
Session 13: Sparse Polynomial Interpolation ISSAC ’22, July 4–7, 2022, Villeneuve-d’Ascq, France

Sparse Polynomial Hermite Interpolation

Erich L. Kaltofen
Dept. of Mathematics, NCSU and Dept. of Computer Science, Duke University

Raleigh, Durham, North Carolina, USA

ABSTRACT

We present Hermite polynomial interpolation algorithms that for

a sparse univariate polynomial 5 with coefficients from a field com-

pute the polynomial from fewer points than the classical algorithms.

If the interpolating polynomial 5 has C terms, our algorithms, re-

quire argument/value triples (l8 , 5 (l8), 5 ′(l8)) for 8 = 0, . . . , C +
⌈(C +1)/2⌉ −1, wherel is randomly sampled and the probability of

a correct output is determined from a degree bound for 5 . With 5 ′

we denote the derivative of 5 . Our algorithms generalize to multi-

variate polynomials, higher derivatives and sparsity with respect

to Chebyshev polynomial bases. We have algorithms that can cor-

rect errors in the points by oversampling at a limited number of

good values. If an upper bound � ≥ C for the number of terms is

given, our algorithms use a randomly selected l and, with high

probability, ⌈C/2⌉ + � triples, but then never return an incorrect

output.

The algorithms are based on Prony’s sparse interpolation algo-

rithm. While Prony’s algorithm and its variants use fewer values,

namely, 2C + 1 and C +� values 5 (l8), respectively, they need more

arguments l8 . The situation mirrors that in algebraic error cor-

recting codes, where the Reed-Solomon code requires fewer values

than the multiplicity code, which is based on Hermite interpola-

tion, but the Reed-Solomon code requires more distinct arguments.

Our sparse Hermite interpolation algorithms can interpolate poly-

nomials over finite fields and over the complex numbers, and from

floating point data. Our Prony-based approach does not encounter

the Birkhoff phenomenon of Hermite interpolation, when a gap in

the derivative values causes multiple interpolants. We can interpo-

late from C + 1 values of 5 and 2C − 1 values of 5 ′.

CCS CONCEPTS

•Mathematics of computing→ Interpolation.

KEYWORDS

model fitting; gradient data; measurement minimization;

ACM Reference Format:

Erich L. Kaltofen. 2022. Sparse Polynomial Hermite Interpolation. In Pro-
ceedings of the 47th ACM Symposium on Symbolic and Algebraic Compu-
tation (ISSAC ’22), July 4–7, 2022, Lille, France. ACM, New York, NY, USA,

10 pages. https://doi.org/10.1145/3476446.3535501

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
the author(s) must be honored. Abstracting with credit is permitted. To copy other-
wise, or republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Request permissions from permissions@acm.org.

ISSAC ’22, July 4–7, 2022, Villeneuve-d’Ascq, France.
© 2022 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-8688-3/22/07. . . $15.00
https://doi.org/10.1145/3476446.3535501

1 INTRODUCTION

Let 5 (G) be a sparse Laurent polynomial in standard basis of pow-

ers of the variable over a field K,

5 (G)=
C∑

9=1

2 9G
4 9 ∈K

[
G,

1

G

]
, ∀9 : 2 9≠0, 4 9∈Z, 41>42>···>4C . (1)

We allow negative 4 9 from the start so that our algorithms can be

transferred to orthogonal polynomial bases [2, 12]; see Section 5.2.

The derivative of 5 (G) in G is defined 5 ′(G) =
∑C

9=1 2 94 9G
4 9−1,

which is a polynomial of sparsity C or ≤ C − 1, the latter if there are
4 9 = 0, possibly taken modulo the positive characteristic of the co-

efficient field K. The classical Hermite interpolation algorithm can

recover 5 from max(41, 0) −min(0, 4C) + 1 = (ℓ1 + 1) + · · · + (ℓ= + 1)
values 08, 9 = 5 (9) (b8) for 1 ≤ 8 ≤ = and 0 ≤ 9 ≤ ℓ8 , where

deg(5) def= max(41, 0) −min(0, 4C) and 5 (9) (G) = d9 5 (G)/dG 9 is the
9-th derivative of 5 . Here b8 ∈ K are distinct arguments. The clas-

sical Prony sparse interpolation algorithm can recover 5 from 2C

values b8 = l8 for l ∈ K and 8 = 80, 80 + 1, . . . , 80 + 2C − 1, pro-

vided the term values l4 9 are distinct for 1 ≤ 9 ≤ C and 4 9 can be

computed from l4 9 . If 41, 4C are not known before interpolation,

bounds can be used; if the sparsity C is not known, either an upper

bound � can be used and the number of values becomes C + �, or
C can be computed by a Monte-Carlo randomized algorithm from

2C + 1 values [16].
We shall transfer the Pronymethod to theHermite interpolation

problem. If there are at most first derivatives, that is ℓ8 ≤ 1, it is

Prony’s idea that the term locator polynomial

Λ(I) = IC + _C−1IC−1 + · · · + _0 = (I − l41) · · · (I − l4C) (2)

minimally, if squarefree, linearly generates 08
def
= 5 (l80+8) for an ar-

bitrary integer starting index 80 and 8 = 0, 1, . . . , 2C −1. The polyno-
mialΛ(I) also generates, not alwaysminimally, 0̄8

def
= l80+8 5 ′(l80+8)

for 8 = 0, 1, . . . , 2C − 1, because G 5 ′(G) has a termset ⊆ {G4 9 }1≤ 9≤C .
Therefore, the vector sequence (

[08
0̄8

]
)8≥0 is minimally generated

by the term locator polynomial Λ(I), which can be computed by

the matrix Berlekamp-Massey algorithm [22] using 1 candidate

right generator and two candidate right auxiliary polynomials. One

could also use a sequence of 2-dimensional row vectors and com-

pute Λ(I) as the highest degree invariant factor of the 2 × 2 right
matrix generator polynomial, with 1 auxiliary right polynomial

[22]. Here we pursue the goal adopted from Hermite interpolation

with error correction (multiplicity code decoding) [18, 19] and de-

termine the minimum number of values and derivative values re-

quired in order to always recover the term locator polynomialΛ(I).
If for all argumentsl8 one has both 08 and 0̄8 , experiments quickly

show that C + ⌈C/2⌉ arguments l80+8 are required. In general for A

with 1 ≤ A ≤ C − 1, if 5 (l80+8) is input for 0 ≤ 8 ≤ C + A − 1 and

5 ′(l80+8) is input for 0 ≤ 8 ≤ 2C − A − 1 one can always recover

5 , for fields K of characteristic 0 or sufficiently large or randomly

469

Session 13: Sparse Polynomial Interpolation ISSAC ’22, July 4–7, 2022, Villeneuve-d’Ascq, France

selected positive characteristic.

We now list the major differences to Prony sparse polynomial

interpolation, for the case that highest order of derivatives is = 1;

higher derivatives are discussed later.

1. A total of 3C values and values of derivatives is minimally re-

quired; the Prony algorithm requires 2C . We assume for now

that the sparsity is input. Such an increase in the required num-

ber of values is familiar frommultiplicity code decoding, but for

error correction the increase is a consequence of the Birkhoff

problem in Hermite interpolation, when there are gaps in the

inputs of the sequence of values 5 (b8), 5 ′(b8), 5 ′′(b8), . . . at a
single b8 (cf. [18, Example 1]). Here there can be gaps: in fact,

for A = 1 one has C + 1 values and 2C − 1 values at derivatives

and recovers 5 .

2. In contrast to Prony’s algorithm, the minimal count of number

of values requires randomization in the selection of l . We have

examples where for a given l ∈ K = C for which the term

locator polynomial Λ(I) in (2) is squarefree, 3C values are insuf-

ficient to recover 5 ; see Example 3.3 below.

3. The number of arguments at which the algorithm computes

values and/or values at derivatives can be less than the 2C of

Prony’s algorithm, which is again familiar from the multiplic-

ity code of Hermite interpolation with error correction [18, 19].

If first derivatives (gradients) can be obtained at the arguments,

one can interpolate from C+⌈C/2⌉ distinct points. If higher deriva-
tives can be obtained, one requires even fewer points: C + ⌈C/ℓ⌉
arguments b8 for ℓ-th order derivatives, and a total number of

values of (ℓ + 2)C ; see Section 4.

4. For fieldsK of characteristic 0, and in certain situations for fields

K of characteristic ? > 0 (see Step 4 below), we can compute the

term degrees 4 9 without taking logarithms of the roots of the

term locator polynomial. In particular, we compute the term de-

grees even when evaluating at powers of a root of unity whose

order is below the degree of 5 , provided that the term values re-

main distinct. The idea was used before for fast sparse interpola-

tion algorithms of polynomial products [3] and of polynomials

given by straight line programs [10, 11] where the asymptotic

complexity was optimized, and the number of samples could be

increased by a constant factor.

1.1 Relation to Previous Work

Sparse approximation by possibly multivariate functions of data

that includes gradient information is a highly investigated subject,

from local piecewise spline interpolation to global compressive

sparsification by ℓ1-norm optimization [1]. The Prony algorithm,

which was originally designed for sums of exponentials [26] and

used for sparse polynomials over finite fields to decode the 1959

BCH digital error correction code, is suitable for floating point data

[6, 7]. Our algorithms for sparse polynomial Hermite interpolation

compute an exact fit, that is, can be used for scalars from a finite

field like the multiplicity error correction code [19, 23]. We note

that multiplicity code decoding has already been shown to be suit-

able for floating point data [14]. As in Hermite interpolation with

error correction, our algorithms necessarily requiremore data than

the Prony algorithm, but at fewer points. The reduction in the num-

ber of measurement points remains effective for higher derivatives

(Section 4), in themultivariate setting (Section 5.1), when interpola-

tion sparse polynomials in orthogonal bases (Section 5.2) andwhen

correcting errors (Section 5.3). A special algorithm interpolates 5

from 5 (1), 5 ′(1), . . . , 5 (2C−1) (1) [25].

