note that the values at both partial derivatives may de-
crease the required number of arguments for certain exponents
ej1,ej,2, but for the polynomial f(x,y) = Z§‘=1 cj(x1x2)%, addi-
tional values of 9f (x1, x2) /dx2 seem not to help (cf. (26)). However,
the algorithm in [27] transfers and partial derivatives in each vari-
able can reduce the number of arguments to f in that algorithm,
at the cost of more values. In general, the algorithm in [27] uses
more values than the multivariate Prony algorithm (see also [9]).
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5.2 Chebyshev Polynomial Basis

We explain the sparse recovery on Chebyshev polynomials of the
First Kind; Second to Fourth Kind follow from the substitutions in
[12]: Let f(x) be a t-sparse polynomial in Chebyshev basis,

t
f(x)=Zc]~Tej(x)€K[x],Vj:Cjio,ejEZ,e1>-~->et20. 31)

where (Trn)m>o are the m-degree Chebyshev Polynomials of the
First Kind (we write “Chebyshev-1 Polynomials”):

Tm(x) | [0 1|"[1
Tin+1(x) -1 2x x
1 1
Vm € Z; Tm( (y+y)) E(y

Tin(cos(0))=cos(m6) with y = exp(if).

m

(32)

Note that for negative subscripts we have T_,;(x) = T (x). The
recurrence (32) is non-trivial if the characteristic of K is # 2.

We suppose that both f(x) and f’(x) can be evaluated as a black
box. The degrees e; and coefficients c; are recovered by sparse
polynomial Hermite interpolation of g(y) via the substitution

def 1 - ¢j e 1
9y )—f( (y+y)) Zg(y +yT])

Jj=1

(2] (33)
The Laurent polynomial g(y) in power basis is a 2t-sparse or a
(2t — 1)-sparse polynomial, the latter if e; = 0, and algorithms of
Section 2 apply. By the chain rule for the derivative we obtain

, dg(y) 1 1
gy = =(f )Xg(l—?)’

which is a polynomlal identity over any field of characteristic # 2,

y9'(y) is equal

x=3(y+d)

and therefore we have g(y) def

~

c
=23

j=1

y__ iy + (= e]) )

If, for example, the Laurent polynomial g(y) is 2¢-sparse, the sparse
polynomial Hermite interpolation algorithm requires 6t values at
3t arguments. But because g(y) = g(1/y) and g(y) = —g(1/y)
one only computes 3¢ + O(1) values of f: for example, we can set
ip = —[(3t — 1)/2] in Algorithm 2.1 and use g(w™*’) and G(w™*’)
fori=0,1,...,3t — 1. Because the values for exponents ip +i > 1
can be computed from those at exponents —ip — i, one requires
N =2([(3t—1)/2] +1) < 3t +2values of f and f" at n = [ (3t —
1)/2]+1 < t+[t/2]+1 arguments. Note that the additional “+O(1)”
evaluations may be reduced by the technique in [12, Section 2],
which uses the fact that the term locator polynomial A here is a
reciprocal polynomial with a symmetric coefficient vector.

5.3 Error Correction

The error correction variants remove erroneous d, # f(&c) = ax
and erroneous dx # &cf’ (&) = dx from the list of input values
gifori=0,...,L —1, tﬁi fori =0,...,L — 1, where B is an upper
bound for the sparsity: ¢ < B. Note that by the hats “*” on the in-
put values we indicate that some values can be erroneous. As in the
multiplicity code one assumes that there are k < E errors, where
the bound E is input and can be determined from the error rate
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in the values. Furthermore, the algorithms, which are restricted to
polynomial-time running time, produce a list of valid sparse Her-
mite interpolants. The basic algorithm uses E + 1 redundant blocks
of 3B values: we list the true polynomial values without errors:

f(wlo) ’f(wi'0+B+!'B/2'|—1),f,(w;0 f/ zo+B+ |B/2]- 1)
(34)
FIE ) fllE B B2 1>f< I ) BB

