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We study the assignment problem with chance constraints (CAP) and its distributionally robust counterpart

(DR-CAP). We present a technique for estimating big-M in such a formulation that takes advantage of the

ambiguity set. We consider a 0-1 bilinear knapsack set to develop valid inequalities for CAP and DR-CAP.

This is generalized to the joint chance constraint problem. A probability cut framework is also developed to

solve DR-CAP. A computational study on problem instances obtained from using real hospital surgery data

shows that the developed techniques allow us to solve certain model instances, and reduce the computational

time for others. The use of Wasserstein ambiguity set in the DR-CAP model improves the out-of-sample

performance of satisfying the chance constraints more significantly than the one possible by increasing the

sample size in the sample average approximation technique. The solution time for DR-CAP model instances is

of the same order as that for solving the CAP instances. This finding is important because chance constrained

optimization models are very difficult to solve when the coefficients in the constraints are random.
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1. Introduction

In the chance-constrained assignment problem, we assign the items with random weights to avail-

able bins and minimize the assignment cost while satisfying the bin capacity constraints with
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probability at least 1− ε. In a motivating example surgeries with random durations are assigned

to available operating rooms, and we want to ensure that the assigned surgeries complete within

a specified duration with a high probability. More specifically, we study the chance-constrained

assignment problem:

(CAP) minimize
y∈{0,1}|I||J |

∑
i∈I

∑
j∈J

cijyij (1a)

subject to
∑
j∈J

yij = 1, ∀i∈ I, (1b)∑
i∈I

yij ≤ ρj, ∀j ∈J , (1c)

P

{∑
i∈I

ξiyij ≤ tj

}
≥ 1− ε, ∀j ∈J , (1d)

where I := {1, . . . , |I|} is the set of items, J := {1, . . . , |J |} is the set of bins, | · | is the cardinality of

a set, cij is the nonnegative cost for assigning item i to bin j, ρj is the quantitative restriction of bin

j, and tj is the capacity of bin j. ξi is the random weight of item i. The binary decision variable yij

indicates if item i is assigned to bin j. Let yj := (y1j, . . . , y|I|j)
> for j ∈J , and y := (y1, . . . ,y|J |)

>.

The objective (1a) minimizes the total cost of assigning the items to the bins. Constraints (1b)

ensure that item i is assigned to only one bin. Constraints (1c) ensure that at most ρj items are

assigned to bin j. Constraints (1d) ensure that the capacity for bin j is satisfied with probability

1−ε, where ε∈ [0,1]. The chance-constrained assignment problem has a wide range of applications

such as in healthcare (Zhang et al. 2020), facility location (Peng et al. 2020), and cloud computing

(Cohen et al. 2019), among others.

There are several challenges in solving the chance-constrained assignment problem. (CAP) is

not a convex optimization problem since the chance constraints (1d) might not induce a convex

feasible region, and the variables in (CAP) are binary. The chance-constrained programming (CCP)

literature commonly assumes that the probability distributions of the random weights ξi are known

and finitely supported. Incomplete knowledge of the probability distribution of ξi can be addressed

by using an ambiguity set P that allows a family of distributions. The chance constraints (1d) are

satisfied over all probability distributions within the ambiguity set P, resulting in the formulation:

(DR-CAP) minimize
y∈{0,1}|I||J |

∑
i∈I

∑
j∈J

cijyij (2a)

subject to (1b), (1c),

inf
P∈P

P

{∑
i∈I

ξiyij ≤ tj

}
≥ 1− ε, ∀j ∈J . (2b)
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In this paper we assume that the probability distribution P has finite support ξ := (ξ1, · · · ,ξN)>,

where ξω := (ξω1 , · · · , ξω|I|)> for ω ∈ Ω := {1, · · · ,N}. ξωi denotes the weight of item i for scenario

ω ∈ Ω, and pω is the probability of scenario ω ∈ Ω such that pω ≥ 0 and
∑
ω∈Ω

pω = 1. We further

assume that ξωi and tj are non-negative integers, and without loss of generality, pω ≤ ε and ξωi ≤ tj,

for i∈ I, j ∈J , ω ∈Ω.

The model framework corresponds to an approach where a sample average approximation

replaces the original distribution of a random vector with a finite number of samples (Luedtke and

Ahmed 2008, Pagnoncelli et al. 2009). The SAA approach may provide a good candidate solution

for the ‘true’ chance-constrained program (Shapiro et al. 2009, Calafiore and Campi 2006). This

has motivated a number of studies for solving CCPs by formulating it as a mixed-integer program

(see, e.g., Luedtke et al. (2010), Küçükyavuz (2012), Abdi and Fukasawa (2016), Liu et al. (2019),

Zhao et al. (2017), Peng et al. (2020)).

1.1. Chance-Constrained Programs with Random Technology Matrices

The model in (1) has randomness in the coefficients of the constraints, i.e., it has a random

technology matrix. CCPs with random technology matrices are significantly more difficult to solve

than the case where only the right-hand-side vector is random (Tanner and Ntaimo (2010)). Tanner

and Ntaimo (2010) used irreducible infeasible subsystems to derive a class of valid inequalities

for such problems. Luedtke (2014) used a technique similar to the one used for generating valid

inequalities in mixed integer programming for CCPs with random right-hand side to develop strong

valid inequalities, and proposed a branch-and-cut decomposition algorithm for CCPs. Qiu et al.

(2014) proposed an iterative scheme to improve the coefficient estimation in a big-M formulation,

and observed that the coefficient strengthening technique can significantly decrease the solution

time. van Ackooij et al. (2016) investigated a generalized Benders decomposition approach with

stabilization and inexact function computation to solve CCP. Liu et al. (2016) studied two-stage

CCPs and developed a Benders decomposition approach with strengthened optimality cuts to solve

the problem. More recently, Xie and Ahmed (2018) projected the mixing inequalities onto the

original space to derive a family of quantile cuts for such problems.

1.2. Integer Chance-Constrained Programs

For the integer programming problem with chance constraints, Beraldi and Bruni (2010) formulated

the problem as an integer program with knapsack constraints, and used the feasible solutions of

the knapsack constraints to divide the feasible region of the problem within a branch and bound

scheme. Song and Luedtke (2013) studied a chance-constrained reliable network design problem.

They derived valid inequalities for this problem. Song et al. (2014) considered a chance-constrained

packing problem. This problem is to select a subset of items that maximizes the total profit while
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satisfying a single chance constraint. The problem is viewed as a probabilistic cover problem, and

the probabilistic cover inequalities are developed by using a lifting technique from Zemel (1989).

Deng and Shen (2016) investigated a chance-constrained appointment scheduling problem and

used a decomposition algorithm with formulation strengthening strategies to solve this problem.

Wu and Küçükyavuz (2017) studied a chance-constrained combinatorial optimization problem

and presented an exact method for solving the problem under the assumption that the chance

probability can be calculated.

1.3. Distributionally Robust Optimization

In the distributionally robust optimization (DRO) framework, the probability distribution of the

random variables lies in an ambiguity set. Two widely used ambiguity sets are the moment-based

ambiguity sets (see, e.g., Delage and Ye (2010), Wiesemann et al. (2014), Mehrotra and Papp

(2014), and Bansal et al. (2018)) and the statistical distance-based sets (see, e.g., Ben-Tal et al.

(2013), Jiang and Guan (2018), Esfahani and Kuhn (2018), and Luo and Mehrotra (2019)). For the

distributionally robust chance-constrained programs, Chen et al. (2010) and Zymler et al. (2013)

developed tractable approximations of ambiguous chance constraints under the moment-based

ambiguity sets. Hanasusanto et al. (2017) studied the ambiguous joint chance constraints where the

ambiguity set is characterized by the mean and an upper bound on the dispersion, and presented a

convex reformulation under some conditions. Jiang and Guan (2016) studied a data-driven distri-

butionally robust chance-constrained model using a φ-divergence measure-based set. They showed

that this problem is equivalent to a classical chance-constrained problem with a perturbed risk

level. As an important type of statistical distance, the Wasserstein metric is used to define an ambi-

guity set. In the finite support case the Wasserstein metric provides a polyhedral structure. Thus,

several studies have investigated the use of distributionally robust chance-constrained problems

with the Wasserstein ambiguity set (see, e.g., Xie (2019), Chen et al. (2018), Ji and Lejeune (2020)).

Xie (2019) showed that the distributionally robust chance-constrained program (DRCCP) defined

using the Wasserstein ambiguity set admits a conditional value-at-risk (CVaR) interpretation and

it is mixed integer representable. The author also proposed inner and outer approximations based

upon a CVaR reformulation. For DRCCP with pure binary decision variables, a big-M free mixed-

integer linear reformulation is proposed by exploring the submodular structure of the problem.

Chen et al. (2018) studied DRCCP with Wasserstein metric for the continuous support case. The

authors proposed a mixed-integer conic reformulation of problems with individual and joint chance

constraints with right-hand side uncertainty. For the Wasserstein ambiguity set defined using the

1-norm or the ∞-norm, they showed that DRCCP can be reformulated as a mixed-integer linear

program. More recently, Ji and Lejeune (2020) studied DRCCP with Wasserstein ambiguity sets
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under finite support and continuum of realizations. For the case with finite support, they used dual-

ity to obtain a mixed-integer linear programming (MILP) reformulation with big-M coefficients,

where the big-M coefficients are obtained from the bounds on the decision variables.

In this paper we study (DR-CAP) with a general ambiguity set under finite support, thus also

allowing the framework to be applied to definitions of ambiguity sets different from the Wasserstein

ambiguity set. For example, the probability cut algorithm developed in this paper is applicable for

problems where the ambiguity sets are defined using φ-divergence. We used the Wasserstein ambi-

guity set as a specific example in our computations. The papers of Xie (2019), Chen et al. (2018),

and Ji and Lejeune (2020) focus on Wasserstein ambiguity set only. Moreover, Wang et al. (2021)

showed that the convex approximation of chance-constrained problems based on CVaR typically

leaves a gap to satisfy the chance constraint and usually does not provide any computational ben-

efit, suggesting that a CVaR approximation may not produce an optimal solution to the problem

when compared with the exact reformulations. For the case with Wasserstein ambiguity set under

finite support, the coefficient strengthening approach for the big-M coefficients proposed in this

paper results in smaller values than the technique proposed by Ji and Lejeune (2020). Additionally,

in our computational experiments we find that the MILP reformulation of (DR-CAP) with Wasser-

stein ambiguity set could be time-consuming, while the branch-and-cut algorithm with probability

cuts proposed in this paper can solve our test problems to optimality more efficiently.

For the distributionally robust chance-constrained binary programs, Cheng et al. (2014) con-

sidered the distributionally robust chance-constrained quadratic knapsack problem and assumed

that the first and second moments, and the joint support of random variables are known. They

provided a semidefinite programming (SDP) relaxation for the binary constraints. Zhang et al.

(2020) assumed that only the mean and the variance are known, and investigated the two-stage

distributionally robust chance-constrained bin-packing problem with continuous bin extension deci-

sions. They developed a branch-and-price approach based on a column generation reformulation

to solve the mixed-integer reformulation. Wang et al. (2017) studied a distributionally robust

chance-constrained surgery planning problem with uncertain service time and downstream resource

requirements, and derived a second-order cone program (SOCP) reformulation under the mean-

covariance ambiguity set. Deng et al. (2019) studied chance-constrained surgery planning by using

a φ-divergence measure-based ambiguity set, and used a branch-and-cut algorithm to solve the

mixed-integer linear reformulation of this problem. Zhang et al. (2018) considered the distribution-

ally robust chance-constrained bin-packing problem in which only the mean and the covariance

matrix are known. They reformulated the problem as a binary SOCP, and developed valid inequal-

ities for the SOCP by using the submodularity and the bin-packing structure of the model. Finally,

we refer interested readers to a recent survey by Rahimian and Mehrotra (2019) for more details

about DRO.
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1.4. Contributions of This Paper

Wang et al. (2021) studied a single chance-constrained bin packing problem. A binary bilinear

reformulation of the problem was used to motivate the development of valid inequalities for this

problem. Specifically, it was shown that the cover, clique, and projection inequalities can be adapted

to generate inequalities for a bilinear knapsack set. It was also shown in this earlier work that the

valid inequalities result in computational efficiencies within a branch-and-cut framework to solve

the chance constraint bin packing problem. This paper makes several significant advancements to

the work of Wang et al. (2021). Its emphasis is on studying chance constraints in the context of

distributional robustness. Therefore, all results in this paper provide a contribution to the literature

in that context. Specifically, it makes the following contributions:

• It shows that the big-M strengthening calculations in (DR-CAP) can directly take advantage

of the ambiguity set in its computations. This result is applicable for problems more general than

(DR-CAP).