2 SPARSE HERMITE INTERPOLATION

For the C-sparse Laurent polynomial 5 (G) (1) and all integers 80
the sequences (08)8≥0 with 08 = 5 (l80+8) and (0̄8)8≥0 with 0̄8 =

l80+8 5 ′(l80+8) for l ∈ K are linearly generated by Λ(I) (2). There-
fore, we have for all A with 1 ≤ A ≤ C − 1

�C,A



_0
_1
...

_C−1


=ℎC,A for �C,A

def
=



00 01 ... 0C−1
...

...
...

0A−1 0A ... 0A+C−2
0̄0 0̄1 ... 0̄C−1
...

...
...

0̄C−A−1 0̄C−A ... 0̄2C−A−2



, ℎC,A
def
=



−0C
...

−0C+A−1
−0̄C
...

−0̄2C−A−1



. (3)

The condition under which the term locator polynomial Λ is the

minimal generator can be characterized for each sequence sepa-

rately. For the sequence (08)8≥0 a necessary and sufficient condi-

tion is that the l4 9 are distinct elements in K (see, for instance, [2,

Lemma 4.2]). We will prove in Section 3 that for randomly sam-

pledl the matrix�C,A is non-singular with high probability, for all

A and all fields K of characteristic 0; for fields K of characteristic

? > 0, the statement remains valid if the prime ? is sufficiently

large (see Theorem 3.2) or if ? can be randomly chosen and 5 pro-

jected modulo ? . However, det(�C,A) = 0 is possible for fields K of

characteristic 0 even if all l4 9 are distinct: see Example 3.3 below.

Our sparse Hermite interpolation algorithm randomly selectsl ,

checks the matrix �C,A for non-singularity, and then proceeds sim-

ilar to Prony’s algorithm. Since the term exponents are computed

differently, we explicitly state the algorithm. Because the algorithm

uses 5 as a black box, it is useful to flag a false sparsity C or erro-

neous 08 or 0̄8 if that can be diagnosed.

2.1 Algorithm for Explicit Sparsity Input

Input: Let 5 (G) = ∑C
9=1 2 9G

4 9 ∈ K[G, 1G] with C ≥ 2, 2 9 ∈ K, 2 9 ≠ 0,

4 9 ∈ Z for all 9 , 41 > · · · > 4C . The field of scalars K is of character-

istic 0 or ? > 0. The inputs are:
◮The number C of terms in 5 and an A with 1 ≤ A ≤ C − 1;
◮ an element l ∈ K, l ≠ 0, l ≠ 1, and
◮ 80 ∈ Z and values 08 = 5 (l80+8) for 0 ≤ 8 ≤ C + A − 1,
0̄8 = l80+8 5 ′(l80+8) for 0 ≤ 8 ≤ 2C − A − 1
such that det(�C,A) ≠ 0 where �C,A is defined in (3).

Output:
◮Case 1(a): K has characteristic 0 or
Case 1(b): K has characteristic ? > 0 and la

≠ 1 for all a ≥ 1:

21, . . . , 2C and 41, . . . , 4C .
◮Case 2: K has characteristic ? > 0 and ∃ \ ≥ 2 : l\

= 1:

21, . . . , 2C and 4̃1, . . . , 4̃C such that for 5̃ (G) def= ∑C
9=1 2 9G

4̃ 9 we have

08= 5̃ (l80+8), 0≤8≤C+A−1 and 0̄8=l80+8 5̃ ′(l80+8), 0≤8≤2C−A−1.
1. Solve the C×C linear system (3) in ®_. See [22, Table 1, Column 2] for

fast algorithms. Because �C,A on input is non-singular, Λ(I) =
IC +∑C−1

9=0 _ 9I
9
=
∏C

9=1 (I − l4 9), and the roots l4 9 are distinct.

2. Factor Λ(I) = ∏C
9=1 (I−1 9) in K[I]. If Λ(I) does not squarefreely

factor into linear factors, return “the 08 , 0̄8 do not interpolate a C-
sparse polynomial.”

470

Session 13: Sparse Polynomial Interpolation ISSAC ’22, July 4–7, 2022, Villeneuve-d’Ascq, France

3. Solve the two transposed Vandermonde linear systems



1 ... 1
11 ... 1C
...

...
1C−11 ... 1C−1C



[21
22
...
2C

]

=

[00
01
...

0C−1

]

,



1 ... 1
11 ... 1C
...

...
1C−11 ... 1C−1C





2̄1
2̄2
...
2̄C


=



0̄0
0̄1
...

0̄C−1


. (4)

See [15, Section 5] for a fast algorithm.

If there exists a 2 9 = 0, then return “the 08 , 0̄8 do not interpolate a
C-sparse polynomial.”

4. Compute the term exponents 4̂ 9 = 2̄ 9/2 9 for 1 ≤ 9 ≤ C .
4(a) Case K has characteristic 0 :

If there exists an index 9 with 4̂ 9 ∉ Z or l4̂ 9 ≠ 1 9 return
“the 08 , 0̄8 do not interpolate a C-sparse polynomial.” Else return
21, . . . , 2C and 4̂1, . . . , 4̂C , sorted in descending term degrees.

4(b) Case K has characteristic ? > 0 : for proper inputs, we have

4̂ 9 ≡ 4 9 (mod ?). Therefore, if 4̂ 9 ∉ Z? ⊆ K, then return “the
08 , 0̄8 do not interpolate a C-sparse polynomial.”
If ? > |4 9 | = max(4 9 ,−4 9) then 4 9 can be computed from 4̂ 9 .

For 9 = 1, . . . , C do verify 4̂ 9 or 4̂ 9 − ? by checking l4̂ 9 = 1 9

or l4̂ 9−? = 1 9 ; if success in the latter, 4̂ 9 ← 4̂ 9 − ? . Note that
l4̂ 9 ≠ l4̂ 9−? because l?

≠ 1.

If all checks succeed, return 21, . . . , 2C and 4̂1, . . . , 4̂C , sorted in
descending term degrees. Note that even if bounds for 41, 4C
are known, the checks verify the 08 , 0̄8 by verifying the Prony

generator Λ.

At this point, for all 9 ∈ � ⊆ {1, . . . , C}, � ≠ ∅, 4 9 is too large to
be directly determined from 4 9 mod ? . For those 9 we require

an integer logarithm algorithm, as is required in the original

Prony algorithm. We have two subcases.

4(b)i. Subcase l\
= 1 for a \ ≥ 2: here Z? (l) is a finite sub-

field of K, the latter of which could be an infinite function

field. Furthermore, \ divides |Z? (l) | = ?a − 1 where a ≥ 1.

For all 9 ∈ � compute 4̃ 9 ∈ Z\? such that l4̃ 9 = 1 9 and
4̃ 9 ≡ 4̂ 9 (mod ?).One can Chinese remainder the index (dis-

crete logarithm) of1 9 with basel and 4̂ 9 using the relatively

primemoduli \ and ? . If 4̃ 9 exist for all 9 ∈ � , return 21, . . . , 2C
and 4̃1, . . . , 4̃C , sorted in descending term degrees.

4(b)ii. Subcase l has infinite multiplicative order. For all 9 ∈ �

compute 4̃ 9 ∈ Z such that l4̃ 9 = 1 9 and verify that 4̃ 9 ≡
4̂ 9 (mod ?). If 4̃ 9 are computed for all 9 ∈ � , return 21, . . . , 2C
and 4̃1, . . . , 4̃C , sorted in descending term degrees. For exam-

ple, if K = Z? (D) is a rational function field, 4̃ 9 can be deter-

mined from the degrees of 1 9 (D) and l (D).
4(b) concluded. At this point, either Step 4(b)i or Step 4(b)ii failed

to compute a term degree for a 1 9 . Return “the 08 , 0̄8 do not
interpolate a C-sparse polynomial.”

Algorithm 2.1 is the basic algorithm. If the sparsity C is not known

on input, we assume to have a black box for the values of 5 and 5 ′.
In an online-algorithmic way, one computes values

�8
def
=

[
5 (l80+8)

l80+8 5 ′(l80+8)

]
=

[
08
0̄8

]
∈ K2 for 8 = 0, 1, . . . (5)

one-at-a-time and terminates in two ways.

1. one inputs an upper bound� ≥ deg(5) = max(41, 0)−min(0, 4C)
≥ 41 − 40 and computes the sparsity C by the randomized early

termination idea in [16]. The bound � is needed to control the

probability of correctness.

2. one inputs an upper bound � ≥ C and stops when any further

discrepancy in the values would push the term locator polyno-

mial beyond degree �, as in the termination criterion of the ma-

trix Berlekamp-Massey algorithm in [22].

We briefly explain both algorithms, assuming that the scalar

field K is of characteristic 0 or ? ≥ deg(5) + 1. For the random-

ized early termination algorithm in Item 1 we consider the infinite

Hankel matrix with 2-dimension vector entries

�∞ =



�0 �1 �2 ...
�1 �2 �3 ...
�2 �3 �4 ...
...

...
...


. (6)

As in [16] we can prove that for symbolic l = G all : × : leading

principal submatrices are non-singular for 80 ≠ 0; see Theorem 3.5

below. Therefore, for a randomly selected l ∈ (⊆ K, 0 ∉ (and

1 ∉ (, the first singular leading principal submatrix is at dimension

C + 1, and C is computed with probability ≥ 1 − (13 C3 + 2
3 C) (41 −

4C)/|(| ≥ 1 − (13 C3 + 2
3 C)�/|(|; see Corollary 3.2. One computes

C + ⌈(C + 1)/2⌉ values of 5 and C + ⌊(C + 1)/2⌋ values of 5 ′.
If � ≥ C is input, one can stop, with the assumption that�C, ⌈C/2⌉

is non-singular, which for random l is achieved with high proba-

bility,1 after computing the values 08 for 8 = 0, . . . , ⌈C/2⌉ + � − 1

and 0̄8 for 8 = 0, . . . , ⌊C/2⌋ +�−1, 2� + C values in total. We give the

argument when C ≡ 0 (mod 2) without appealing to the matrix

Berlekamp-Massey stopping criterion [22]. For the matrix
[

�0 �1 ... �C−1 �C

...
...