We enforce in (34) that all arguments are distinct: 0}, # wy for
(v,i) # (. m). If in the N = 3(E + 1)B input values d;, 4; there
are k < E errors, at least one block is error-free and Algorithm 2.1
recovers f in the list of Hermite interpolants with < E errors; there
may be others. Here the sparsity is computed from the largest non-
singular Hy /27 (3) of that block, and all remaining values and
all values in all other blocks are checked to verify that there are
< E errors in total. We pursue the goal in [17, 20] and reduce the
number of values N < 3(E + 1)B while recovering f in a list of
Hermite interpolants, all of which have sparsity < Band < E errors
in the values. Note that there are n = (E + 1)(B + [B/2]) distinct
arguments to f in (34), and our goal is to have error correction at
fewer arguments than without derivatives [17, 20]. The techniques
in [17] are different from those in [20], the latter producing a higher
error tolerance. Both methods apply to the Hermite setting.

As in [17], we can sub-sample at all arithmetic sequences of ex-
ponents: d .y fori=0,...,B+[B/2] -1, aX+,¢ fori= B+
|B/2] — 1. For a list of N = 2n values dj,+;, djp+i, I = 0, 1, .on-1,
we guarantee that there are no errors for one pair (y, ). On that
sub-sample the t-sparse polynomial f}  (x) def 2521 cja)ef)(xef'/’ is

interpolated. We have a,,;y = Z;’:l Cjejwef()(”‘/’),

¢
wif);’lp(wi) =o' Z Cjwefxejl//w(efw_l)i = Yaypiy- (35)
j=1
Therefore, Algorithm 2.1 recovers f; ;(x) from the good values
ay4iy and Yy ;y. From (x, ) and f, 4 (x) we compute f. Finally,
we determine the minimum ng, /21, such that in the sequence of

2-dimensional vectors [gi ] fori=0,...,ngy[B/21,E — 1 one guar-

.,B+[B/2] — 1 without
any of the E errors. For example we obtain from [17, Table 1], that
when removing any arbitrary 11 elements from {1, ..., 124} one al-
ways has an arithmetic sub-sequence of length 12 in the remaining
elements. Therefore, for B = 8,E = 11 and n = ny2,11 = 124 we can
always find a sub-sample of B+ B/2 = 12 clean value vectors from
which one can interpolate the 8-sparse polynomial f. Overall, we
need N = 2n = 2 - 124 = 248 values to correct < E = 11 errors;
note that 3(E+1)B = 3-12 - 8 = 288, which is the count (34) for re-
dundant blocking. Without derivatives, one needs N = n = ny¢ 11
values. The exact entry is not computed in [17, Table 1], but we
have nig 11 > n13,11 = 156, which is > 124 arguments.

In [20] we raise the decodable error rate by a different redundant
blocking technique. We demonstrate the technique on the example
B =3 (cf. [20, Example 1]). We first interpolate g; fori =0,...,6 =
2B and g; fori = 0,...,4 = 2B — 2, a total of 4B = 12 values,
and correct < E = 1 error. The augmented coefficient matrix that
corresponds to the linear system (3) is

antees a sub-sample [d)( v ] fori=0,.
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Row 1 o a1 Gy a3
Row 2 ay @y as 4y
Row 3 z a3 4y s (36)
Row 4 as a4 ds de
Row 5 ap ay az as
Row 6 ay a as as

Again, with < 1 erroneous entry, we recover f and possibly other
interpolants that cause < 1 error. If the error is in the a;, we com-
pute the candidate interpolant from the first 4 rows by the Prony
algorithm. If the error is in d; # f(»™*?), say, we compute candi-
date interpolants from Rows 4-6. We have for b1 = 0, by = 0,
by = 0

0]

as aq as by b3 c1by o0 Lby b

[ao a az] =| e e e3 0 czbéo 0 1b, b3 (37)
a ap as e1by exby e3bs 0 0 b;o 1 bs b§

(cf. (10)). As in Theorem 3.1 and Corollary 3.1, for randomly se-
lected w the 3 X 3 matrix in (37) is non-singular with high prob-
ability and f is computed as one among the valid Hermite inter-
polants. Similarly, we handle erroneous dy, a1, ds, ds and dg. If a3
is erroneous, we proceed as in [20]: we replace d3 by a variable a
and compute the determinant of the 4 X 4 submatrix of the first
4 rows. We obtain a degree 4 polynomial in a one of whose roots
is the value a3. Therefore, we can try all 4 roots in computing the
candidate interpolants.