• A new family of inequalities that are valid for (CAP) is obtained. The inequalities are shown

to be facet defining under a condition, which seems to hold frequently in practice. About 50%

of the cuts identified in the proposed approach satisfy this condition. It is also shown that the

generation of these inequalities can take advantage of the distributional robustness as part of the

inequality generation algorithm.

• A new family of valid inequalities is obtained for the set defined by the intersection of multiple

binary bilinear knapsacks with a general 0-1 knapsack constraint and a cardinality constraint.

Appropriate heuristics are developed to find these inequalities.

• The valid inequalities and solution schemes proposed in this paper are further developed for

the joint chance constraint (CAP) and (DR-CAP).

• This paper also proposes a branch-and-cut algorithm with probability cuts, which uses a

distribution separation procedure, the valid inequalities developed in this paper, and the feasibil-

ity/probability cuts, to solve the strengthened big-M semi-infinite reformulation of (DR-CAP). A

convergence proof of this algorithm is provided.

• A computational study for an assignment problem based on real data from a hospital shows

the benefits of the techniques developed in this paper. (CAP) instances with up to 1,500 scenar-

ios are solved within ten hours when ε= 0.08, 0.1, 0.12. A smaller optimality gap is observed for

instances with ε= 0.06. The lifted cover inequalities proposed in this paper outperform the single

cover inequalities in (Wang et al. 2021). For (DR-CAP) using the Wasserstein metric, all instances

with N = 1,500 are solved within two hours for ε= 0.1. An out-of-sample estimation of the chance

constraint satisfaction for the solutions obtained from (CAP) and (DR-CAP) shows that the (DR-

CAP) solutions achieve the desirable probability target more reliably, though we find that both
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(CAP) and (DR-CAP) models may violate the chance constraint out-of-sample when the sample

size and the radius of the Wasserstein set are small. The out-of-sample performance of the solu-

tion improves significantly when a moderate size sample and a Wasserstein ambiguity set is used.

Additionally, (DR-CAP) instances are solved in about four times the time required to solve (CAP).

This empirical finding of improved out-of-sample performance with a moderate increase in compu-

tational time on chance constraint problems is novel. It suggests that even with a moderate number

of samples, the use of a distributionally robust framework allows one to significantly improve the

out-of-sample performance of the obtained solution. In order to achieve a similar out-of-sample

performance in the finite sample approach, the sample size will have to increase significantly, which

makes the problems intractable.

1.5. Organization

The remainder of this paper is organized as follows. Section 2 formulates (CAP) as a binary integer

program using the big-M technique. Subsequently, in this section, we formulate (DR-CAP) as a

semi-infinite program and present a big-M coefficient strengthening procedure for this formula-

tion. We then present alternative bilinear formulations for (CAP) and (DR-CAP), respectively.

We exploit the structure of the bilinear formulations to develop two classes of valid inequalities in

Section 3. Specifically, in Section 3.1 we utilize the sequential lifting technique to develop the lifted

cover inequalities for the binary bilinear knapsack set and show that these inequalities are facet-

defining under certain conditions. We then present stronger lifted cover inequalities for (CAP) and

(DR-CAP) by restricting the feasible region of y. We further analyze the multiple binary bilinear

knapsack sets with a general 0-1 knapsack constraint and develop a class of valid inequalities in

Section 3.2. In Section 4, we describe a branch-and-cut solution scheme for (CAP) and propose

separation heuristics to obtain the violated valid inequalities. A branch-and-cut algorithm with

probability cuts for solving (DR-CAP), and its convergence proof is provided in this section. In

Section 5, we develop valid inequalities and solution schemes for the joint chance constraint (CAP)

and (DRCAP) problems. Section 6 reports computational results on (CAP) and (DR-CAP) for-

mulations using surgery duration for different types of surgeries in an operating room. Section 7

concludes the paper with a summary of the important findings. Appendix A provides coefficient

calculations for the lifted cover inequalities that are valid for (CAP) and (DR-CAP). Appendix

B presents proofs of propositions and theorems stated in the paper. Appendix C describes the

pseudo-code of the algorithms implemented to perform our computations. Appendix D gives a

dynamic programming based approach to compute the big-M coefficients. Appendix E presents the

statistics of surgery duration for the real-life data. Appendix F provides additional computational

results.
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2. Model Reformulation

We formulate (CAP) as a binary linear program in Section 2.1. A semi-infinite reformulation for

(DR-CAP) is presented in Section 2.2. We then present binary bilinear reformulations for (CAP)

and (DR-CAP) in Section 2.3.

2.1. Binary Integer Reformulation for (CAP)

Let the binary variable zjω indicate if the capacity constraint is violated for j ∈ J and ω ∈ Ω.

Namely, zjω = 1 if the constraint
∑
i∈I

ξωi yij ≤ tj is satisfied, and zjω = 0, otherwise. For j ∈ J , let

zj := (zj1, . . . , zjN)> and z := (z1, . . . ,z|J |)
>. Constraints (1d) can be formulated as∑

i∈I

ξωi yij + (Mω
j − tj)zjω ≤Mω

j , ∀j ∈J , ω ∈Ω, (3a)∑
ω∈Ω

pωzjω ≥ 1− ε, ∀j ∈J , (3b)

where Mω
j is a constant which ensures that (3a) hold when zjω = 0. Computation of a small

valid value of Mω
j gives a tighter formulation in (3). We first present a coefficient strengthening

procedure, inspired from Song et al. (2014), to obtain a value of Mω
j . For j ∈J and ω ∈Ω let:

M̄ω
j := maximize

yj∈{0,1}|I|

{∑
i∈I

ξωi yij

∣∣∣P{∑
i∈I

ξiyij ≤ tj

}
≥ 1− ε, yj ∈Yj

}
, (4)

where Yj := {yj|
∑
i∈I

yij ≤ ρj}. Note that Mω
j ≥ M̄ω

j . For j ∈J and ω,k ∈Ω, let

mω
j (k) := maximize

yj∈{0,1}|I|

{∑
i∈I

ξωi yij

∣∣∣∑
i∈I

ξki yij ≤ tj, yj ∈Yj

}
. (5)

We sort mω
j (k) such that mω

j (k1)≤ . . .≤mω
j (kN). An upper bound for M̄ω

j is given in Proposition

1. A proof of this proposition is given in Appendix B.1.

Proposition 1. mω
j (kq) is an upper bound for M̄ω

j , where q := min
{
l
∣∣∑l

j=1 pkj > ε
}

, and

(CAP) can be equivalently reformulated as the binary integer program:

(IP) minimize
(y,z)∈{0,1}|I||J |×{0,1}|J |N

∑
i∈I

∑
j∈J

cijyij (6a)

subject to (1b), (1c), (3b),∑
i∈I

ξωi yij +
(
mω
j (kq)−mω

j (ω)
)
zjω ≤mω

j (kq), ∀j ∈J , ω ∈Ω. 2 (6b)

Remark 1. Note that (5) has a knapsack constraint and a cardinality constraint. We use a

dynamic programming method for solving (5) in Section 6. The procedure uses the methodology

in Bertsimas and Demir (2002). For j ∈J , if tj and ρj are moderate, dynamic programming is an
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efficient approach for solving (5) to optimality (see more details about the dynamic programming

in Appendix D).

Remark 2. Constraints (1b) and (1c) represent the assignment structure of model (1). In the

corresponding statement of Proposition 1, they can be replaced with a general constraint set Yj.

2.2. Semi-Infinite Programming Reformulation for (DR-CAP)

In this section we study the chance-constrained models, where the distribution of random weights

belongs to an ambiguity set. The results in this section are stated for any ambiguity set defined on

a finite support (see Bansal et al. (2018)). However, in the computational results of this paper, we

used the l1-Wasserstein ambiguity set:

PW = {p∈RN+
∣∣ ∑
ω∈Ω

pω = 1,
∑
ω∈Ω

∑
k∈Ω

‖ξω − ξk‖νωk ≤ η,
∑
k∈Ω

νωk = pω, ∀ω ∈Ω, (7)∑
ω∈Ω

νωk = p∗k, ∀k ∈Ω, νωk ≥ 0, ∀ω,k ∈Ω},

where η ≥ 0 is the Wasserstein radius and {p∗k}k∈Ω is an empirical probability distribution of ξ.

Note that if η = 0, then pω = p∗ω for all ω ∈ Ω and (DR-CAP) reduces to (CAP). Let 1(·) denote

an indicator function. Using this notation constraint (2b) using the Wasserstein ambiguity set is

given as follows:

inf

{∑
ω∈Ω

pω 1

(∑
i∈I

ξωi yij ≤ tj

)∣∣∣∣∣ p∈PW

}
≥ 1− ε, ∀j ∈J .

Let zjω and mω
j (·) be defined as in Section 2.1. The following theorem gives a reformulation

of (DR-CAP) with a general ambiguity set P. A proof is given in Appendix B.2. Note that this

formulation is a semi-infinite program because of constraints (8b).

Theorem 1. We sort mω
j (·) in a non-decreasing order such that mω

j (k1)≤ · · · ≤mω
j (kN). Then,

(DR-CAP) can be represented as the semi-infinite program:

(SIP) minimize
(y,z)∈{0,1}|I||J |×{0,1}|J |N

∑
i∈I

∑
j∈J

cijyij (8a)

subject to (1b), (1c),

inf
p∈P

∑
ω∈Ω

pωzjω ≥ 1− ε, ∀j ∈J , (8b)∑
i∈I

ξωi yij +
(
mω
j (kq̄)−mω

j (ω)
)
zjω ≤mω

j (kq̄), ∀j ∈J , ω ∈Ω, (8c)

where q̄ := min{l | sup
p∈P

∑l

j=1 pkj > ε}. 2
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In the special case of Wasserstein ambiguity set (7), because of its polyhedral structure, con-

straints (8b) are equivalently representable by its extreme points, thus formulation (8) is finite.

Note also that when P := PW , q̄ in Theorem 1 is obtained by solving a sequence of linear programs.

Moreover, the left-hand side of (8b) is a linear program for a fixed zjω. The use of an optimization

problem in identifying q̄ may provide a smaller value of mω
j (·) used in the big-M formulation. Since

solving linear programs for computing the index q̄ for all j ∈J and ω ∈Ω can be time-consuming,

the following corollary shows that the use of any distribution in the set P is sufficient for the

big-M estimation. Such distributions are available as the probability cut algorithm given in Section

4.3 progresses.

Corollary 1. Let {p̂ω}ω∈Ω ∈P, and q̂ = min{l |
∑l

j=1 p̂kj > ε}. Then, q̄ ≤ q̂ and mω
j (kq̄) ≤

mω
j (kq̂).

Proof. Since sup
p∈P

∑q̂

j=1 pkj ≥
∑q̂

j=1 p̂kj > ε, we have q̂≥ q̄ and mω
j (kq̄)≤mω

j (kq̂). 2

Remark 3. Theorem 1 and Corollary 1 remain valid for the case where the cardinality constraint

in (4) is replaced by a more general constraint set Yj for j ∈J .

2.3. Binary Bilinear Reformulations

In the previous section, we formulate the chance constraints as binary linear constraints using

big-M coefficients. In this section, we present an alternative approach following Wang et al. (2021).

Let zjω be defined as in Section 2.1. The constraints (6b) and (8c) can also be rewritten as

∑
i∈I

ξωi yijzjω ≤mω
j (ω)zjω, ∀j ∈J , ω ∈Ω. (9)

Thus, we can use (9) to obtain a binary bilinear reformulation and bilinear semi-infinite refor-

mulation for (CAP) and (DR-CAP), respectively. In principle, a problem with binary bilinear

constraints can be reformulated as a binary linear problem using the reformulation linearization

technique (RLT). Let m̄jω := maximize
yj∈[0,1]|I|

{∑
i∈I

ξωi yij

∣∣∣P{∑
i∈I

ξiyij ≤ tj
}
≥ 1− ε, yj ∈Yj

}
, and m̄′jω :=

maximize
yj∈[0,1]|I|

{∑
i∈I

ξωi yij

∣∣∣ inf
P∈P

P
{∑
i∈I

ξiyij ≤ tj
}
≥ 1− ε, yj ∈Yj

}
. The following proposition shows a

relationship between the bilinear reformulations with the formulations (8) and (6), respectively. A

proof is given in Appendix B.3.