...
...

��−C/2−1 ��−C/2 ... ��+C/2−2 ��+C/2−1

]

∈ K(2�−C)×(C+1) (7)

the algorithm generates the (C + 1)’st column by a linear combina-

tion of the first C columns, which corresponds to the term locator

polynomial Λ(I) = IC + _C−1IC−1 + · · · + _0. The column relation

is determined by the first C rows and verified by the next 2� − 2C

rows. We suppose now that the column relation fails in a subse-

quent row
[
�! �!+1 . . . �!+C−1 �!+C

]
where ! ≥ � − C/2.

We only consider a discrepancy in the first row, that is,

X
def
= _00! + · · · + _C−10!+C−1 + 0!+C ≠ 0. (8)

As in [21, Proof of Lemma 2], we have



�0 ... �C ... �"−1
�1 ... �C+1 ... �"

...
...

...
�C/2−1 ... �3C/2−1 ... �!+C−1
0C/2 ... 03C/2 ... 0!+C
0C/2+1 ... 03C/2+1 ... 0!+C+1

...
...

...
0! ... 0!+C ... 0!+"−1





1 0 ... 0 _0 0 ... 0
0 1 ... 0 _1 _0 ... 0
...
...
. . .

...
...

...
. . .

...
0 0 ... 1 _C−1 _C−2 ...
0 0 ... 0 1 _C−1 ...

0 0 ... 0 0 1
. . .

...
...

...
...

...
. . .

...
0 0 ... 0 0 0 ... 1



=



%�C,C/2 0 0 0

∗ 0 0 X

∗
... . .

.

∗ X *


, where"

def
= C+(!− C2+1)=!+ C2+1,

% a (row-)permutation matrix;

(9)

note that thematrices in (9) are of dimension"×" , with" ≥ �+1.
By the assumption that det(�C,C/2) ≠ 0 and X ≠ 0 the first matrix

factor in (9) is a non-singular matrix, because the upper triangular

second matrix factor and the right-side block lower triangular ma-

trix are both non-singular. Therefore, the last column of the first

factor in (9) is linearly independent of the previous columns and

1In Example 3.3 a deterministic version using a high order root of unity for l is
discussed.

471

Session 13: Sparse Polynomial Interpolation ISSAC ’22, July 4–7, 2022, Villeneuve-d’Ascq, France

cannot be linearly generated by the previous columns, implying

that the degree of the generator would have to be ≥ " ≥ � + 1.
The cases where C ≡ 1 (mod 2) and/or when the discrepancy is at

0̄!+C are done similarly.

We briefly consider when �C, ⌈C/2⌉ is singular, that is, the ran-

domly selected l is ”unlucky,” for instance, an l in Example 3.3 or

an l with l4` = l4a for ` ≠ a . For a : ≤ C one has computed a

linear combination _ of the first : columns that gives the (: + 1)’st
column at the first 2�−: (: even) or 2�−:−1 (: odd) rows of�∞ (6),

using 2�+: values 08 , 0̄8 . If the top left : ×: matrix is singular, one

has verified that l as unlucky, but one still may recover 5 if � > C .

For the column relation _, Algorithm 2.1, Steps 2–4 are executed.

If the algorithm fails to compute an interpolant, one has verified

: < C . An example is � = C and l as in Example 3.3: : ≤ C − 1 and
the (: + 1)’s column in �C, ⌈C/2⌉ is linearly dependent on the first

: columns, but the 2� + : ≤ 3C − 1 values do not determine the

term locator polynomial. However, Algorithm 2.1 may compute a

:-sparse polynomialℎ(G) that fits the 08 , 0̄8 for 8 ≤ ⌈:/2⌉+�, for ex-
ample, ifl4` = l4a = l4^ for distinct 4` , 4a , 4^ (cf. [2, Lemma 4.2])

and 5 (G) = 2`G
4` + 2aG4a + 2^G4^ , ℎ(G) = (2` + 2a + 2^)G4` with

4`24` +4a24a +4^24^ = 4` (24` +24a +24^) ≠ 0. The computed inter-

polantℎ(G) fits the 08 = 5 (l80+8) = ℎ(l80+8), 0̄8 = l80+8 5 ′(l80+8) =
l80+8ℎ′(l80+8) for all 8 > ⌈:/2⌉ +�, because if there were a discrep-
ancy with the values of 5 , 5 ′, the next linear generator would have
degree > � by a matrix factorization similar to (9) after permuting

rows so that the top left :×: matrix is non-singular, and could not

be the term locator polynomial for 5 . Therefore, unlike the early

termination strategy of Item 1 (cf. [12, example after the proof of

Theorem 4.3]), from a bound � ≥ C no interpolant is returned that

does not fit the infinite sequence of evaluations of 5 .

3 PROBABILISTIC ANALYSIS

We prove that for random l the matrix �C,A in (3) is non-singular

with high probability. The exact statement is given in Theorem 3.2

below. The method follows that of the early termination proof for

the Prony algorithm in [16]. We shall first prove that for the value

l = G and evaluations U8 (G) = 5 (G80+8) and Ū8 (G) = G80+8 ×(
5 ′(G)

��
G=G80+8

)
for 8 = 0, 1, . . . the corresponding symbolic matrix

HC,A (G) ∈ K[G, 1G] is non-singular, at least for a field K of charac-

teristic 0. We have the following matrix factorization:

HC,A
def
=



U0 U1 ... UC−1
...

...
...

UA−1 UA ... UA+C−2
Ū0 Ū1 ... ŪC−1
...

...
...

ŪC−A−1 ŪC−A ... Ū2C−A−2



=

,C,A



21V
80
1 0 ... 0

0 22V
80
2 ... 0

...
...

...

0 0 ... 2C V
80
C





1 V1 ... VC−11

1 V2 ... VC−12
...

...
...

1 VC ... VC−1C



, (10)

where ,C,A is defined in (11) below for : = C and V 9 = G4 9 are

the Laurent terms in 5 . The last 2 matrix factors in (10) are non-

singular because V` = G4` ≠ Va = G4a for 1 ≤ ` < a ≤ C and the

last factor is a transposed Vandermonde matrix. We prove that the

first factor,,C,A is non-singular by virtue that the highest degree

term has a non-zero coefficient. The proof is by induction on the

dimension.

Theorem 3.1. Let : ≥ 1, 0 ≤ A ≤ : and let

,:,A
def
=



1 1 ... 1
V1 V2 ... V:
...

...
...

VA−11 VA−12 ... VA−1
:

41 42 ... 4:
41V1 42V2 ... 4:V:
...

...
...

41V
:−A−1
1 42V

:−A−1
2 ... 4:V

:−A−1
:





A rows



: − A rows

∈ Z
[
G,

1

G

]:×:
, (11)

where V 9 = G4 9 are Laurent terms with 4 9 ∈ Z for all 1 ≤ 9 ≤ : with
41 > 42 > · · · > 4: and 4 9 ≠ 0 for A < :/2 and 1 ≤ 9 ≤ : − 2A . Then
the leading monomial of det(,:,A) in the variable G is:

f (:, A)
(:−2A∏

a=1

4a

) (min(A, :−A)−1∏

`=0

(4:−2`−1 − 4:−2`)
) :−1∏

9=1

V
[(:,A, 9)
9

(12)

where the first product in (12) is= 1 for: ≤ 2A and the second product
in (12) is = 1 for A = 0 or A = : , and where the sign is

f (:, A)=




(−1) ⌊:/2⌋+⌊A/2⌋ for 0 ≤ A <
:
2 ,

(−1):−⌈A/2⌉ for :
2 < A ≤ : ,

(−1) ⌈:/4⌉=(−1):/2+⌊:/4⌋=
(−1):−⌈:/4⌉ for :≡0 (mod 2) and A=:

2 ,




(13)

and where the exponents are

[(:, A, 9) = max(
⌈: − 9 − 1

2

⌉
, max(A, : − A) − 9) . (14)

We have [(:, A, 9) ≥ [(:, A, 9 + 1) for all 9 with 1 ≤ 9 ≤ : − 1.
Specifically, for A = ⌈:/2⌉ the leading monomial is:

(−1) ⌈:/4⌉ (41 − 42) (43 − 44) · · · (4:−1 − 4:) ×
(V1V2):/2−1 (V3V4):/2−2 · · · (V:−3V:−2) if : is even, (15)

(−1) ⌈:/4⌉+1 (42 − 43) (44 − 45) · · · (4:−1 − 4:)V (:+1)/2−11 ×
(V2V3) (:+1)/2−2 (V4V5) (:+1)/2−3 · · · (V:−3V:−2) if : is odd. (16)

For : ≡ 1 (mod 2) and A = ⌊:/2⌋ the leading monomial is:

(−1) ⌈(:−1)/4⌉41 (42 − 43) (44 − 45) · · · (4:−1 − 4:)

V
(:−1)/2
1 (V2V3) (:−1)/2−1 · · · (V:−3V:−2) . (17)

Proof. The formulas are proven by induction with minor ex-

pansion along the first column of,:,A in (11), as if arising by them-

selves.2 See Section 7. �

The condition that 4 9 ≠ 0 for A < :/2 and 9 ≤ : − 2A in Theo-

rem 3.1 is required so that the factor
∏max(0,:−2A)

a=1 4a ≠ 0 in (12). If

there is an index 9∗ < : with 4 9∗ = 0, which over Z implies 4: < 0,

that is, there are terms with negative degree, the corresponding 9∗-
th column in,:,A in (11) contains zeros, and the leading monomial

changes. Note that for 4: = 0 the leading monomial (12) is valid

for A ≥ 1 because the factor 4: only appears for A = 0, in which

case det(,:,0) = 0. The case in which an 4 9∗ = 0 for 9∗ < : can be

reduced to Theorem 3.1 as follows:

2See the proof of Theorem 4.1 for a full explanation.