Now suppose that we wish to correct E errors. The count of
values is

N=(E+2 [ E-1 ]_,_3)  n= {%(23 + 1)+B+|-1§3-| if E even,

£H (2B+1) if E odd.

First, we assume that E = 1 (mod 2). We interpolate values in
(E + 1)/2 blocks of 4B = 12 values. There cannot be > 2 errors in
each block, because then there would be E+1 errors. Therefore, one
block has < 1 error, and the algorithm computes f among the can-
didate interpolants. In summary, from a total of N = (2E + 2)B =
(E + 1)/2 (4B) values we can list-Hermite-interpolate a polyno-
mial of sparsity < B in the presence of < E errors. Second, if
E = 0 (mod 2), the total count is N = E/2 (4B) + 3B, which are
E/2 blocks with 4B values and one block with 3B values. One can
decode from the error-free last block. If there are > 1 errors in the
last block, there must be one block of 4B = 12 values with < 1
error, which interpolates f. For B = 8 and E = 11 we have N = 200
values at n = 102 arguments, both of which are fewer than the
counts N = 248 and n = 124 above by sub-sampling at arithmetic
sub-sequences of indices. The comparable count in [20] without
derivatives is N = n = |4E/3 + 2| B = 128, which is fewer values at
> 102 arguments.

6 CONCLUSION

In the Prony approach to sparse model construction, the gradient
(rate of change) of the data at a measurement point can be used to
reduce the number of measurement points, but that at the cost of
more overall data. A main difference is that the minimum number
of measurement points is achieved only if the points incorporate
some randomness. The precise mathematical nature of those non-
random points for which over-sampling becomes necessary and
how much oversampling suffices remains to be understood.
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7 APPENDIX: PROOF OF THEOREM 3.1
DETAILS

As stated, the formulas are proven by induction with minor ex-

pansion along the first column of Wy, in (11). The signs o and

exponents 7 satisfy the following recurrences:

1 for k=1 and (r=0 or r=1),
-1 for (k,r) = (2,1),
ok, r) =3 (-1 o(k-1,r-1) for% <r<k,
(-D)**1g(k=1,r) foro<r<¥,
(-1)¥25(k—2, X ~1) for k>4 and k=0 (mod 2)
and r=k/2; (39)

k—j for r=0 or r=k,
r—1 for 2r>k and j=1,
~_ ) n(k=1r-1,j-1) for 2r>k and j>1,
nk.r.j) = k-r-1 for 2r<k and j=1, (40)
r](k—_l, r,j—1) for 2r<k and j>1,
%—[%] for 2r=k.

For k = 1 one has det(W;1) = det([l]) = 1 and det(W1p) =
det( [el]) = e;. Now let k > 2. We use the exponents e,..., e
as arguments to Wy ,(e1, ..., eg) in (11). Note that here f; = x%;
one could also use a multivariate term order with the variable or-
der 1 > .-+ > P, as we need in Section 5.1. If r —1 > k —r — 1,
then f7 ~1 is the highest degree term in the first column, and the
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leading monomial of det(Wj, (e, . . ., ex)) is (—l)rﬂ;_1 X the lead-
ing monomial of det(Wj_1,_1(ez,....ex)). ifr =1 < k—r—1,
then ﬁ’f‘r ~1 is the highest degree term in the first column, and
the leading monomial of det(Wy ,(e1, ..., ex)) is (—l)k_’elﬁf_’_l
x the leading monomial of det(Wy_q ,(ez, ..., ex)). We obtain (12,
39, 40) for all k # 2r.