Proposition 2. The relaxation of the binary bilinear reformulation for (CAP) obtained from

relaxing the binary variables is stronger than the linear relaxation of (6) if mω
j (kq)≥ m̄jω. Similarly,

the relaxation of the binary bilinear reformulation for (DR-CAP) obtained from relaxing the binary

variables is stronger than the linear relaxation of (8) if mω
j (kq̄)≥ m̄′jω. 2
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Although mω
j (kq̄)≥ m̄′jω may not be true in general, in our test problems this condition is met

for all instances with N = 500 or 1000 with ε≥ 0.1. This was also the case for (CAP).

We can also rewrite the bilinear constraints (9) using McCormick inequalities as follows:∑
i∈I

ξωi u
ω
ij ≤mω

j (ω)zωj , ∀j ∈J , ω ∈Ω,

uωij ≤ yij, uωij ≤ zωj , ∀i∈ I, j ∈J , ω ∈Ω,

yij + zωj −uωij ≤ 1, uωij ≥ 0, ∀i∈ I, j ∈J , ω ∈Ω.

We compared the relaxation of the above McCormick relaxation with that from (IP) (see Section

6 for a description of test instances). We found that the average solution time for the problem

based on the McCormick reformulation is 23 seconds for N = 500 and 61 seconds for N = 1000,

whereas the average time for solving the relaxation of (IP) is 1 second for N = 500 and 3 seconds

for N = 1000. This is mainly because the use of McCormick inequalities significantly increase the

problem size. Hence, in the computational experiments, we solve (IP) and generate valid inequalities

based on the bilinear reformulation for (CAP). However, we observed that the instances resulting

from using the McCormick relaxation have a higher objective value (60.4 versus 59.5 for N = 500

and 60.4 versus 59.6 for N = 1000). Similar small improvements in the lower bound were observed

for other ε and N , suggesting that additional information is available in the inequalities present in

McCormick relaxation.

Note that constraints (1c), (3b) and (9) give a key substructure of (CAP). Let H :={
(y,z)∈ {0,1}|I||J |×{0,1}|J |N | (1c), (3b), (9)

}
. For j ∈J , let

Gj :=

{
(yj,zj)∈ {0,1}|I|×{0,1}N

∣∣∣∑
i∈I

ξωi yijzjω ≤mω
j (ω)zjω,∀ω ∈Ω,

∑
ω∈Ω

pωzjω ≥ 1− ε,yj ∈Yj

}
.

The set Gj is the intersection of multiple binary bilinear knapsacks with a general knapsack con-

straint, and a cardinality constraint. We have H=
⋂
j∈J {(y,z)|(yj,zj)∈ Gj}.

Let us use conv(·) to denote the convex hull of a set. The following proposition shows that in

order to identify strong valid inequalities for conv(H), we can develop strong valid inequalities for

conv(Gj). A proof can be found in Appendix B.4.

Proposition 3. If an inequality is valid for conv(Gj), this inequality is also valid for conv(H).

Moreover, if an inequality is facet-defining for conv(Gj), it is also facet-defining for conv(H). 2

Proposition 3 gives a motivation to investigate the set Gj. Hence, in the following, we develop a

class of valid inequalities for Gj. For j ∈J , let

G′j :={(yj,zj)∈ {0,1}|I|×{0,1}N
∣∣∣∑
i∈I

ξωi yijzjω ≤mω
j (ω)zjω, ∀ω ∈Ω, inf

p∈P

∑
ω∈Ω

pωzjω ≥ 1− ε,yj ∈Yj}.

We also obtain valid inequalities using G′j.
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3. Valid Inequalities for (CAP) and (DR-CAP)

We first apply the lifting technique for the knapsack problem to a binary bilinear knapsack set and

develop a family of valid inequalities in Section 3.1. Section 3.2 further presents a family of valid

inequalities for Gj and G′j.

3.1. Lifted Cover Inequalities

We assume that j ∈J , ω ∈Ω are fixed in this section. Let us consider the binary bilinear knapsack

set Fjω :=

{
(yj,zjω)∈ {0,1}|I|×{0,1}

∣∣∣ ∑
i∈I

ξωi yijzjω ≤mω
j (ω)zjω,yj ∈Yj

}
. Note that the inequali-

ties valid for conv(Fjω) are also valid for (CAP) and (DR-CAP). Note also that when compared

to the development in Wang et al. (2021), we include the cardinality constraint in addition to the

binary bilinear knapsack constraint in the description of Fiω. When zjω = 1, the set Fjω becomes

the two-constraint 0-1 knapsack set Qjω :=

{
yj ∈ {0,1}|I|

∣∣∣ ∑
i∈I

ξωi yij ≤mω
j (ω),yj ∈Yj

}
.

We now extend the results for the single binary knapsack set from Zemel (1989) and Gu et al.

(1998) to develop valid inequalities that are facet-defining for the set Qjω under a condition that is

often satisfied in our computations. A lifted cover inequality that is valid for conv(Fjω) obtained

by rotating the valid inequalities provided below is given in Appendix A. Note that in obtaining

the lifted cover inequality the restriction yj ∈ Yj and the chance constraint are used to obtain a

stronger inequality for (CAP) and (DR-CAP).

Definition 1. Set C ⊆ I is a cover for
∑
i∈I

ξωi yij ≤ mω
j (ω) if

∑
i∈C

ξωi > mω
j (ω). The cover C is

minimal if no subset of C is a cover for
∑
i∈I

ξωi yij ≤mω
j (ω). 2

In this section, we assume that C is a minimal cover for
∑
i∈I

ξωi yij ≤ mω
j (ω). Let D ⊆ C, and

consider

conv

({
yj ∈ {0,1}|I|

∣∣∣∑
i∈I

ξωi yij ≤mω
j (ω),yj ∈Yj, yij = 0,∀i∈ I\C, yij = 1,∀i∈D

})
. (10)

Note that polyhedron (10) is a restriction of Qjω. Proposition 4 provides a seed inequality that is

valid for (10). The following proposition gives a valid inequality that is facet-defining under suitable

cardinality conditions for the following convex hull. This inequality is lifted in Sections 3.1.1 and

3.1.2. A proof is given in Appendix B.5.

Proposition 4. The inequality

∑
i∈C\D

yij ≤ |C\D|− 1 (11)

is valid for (10). If |C| ≤ ρj + 1, the inequality (11) is facet-defining for (10). 2
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3.1.1. Up-Lifting In general, a cover inequality (11) does not induce a facet of a knapsack

set. To obtain a facet-defining inequality of a knapsack set, we compute coefficients of variables in

I\C. This procedure is called up-lifting. By using the up-lifting technique, we obtain an inequality

of the form ∑
i∈C\D

yij +
∑
i∈I\C

αiyij ≤ |C\D|− 1, (12)

where αi is called an up-lifting coefficient. We now provide such an uplifting approach for our

problem. Let {πk}|I\C|k=1 be a sequence of the set I\C and π(k) = {π1, . . . , πk}. For k = 1, . . . , |I\C|,

let

objπk := maximize
yj∈{0,1}|(C\D)∪π(k−1)|

∑
i∈C\D

yij +
∑

i∈π(k−1)

αiyij (13a)

subject to
∑
i∈C\D

ξωi yij +
∑

i∈π(k−1)

ξωi yij ≤mω
j (ω)− ξωπk −

∑
i∈D

ξωi , (13b)∑
i∈C\D

yij +
∑

i∈π(k−1)

yij ≤ ρj − 1− |D|. (13c)

Note that different sequences of I\C might lead to different valid inequalities (Kaparis and Letch-

ford 2008). The following lemma gives a sufficient condition under which inequality (12) is facet-

defining for the convex hull of Qjω when yij = 1, i∈D. A proof is given in Appendix B.6.

Lemma 1. For k = 1, . . . , |I\C|, let απk = |C\D| − 1 − objπk , where objπk is defined in (13).

Inequality (12) is valid for

conv

({
yj ∈ {0,1}|I|

∣∣∣∑
i∈I

ξωi yij ≤mω
j (ω),yj ∈Yj, yij = 1,∀i∈D

})
. (14)

If |C| ≤ ρj + 1, inequality (12) is facet-defining for (14). 2

We compute the lifting coefficient αi using a dynamic programming based approach (see Zemel

(1989)). This algorithm is given in Appendix C.1.

Remark 4. Note that the sufficient condition in Lemma 1 for ensuring that an inequality is facet

defining requires us to start with covers with cardinality less than ρj + 1. The inequality remains

valid when this condition is not satisfied. However, it suggests a preference for identifying low

cardinality covers.

3.1.2. Down-Lifting Similar to the up-lifing, down-lifting computes the coefficients for the

variables yij in D. We use this technique to obtain a valid inequality for conv(Qjω) of the form∑
i∈C\D

yij +
∑
i∈I\C

αiyij +
∑
i∈D

βiyij ≤ |C\D|+
∑
i∈D

βi− 1, (15)
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where for i∈D, βi is called a down-lifting coefficient. The coefficient βi can be obtained by solving

the following sequence of problems. Let {κl}|D|l=1 be a sequence of the set D and κ(l) = {κ1, ..., κl} .

For l= 1, · · · , |D|, let

objκl := maximize
yj∈{0,1}|(I\D)∪κ(l−1)|

∑
i∈C\D

yij +
∑
i∈I\C

αiyij +
∑

i∈κ(l−1)

βiyij (16a)

subject to
∑
i∈I\D

ξωi yij +
∑

i∈κ(l−1)

ξωi yij ≤mω
j (ω)−

κ|D|∑
i=κl+1

ξωi , (16b)

∑
i∈I\D

yij +
∑

i∈κ(l−1)

yij ≤ ρj − |D|+ l. (16c)

Lemma 2. For l = 1, . . . , |D|, let βκl = objκl −
∑

i∈κ(l−1)

βi − |C\D|+ 1, where objκl is defined in

(16). The inequality (15) is valid for conv(Qjω). If |C| ≤ ρj +1, (15) is facet-defining for conv(Qjω).

Proof See Appendix B.7. 2

3.1.3. Examples of the Lifted Cover Inequalities We now provide an example to illustrate

the lifted cover inequalities described in the previous sections and the advantage of using the

cardinality constraint (i.e., solving a two-constrained dynamic program). In the second example, we

use the family of valid inequalities referred to as single lifted cover inequality (obtained by ignoring

the cardinality constraint in Fjω) and show that it gets strengthened in the DR framework.

Example 1. Suppose Fjω is defined by ρj = 3, mω
j (ω) = 40, and ξω = (7,8,11,10,9,14,23)>. Let

ŷ = {0.6,0.4,0.4,0.3,1.0,0.2,0.1}. Then the set C = {1,2,3,4,5} is a minimal cover. Following the

separation heuristic given in Section 4.1, we let D = {i ∈ C : ŷ = 1}= {5}. Suppose N = 5, ε= 0.6,

and the other scenarios in the computation of lifted cover inequalities are (8,11,7,10,7,17,23)>,

(14,7,10,11,8,13,26)>, (21,10,7,29,16,12,23)>, and (15,7,8,23,12,10,5)>, with pω = 1/N for all

ω ∈Ω. We get a lifted cover inequality by Theorem 2 as:

y1j + y2j + y3j + y4j + y5j + 2y6j + 2y7j + zjω ≤ 5. (17)

If p∗ω = 1/N for all ω ∈Ω and η= 0.5 in the Wasserstein set PW in (7), then a lifted cover inequality

for (DR-CAP) obtained from Theorem 3 is given as follows:

y1j + y2j + y3j + y4j + y5j + 2y6j + 2y7j ≤ 4. (18)

Example 2. (Continued from Example 1) Suppose that the cardinality constraint
∑
i∈I

yij ≤

ρj is removed from Fjω. Following a computation procedure similar to the one for the lifted cover

inequality, we obtain a valid inequality of the following form:

y1j + y2j + y3j + y4j + y5j + y6j + 2y7j + zjω ≤ 5. (19)
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We call (19) single lifted cover inequality. The lifted cover inequality (17) is stronger than the single

lifted cover inequality (19). The single lifted cover inequality for (DR-CAP) is

y1j + y2j + y3j + y4j + y5j + y6j + 2y7j ≤ 4. (20)

If ŷ satisfies (18), it also satisfies (20), which implies that (18) is stronger than (20). Using a similar

reasoning, we know that (18) is stronger than (17), and (20) is stronger than (19). Thus showing

the possible benefit of using the cardinality constraint, and the ambiguity set in the coefficient

calculations.