472

Session 13: Sparse Polynomial Interpolation ISSAC ’22, July 4–7, 2022, Villeneuve-d’Ascq, France

Corollary 3.1. Let : ≥ 1 and

,
[9∗]
:,A

def
=



1 ... 1 1 1 ... 1
V1 ... V 9∗−1 1 V 9∗+1 ... V:
...

...
...

...
...

VA−11 ... VA−1
9∗−1 1 VA−1

9∗+1 ... VA−1
:

41 ... 4 9∗−1 0 4 9∗+1 ... 4:
41V1 ... 4 9∗−1V 9∗−1 0 4 9∗+1V 9∗+1 ... 4:V:
...

...
...

...
...

41V
:−A−1
1 ... 4 9∗−1V:−A−19∗−1 0 4 9∗+1V:−A−19∗+1 ... 4:V

:−A−1
:



∈ Z
[
G,

1

G

]:×:
, 1 ≤ A <

:

2
, 1 ≤ 9∗ ≤ : − 2A, (18)

where V 9 = G4 9 are Laurent terms with 4 9 ∈ Z for all 1 ≤ 9 ≤ : with
41 > · · · > 4 9∗−1 > 4 9∗ = 0 > 4 9∗+1 > · · · > 4: ; note that V 9∗ = 1.
Let g (:, A, 9∗, 9) be the permutation on {1, . . . , :} with

g (:, A, 9∗, 9) def=



9 for 9 ≤ 9∗ − 1 or 9 ≥ : − 2A + 2,
9∗ for 9 = : − 2A + 1,
9 + 1 for 9∗ ≤ 9 ≤ : − 2A .




(19)

Then the leading monomial of det(, [9
∗]

:,A
) in the variable G is:

(−1):−2A−9∗+1f (:, A)
(:−2A∏

a=1

4g (:,A, 9∗, a)
)
×
(min(A, :−A)−1∏

`=0

(

4g (:,A, 9∗, :−2`−1) − 4g (:,A, 9∗, :−2`))
) :−1∏

9=1

V
[(:,A, 9)
g (:,A, 9∗, 9) , (20)

where V 9∗=1 and 4 9∗=0, and where f is defined in (13) and [in (14).

Proof. All terms in det(,:,A) when keeping 4 9 and V 9 as vari-

ables factor like the lead term in (12) using a different variable or-

dering for the V 9 . Substituting the variable V 9 = G4g (:,A,9∗, 9) and

the variable 4 9 with the numeric value 4g (:,A, 9∗, 9) all terms corre-

sponding to a variable orderings for the V 9 which place V 9∗ before

the (: − 2A + 1)-st position and which would have on evaluation

a higher degree in G have a zero cofficient because of the factor∏:−2A
a=1 4a in (12). �

Note that,C,A or,
[9∗]
C,A can be non-singular even if there is a

pair 4` = 4a with ` ≠ a , for instance in (16) if 41 = 42. The matrix

HC,A is then singular by virtue that the Vandermonde factor in (10)

is singular.

Theorem 3.2. Let 5 , C, A , 80 be as in the input specifications of Al-
gorithm 2.1. Let K be a field of characteristic 0 or ? ≥ deg(5) + 1 =

max(41, 0) −min(4C , 0) + 1. Suppose the element l is randomly and
uniformly selected from a finite set (⊆ K with 0 ∉ (and 1 ∉ (

of cardinality |(|. Then the probability that �C,A in (3) and Step 1 is
non-singular is ≥ 1 − (C − 1)2 (41 − 4C)/|(|.

Proof. By the matrix factorization (10) and by Theorem 3.1

and Corollary 3.1 the det(HC,A) ≠ 0, both in characteristic 0 and

? ≥ deg(5) + 1, the latter because the coefficients of the lead-

ing monomials of,C,A (12) and,
[9∗]
C,A (20) are non-zero modulo ? .

It remains to estimate the degree in G of the leading and trailing

monomial of both det(,C,A) and the determinant of the transposed

Vandermonde factor (10). Note that the diagonal factor in (10) is

non-singular for all l ∈ (. The degree of the leading monomial in

det(,C,A) is by (12,20)

≤
C−2∑

9=1

4 9[(C, A , 9) ≤
C−2∑

9=1

(41 − 9 + 1) (C − 9 − 1)

=
1

6
(C − 1) (C − 2) (341 − C + 3) . (21)

By reversing the monomial order V1 ≺ . . . ≺ VC we have (−1) ×
the degree of trailing monomial in det(,C,A) to be bounded from

below by −(C − 1) (C − 2) (34C − C + 3)/6. For the determinant of the

right transposed Vandermonde factor the corresponding bounds

are ±C (C − 1) (34 9 − C + 2)/6 for 9 = 1, C . Summing the two dif-

ferences of the upper and lower bounds yields a degree bound

(C − 1)2 (41 − 4C). Sharper bounds can be derived for a given A from

the first estimate in (21). �

Example 3.3. When computing the determinant of ,C,A as a

polynomial in G one obtains valuesl ∈ K for whichl4` ≠ l4a for

all 1 ≤ ` < a ≤ C but for which det(�C,A) = 0 (where�C,A is defined

in (3)). For example for C = 3, A = 1 and 42 = 41 − 1, 43 = 41 − 2 we
have

det(,3,1) = det(
[

1 1 1
41 41−1 41−2

41G
41 (41−1)G41−1 (41−2)G41−2

]
)

= −G41−2 (G − 1) (41G − 41 + 2) . (22)

Therefore, forl = 1− 2
41

we have det(�C,A) = 0 and 51 (G) = 21G
41 +

22G
41−1+23G41−2 cannot be interpolated from 08 = 51 ((1− 2

41
)8) for

8 = 80, . . . , 80 +3 and 0̄8 = (1− 2
41
)8 5 ′1 ((1− 2

41
)8) for 8 = 80, . . . , 80 +4.

Ifl ∉ {0, 1,−1, 1− 2
41
}, Algorithm 2.1 interpolates 51 from 9 values.

Here l ≠ −1 because one needs l41 ≠ l43 = l41−2.
We give a second example with an equal number of 08 and 0̄8 .

Let C = 4, A = 2, 42 = 41 − 1, 43 = 41 − 5, 44 = 41 − 6. Then

det(,4,2) = −G241−11 (G2 +3G +1) (G4 +G3 +6G2 +G +1) (G −1)4. For
l =

1
2 (3 −

√
5) ≈ −0.38197 the vector sequence (

[08
0̄8

]
)8=80,...,80+5

of 6 vectors is insufficient to interpolate 52 (G) = 21G
41 + 22G41−1 +

23G
41−5 + 24G41−6. Note that for l = 2, Algorithm 2.1 interpolates

52 from 12 values, which is fewer values than the classical Hermite

algorithm for 41 ≥ 12.

We do not know if a root of unity l ∈ C for which l4` ≠ l4a

for all 1 ≤ ` < a ≤ C always yields det(�C,A) ≠ 0. A root of unity

l ∈ C of prime order ≥ (C−1)2 (41−4C)+2 always has det(�C,A) ≠ 0

by Theorem 3.2. �

Remark 3.4. Corollary 3.1 considers,
[9∗]
:,A

(18) as a polynomial

matrix with integer coefficients.When taking its determinant mod-

ulo the characteristic ? ≥ 2 of the coefficient field K of 5 in (1), the

coefficient of the term (20) can map to zero. However, a lower de-

gree term will survive if there exists a permutation g on {1, . . . , :}
such that

(∏:−2A
a=1 4g (a)

) (∏min(A, :−A)−1
`=0 (4g (:−2`−1)−4g (:−2`))

)
.

0 (mod ?). Note that it is possible that det(, [9
∗]

:,A
) ≡ 0 (mod ?)

for distinct term values l4` ≠ l4a for all 1 ≤ ` < a ≤ C , for

instance, if 41 ≡ 42 ≡ 0 (mod ?) and A = 1. �

The next theorem is used for estimating the probability of suc-

cess when computing the sparsity C by the randomized early ter-

mination strategy.

Theorem 3.5. Let K be a field of characteristic 0 or ? ≥ deg(5) +
1 = max(41, 0) − min(4C , 0) + 1. Then H:, ⌈:/2⌉ ∈ K[G]:×: (10) is

473

Session 13: Sparse Polynomial Interpolation ISSAC ’22, July 4–7, 2022, Villeneuve-d’Ascq, France

non-singular for 80 ≠ 0 and for all : = 1, 2, . . . , C .

Proof. The proof follows directly from [16]. The highest order

term in H:, ⌈:/2⌉ is for even : , for example, by the Cauchy-Binet

argument of [16, Proof of Theorem 4] and by (15)

V
80+:−1+:/2−1
1 V

80+:−2+:/2−1
2 V

80+:−3+:/2−2
3 V

80+:−4+:/2−2
4

· · · V80+3+1
:−3 V

80+2+1
:−2 V

80+1
:−1 V

80
:
. (23)

We note that in [8, Theorem 4.1] the condition 80 ≠ 0 is removed

for the Prony algorithm for fields K of characteristic ≠ 2, but we do

not know if the argument can be generalized toH:, ⌈:/2⌉ for : ≥ 2.