Finally, we establish the formulas for k = 2r. The leading mono-
mial, denoted by LM, of det(Wj g/ (e1, .- -, ex)) is

= (—l)k_lelﬂf/z_l X LM( det(Wk—l,k/z(EZs cees ek)))+

(~1)F21 B2 LM (det(Wh_p ka1 (€2 k).

The leading monomial in (41) is given by (16) and the leading mono-
mial in (42) is given by (17), both for k—1 replacing k. Applying the
induction hypothesis for k—1, one obtains as the leading monomial
of Wi.(ey, ..., ex), using (39):

(41)

(42)

(-1) x ok -1, g) 1+ (~1)F 21 g(k — 1, g ~1e) B x
~———

(-1)* g (k-2,5-1)

(3~ ea) - (exr — ) B (BB /22 Brsfrg. (43)

Because k is even, the first factor in (43) is = o(k, k/2)(e1 — e2) by
(39), which concludes the inductive proof.

N———— —
(-Dka(k-2,5-1)

8 APPENDIX
This appendix is not included in the ISSAC Proceedings.

Notation (in alphabetic order):
ig+i

A; A = wio{f}‘;i("w%H) ] = [%] eKPfori=0,1,...

ai, @i, @ a; = f(0™*), a; = Wt f’(w*) (Section 1 and
Input to Algorithm 2.1), & = @?(0*) £/ (gl
(Section 4)

a;, a; either aj, a; or an erroneous values (Section 5.3)

B a term bound B > ¢t (Item 2)

bj the term values b; = w®

B the terms f; = x% or fi; = xfj'lx;’"z

cj the coefficients of the terms in f

D an upper bound D > deg(f) (Item 1)

1 the discrepancy (8)

E an upper bound for the number of errors in d;, a;
(Section 5.3)

ej the term exponents in f

f(x) the sparse interpolant (1)

9(y) the transformed f((y + 1/y)/2) (33)
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Notation continued (in alphabetic order):

0 the order of w: w? = 1 (Case 2 in the Output spec-
ifications of Algorithm 2.1)

Hiyr,Hpp,r, the coeflicient matrices (3) and (25), resp.

H; r the symbolic coefficient matrix (10)

h(x) an alternate sparse interpolant if w is unlucky; see
last paragraph of Section 2

n(k,r, j) the exponents of the leading term of det(W;,)
(14,40)

ig, i indices of the arguments &;, 0™** of f, f’

Jj indices of the terms in f

K the field of scalars

k the intermeditiate dimensions of Wy , (11), WkDr 'l
(18), Wh.rory (26);
the actual number of errors k < E (Section 5.3)

14 the order of derivatives f () for which there are
values

Aj, A(z) the term locator polynomial A(z) = zf + ;12" 71+
s+ A = ]_[521(2 - w%) (2).

N the total number of values, including values at
derivatives

n the number of arguments &;, w'*!

& arguments to f, f’

p the characteristic of K, if positive

7,70, 71 the number of distinct arguments to f is t + r (3)

ort+ry (25), to f"itis 2t — r (3) or t +r1 (25)
S the finite subset S C K from which w is sampled

o(k,r) the sign of the leading term of det(W; ) (13,39)

Tin(x) the m-degree Chebyshev polynomial of the First
Kind (Section 5.2)

t the number of terms in f

t(k,r,j*,j) row permutation on Wy, to move rows withe; = 0
back (19)

the left matrix factor of H;  (10); the right factor
is a transposed “V”andermonde matrix, hence the

AR

W

We o the symbolic left matrix factor for 2 derivatives
(26)

X, X1, X2 the variables in f

v the linear arithmetic index subsequence y + iy for
subsampling (Section 5.3)

z the variable in the term locator polynomial

0] the randomly selected base for the arguments &; =
O)lo+l
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