3.2. Global Lifted Cover Inequalities

In this section we develop a class of valid inequalities referred to as global lifted cover inequalities

for Gj and G′j, which are valid for (CAP) and (DR-CAP), respectively. For (CAP), let Ω̄ be a set

where each element Ωk ∈ Ω̄ is a subset of Ω such that
∑
ω∈Ωk

pω ≥ 1− ε, for k = 1, . . . , |Ω̄|. Without

loss of generality, we reuse the notation set Ω̄ and Ωk for (DR-CAP). For (DR-CAP), let Ω̄ be a

set where each element Ωk ∈ Ω̄ is a subset of Ω such that inf
p∈P

∑
ω∈Ωk

pω ≥ 1− ε, for k = 1, . . . , |Ω̄|. Ω̄

is maximal if it is not a proper subset of any other sets that satisfy the above condition. Let the

global lifted cover inequalities be of the form∑
i∈C\D

yij +
∑
i∈I\C

ᾱiyij +
∑
i∈D

β̄iyij +
∑
ω∈Ωk

γ̄ω(zjω − 1)≤ |C\D|+
∑
i∈D

β̄i− 1, k= 1, . . . , |Ω̄|, (21)

where C is a cover for the set Qjω for some ω ∈ Ω, and D ⊆ C. If Ω̄ is maximal, Ω̄ is unique and

(21) includes all possible such type of inequalities. For k ∈ {1, . . . , |Ω̄|}, when zjω = 1, ω ∈Ωk, (21)

becomes ∑
i∈C\D

yij +
∑
i∈I\C

ᾱiyij +
∑
i∈D

β̄iyij ≤ |C\D|+
∑
i∈D

β̄i− 1. (22)

Kaparis and Letchford (2008) developed a valid inequality for multi-constrained knapsack problems.

In Section 3.2.1 and 3.2.2, we use the ideas from Kaparis and Letchford (2008) to calculate the

coefficients ᾱi and β̄i in (22).

3.2.1. Up-Lifting Let {π̄l}|I\C|l=1 be a sequence of I\C and π̄(l) = {π̄1, · · · , π̄l}. For l =

1, . . . , |I\C|, the up-lifting problem is as follows:

objπ̄l := maximize
yj∈{0,1}|(C\D)∪π̄(l−1)|

∑
i∈C\D

yij +
∑

i∈π̄(l−1)

ᾱiyij (23a)

subject to
∑
i∈C\D

ξωi yij +
∑

i∈π̄(l−1)

ξωi yij ≤mω
j (ω)− ξωπ̄l −

∑
i∈D

ξωi , ∀ω ∈Ωk, (23b)∑
i∈C\D

yij +
∑

i∈π̄(l−1)

yij ≤ ρj − 1− |D|. (23c)
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Then ᾱπ̄l = |C\D|−1−objπ̄l . It is time-consuming to solve the up-lifting problem exactly. Dynamic

programming is also not an efficient approach since its complexity grows with the number of

constraints in (23). Kaparis and Letchford (2008) suggest relaxing yj ∈ [0,1]|I| and solving the LP

relaxation to compute an upper bound on objπ̄l . The objective value is then rounded down to the

nearest integer. We propose a heuristic to calculate ᾱπ̄l as follows. For each ω ∈Ωk, let

objπ̄l(ω) := maximize
yj∈{0,1}|(C\D)∪π̄(l−1)|

∑
i∈C\D

yij +
∑

i∈π̄(l−1)

ᾱiyij

subject to
∑
i∈C\D

ξωi yij +
∑

i∈π̄(l−1)

ξωi yij ≤mω
j (ω)− ξωπ̄l −

∑
i∈D

ξωi ,∑
i∈C\D

yij +
∑

i∈π̄(l−1)

yij ≤ ρj − 1− |D|.

Then, objπ̄l(ω) is an upper bound for objπ̄l . We use min
ω∈Ωk

objπ̄l(ω) to obtain a minimal upper bound

for objπ̄l from among the values {objπ̄l(ω)}ω∈Ωk
. Let ᾱπ̄l = |C\D|− 1− min

ω∈Ωk

objπ̄l(ω), which implies

ᾱπ̄l ≤ |C\D|− 1− objπ̄l . Thus, ᾱπ̄l is a valid lifting coefficient.

3.2.2. Down-Lifting Similar to up-lifting, we can obtain the down-lifting coefficient β̄i for

i∈D. Let {κ̄l}|D|l=1 be a sequence of D and κ̄(l) = {κ̄1, · · · , κ̄l}. For l= 1, · · · , |D|, let

objκ̄l := maximize
yj∈{0,1}|(I\D)∪κ̄(l−1)|

∑
i∈C\D

yij +
∑
i∈I\C

ᾱiyij +
∑

i∈κ̄(l−1)

β̄iyij (24a)

subject to
∑
i∈I\D

ξωi yij +
∑

i∈κ̄(l−1)

ξωi yij ≤mω
j (ω)−

κ̄|D|∑
i=κ̄l+1

ξωi , ∀ω ∈Ωk, (24b)

∑
i∈I\D

yij +
∑

i∈κ̄(l−1)

yij ≤ ρj − |D|+ l. (24c)

Instead of computing objκ̄l , we use the method proposed in Section 3.2.1 to obtain an upper bound

for objκ̄l . Specifically we use objκ̄l(ω) as the optimal objective value of the maximization problem

that takes a single row ω of problem (24) for ω ∈ Ωk and let β̄κ̄l = min
ω∈Ωk

objκ̄l(ω) −
∑

i∈κ̄(l−1)

β̄i −

|C\D|+ 1 in the computations.

3.2.3. Global Lifted Cover Inequalities Finally, to calculate γ̄ω in sequence {τ1, . . . , τ|Ωk|},
we consider the following problem for Gj, for l= 1, . . . , |Ωk|:

objτl = maximize
(yj ,zj)∈{0,1}|I|×{0,1}|(Ω\Ωk)∪τ(l−1)|

∑
i∈C\D

yij +
∑
i∈I\C

ᾱiyij +
∑
i∈D

β̄iyij +
∑

ω∈τ (l−1)

γωzjω (25a)

subject to
∑

ω∈Ω\Ωk

pωzjω +
∑

ω∈τ (l−1)

pωzjω ≥ 1− ε−
τ|Ωk|∑
ω=τl+1

pω, (25b)

∑
i∈I

ξωi yij +
(
mω
j (kq)−mω

j (ω)
)
zjω ≤mω

j (kq), ∀ω ∈Ω\Ωk ∪ τ (l− 1), (25c)∑
i∈I

ξωi yij ≤mω
j (ω), ∀ω ∈ {τl+1, . . . , τ|Ωk|}, yj ∈Yj, (25d)
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where τ (l− 1) = {τ1, . . . , τl−1}. The calculation of objτl is a reformulation of a chance-constrained

problem where some variables zjω are given. Instead of solving (25) exactly, we provide a heuristic

to obtain an upper bound for objτl . We relax yj ∈ [0,1]|I| and zj ∈ [0,1]|Ωk|, and solve the LP

relaxation of (25) to obtain an optimal solution (yrj ,z
r
j ) and objective value objrτl of the relaxed

problem. Then, objrτl gives an upper bound for objτl .

For G′j, for l= 1, · · · , |Ωk|, let

obj′τl := maximize
(yj ,zj)∈{0,1}|I|×{0,1}|(Ω\Ωk)∪τ(l−1)|

∑
i∈C\D

yij +
∑
i∈I\C

ᾱiyij +
∑
i∈D

β̄iyij +
∑

ω∈τ (l−1)

γωzjω (26a)

subject to (25d),

inf
p∈P

∑
ω∈Ω\Ωk

pωzjω +
∑

ω∈τ (l−1)

pωzjω ≥ 1− ε−
τ|Ωk|∑
ω=τl+1

pω, (26b)

∑
i∈I

ξωi yij + (mω
j (kq̄)−mω

j (ω))zjω ≤mω
j (kq̄), ∀ω ∈Ω\Ωk ∪ τ (l− 1). (26c)

We relax yj ∈ [0,1]|I| and zj ∈ [0,1]|Ωk|, and solve the relaxation problem using the method similar

to Algorithm 1 in Section 4.3, and obtain the optimal objective value objr′τl , which is an upper

bound on obj′τl .

Theorem 2 gives valid inequalities for conv(Gj) and conv(G′j). A proof is given in Appendix B.8.

Theorem 2. Let {ᾱi}i∈I\C and {β̄}i∈D be defined as in Section 3.2.1 and 3.2.2, respectively.

For l= 1, · · · , |Ωk|, we set γ̄τl = bobjrτlc− |C\D|+ 1−
∑
i∈D

β̄i−
∑

ω∈τ (l−1)

γ̄ω, where objrτl is the objective

value of the LP relaxation of (25). Then, (21) is valid for conv(Gj). For l = 1, · · · , |Ωk|, we set

γ̄τl = bobjr′τl c− |C\D|+1−
∑
i∈D

β̄i−
∑

ω∈τ (l−1)

γ̄ω, where objr
′
τl

is the objective value of the LP relaxation

of (26). Then, (21) is valid for conv(G′j). 2

The following example gives a global lifted cover inequality.

Example 3. (Continued from Example 1) We let C = {1,2,3,4,5} and D = {5} as before.

Let Ωk = {1,2}. Then we can obtain a global lifted cover inequality (21) for (CAP) given as follows:

y1j + y2j + y3j + y4j + 2y6j + 2y7j + zj1 + zj2 ≤ 5.

For (DR-CAP), Ωk = {1,2,3} satisfies inf
p∈P

∑
ω∈Ωk

pω ≥ 1− ε. A valid inequality (21) is given by

y1j + y2j + y3j + y4j + 2y6j + 3y7j + 2zj1 + 2zj2 + 2zj3 ≤ 9.

4. Solution Scheme

In Section 4.1, we present a heuristic sequential lifting procedure for separating the valid inequalities

developed in Section 3. These valid inequalities are used within a branch-and-cut framework to

solve the strengthened big-M binary reformulation (IP) of (CAP) in Section 4.2. A branch-and-cut

algorithm with probability cuts to solve the strengthened big-M semi-infinite reformulation (SIP)

of (DR-CAP) is given in Section 4.3.
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4.1. Separation Problem

Separation problem finds valid inequalities that are violated by an LP relaxation solution (ŷ, ẑ).

Klabjan et al. (1998) formulated the separation problem for the cover inequalities as a 0-1 knapsack

problem, and showed that this separation problem is NP-hard. Hence, we use heuristics for comput-

ing inequalities (1) and (21). In this section, we adopt the ideas from Gu et al. (1998) and Kaparis

and Letchford (2008) for the binary knapsack problem to separate (1) and (21), respectively.

4.1.1. Separation Problem for (1) To obtain the violated inequalities (1), we use a heuristic

similar to the one in Gu et al. (1998) for the knapsack problem. This heuristic is provided as

Algorithm 2 in Appendix C.2.

If |D| > ρj − 1 or mω
j (ω)−

∑
i∈D

ξωi − max
i∈I\C

ξωi < 0 for ω ∈ Ω, the down-lifting problems might be

infeasible since the right hand side of the down-lifting problems might be negative. In this case,

we remove items from D until |D| ≤ ρj − 1 and mω
j (ω)−

∑
i∈D

ξωi −max
i∈I\C

ξωi ≥ 0 for ω ∈Ω.