�

We now give a very rough estimate on the probability that for a

random l the matrices �:, ⌈:/2⌉ are non-singular for all 1 ≤ : ≤ C .

Corollary 3.2. Let 5 , C, A , 80 be as in the input specifications of
Algorithm 2.1. Let K be a field of characteristic 0 or ? ≥ deg(5) +1 =
max(41, 0) −min(4C , 0) + 1. Suppose the element l is randomly and
uniformly selected from a finite set (⊆ K with 0 ∉ (and 1 ∉ (

of cardinality |(|. Then the probability that �:, ⌈:/2⌉ in (3) is non-

singular for all : with 1 ≤ : ≤ C is ≥ 1 −
(1
3 C

3 + 2
3 C
)
(41 − 4C)

/
|(|.

Proof. Each det(�:, ⌈:/2⌉) has degree ≤ (: − 1)2 (41 − 4C) +
: (41 − 4C) by the estimates in the proof of Theorem 3.2 and (10),

after removing the factor V80−11 · · · V80−1
:

, (cf. (23)). The sum for all

: = 1, . . . , C is 1
6 C (C − 1) (2C − 1) + 1

2 C (C + 1) = 1
3 C

3 + 2
3 C . Note that

the bound is not sharp. �

4 HIGHER DERIVATIVES

The algorithm generalizes to higher derivatives. We only discuss

the case when the highest derivative values are second derivatives,

and the derivative values are evenly distributed. We suppose that

second derivatives values ¯̄08 = l2(80+8) 5 ′′(l80+8) for 8 = 0, 1, . . .

are also available for interpolation. The linear system (3) in Step 1

now is

�C, ⌊C/3⌋+d0, ⌊C/3⌋+d1 ®_ = ℎC, ⌊C/3⌋+d0, ⌊C/3⌋+d1 (24)

with d0 = d1 = 0 for C ≡ 0 (mod 3), d0 = 1, d1 = 0 for C ≡
1 (mod 3), d0 = 1, d1 = 1 for C ≡ 2 (mod 3), and where the aug-

mented coefficient matrix [�C,A0,A1 | ℎC,A0,A1] of (24) is (25):


00 01 . . . 0C−1 −0C
...

...
...

...
0A0−1 0A0 . . . 0A0+C−2 −0A0+C−1
0̄0 0̄1 . . . 0̄C−1 −0̄C
...

...
...

...
0̄A1−1 0̄A1 . . . 0̄A1+C−2 −0̄A1+C−1
¯̄00 ¯̄01 . . . ¯̄0C−1 − ¯̄0C
...

...
...

...
¯̄0C−A0−A1−1 ¯̄0C−A0−A1 . . . ¯̄02C−A0−A1−2 − ¯̄02C−A0−A1−1



. (25)

In total, we need 4C values at C+⌈C/3⌉ arguments b8 = l80+8 . The co-
efficient matrix�C,A0,A1 in (25) is with high probability non-singular

by Theorem 4.1 below,which corresponds to (15,16) in Theorem 3.1

above.

Theorem 4.1. Let : ≥ 1 and let where V 9 = G4 9 are Laurent
terms with 4 9 ∈ Z for all 1 ≤ 9 ≤ : with 41 > 42 > · · · > 4: . Then
the leading monomial in the variable G of det(,:, ⌊:/3⌋+^0, ⌊:/3⌋+^1),
where,:,A0,A1 ∈ Z

[
G, 1G

]:×:
, 0 ≤ A0 ≤ : , 0 ≤ A1 ≤ : − A0 is (26),



1 1 ... 1
V1 V2 ... V:
...

...
...

V
A0−1
1 V

A0−1
2 ... V

A0−1
:

41 42 ... 4:
41V1 42V2 ... 4:V:
...

...
...

41V
A1−1
1 42V

A1−1
2 ... 4:V

A1−1
:

41 (41−1) 42 (42−1) ... 4: (4:−1)
41 (41−1)V1 42 (42−1)V2 ... 4: (4:−1)V:

...
...

...

41 (41−1)V:−A0−A1−11 42 (42−1)V:−A0−A1−12 ... 4: (4:−1)V:−A0−A1−1:



, (26)

is the following if : ≡ 0 (mod 3) and ^0 = ^1 = 0 :

(−1):/3
(:−2∏

`=1
`≡1 (mod 3)

(4` − 4`+1) (4` − 4`+2)
) (:−1∏

a=2
a≡2 (mod 3)

(4a − 4a+1)
)
×

:/3−1∏

9=1

(V39−2V39−1V39):/3−9 ; (27)

if : ≡ 1 (mod 3) and ^0 = 1 and ^1 = 0 :

(+1)
(:−2∏

`=2
`≡2 (mod 3)

(4` − 4`+1) (4` − 4`+2)
) (:−1∏

a=3
a≡0 (mod 3)

(4a − 4a+1)
)
×

V
(:−1)/3
1

(:−1)/3−1∏

9=1

(V39−1V39 V39+1) (:−1)/3−9 ; (28)

if : ≡ 2 (mod 3) and ^0 = 1 and ^1 = 1 :

(−1)
(:−2∏

`=3
`≡0 (mod 3)

(4` − 4`+1) (4` − 4`+2)
) (:−1∏

a=1
a≡1 (mod 3)

(4a − 4a+1)
)
×

(V1V2) (:−2)/3
(:−2)/3−1∏

9=1

(V39 V39+1V39+2) (:−2)/3−9 . (29)

Proof. As for Theorem 3.1, the proof is by induction on : . We

write FLM(:, A0, A1; 41, . . . , 4:) for the formal leading monomial of

det(,:,A0,A1), when the 4 9 coefficients are symbols. The terms V 9
shall retain their numeric degrees. For : ≡ 0 (mod 3) we obtain

as the formal leading monomial:

FLM(:, :/3, :/3; 41, . . . , 4:) =

det(


V
:/3−1
1 V

:/3−1
2 V

:/3−1
3

41V
:/3−1
1 42V

:/3−1
2 43V

:/3−1
3

41 (41−1)V:/3−11 42 (42−1)V:/3−12 43 (43−1)V:/3−13


)×

FLM(: − 3, :/3 − 1, :/3 − 1; 44, . . . , 4:) . (30)

Note that the sign in (30) is proper: it takes 3 row exchanges to

move the rows :/3, 2:/3 and : to rows 1, 2, 3, and then :/3 − 4 ex-
changes to move the original row 1, which now is in row :/3, back
to row 4, 2:/3 − 5 exchanges to move the original row 2, which

is now in row 2:/3, back to row 5, and : − 6 exchanges to move

the original row 3, which is now in row : , back to row 6. The Van-

dermonde determinant in (30) is = (−1)V:/3−11 V
:/3−1
2 V

:/3−1
3 (41 −

42) (41−43) (42−43) which by (27) for :−3 and exponents 44, . . . , 4:

474

Session 13: Sparse Polynomial Interpolation ISSAC ’22, July 4–7, 2022, Villeneuve-d’Ascq, France

proves (27) for: . The leadingmonomial formulas (28, 29) are proven

similarly. �

The remainder of Section 2, performing early termination (Item 1)

or having a bound � ≥ C (Item 2), carries over. Theorem 4.1 gener-

alizes to derivative of order ≥ 3 via its proof.

5 VARIANTS

The Prony algorithm for sparse polynomial interpolation has been

used inmany settings. One of the first is themultivariate version in

[4]. In [24] the algorithmwas deployed for Chebyshev and Pochham-

mer polynomial bases, which in [12] was generalized to Chebyshev

bases of Second, Third and Fourth Kind. The numerical condition-

ing and stability has been studied extensively, as the algorithm

builds exponential and harmonic sparse function approximations

(see [6] and the references given). Digital error correction, that is,

removing catastrophically false values, which is different from de-

noising the data, was introduced for the Prony algorithm in [5, 17],

and for orthogonal bases in [2]. The state-of-the art for error cor-

rection in sparse univariate interpolation today is [20]. All those

adaptations can be transferred to sparse Hermite interpolation.

5.1 Multivariate Sparse Hermite Interpolation

The Prony algorithm is transferred to multivariate polynomials in

[4]. We explain the transfer to sparse interpolation with values of

partial derivatives, that on the case of bivariate polynomials:

5 (G1, G2) =
C∑

9=1

2 9G
4 9,1
1 G

4 9,2
2 ∈ K[G1, G2],

∀9 : 2 9 ≠ 0, (4 9,1, 4 9,2) ∈ Z2 .
The corresponding values are

08 = 5 (l80+8
1 , l

80+8
2) and 0̄8 = l

80+8
1

(m5 (G1, G2)
mG1

���
G1=l

80+8
1 , G2=l

80+8
2

)
.

Again, the sequence (
[08
0̄8

]
)8≥0 is linearly generated by the term

locator polynomial Λ(I) = ∏C
9=1 (I − l

4 9,1
1 l

4 9,2
2) and for randomly

selected l1, l2 the matrix �C,A (3) is non-singular with high prob-

ability, as indicated in the proof of Theorem 3.1. The technique in

Step 4 in Algorithm 2.1 can possibly determine the 4 9,1’s without

a logarithm, but a logarithm computation is required for the 4 9,2’s

like in Steps 4(b)i and 4(b)ii. For fields K of characteristic ? > 0,

one may need an additional algorithm for computing 4 9,1, 4 9,2 from

1 9 = l
4 9,1
1 l

4 9,2
2 : in [4] l1, l2 are chosen different prime numbers

for K = C so that the 1 9 ’s are distinct and the 4 9,1, 4 9,2’s are recover-

able, but for fields K of characteristic 0 we can obtain 4 9,1 directly

from the derivative values and 4 9,2 as a logarithm. In summary,

the sparse multivariate Hermite interpolation algorithm recovers

5 (G1, G2) from 3C values, which include values at a partial deriva-

tive in one of the variables, at C + ⌈C/2⌉ distinct arguments for 5 .

Last, we note that the values at both partial derivatives may de-

crease the required number of arguments for certain exponents

4 9,1, 4 9,2, but for the polynomial 5 (G,~) = ∑C
9=1 2 9 (G1G2)4 9 , addi-

tional values of m5 (G1, G2)/mG2 seem not to help (cf. (26)). However,

the algorithm in [27] transfers and partial derivatives in each vari-

able can reduce the number of arguments to 5 in that algorithm,

at the cost of more values. In general, the algorithm in [27] uses

more values than the multivariate Prony algorithm (see also [9]).

5.2 Chebyshev Polynomial Basis

We explain the sparse recovery on Chebyshev polynomials of the

First Kind; Second to Fourth Kind follow from the substitutions in

[12]: Let 5 (G) be a C-sparse polynomial in Chebyshev basis,

5 (G)=
C∑

9=1

2 9)4 9 (G)∈K[G],∀9 : 2 9≠0, 4 9∈Z, 41> · · · >4C≥0. (31)

where ()<)<≥0 are the <-degree Chebyshev Polynomials of the

First Kind (we write “Chebyshev-1 Polynomials”):

[
)< (G)
)<+1 (G)

]
=

[
0 1

−1 2G

]< [
1

G

]

∀< ∈ Z;)<
(1
2

(
~ + 1

~

))
=

1

2

(
~< + 1

~<
)
;

)< (cos(\))= cos(<\) with ~ = exp(i\) . (32)

Note that for negative subscripts we have)−< (G) =)< (G). The
recurrence (32) is non-trivial if the characteristic of K is ≠ 2.

We suppose that both 5 (G) and 5 ′(G) can be evaluated as a black
box. The degrees 4 9 and coefficients 2 9 are recovered by sparse

polynomial Hermite interpolation of 6(~) via the substitution

6(~) def= 5
(1
2

(
~ + 1

~

))
=

C∑

9=1

2 9

2

(
~4 9 + 1

~4 9

)
[2]. (33)

The Laurent polynomial 6(~) in power basis is a 2C-sparse or a

(2C − 1)-sparse polynomial, the latter if 4C = 0, and algorithms of

Section 2 apply. By the chain rule for the derivative we obtain

6′(~) = d6(~)
d~

=
(
5 ′(G)

���
G= 1

2 (~+ 1
~)
)
× 1

2

(
1 − 1

~2

)
,

which is a polynomial identity over any field of characteristic ≠ 2,

and therefore we have 6̄(~) def= ~ 6′(~) is equal

1

2

(
5 ′(G)

���
G= 1

2 (~+ 1
~)
) (
~ − 1

~

)
=

C∑

9=1

2 9

2

(
4 9~

4 9 + (−4 9)
1

~4 9

)
.

If, for example, the Laurent polynomial6(~) is 2C-sparse, the sparse
polynomial Hermite interpolation algorithm requires 6C values at

3C arguments. But because 6(~) = 6(1/~) and 6̄(~) = −6̄(1/~)
one only computes 3C +$ (1) values of 5 : for example, we can set

80 = −⌈(3C − 1)/2⌉ in Algorithm 2.1 and use 6(l80+8) and 6̄(l80+8)
for 8 = 0, 1, . . . , 3C − 1. Because the values for exponents 80 + 8 ≥ 1

can be computed from those at exponents −80 − 8 , one requires

= 2(⌈(3C − 1)/2⌉ + 1) ≤ 3C + 2 values of 5 and 5 ′ at = = ⌈(3C −
1)/2⌉+1 ≤ C+⌊C/2⌋+1 arguments. Note that the additional “+$ (1)”
evaluations may be reduced by the technique in [12, Section 2],

which uses the fact that the term locator polynomial Λ here is a

reciprocal polynomial with a symmetric coefficient vector.

5.3 Error Correction

The error correction variants remove erroneous 0̂^ ≠ 5 (b^) = 0^
and erroneous ˆ̄0^ ≠ b^ 5

′(b^) = 0̄^ from the list of input values

0̂8 for 8 = 0, . . . , ! − 1, ˆ̄08 for 8 = 0, . . . , !̄ − 1, where � is an upper

bound for the sparsity: C ≤ �. Note that by the hats “∧ ” on the in-

put values we indicate that some values can be erroneous. As in the

multiplicity code one assumes that there are : ≤ � errors, where

the bound � is input and can be determined from the error rate

475

Session 13: Sparse Polynomial Interpolation ISSAC ’22, July 4–7, 2022, Villeneuve-d’Ascq, France

in the values. Furthermore, the algorithms, which are restricted to

polynomial-time running time, produce a list of valid sparse Her-

mite interpolants. The basic algorithm uses � +1 redundant blocks
of 3� values: we list the true polynomial values without errors:

5 (l80
1), . . . ,5 (l80+�+⌈�/2⌉−1

1), 5 ′(l80
1), . . . ,5 ′(l80+�+⌊�/2⌋−1

1),
...

...
...

...

5 (l8�
�+1),. . . ,5 (l

8�+�+⌈�/2⌉−1
�+1),5 ′(l8�

�+1),. . . ,5
′(l8�+�+⌊�/2⌋−1

�+1) .




(34)

We enforce in (34) that all arguments are distinct: l8
a ≠ l<

` for

(a, 8) ≠ (`,<). If in the # = 3(� + 1)� input values 0̂8 , ˆ̄08 there

are : ≤ � errors, at least one block is error-free and Algorithm 2.1

recovers 5 in the list of Hermite interpolants with ≤ � errors; there

may be others. Here the sparsity is computed from the largest non-

singular �C, ⌈C/2⌉ (3) of that block, and all remaining values and

all values in all other blocks are checked to verify that there are

≤ � errors in total. We pursue the goal in [17, 20] and reduce the

number of values # < 3(� + 1)� while recovering 5 in a list of

Hermite interpolants, all of which have sparsity ≤ � and ≤ � errors

in the values. Note that there are = = (� + 1) (� + ⌈�/2⌉) distinct
arguments to 5 in (34), and our goal is to have error correction at

fewer arguments than without derivatives [17, 20]. The techniques

in [17] are different from those in [20], the latter producing a higher

error tolerance. Both methods apply to the Hermite setting.

As in [17], we can sub-sample at all arithmetic sequences of ex-

ponents: 0̂j+8k for 8 = 0, . . . , � + ⌈�/2⌉ − 1, ˆ̄0j+8k for 8 = 0, . . . , � +
⌊�/2⌋ − 1. For a list of # = 2= values 0̂80+8 , ˆ̄080+8 , 8 = 0, 1, . . . , = − 1,
we guarantee that there are no errors for one pair (j,k). On that

sub-sample the C-sparse polynomial 5j,k (G)
def
=

∑C
9=1 2 9l

4 9 jG4 9k is

interpolated. We have 0̄j+8k =
∑C

9=1 2 94 9l
4 9 (j+8k) ,

l8 5 ′
j,k
(l8) = l8

C∑

9=1

2 9l
4 9 j4 9kl

(4 9k−1)8 = k0̄j+8k . (35)

Therefore, Algorithm 2.1 recovers 5j,k (G) from the good values

0j+8k andk0̄j+8k . From (j,k) and 5j,k (G) we compute 5 . Finally,

we determine theminimum=�+⌈�/2⌉,� such that in the sequence of

2-dimensional vectors
[
0̂8
ˆ̄08

]
for 8 = 0, . . . , =�+⌈�/2⌉,� − 1 one guar-

antees a sub-sample
[
0̂j+k8

ˆ̄0j+k8

]
for 8 = 0, . . . , � + ⌈�/2⌉ − 1 without

any of the � errors. For example, we obtain from [17, Table 1], that

when removing any arbitrary 11 elements from {1, . . . , 124} one al-
ways has an arithmetic sub-sequence of length 12 in the remaining

elements. Therefore, for � = 8, � = 11 and = = =12,11 = 124 we can

always find a sub-sample of � + �/2 = 12 clean value vectors from

which one can interpolate the 8-sparse polynomial 5 . Overall, we

need # = 2= = 2 · 124 = 248 values to correct ≤ � = 11 errors;

note that 3(� + 1)� = 3 · 12 · 8 = 288, which is the count (34) for re-

dundant blocking. Without derivatives, one needs # = = = =16,11
values. The exact entry is not computed in [17, Table 1], but we

have =16,11 > =13,11 = 156, which is > 124 arguments.

In [20] we raise the decodable error rate by a different redundant

blocking technique.We demonstrate the technique on the example

� = 3 (cf. [20, Example 1]). We first interpolate 0̂8 for 8 = 0, . . . , 6 =

2� and ˆ̄08 for 8 = 0, . . . , 4 = 2� − 2, a total of 4� = 12 values,

and correct ≤ � = 1 error. The augmented coefficient matrix that

corresponds to the linear system (3) is

Row 1
Row 2
Row 3
Row 4
Row 5
Row 6



0̂0 0̂1 0̂2 0̂3
0̂1 0̂2 0̂3 0̂4
0̂2 0̂3 0̂4 0̂5
0̂3 0̂4 0̂5 0̂6
ˆ̄00 ˆ̄01 ˆ̄02 ˆ̄03
ˆ̄01 ˆ̄02 ˆ̄03 ˆ̄04



. (36)

Again, with ≤ 1 erroneous entry, we recover 5 and possibly other

interpolants that cause ≤ 1 error. If the error is in the ˆ̄08 , we com-

pute the candidate interpolant from the first 4 rows by the Prony

algorithm. If the error is in 0̂2 ≠ 5 (l80+2), say, we compute candi-

date interpolants from Rows 4–6. We have for 11 = l41 , 12 = l42 ,

12 = l42 :

[03 04 05
0̄0 0̄1 0̄2
0̄1 0̄2 0̄3

]
=

[
131 142 153
41 42 43
4111 4212 4313

] 

211
80
1 0 0

0 221
80
2 0

0 0 1
80
3



[
1 11 1

2
1

1 12 1
2
2

1 13 1
2
3

]

(37)

(cf. (10)). As in Theorem 3.1 and Corollary 3.1, for randomly se-

lected l the 3 × 3 matrix in (37) is non-singular with high prob-

ability and 5 is computed as one among the valid Hermite inter-

polants. Similarly, we handle erroneous 0̂0, 0̂1, 0̂4, 0̂5 and 0̂6. If 0̂3
is erroneous, we proceed as in [20]: we replace 0̂3 by a variable U

and compute the determinant of the 4 × 4 submatrix of the first

4 rows. We obtain a degree 4 polynomial in U one of whose roots

is the value 03. Therefore, we can try all 4 roots in computing the

candidate interpolants.