4.1.2. Separation Problem for (21) Gu et al. (1998) proposed a greedy heuristic for ini-

tializing the cover set by selecting items with the highest LP values. In Algorithms 2 and 3 of

Appendix C.3, we use this greedy heuristic to build the initial cover set. Note that the generation

of a valid inequality depends on the lifting sequence. The variables with an earlier lifting position

are expected to have better coefficient values (i.e., resulting in stronger cuts for that variable) in

the inequalities. Hence, the variables are first lifted from the set I\(C ∪ I0), then the set D, and

finally the set I0 in Algorithm 2 and 3. As stated in Gu et al. (1998) and Kaparis and Letchford

(2008), different lifting orders within set I\(C ∪ I0), I0, and D have comparable computational

performance. Thus the sequence of lifting variables chosen within the sets I\(C ∪I0), I0, and D is

used in their order of indices.

In our computational experience, the conditions in line 4 of Algorithm 3 is met about 33% of

the time. For example, for N = 500 (CAP) models with ε= 0.1, it is met in 37.4% cases. For the

(DR-CAP) instances of the same size with η= 1, it is met in 25.2% cases at the nodes that are at

depth ≤ 2. Similar to the discussion in Section 4.1.1, if |D|>ρj−1 or mω
j (ω)−

∑
i∈D

ξωi −max
i∈I\C

ξωi < 0

for some ω ∈ Ω, we remove the items from D until |D| ≤ ρj − 1 and mω
j (ω)−

∑
i∈D

ξωi − max
i∈I\C

ξωi ≥ 0

for all ω ∈Ω.

4.2. Branch-and-Cut Algorithm for (CAP)

The valid inequalities in Section 3 are used within a branch-and-cut implementation to solve

(CAP). An overview of the branch-and-cut framework is given in Algorithm 4 (Appendix C.4). The

algorithm uses the violated inequalities described in Section 4.1.1 and 4.1.2 in line 9 (see Section

6.2 for further discussion). Let LB and UB denote the current lower and upper bound for the

optimal objective value of (CAP), and N denote the set of remaining nodes in the branch-and-cut

search tree.
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4.3. Branch-and-Cut Algorithm with Probability Cuts for (DR-CAP)

We now investigate the probability cuts within a branch-and-cut framework for solving (DR-CAP).

We define the master problem as follows:

(MP) minimize
(y,z)∈{{0,1}|I||J|×{0,1}|J|N}∩X

∑
i∈I

∑
j∈J

cijyij

subject to (1b), (1c), (8c),

where the set X is a complementary set that defines the feasible region of (8). Set X is defined

by a set of probability and feasibility cuts. Let (ŷ, ẑ) be a feasible solution of (MP). For j ∈ J , a

distribution separation problem is given by:

(SPj) Sj(ẑ) := inf
p∈P

∑
ω∈Ω

pωẑjω.

The problem (SPj) is used to verify the feasibility of (ŷj, ẑj) to (DR-CAP). If Sj(ẑ)≥ 1−ε, (ŷj, ẑj)

is feasible to (DR-CAP). Otherwise, probability and feasibility cuts are added to (MP) as follows.

Let {p̂ω}ω∈Ω ∈P be an optimal solution of (SPj) corresponding to ẑ, then the following inequal-

ity is called a probability cut: ∑
ω∈Ω

p̂ωzjω ≥ 1− ε. (28)

Let I1
j = {i∈ I|ŷij = 1}. The following feasibility cut in variable y is added to (MP):∑

i∈I1
j

yij ≤ |I1
j | − 1. (29)

In Algorithm 1, UB and LB denote the upper and lower bound, respectively. We initialize the

algorithm by setting the iteration number k to 0, UB to positive infinity, and LB to negative

infinity. We add a node o to the node list N and use (LMP) to denote the LP relaxation of (MP)

(line 1-2). At the selected node o, we solve (LMP) and obtain the corresponding optimal solution

(yk,zk) and the objective value lobjk (line 4-6). If the objective value lobjk is smaller than the

current upper bound, then we check if (yk,zk) is binary (line 7). If (yk,zk) is binary, we solve

the distribution separation problem (SPj) with P for all j ∈ J , and obtain the optimal solution

{pkω}ω∈Ω and the objective value uobjk. We add probability and feasibility cuts to (LMP) if uobjk

is smaller than 1− ε (line 8-14). If we find probability and feasibility cuts, we go to line 5, and

resolve (LMP) at the current node o. Otherwise, (yk,zk) is a feasible solution to (DR-CAP), we

update the upper bound and record the corresponding solution (yk,zk) (line 15-20). If (yk,zk)

is fractional, we add violated inequalities or continue branching (line 22-30). We terminate our
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algorithm when the node list is empty, and return the optimal value UB and the optimal solution

(y∗,z∗) (line 33). Algorithm 1 gives a pseudocode of the branch-and-cut algorithm with probability

and feasibility cuts.

The following theorem shows that Algorithm 1 terminates in a finite number of iterations for

solving (DR-CAP) to optimality under certain conditions.

Theorem 3. If there exists an oracle that solves (SPj) to optimality, then Algorithm 1 termi-

nates in finitely many iterations. If UB<+∞, UB is the optimal value of (DR-CAP) and Algorithm

1 obtains an optimal solution (y∗,z∗) at termination.

Proof See Appendix B.9. 2

Remark 5. Recall that PW in (7) is a polyhedral set with a finite number of extreme points, thus

in this case (SPj) can be solved to optimality.

Remark 6. In the case of a polyhedral ambiguity set, such as the set PW , instead of using the

probability cut approach discussed above, it is possible to dualize the problem in (8) and write this

constraint explicitly (see Rahimian and Mehrotra (2019) and references therein). Such dualization

introduces dual variables corresponding to the constraints specifying PW , and we can obtain the

dual reformulation of (DR-CAP) (see Section 6.4).

5. Generalization to Joint Chance-Constrained Problems

The valid inequalities and solution schemes proposed in this paper are now developed for the

joint chance constraint assignment problem (JCAP), and the joint distributionally robust chance

constraint (DR-JCAP). Let us consider the joint chance constraint

P

{∑
i∈I

ξiyij ≤ tj, ∀j ∈J

}
≤ 1− ε, (30)

and the joint distributionally robust chance constraint

inf
P∈P

P

{∑
i∈I

ξiyij ≤ tj, ∀j ∈J

}
≤ 1− ε. (31)

Under the finite support assumption, constraint (30) can be rewritten as∑
i∈I

ξωi yij +
(
mω
j (kq)−mω

j (ω)
)
z′ω ≤mω

j (kq), ∀j ∈J , ω ∈Ω, (32a)∑
ω∈Ω

pωz
′
ω ≥ 1− ε, ∀j ∈J , (32b)

where mω
j (·) and q is defined in Section 2.1, and

z′ω =

1, if
∑
i∈I

ξωi yij ≤ tj, ∀j ∈J ,

0, otherwise.
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Algorithm 1: Branch-and-Cut Algorithm with Probability Cuts

1 Initialize P0 ∈P, the number of iteration k= 0, UB = +∞, LB =−∞, N = {o}, o has no branching

constraints.

2 Initialize the root node with the LP relaxation of (MP). Let the LP relaxation of (MP) be denoted by (LMP).

3 while (N is nonempty) do
4 Select a node o∈N , N ←N/{o}.

5 Solve (LMP) at the node o. k= k+ 1.

6 Obtain the optimal solution (yk, zk) and the optimal objective lobjk of (LMP).

7 if lobjk <UB then
8 if (yk, zk) is an integer then
9 for j ∈J do

10 Solve (SPj), and obtain an optimal solution (pk) and objective value uobjk

11 if uobjk < 1− ε then
12 Add the cuts (28) and (29) to (LMP).

13 end
14 end

15 if Cuts (28) and (29) are found then
16 Go to step 5.

17 end

18 else
19 UB = lobjk, (y∗, z∗) = (yk, zk).

20 end
21 end

22 if (yk,zk) is fractional then
23 Use Algorithm 2 and 3 to find the violated inequalities.

24 if Violated inequalities are found then
25 Add the violated inequalities to (LMP). Go to line 5.

26 end

27 else
28 Branch, resulting in nodes o∗ and o∗∗, N ←N ∪{o∗, o∗∗}.

29 end
30 end
31 end
32 end

33 return UB and its corresponding optimal solution (y∗, z∗).

A similar formulation can be found in Deng and Shen (2016). For the distributionally robust joint

constraint (31), we have the reformulation

inf
p∈P

∑
ω∈Ω

pωz
′
ω ≥ 1− ε, ∀j ∈J , (33a)∑

i∈I

ξωi yij +
(
mω
j (kq̄)−mω

j (ω)
)
z′ω ≤mω

j (kq̄), ∀j ∈J , ω ∈Ω. (33b)

Observe that the reformulations of (30) and (31) are obtained by replacing zjω in (IP) and (SIP)

with z′ω.
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Let us define the distribution separation problem as

(SP) S(ẑ′) := inf
p∈P

∑
ω∈Ω

pωẑ
′
ω,

and {p̂ω}ω∈Ω be an optimal solution of (SP) corresponding to ẑ′. We call the cut∑
ω∈Ω

p̂ωz
′
ω ≥ 1− ε (34)

a probability cut. Using the above distribution separation problem and probability cut, we can use

the branch-and-cut algorithm with probability cut to solve (DR-JCAP). We state the following

results for (DR-JCAP) and (JCAP), whose proofs are similar to those for (DR-CAP) and (CAP).

More specifically, we attain the lifted cover inequalities for (JCAP) and (DR-JCAP) in Theorem

4.

Theorem 4. For j ∈J , and ω ∈Ω, the following inequality∑
i∈C\D

yij +
∑
i∈I\C

αiyij +
∑
i∈D

βiyij + γ(z′ω − 1)≤ |C\D|+
∑
i∈D

βi− 1 (35)

is valid for (JCAP) when γ = δk̄
q1

, and is valid for (DR-JCAP) when γ = δk̄
q̄1

or γ = δk̄
q̂1

, where

C ⊆ I is a cover for
∑
i∈I

ξωi yij ≤mω
j (ω), D⊆ C, δk̄

q1
, δk̄

q̄1
and δk̄

q̂1
are defined in Appendix A, α and

β are up-lifting and down-lifting coefficients defined in Section 3.1.1 and 3.1.2, respectively. 2

Let

¯objτl = maximize
(yj ,z

′)∈{0,1}|I|×{0,1}|(Ω\Ωk)∪τ(l−1)|

∑
i∈C\D

yij +
∑
i∈I\C

ᾱiyij +
∑
i∈D

β̄iyij +
∑

ω∈τ (l−1)

γωz
′
ω (36a)

subject to
∑

ω∈Ω\Ωk

pωz
′
ω +

∑
ω∈τ (l−1)

pωz
′
ω ≥ 1− ε−

τ|Ωk|∑
ω=τl+1

pω, (36b)

∑
i∈I

ξωi yij +
(
mω
j (kq)−mω

j (ω)
)
z′ω ≤mω

j (kq), ∀ω ∈Ω\Ωk ∪ τ (l− 1), (36c)∑
i∈I

ξωi yij ≤mω
j (ω), ∀ω ∈ {τl+1, . . . , τ|Ωk|}, yj ∈Yj, (36d)

and

¯obj
′
τl

= maximize
(yj ,z

′)∈{0,1}|I|×{0,1}|(Ω\Ωk)∪τ(l−1)|

∑
i∈C\D

yij +
∑
i∈I\C

ᾱiyij +
∑
i∈D

β̄iyij +
∑

ω∈τ (l−1)

γωz
′
ω (37a)

subject to (36d),

inf
p∈P

∑
ω∈Ω\Ωk

pωz
′
ω +

∑
ω∈τ (l−1)

pωz
′
ω ≥ 1− ε−

τ|Ωk|∑
ω=τl+1

pω, (37b)

∑
i∈I

ξωi yij + (mω
j (kq̄)−mω

j (ω))z′ω ≤mω
j (kq̄), ∀ω ∈Ω\Ωk ∪ τ (l− 1), (37c)
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where Ωk, C and D are defined in Section 3.2, {τ1, . . . , τ|Ωk|} is a sequence of Ωk, and τ (l− 1) =

{τ1, . . . , τl−1}. Then the following theorem gives the global lifted cover inequalities that are valid

for (JCAP) and (DR-JCAP).

Theorem 5. Let {ᾱi}i∈I\C and {β̄}i∈D be defined as in Section 3.2.1 and 3.2.2, respectively.