Now suppose that we wish to correct � errors. The count of

values is

#=

(
�+2

⌈ � − 1
2

⌉
+3

)
�, ==

{
�
2 (2� + 1)+�+⌈�2 ⌉ if � even,

�+1
2 (2�+1) if � odd.

(38)

First, we assume that � ≡ 1 (mod 2). We interpolate values in

(� + 1)/2 blocks of 4� = 12 values. There cannot be ≥ 2 errors in

each block, because then there would be �+1 errors. Therefore, one
block has ≤ 1 error, and the algorithm computes 5 among the can-

didate interpolants. In summary, from a total of # = (2� + 2)� =

(� + 1)/2 (4�) values we can list-Hermite-interpolate a polyno-

mial of sparsity ≤ � in the presence of ≤ � errors. Second, if

� ≡ 0 (mod 2), the total count is # = �/2 (4�) + 3�, which are

�/2 blocks with 4� values and one block with 3� values. One can

decode from the error-free last block. If there are ≥ 1 errors in the

last block, there must be one block of 4� = 12 values with ≤ 1

error, which interpolates 5 . For � = 8 and � = 11 we have # = 200

values at = = 102 arguments, both of which are fewer than the

counts # = 248 and = = 124 above by sub-sampling at arithmetic

sub-sequences of indices. The comparable count in [20] without

derivatives is # = = = ⌊4�/3 + 2⌋� = 128, which is fewer values at

> 102 arguments.

6 CONCLUSION

In the Prony approach to sparse model construction, the gradient

(rate of change) of the data at a measurement point can be used to

reduce the number of measurement points, but that at the cost of

more overall data. A main difference is that the minimum number

of measurement points is achieved only if the points incorporate

some randomness. The precise mathematical nature of those non-

random points for which over-sampling becomes necessary and

how much oversampling suffices remains to be understood.

476

Session 13: Sparse Polynomial Interpolation ISSAC ’22, July 4–7, 2022, Villeneuve-d’Ascq, France

ACKNOWLEDGMENTS

I thank the reviewers for their comments.

This research was supported by the National Science Founda-

tion under Grant CCF-1717100.

Note added on August 29, 2022: Added reference [25] at end of Sec-

tion 1.1.

REFERENCES
[1] Ben Adcock and Yi Sui. 2019. Compressive Hermite Interpolation: Sparse, High-

Dimensional Approximation from Gradient-Augmented Measurements. Con-
structive Approximation 50 (2019), 167–207. Issue 1. URL: https://doi.org/10.
1007/s00365-019-09467-0, https://arxiv.org/abs/1712.06645.

[2] Andrew Arnold and Erich L. Kaltofen. 2015. Error-Correcting Sparse Interpo-
lation in the Chebyshev Basis, See [13], 21–28. URL: http://users.cs.duke.edu/
~elk27/bibliography/15/ArKa15.pdf.

[3] Andrew Arnold and Daniel S. Roche. 2015. Output-sensitive algorithms for sum-
set and sparse polynomial multiplication, See [13], 29–36. URL: https://arxiv.org/
abs/1501.05296.

[4] M. Ben-Or and P. Tiwari. 1988. A deterministic algorithm for sparse multivariate
polynomial interpolation. In Proc. Twentieth Annual ACM Symp. Theory Comput.
ACM Press, New York, N.Y., 301–309.

[5] Matthew T. Comer, Erich L. Kaltofen, and Clément Pernet. 2012. Sparse Poly-
nomial Interpolation and Berlekamp/Massey Algorithms That Correct Outlier
Errors in Input Values. In ISSAC 2012 Proc. 37th Internat. Symp. Symbolic Alge-
braic Comput., Joris van der Hoeven and Mark van Hoeij (Eds.). Association for
Computing Machinery, New York, N. Y., 138–145. URL: http://users.cs.duke.
edu/~elk27/bibliography/12/CKP12.pdf.

[6] Annie Cuyt and Wen-shin Lee. 2020. How to get high resolution from sparse
and coarsely sampled data. Applied Comput. Harmonic Analysis 48 (May 2020),
1066–1087. Issue 3. URL: https://doi.org/10.1016/j.acha.2018.10.001.

[7] Mark Giesbrecht, George Labahn, and Wen-shin Lee. 2009. Symbolic-numeric
sparse interpolation of multivariate polynomials. J. Symbolic Comput. 44 (2009),
943–959.

[8] Zhiwei Hao, Erich L. Kaltofen, and Lihong Zhi. 2016. Numerical Sparsity De-
termination and Early Termination. In ISSAC’16 Proc. 2016 ACM Internat. Symp.
Symbolic Algebraic Comput., Markus Rosenkranz (Ed.). Association for Comput-
ing Machinery, New York, N. Y., 247–254. URL: http://users.cs.duke.edu/~elk27/
bibliography/16/HKZ16.pdf.

[9] J. van der Hoeven and G. Lecerf. 2015. Sparse polynomial interpolation in prac-
tice. ACM Commun. Comput. Algebra 48, 3/4 (2015), 187–191. URL: http://hal.
archives-ouvertes.fr/hal-00980366.

[10] Qiao-Long Huang. 2019. Sparse Polynomial Interpolation over Fields with Large
or Zero Characteristic. In Proceedings of the 2019 on International Symposium on
Symbolic and Algebraic Computation, ISSAC 2019, Beijing, China, July 15-18, 2019,
James H. Davenport, Dongming Wang, Manuel Kauers, and Russell J. Bradford
(Eds.). ACM, 219–226. URL: https://doi.org/10.1145/3326229.3326250.

[11] Qiao-Long Huang. 2020. Sparse Polynomial Interpolation Based on Derivative.
CoRR abs/2002.03708 (2020). arXiv:2002.03708 URL https://arxiv.org/abs/2002.
03708.

[12] Erdal Imamoglu, Erich L. Kaltofen, and Zhengfeng Yang. 2018. Sparse Polyno-
mial Interpolation With Arbitrary Orthogonal Polynomial Bases. In ISSAC ’18
Proc. 2018 ACM Internat. Symp. Symbolic Algebraic Comput., Carlos Arreche (Ed.).
Association for Computing Machinery, New York, N. Y., 223–230. In memory of
Bobby F. Caviness (3/24/1940–1/11/2018). URL: http://users.cs.duke.edu/~elk27/
bibliography/18/IKY18.pdf.

[13] ISSAC 2015 2015. ISSAC’15 Proc. 2015 ACM Internat. Symp. Symbolic Algebraic
Comput. Association for Computing Machinery, New York, N. Y.

[14] Erich Kaltofen. 2021. Hermite Interpolation With Error Correction. In-
vited lecture at ACA 2021, Session on Hybrid Symbolic-Numeric Compu-
tation. URL: https://users.cs.duke.edu/~elk27/bibliography/21/ACA2021-
Abstract-Kaltofen.pdf.

[15] E. Kaltofen and Lakshman Yagati. 1988. Improved sparse multivariate polyno-
mial interpolation algorithms. In Symbolic Algebraic Comput. Internat. Symp.
ISSAC ’88 Proc. (Lect. Notes Comput. Sci., Vol. 358), P. Gianni (Ed.). Springer
Verlag, Heidelberg, Germany, 467–474. URL: http://users.cs.duke.edu/~elk27/
bibliography/88/KaLa88.pdf.

[16] Erich Kaltofen and Wen-shin Lee. 2003. Early Termination in Sparse Interpola-
tion Algorithms. J. Symbolic Comput. 36, 3–4 (2003), 365–400. Special issue Inter-
nat. Symp. Symbolic Algebraic Comput. (ISSAC 2002). Guest editors: M. Giusti
& L. M. Pardo. URL: http://users.cs.duke.edu/~elk27/bibliography/03/KL03.pdf.

[17] Erich L. Kaltofen and Clément Pernet. 2014. Sparse Polynomial Interpolation
Codes and Their Decoding Beyond Half the Minimal Distance. In ISSAC 2014
Proc. 39th Internat. Symp. Symbolic Algebraic Comput., Katsusuke Nabeshima

(Ed.). Association for Computing Machinery, New York, N. Y., 272–279. URL:
http://users.cs.duke.edu/~elk27/bibliography/14/KaPe14.pdf.

[18] Erich L. Kaltofen, Clément Pernet, and Zhi-Hong Yang. 2020. Hermite Ra-
tional Function Interpolation with Error Correction. In Computer Algebra
in Scientific Computing, CASC 2020 (Lect. Notes Comput. Sci., Vol. 12291),
F. Boulier, M. England, T. Sadykov, and E. Vorozhtsov (Eds.). Springer, 335–
357. URL: http://users.cs.duke.edu/~elk27/bibliography/20/KPY20.pdf, https://
doi.org/10.1007/978-3-030-60026-6_19.

[19] Erich L. Kaltofen, Clément Pernet, and Zhi-Hong Yang. 2021. Hermite Interpo-
lation With Error Correction: Fields of Zero or Large Characteristic and Large
Error Rate. In ISSAC ’21 Proc. 2021 ACM Internat. Symp. Symbolic Algebraic Com-
put., Marc Mezzarobba (Ed.). Association for Computing Machinery, New York,
N. Y., 241–247. URL: http://users.cs.duke.edu/~elk27/bibliography/21/KPY21.
pdf, https://doi.org/10.1145/3452143.3465525.

[20] Erich L. Kaltofen and Zhi-Hong Yang. 2021. Sparse Interpolation With Er-
rors in Chebyshev Basis Beyond Redundant-Block Decoding. IEEE Trans.
Information Theory 67, 1 (Jan. 2021), 232–243. URL: http://users.cs.duke.
edu/~elk27/bibliography/19/KaYa19.pdf, https://ieeexplore.ieee.org/document/
9207761, https://arxiv.org/abs/1912.05719.

[21] Erich Kaltofen and George Yuhasz. 2013. A Fraction Free Matrix
Berlekamp/Massey Algorithm. Linear Algebra and Applications 439, 9 (Nov.
2013), 2515–2526. URL: http://users.cs.duke.edu/~elk27/bibliography/08/
KaYu08.pdf.

[22] Erich Kaltofen and George Yuhasz. 2013. On The Matrix Berlekamp-Massey
Algorithm. ACM Trans. Algorithms 9, 4 (Sept. 2013), 33:1–33:24. URL: http://
users.cs.duke.edu/~elk27/bibliography/06/KaYu06.pdf.

[23] Swastik Kopparty. 2015. List-decoding multiplicity codes. Theory of Computing
11, 1 (2015), 149–182. URL: https://sites.math.rutgers.edu/~sk1233/part2.pdf.

[24] Lakshman Y. N. and B. D. Saunders. 1995. Sparse polynomial interpolation in
non-standard bases. SIAM J. Comput. 24, 2 (1995), 387–397.

[25] Thomas Peter, Gerlind Plonka, and Daniela Roşca. 2013. Representation of
sparse Legendre expansions. J. Symbolic Comput. 50 (March 2013), 159–169. URL:
https://www.sciencedirect.com/science/article/pii/S0747717112001101.

[26] R. Prony. III (1795). Essai expérimental et analytique sur les lois de la Dilatabilité
de fluides élastiques et sur celles de la Force expansive de la vapeur de l’eau et

de la vapeur de l’alkool, à différentes températures. J. de l’École Polytechnique 1
(Floréal et Prairial III (1795)), 24–76. R. Prony is Gaspard(-Clair-François-Marie)
Riche, baron de Prony.

[27] R. Zippel. 1990. Interpolating polynomials from their values. J. Symbolic Comput.
9, 3 (1990), 375–403.

7 APPENDIX: PROOF OF THEOREM 3.1

DETAILS

As stated, the formulas are proven by induction with minor ex-

pansion along the first column of ,:,A in (11). The signs f and

exponents [satisfy the following recurrences:

f (:, A) =




1 for :=1 and (A=0 or A=1),
−1 for (:, A) = (2, 1),
(−1)A+1f (:−1, A−1) for :

2 < A ≤ : ,

(−1):+1f (:−1, A) for 0 ≤ A <
:
2 ,

(−1):/2f (:−2, :2−1) for :≥4 and :≡0 (mod 2)
and A=:/2; (39)

[(:, A, 9) =




:− 9 for A=0 or A=: ,

A−1 for 2A>: and 9=1,

[(:−1, A−1, 9−1) for 2A>: and 9>1,

:−A−1 for 2A<: and 9=1,

[(:−1, A , 9−1) for 2A<: and 9>1,
:
2−⌈

9
2 ⌉ for 2A=: .




(40)

For : = 1 one has det(,1,1) = det(
[
1
]
) = 1 and det(,1,0) =

det(
[
41
]
) = 41. Now let : ≥ 2. We use the exponents 41, . . . , 4:

as arguments to,:,A (41, . . . , 4:) in (11). Note that here V 9 = G4 9 ;

one could also use a multivariate term order with the variable or-

der V1 ≻ · · · ≻ V: , as we need in Section 5.1. If A − 1 > : − A − 1,

then VA−11 is the highest degree term in the first column, and the

477

Session 13: Sparse Polynomial Interpolation ISSAC ’22, July 4–7, 2022, Villeneuve-d’Ascq, France

leading monomial of det(,:,A (41, . . . , 4:)) is (−1)A VA−11 × the lead-
ing monomial of det(,:−1,A−1 (42, . . . , 4:)). If A − 1 < : − A − 1,

then V:−A−11 is the highest degree term in the first column, and

the leading monomial of det(,:,A (41, . . . , 4:)) is (−1):−A41V:−A−11
× the leading monomial of det(,:−1,A (42, . . . , 4:)). We obtain (12,

39, 40) for all : ≠ 2A .

Finally, we establish the formulas for : = 2A . The leading mono-

mial, denoted by LM, of det(,:,:/2 (41, . . . , 4:)) is

= (−1):−141V:/2−11 × LM
(
det(,:−1,:/2 (42, . . . , 4:))

)
+ (41)

(−1):/2−1V:/2−11 × LM
(
det(,:−1,:/2−1 (42, . . . , 4:))

)
. (42)

The leadingmonomial in (41) is given by (16) and the leadingmono-

mial in (42) is given by (17), both for :−1 replacing : . Applying the
induction hypothesis for:−1, one obtains as the leadingmonomial

of,: (41, . . . , 4:), using (39):
(
(−1) × f (: − 1, :

2
)

︸ ︷︷ ︸
(−1):/2+1f (:−2, :2 −1)

41 + (−1):/2−1 f (: − 1,
:

2
− 1)

︸ ︷︷ ︸
(−1):f (:−2, :2 −1)

42
)
V
:/2−1
1 ×

(43 − 44) · · · (4:−1 − 4:)V:/2−12 (V3V4):/2−2 · · · V:−3V:−2 . (43)

Because : is even, the first factor in (43) is = f (:, :/2) (41 − 42) by
(39), which concludes the inductive proof.

8 APPENDIX

This appendix is not included in the ISSAC Proceedings.

Notation (in alphabetic order):

�8 �8 =

[
5 (l80+8)

l80+8 5 ′ (l80+8)

]
=

[08
0̄8

]
∈ K

2 for 8 = 0, 1, . . .

(5)

08 , 0̄8 , ¯̄08 08 = 5 (l80+8), 0̄8 = l80+8 5 ′(l80+8) (Section 1 and

Input to Algorithm 2.1), ¯̄08 = l2(80+8) 5 ′′(l80+8)
(Section 4)

0̂8 , ˆ̄08 either 08 , 0̄8 or an erroneous values (Section 5.3)

� a term bound � ≥ C (Item 2)

1 9 the term values 1 9 = l4 9

V 9 the terms V 9 = G4 9 or V 9 = G
4 9,1
1 G

4 9,2
2

2 9 the coefficients of the terms in 5

� an upper bound � ≥ deg(5) (Item 1)

X the discrepancy (8)

� an upper bound for the number of errors in 0̂8 , ˆ̄08
(Section 5.3)

4 9 the term exponents in 5

5 (G) the sparse interpolant (1)

6(~) the transformed 5 ((~ + 1/~)/2) (33)

Notation continued (in alphabetic order):

\ the order of l : l\
= 1 (Case 2 in the Output spec-

ifications of Algorithm 2.1)

�C,A , �C,A0,A1 the coefficient matrices (3) and (25), resp.

HC,A the symbolic coefficient matrix (10)

ℎ(G) an alternate sparse interpolant ifl is unlucky; see

last paragraph of Section 2

[(:, A, 9) the exponents of the leading term of det(,C,A)
(14,40)

80, 8 indices of the arguments b8 , l
80+8 of 5 , 5 ′

9 indices of the terms in 5

K the field of scalars

: the intermeditiate dimensions of,:,A (11),,
[9∗]
:,A

(18),,C,A0,A1 (26);

the actual number of errors : ≤ � (Section 5.3)

ℓ the order of derivatives 5 (ℓ) for which there are

values

_ 9 ,Λ(I) the term locator polynomialΛ(I) = IC +_C−1IC−1+
· · · + _0 =

∏C
9=1 (I − l4 9) (2).

the total number of values, including values at

derivatives

= the number of arguments b8 , l
80+8

b8 arguments to 5 , 5 ′

? the characteristic of K, if positive

A, A0, A1 the number of distinct arguments to 5 is C + A (3)

or C + A0 (25), to 5 ′ it is 2C − A (3) or C + A1 (25)
(the finite subset (⊆ K from which l is sampled

f (:, A) the sign of the leading term of det(,C,A) (13,39)
)< (G) the <-degree Chebyshev polynomial of the First

Kind (Section 5.2)

C the number of terms in 5

g (:, A, 9∗, 9) row permutation on,C,A to move rowswith 4 9 = 0

back (19)

,C,A ,,
[9∗]
C,A the left matrix factor of HC,A (10); the right factor

is a transposed “V”andermonde matrix, hence the

“W”

,C,A0,A1 the symbolic left matrix factor for 2 derivatives

(26)

G, G1, G2 the variables in 5

j,k the linear arithmetic index subsequence j + 8k for

subsampling (Section 5.3)

I the variable in the term locator polynomial

l the randomly selected base for the arguments b8 =

l80+8

478

	Abstract
	1 Introduction
	1.1 Relation to Previous Work

	2 Sparse Hermite Interpolation
	2.1 Algorithm for Explicit Sparsity Input

	3 Probabilistic Analysis
	4 Higher Derivatives
	5 Variants
	5.1 Multivariate Sparse Hermite Interpolation
	5.2 Chebyshev Polynomial Basis
	5.3 Error Correction

	6 Conclusion
	Acknowledgments
	References
	7 Appendix: Proof of Theorem 3.1 Details
	8 Appendix