For l= 1, · · · , |Ωk|, we set γ̄τl = b ¯obj
r

τl
c− |C\D|+ 1−

∑
i∈D

β̄i−
∑

ω∈τ (l−1)

γ̄ω, where ¯obj
r

τl
is the objective

value of the LP relaxation of (36).Then, (38) is valid for (JCAP).∑
i∈C\D

yij +
∑
i∈I\C

ᾱiyij +
∑
i∈D

β̄iyij +
∑
ω∈Ωk

γ̄ω(z′ω − 1)≤ |C\D|+
∑
i∈D

β̄i− 1, k= 1, . . . , |Ω̄|. (38)

For l= 1, · · · , |Ωk|, we set γ̄τl = b ¯obj
r′

τl
c− |C\D|+ 1−

∑
i∈D

β̄i−
∑

ω∈τ (l−1)

γ̄ω, where ¯obj
r′

τl
is the objective

value of the LP relaxation of (37). Then, (38) is valid for (DR-JCAP). 2

Algorithm 5 in Appendix C.5 gives an overview of the branch-and-cut algorithm with probability

cuts for (DR-JCAP). Theorem 6 shows that Algorithm 5 solves (DR-JCAP) in finitely many

iterations under certain conditions.

Theorem 6. If there exists an oracle that solves (SP) to optimality, then Algorithm 5 terminates

in finitely many iterations. If UB<+∞, UB is the optimal value of (DR-CAP) and Algorithm 5

obtains an optimal solution (y∗,z′∗) at termination. 2

6. Computational Experiments

We now present computational results for (CAP) and (DR-CAP). Computational experiments were

performed using data from an operating room (OR) assignment problem, where a set of surgeries

are assigned to operating rooms. Each surgery has a random duration, and each OR has a time

limit determined by its work hours. Problem instance generation is discussed in Section 6.1. Section

6.2 provides additional implementation details. The performance of the branch-and-cut algorithm

(Algorithm 4) for solving (CAP) is discussed in Section 6.3 and the branch-and-cut algorithm

with probability cuts (Algorithm 1) for solving (DR-CAP) is discussed in Section 6.4. Section 6.5

presents the performance of strengthening big-M in (SIP). Section 6.6 compares the out-of-sample

performance of the solutions generated from the (DR-CAP) instances with the corresponding

(CAP) instances.

6.1. Instance Generation

We used historical surgery duration data from a large public hospital in Beijing, China from January

2015 to October 2015. 5,721 surgery durations for the nine major surgery types are available. For

the problem instances, the log-normal distribution with the mean and the standard deviation of the

surgery duration (see Appendix E) was used to generate surgery duration samples (i.e. Deng and
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Shen (2016)). The samples generated from the log-normal distribution were rounded to the nearest

15 minutes and assigned equal probabilities as in sample average approximation. Eight (|J |= 8)

ORs are available to serve |I|= 27 surgeries (close to the maximum number of surgeries in a day) a

day. The daily time limit tj is 10 hours, ∀j ∈J . Following Zhang et al. (2018), we let the assignment

cost cij vary in [0,16], ∀i∈ I, j ∈J . The number of surgeries in an OR, ρj, is limited to [3,5], ∀j ∈J .

We used the number of surgeries and the percentage for each surgery type to calculate the number

of surgeries for each surgery type performed in a day. To ensure that (CAP) is always feasible, we

added a pseudo OR j′ to the set of ORs, which has no quantitative and capacity restrictions. We

set the assignment cost cij′ for i ∈ I as 27. The sample size N ∈ {500,1000,1500} and the level

of chance satisfaction ε ∈ {0.12,0.1,0.08,0.06} were used in the (CAP) instance generation. Five

instances were generated for each sample size.

6.2. Implementation Details

In our implementation of the branch-and-cut algorithm, we added the violated valid inequalities

generated from (1) at the nodes that are at a depth no more than 1. No limit was placed on the

number of such inequalities added to the formulation. We observed that it is more time-consuming

to find a violated inequality of the type (21). Therefore, we added the violated inequalities from

(21) at the nodes that are at a depth no more than 2, and the number of violated inequalities of

this type was limited to 15. The valid inequalities are generated until one of the following stopping

criteria is met: no cut is available with the violation threshold 10−2, or the number of iterations

is up to 100 at the root node of the branch-and-cut tree. As suggested by (Gu et al. 1998) for the

cover inequalities, in order to find a violated inequality (1) and (21), we let D = {i ∈ C : ŷij = 1},
where ŷ is the current LP relaxation optimal solution. At each round of cut generation of the type

(1), for each j ∈ J , multiple violated inequalities might be found. We only added the inequality

with the most violated value to the branch-and-cut tree.

The algorithm was implemented in the C programming language using IBM CPLEX solver,

version 12.71 callable libraries. A laptop with Intel(R) 2.80 GHz processor and 16 GB RAM was

used for computations on a 64-bit computer using the Windows operating system. We turned off

the CPLEX presolve procedure and set the number of threads to one for all computations. We

used CPLEX callback functions for adding the violated valid inequalities proposed in this paper.

For all computations, a priority order for the binary variables in the node selection rule was used.

The variables y were given a higher priority than z. We used a runtime limit of 10 hours or an

optimality tolerance of 1% as our stopping criteria. For instances that could not be solved to meet

the stopping criteria, we give the average optimality gap, where the optimality gap is calculated

as (UB− LB)/UB, and UB and LB are the upper and lower bound, respectively. We report the

solution time (in seconds) for the instances that are solved to optimality within the runtime limit.
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The computational results discussed below use the definition described in Section 2.1 to

compute mω
j (k) for j ∈ J and ω,k ∈ Ω. An easier way to compute mω

j (k) is to let mω
j (k) =

maximize
yj∈{0,1}|I|

{
∑
i∈I

ξωi yij

∣∣∣ ∑
i∈I

ξki yij ≤ tj}, i.e., ignoring the cardinality constraint in (5). This computation

takes less time to compute the big-M coefficients, but lead to larger big-M coefficients. Computa-

tional results for this big-M coefficients based implementation of (CAP) are presented in Appendix

F. Comparing results from this weaker upper bound with those in Table 1, we see the computa-

tional trade-offs resulting from using the weaker upper bound. For easier problems, the average

total solution times (the sum of the average time for the big-M coefficients and the branch-and-cut

algorithm) are less for the model with a weaker big-M. However, solution times for harder problems

improve significantly with the strengthened big-M computation.

6.3. Computational Results for the Branch-and-Cut Algorithm for (CAP)

We now discuss the benefits of adding the valid inequalities proposed in Section 3 to the branch-

and-cut algorithm when solving (CAP). The performance of the following four variants is compared:

• CPX: refers to using the branch-and-cut algorithm as implemented in CPLEX to solve (IP)

of (CAP).

• Cover-1: refers to adding the single lifted cover inequalities defined in Example (2) to the

branch-and-cut algorithm (Algorithm 4) for solving (IP) of (CAP). They are obtained by ignoring

the cardinality constraint in the coefficient calculation procedures.

• Cover-2: refers to adding the lifted cover inequalities (1) to the branch-and-cut algorithm

(Algorithm 4) for solving (IP) of (CAP).

• Cover-G: refers to adding the global lifted cover inequalities (21) to the branch-and-cut algo-

rithm (Algorithm 4) for solving (IP) of (CAP).

Table 1 reports the average time for the big-M coefficient computations, the cut generation time,

the branch-and-cut algorithm time, the average number of nodes, the average number of cuts, and

the number of instances solved to optimality for the five generated instances. First we note from

Table 1 that the problems become increasingly difficult as the value of ε reduces. A possible reason

is that for these problems it is more difficult to find a feasible solution satisfying chance constraint.

Note that for ε= 0.06 to combinatorially explore chance constraint satisfaction for a 500 scenario

problem we can violate 30 out of 500 scenarios. This suggests the possibility of requiring a large

number of nodes in the branch-and-bound tree in proving infeasibility.

We see from Table 1 that adding the single cover and lifted cover inequalities reduce the average

time for the branch-and-cut algorithm by about 55%. This decrease in the computation time

can be associated with the reduction in the number of nodes explored in the branch-and-cut

algorithm. For ε = 0.08 and N = 1500, adding the single and lifted cover inequalities can solve
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Table 1 The average CPU time (in seconds) for strengthened big-M coefficients

(AvT-M), branch-and-cut algorithm (AvT-B&C) and valid cut generation (AvT-cut), the

average number of nodes (# of nodes) and cuts (# of cuts), and the number of solved

instances from the five instances (solved) for (CAP) are reported.

ε N approach AvT-M AvT-B&C AvT-cut # of nodes # of cuts solved

0.12

500

CPX

165.0

52.8 - 1,725 - 5/5
Cover-1 33.3 1.7 1,446 283 5/5
Cover-2 47.1 14.7 1,076 300 5/5
Cover-G 65.5 8.6 1,959 9 5/5

1000

CPX

641.1

135.8 - 1,827 - 5/5
Cover-1 66.5 4.4 1,557 348 5/5
Cover-2 109.8 32.6 1,846 345 5/5
Cover-G 219.5 37.7 2,847 9 5/5

1500

CPX

1,439.3

781.4 - 5,094 - 5/5
Cover-1 659.4 10.9 10,788 563 5/5
Cover-2 502.4 76.0 3,756 561 5/5
Cover-G 739.5 101.0 3,715 12 5/5

0.1

500

CPX

165.0

140.7 - 3,477 - 5/5
Cover-1 122.5 1.2 4,638 210 5/5
Cover-2 126.0 10.7 3,641 224 5/5
Cover-G 136.7 10.6 2,926 12 5/5

1000

CPX

641.1

523.5 - 6,492 - 5/5
Cover-1 329.2 4.3 5,919 346 5/5
Cover-2 305.3 29.2 5,832 320 5/5
Cover-G 481.0 42.8 5,669 12 5/5

1500

CPX

1,439.3

1,868.9 - 10,308 - 5/5
Cover-1 995.7 11.7 9,983 657 5/5
Cover-2 983.6 95.6 7,439 689 5/5
Cover-G 1,713.0 140.4 8,831 14 5/5

0.08

500

CPX

165.0

816.6 - 29,710 - 5/5
Cover-1 470.5 1.1 18,226 192 5/5
Cover-2 360.2 9.1 14,614 201 5/5
Cover-G 809.9 10.1 28,151 10 5/5

1000

CPX

641.1

2,375.7 - 31,595 - 5/5
Cover-1 2,024.8 4.3 29,594 307 5/5
Cover-2 1,791.4 25.2 22,455 284 5/5
Cover-G 2,166.4 37.4 28,596 9 5/5

1500

CPX

1,439.3

4,600.4 [0.03] - 65,740 - 4/5
Cover-1 3,095.5+32,104.9* 7.6 76,573 402 5/5
Cover-2 3,072.9+28,014.4* 55.2 69,798 413 5/5
Cover-G 3,650.7+28,248.3* 77.4 54,969 10 5/5

0.06

500
CPX

165.0

32,178.1 [0.11] - 1,588,803 - 1/5
Cover-1 18,923.0 [0.07] 16.3 1,296,583 184 1/5
Cover-2 20,497.6 [0.09] 13.3 1,780,324 193 1/5
Cover-G 16,313.2 [0.11] 10.7 1,607,736 3 1/5

1000
CPX

641.1

[0.19] - 588,891 - 0/5
Cover-1 [0.19] 32.2 514,576 288 0/5
Cover-2 [0.17] 27.4 531,292 313 0/5
Cover-G [0.19] 37.1 562,600 10 0/5

1500
CPX

1,439.3

[0.25] - 267,632 - 0/5
Cover-1 [0.22] 21.6 216,724 456 0/5
Cover-2 [0.25] 54.9 247,320 431 0/5
Cover-G [0.31] 77.5 258,991 6 0/5

“-” in column of AvT-Cut and # of cuts indicates that no valid cut proposed in this paper is

added.

“[ · ]” in column of AvT-B&C means the average optimality gap for instances that cannot be

solved to optimality within 10 hours time limit.

“∗” in column of AvT-B&C means that AvT-B&C is the average time for the solved instances

by CPX plus the average time for the other instances.



Wang, Li and Mehrotra: Distributionally Robust Chance-Constrained Assignment
INFORMS Journal on Optimization 00(0), pp. 000–000, c© 0000 INFORMS 27

all instances to optimality within the runtime limit, whereas, CPX can only solve four of the five

instances to optimality. We also observe that for ε= 0.06, most of the instances cannot be solved

within the runtime limit by all variants. It seems that this level of chance requirement requires a

pseudo OR, i.e., the original model for assigning 27 surgeries to the eight operating rooms with

ε = 0.06 is infeasible. It makes it hard to decide how many and which surgeries are assigned to

the pseudo OR while satisfying the chance constraint with ε = 0.06, and minimizing the total

cost. Nevertheless, for these problems, the use of Cover-1 and Cover-2 result in a slightly smaller

average optimality gap for most instances at termination. The results also show that Cover-2 has

a better performance than Cover-1 in terms of the average time for the 1,500 scenario instances

(ε = 0.1,0.08,0.06). We find that the big-M computation time is significant for the less difficult

instances (ε= 0.12,0.10). However, for the difficult instances (ε= 0.08), the time required in the

branch-and-cut algorithm dominates. The benefits of adding Cover-1 and Cover-2 inequalities are

more apparent for these instances, and here the use of Cover-2 saves computation time over Cover-

1. For the easier problems (ε= 0.10,0.12), we observe that typically the number of nodes in the

branch-and-cut tree reduces due to the addition of Cover-2 inequalities. However, it does not always

translate in a significant reduction of the solution time, and occasionally there is a modest increase

in the solution time. Overall, adding Cover-2 inequalities outperforms other variants and yields a

more stable performance for most instances.

The use of Cover-G yielded an unfavorable performance for easier instances (ε≥ 0.08). However,

for the hardest instance (N=500, ε= 0.06) solved in our implementation, the use of Cover-G gives

a slightly better performance when compared with Cover-1 and Cover-2. For some instances, it

reduced the number of nodes significantly, while for other instances the number of nodes increased.

Even for the hardest solved instance (ε = 0.08,N = 1,500), which took fewer number of nodes

(54,969 versus 69,798) when compared to Cover-2 variant, this reduction did not translate into a

reduction in the overall solution time (28,248 versus 28,014 seconds). It can be surmised that the

linear programming relaxation problems resulting from the addition of these cuts are more time

consuming to solve, hence offsetting the benefits from the reduction in branch-and-bound nodes.

There are several instances where the use of Cover-G increased the number of nodes. This may be

because the addition of these inequalities may be yielding a significantly different node selection

path within CPLEX.

6.4. Computational Results for (DR-CAP)

We implemented Algorithm 1 to solve the semi-infinite reformulation (8) of (DR-CAP). Using the

empirical probability distribution, we let q̄ := q̂ (Corollary 1) for the big-M calculations in (8). For

(1), we set the coefficient γ as δk̄
q̂1

(Theorem 3). We used the sample average distribution as the

empirical probability distribution. The following variants are considered:
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• CPX: refers to using the branch-and-cut algorithm with probability cuts (Algorithm 1) to

solve (SIP) of (DR-CAP) without any valid inequalities proposed in this paper.

• Cover-1: refers to adding the Cover-1 inequalities from (CAP) to the branch-and-cut algorithm

with probability cuts (Algorithm 1).

• Cover-2: refers to adding the valid inequalities (1) to the branch-and-cut algorithm with prob-

ability cuts (Algorithm 1).

We solved the instances generated in Section 6.3 with the Wasserstein set PW as the ambiguity

set to evaluate the performance of the variants. The sample size N ∈ {500,1000,1500}, the Wasser-

stein set radius parameter η ∈ {0.1,0.5,1}, and the level of chance satisfaction ε= 0.1 are used in

these instances. Table 2 reports the average time for the branch-and-cut algorithm with probability

cuts, the cut generation, the average number of nodes, the average number of cuts, and the number

of instances that are solved to optimality from the five generated instances. The solution times for

(DR-CAP) instances accounted for the preprocessing time to obtain q̂ (Corollary 1). The reported

results do not use q̄ (Theorem 1) since we found that the additional time required to compute q̄

is not offset by any time savings resulting from its use in our test problems. Specifically, we use

mω
j (kq̂) in all our tests. While developing the probability cut approach presented above, we also

implemented the dualization reformulation (DSIP) to solve our test problems.

(DSIP) minimize
(y,z)∈{0,1}|I||J |×{0,1}|J |N ,µ1,µ2,µ3,µ4

∑
i∈I

∑
j∈J

cijyij

subject to (1b), (1c), (8c)

µ1
j − ηµ2

j +
∑
k∈Ω

p∗kµ
4
jk ≥ 1− ε, ∀j ∈J ,

−µ1
j +µ3

jω + zjω ≥ 0, ∀j ∈J , ω ∈Ω,

||ξω − ξk||µ2
j −µ3

jω −µ4
jk ≥ 0, ∀j ∈J , ω, k ∈Ω,

µ2
j ≥ 0, ∀j ∈J ,

where µ1, µ2, µ3, and µ4 are dual variables for the constraints in (7). We found that none of

the test instances could be solved to optimality with a 10 hour CPU time limit. Specifically, the

average optimality gap for the 500 scenario instances remained more than 80%, and for the larger

instances (N = 1500) this approach could not even find a feasible solution. We conjecture that it

is because introduction of continuous (dual) variables in a problem that is otherwise pure binary

adds significantly to the difficulty in solving the resulting model.

Similar to the case of (CAP), the results in Table 2 show that Cover-2 yields a significant

improvement over CPX and Cover-1 in two of the three harder instance sets (η = 0.1, and η = 1,

N = 1500). However, the average performance of Cover-1 is better for the (η = 0.5,N = 1500)



Wang, Li and Mehrotra: Distributionally Robust Chance-Constrained Assignment
INFORMS Journal on Optimization 00(0), pp. 000–000, c© 0000 INFORMS 29

Table 2 The average CPU time (in seconds) for the branch-and-cut algorithm with probability

cuts (AvT-B&CP), valid cut generation (AvT-cut) and distribution separation problem (AvT-SP),

the average number of nodes (# of nodes), valid cuts (# of cuts) and probability and feasibility

cuts (# of p&f-cuts), and the number of solved instances from the five instances (solved) for

(DR-CAP) are reported.

η N approach AvT-B&CP AvT-cut AvT-SP # of nodes # of cuts # of p&f-cuts solved

0.1

500
CPX 272.7 – 61.9 6,277 – 3 5/5

Cover-1 144.0 2.8 54.4 3,589 410 2 5/5

Cover-2 147.0 11.5 45.9 3,379 250 2 5/5

1000
CPX 889.6 – 273.9 9,476 – 2 5/5

Cover-1 728.6 7.2 336.6 7,274 553 2 5/5

Cover-2 723.5 32.1 285.1 7,606 349 2 5/5

1500
CPX 3,051.7 – 880.9 14,650 – 2 5/5

Cover-1 2,956.2 12.4 779.4 15,282 644 4 5/5

Cover-2 1,658.0 96.0 700.6 7,343 716 2 5/5

0.5

500
CPX 648.6 – 101.0 18,426 – 18 5/5

Cover-1 290.5 1.3 69.0 8,696 226 12 5/5

Cover-2 319.5 10.8 69.4 12,446 250 14 5/5

1000
CPX 1,390.0 – 403.4 12,095 – 12 5/5

Cover-1 1,021.5 5.6 346.5 12,148 447 8 5/5

Cover-2 884.0 33.0 397.5 10,720 373 9 5/5

1500
CPX 4,957.9 – 1,080.9 37,824 – 12 5/5

Cover-1 4,003.9 13.6 909.4 39,783 706 9 5/5

Cover-2 4,598.5 100.9 1,088.9 38,227 759 14 5/5

1

500
CPX 826.9 – 104.0 31,989 – 34 5/5

Cover-1 501.8 1.4 99.8 20,067 233 28 5/5

Cover-2 775.8 11.1 105.2 32,536 247 30 5/5

1000
CPX 2,987.3 – 502.2 47,221 – 30 5/5

Cover-1 3,173.8 6.2 483.6 42,202 482 30 5/5

Cover-2 2,173.9 36.3 484.7 33,143 414 28 5/5

1500
CPX 8,091.2 – 1,268.2 61,039 – 28 5/5

Cover-1 8,088.4 12.3 1,294.6 63,029 647 27 5/5

Cover-2 4,962.4 98.9 1,167.3 44,377 716 26 5/5

“–” in column of AvT-cut and # of cuts indicates that no valid cut proposed in this paper is added.

instances. A comparison of the results in Table 1 and 2 shows that the time required to solve

(DR-CAP) is approximately (at most) four times the time required to solve (CAP). Moreover,

the average number of probability and feasibility cuts required to solve these models is typically

less than 30, though this number grows with the Wasserstein radius. This is expected since with

increasing radius, the Wasserstein ambiguity set increases in size, resulting in more solutions being

generated in the algorithm that are infeasible with respect to the ambiguity set. The average

number of nodes required to solve the models also increases with the Wasserstein radius (up to 5

times). Note that the branch-and-cut tree from the incumbent problem is used to warm-start the

solution of the new problem after a probability cut is added.

6.5. Performance of Big-M Improvements from Ambiguity Set Information

The results in Table 2 were obtained by using the nominal distribution to compute the big-M

coefficients. We now discuss our computational experience with the possibility of big-M tightening
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Table 3 The CPU time (in seconds) for branch-and-cut algorithm with probability

cuts (time), and distribution separation problem (time-SP), the number of nodes (#

of nodes), and probability and feasibility cuts (# of p&f-cuts) for (DR-CAP) are

reported.

instance
time time-SP # of nodes # of p&f-cuts

CPX CPX-UM CPX CPX-UM CPX CPX-UM CPX CPX-UM

1500-1 12,350.4 8,354.3 1,305.1 1,419.1 63,691 93,617 38 44

1500-2 9,490.7 8,710.0 1,515.7 1,309.2 63,699 85,382 30 24

1500-3 5,331.2 5,564.0 1,250.1 1,017.6 55,893 36,640 22 12

1500-4 5,453.2 5,272.6 898.2 885.2 39,918 25,362 10 12

1500-5 7,830.7 8,627.2 1,372.0 1,560.4 81,992 71,336 38 32

Average 8,091.2 7,305.6 1,268.2 1,238.3 61,039 62,467 28 25

due to Theorem 1 and Corollary 1. While we found that the solution time required by the linear

programs in Theorem 1 is not justified, we did find computational value in using Corollary 1 as part

of our implementation. This is particularly true for the harder problems. In this section, we present

the results for the harder problems that are generated for η = 1 and N = 1500. Five instances

are considered. These instances are labeled as N −#, where # denotes the instance number. We

compare the performance of the following approaches:

• CPX: is described in Section 6.4.

• CPX-UM: refers to using new q̄ as valid inequalities and adding these inequalities to CPX.

For CPX-UM, we update q̂ defined in Corollary 1 as new {pω}ω∈Ω becomes available in the proba-

bility cuts. We set q̄= q̂ and add constraints (8c) as valid inequalities. We needed to do this because

CPLEX does not allow for changing in the coefficients of the original constraints once a branch-

and-bound tree is built. We need to keep the original branch-and-bound tree when solving the

problem. For each j, multiple violated inequalities might be found. We only added the inequality

with the most violated value to the branch-and-cut tree. In the current implementation, it is done

only once when a new probability distribution becomes available for each j. Table 3 reports the

solution time for the branch-and-cut algorithm with probability cuts and the separation problem,

the number of nodes, the number of probability and feasible cuts. Note that the time for the valid

inequality generation was negligible, and therefore not included in this table.

Specially, for the model with the largest value of η (η = 1), where Algorithm 1 generates many

probability cuts, we observe from Table 3 that CPX-UM provides better performance than CPX in

the solution time in three of the five instances. The average solution time is decreased by about 10%.

The solution time is significantly lower for one instance (1500-1), whereas that for other instances it

is similar. Compared with CPX, CPX-UM has a reduced total number of nodes for three instances,

whereas the number of nodes increases in the other two instances. The increase/decrease in the

number of nodes does not necessarily imply a corresponding increase/decrease in solution time.

This may be because the node linear programs may vary in difficulty. We could not find a setting
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for combining the valid inequalities discussed in this section with (1) to improve the performance

of Cover-2 implementation discussed in Section 6.4. We attribute this to the fact that CPLEX does

not allow us to change the coefficients of the original data with the progression of the algorithm.

6.6. Out-of-Sample Performance of (DR-CAP) Solutions

The chance constraints used to specify (CAP) and (DR-CAP) are generated using a finite num-

ber of samples drawn from a probability distribution. The goal of this section is to evaluate the

‘true chance satisfaction’ of the solution generated from this finite sample approximation. For this

purpose, the integer solutions obtained from (CAP) and (DR-CAP) were evaluated using a large

number (1,500,000) of scenarios generated from the log-normal distribution. We used five instances

each for the sample sizes N ∈ {50,100,500,1000,1500} for the (CAP) and (DR-CAP) solutions.

The (DR-CAP) solutions were generated using the Wasserstein radius parameter η ∈ {0.1,0.5,1}.

All evaluations were performed for ε= 0.1 in the chance constraint model. Table 4 gives the aver-

age total cost, the average overtime probability, the worst-case overtime probability, the average

overtime (minutes), and 85%, 95%, 99% overtime quantiles (minutes) for (CAP) and (DR-CAP)

solutions.

Table 4 The average total cost (Avg-cost), the average overtime probability (Avg-prob), the worst-case

overtime probability (Worst-prob), the average overtime (Avg-over) (in minutes), and 85%, 95%, 99% quantiles

(in minutes) for (CAP) (a) and (DR-CAP) (b) are reported.

(a)

N Avg-cost Avg-prob Worst-prob Avg-over 85% 95% 99%

50 68.6 0.075 0.144 6.8 0.0 42.4 150.8

100 69.9 0.071 0.123 6.2 0.0 36.4 150.0

500 69.9 0.070 0.122 6.1 0.0 36.4 150.4

1000 70.2 0.069 0.122 6.1 0.0 37.9 150.0

1500 70.7 0.067 0.117 5.8 0.0 34.5 148.1

The results in Table 4 show that the average and worst-case out-of-sample overtime probability

decrease with increasing sample size in (CAP) and the radius of the Wasserstein set (η) in (DR-

CAP). The same is observed for the average overtime, and the overtime 85% and 95% quantiles.

Consequently, using the largest instance (N = 1500) and/or larger η solutions are viable alternatives

when out-of-sample chance constraint satisfaction is of concern. We observe that the decrease

in the worst-case out-of-sample chance constraint satisfaction probability is more modest with

increasing sample sizes. For example, the solutions from the instances with N = 1000 give a worst

probability of 0.122, and the instances with N = 1500 have a worst probability of 0.117. However,

this worst-case out-of-sample chance constraint satisfaction probability decreases more significantly

with increasing η. For example, the instances with N = 1000 and η = 0.1 have the worst-case
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(b)

η N Avg-cost Avg-prob Worst-prob Avg-over 85% 95% 99%

0.1

50 69.6 0.071 0.144 6.4 0.0 37.9 149.3

100 70.4 0.070 0.124 6.1 0.0 35.3 147.4

500 70.3 0.068 0.122 6.0 0.0 36.8 147.4

1000 70.7 0.066 0.122 5.8 0.0 33.8 148.5

1500 71.0 0.067 0.117 5.9 0.0 35.6 147.4

0.5

50 70.9 0.071 0.121 6.3 0.0 39.8 148.9

100 70.4 0.069 0.123 6.1 0.0 35.3 147.4

500 71.7 0.066 0.121 5.8 0.0 32.3 147.8

1000 71.2 0.065 0.088 5.6 0.0 31.9 149.3

1500 72.0 0.065 0.096 5.6 0.0 29.6 148.1

1

50 71.5 0.068 0.121 5.9 0.0 34.1 147.4

100 71.5 0.068 0.130 6.0 0.0 34.1 145.9

500 72.8 0.065 0.121 5.6 0.0 28.9 148.1

1000 73.1 0.064 0.089 5.5 0.0 26.6 149.3

1500 73.3 0.064 0.082 5.4 0.0 24.4 148.1

out-of-sample probability of 0.122, and the instances with N = 1000 and η = 0.5 have the worst-

case probability of 0.088, i.e., in this case the solutions generated in all the instances satisfy the

chance constraint with probability 0.1. We also note that when the sample size is smaller (N=50,

100, 500), even though the average out-of-sample overtime probability is less than 0.1 for the

(CAP) solutions, the worst-case out-of-sample overtime probability can be significantly greater.

For example even for η= 0.1 this probability is 0.144 for N = 50. The solutions for the (DR-CAP)

models that satisfy the chance constraint have a modest increase in cost. This cost increases from

70.2 in the (CAP) model to 71.2 in the (DR-CAP) model when using N = 1000 and η = 0.5.

Similar observations are made for (CAP) and (DR-CAP) problem instances with N = 1500. It is

also interesting to observe that the worst-case probability for problem instances with N = 500 did

not change significantly (0.122, 0.121, 0.121) for η= 0.1,0.5 and 1.0, despite the solutions becoming

costlier. Consequently, increasing both the sample size and the size of the ambiguity set may be

important to ensure the worst-case probability satisfaction. However, it is important to note that

for the chance constraint problems computational cost increases rapidly with the sample size,

while the increase in the computational cost for the (DR-CAP) models is modest (only a constant

factor). As observed, the average and worst-case overtime probability decrease with an increase

in Wasserstein radius η. However, this comes at the expense of an increase in the objective value.

Thus the choice of Wasserstein radius also plays a role in the model whose solution would finally

be used. A data-driven bisection approach can be used to choose η. In this approach, one may

start with η ∈ {0, η0
max}, where η0

max is the largest Wasserstein radius possible on the finite support,

a quantity that can be estimated from the available samples. Now on the given sample, assuming

monotonicity in the out-of-sample performance, we may iteratively reduce ηk+1
max := ηkmax/2. The
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out-of-sample performance of the solution obtained for each value of ηkmax is evaluated, and the

process stops when this performance does not meet the desired out-of-sample chance satisfaction.

7. Concluding Remarks

The use of big-M calculations and strong inequalities developed in this paper resulted in the chance-

constrained assignment and distributionally robust chance-constrained assignment model solutions

with a modest number (N = 1500) of scenarios. These models remain difficult to solve when they

are infeasible or nearly feasible. The solution time for the models grows rapidly with increasing

sample size. However, the solution time for the distributionally robust chance-constrained models

appears to be only a constant factor of the time required to solve the chance constraint version.

The use of a modest number of samples (N = 1000) and an appropriate choice of the radius of the

Wasserstein set provide a solution that achieves an out-of-sample chance satisfaction. This out-of-

sample performance is not possible for the solutions generated from solving the chance constraint

problem specified using a modest number of samples. The use of the Wasserstein ambiguity set of

an appropriate radius allows us to have the true probability distribution of the random parameters

with a greater probability.
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References

Abdi, A., Fukasawa, R., 2016. On the mixing set with a knapsack constraint. Mathematical Programming

157 (1), 191–217.

Bansal, M., Huang, K.-L., Mehrotra, S., 2018. Decomposition algorithms for two-stage distributionally robust

mixed binary programs. SIAM Journal on Optimization 28 (3), 2360–2383.

Ben-Tal, A., Den Hertog, D., De Waegenaere, A., Melenberg, B., Rennen, G., 2013. Robust solutions of

optimization problems affected by uncertain probabilities. Management Science 59 (2), 341–357.

Beraldi, P., Bruni, M. E., 2010. An exact approach for solving integer problems under probabilistic constraints

with random technology matrix. Annals of Operations Research 177 (1), 127–137.

Bertsimas, D., Demir, R., 2002. An approximate dynamic programming approach to multidimensional knap-

sack problems. Management Science 48 (4), 550–565.

Calafiore, G. C., Campi, M. C., 2006. The scenario approach to robust control design. IEEE Transactions

on Automatic Control 51 (5), 742–753.



Wang, Li and Mehrotra: Distributionally Robust Chance-Constrained Assignment
34 INFORMS Journal on Optimization 00(0), pp. 000–000, c© 0000 INFORMS

Chen, W., Sim, M., Sun, J., Teo, C.-P., 2010. From cvar to uncertainty set: Implications in joint chance-

constrained optimization. Operations Research 58 (2), 470–485.

Chen, Z., Kuhn, D., Wiesemann, W., 2018. Data-driven chance constrained programs over wasserstein balls.

arXiv preprint arXiv:1809.00210.

Cheng, J., Delage, E., Lisser, A., 2014. Distributionally robust stochastic knapsack problem. SIAM Journal

on Optimization 24 (3), 1485–1506.

Cohen, M. C., Keller, P. W., Mirrokni, V., Zadimoghaddam, M., 2019. Overcommitment in cloud services:

Bin packing with chance constraints. Management Science 65 (7), 3255–3271.

Delage, E., Ye, Y., 2010. Distributionally robust optimization under moment uncertainty with application

to data-driven problems. Operations Research 58 (3), 595–612.

Deng, Y., Shen, S., 2016. Decomposition algorithms for optimizing multi-server appointment scheduling with

chance constraints. Mathematical Programming 157 (1), 245–276.

Deng, Y., Shen, S., Denton, B., 2019. Chance-constrained surgery planning under conditions of limited and

ambiguous data. INFORMS Journal on Computing 31 (3), 559–575.

Esfahani, P. M., Kuhn, D., 2018. Data-driven distributionally robust optimization using the wasserstein

metric: Performance guarantees and tractable reformulations. Mathematical Programming 171 (1-2),

115–166.

Gu, Z., Nemhauser, G. L., Savelsbergh, M. W., 1998. Lifted cover inequalities for 0-1 integer programs:

Computation. INFORMS Journal on Computing 10 (4), 427–437.

Hanasusanto, G. A., Roitch, V., Kuhn, D., Wiesemann, W., 2017. Ambiguous joint chance constraints under

mean and dispersion information. Operations Research 65 (3), 751–767.

Ji, R., Lejeune, M. A., 2020. Data-driven distributionally robust chance-constrained optimization with

wasserstein metric. Journal of Global Optimization, 1–33.

Jiang, R., Guan, Y., 2016. Data-driven chance constrained stochastic program. Mathematical Programming

158 (1-2), 291–327.

Jiang, R., Guan, Y., 2018. Risk-averse two-stage stochastic program with distributional ambiguity. Opera-

tions Research 66 (5), 1390–1405.

Kaparis, K., Letchford, A. N., 2008. Local and global lifted cover inequalities for the 0–1 multidimensional

knapsack problem. European Journal of Operational Research 186 (1), 91–103.

Klabjan, D., Nemhauser, G. L., Tovey, C., 1998. The complexity of cover inequality separation. Operations

Research Letters 23 (1-2), 35–40.
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Appendix A: Lifted Cover Inequality

We now provide coefficient calculations for a lifted cover inequality that is valid for conv(Fjω).

Theorem 1. The lifted cover inequality∑
i∈C\D

yij +
∑
i∈I\C

αiyij +
∑
i∈D

βiyij + γ(zjω − 1)≤ |C\D|+
∑
i∈D

βi− 1 (1)

is valid for conv(Fjω) if

γ = maximize
yj∈{0,1}|I|∩Yj

∑
i∈C\D

yij +
∑
i∈I\C

αiyij +
∑
i∈D

βiyij − |C\D|−
∑
i∈D

βi + 1. (2)

Furthermore, if |C| ≤ ρj + 1, (1) is facet-defining for conv(Fjω).

Proof. When zjω = 1, (1) is valid for conv(Fjω) because of Lemma 2. When zjω = 0, due to the definition of

γ, (1) is also valid for conv(Fjω). Thus, (1) is valid for conv(Fjω).

Consider the following |I|+ 1 feasible points of conv(Fjω): when zjω = 1, there exists |I| feasible points

of conv(Fjω) that are affinely independent and satisfy (1) at equality based on the Lemma 2; when zjω = 0,

let yj be the optimal solution of (2). These |I|+ 1 feasible points satisfy (1) at equality and are affinely

independent. Thus, (1) is facet-defining for conv(Fjω). 2

By restricting the feasible region of yj in (2) using the chance constraints (1d), we obtain a stronger valid

inequality for (CAP) in Theorem 2.

Theorem 2. For k ∈Ω\{ω}, let

δk = maximize
yj∈{0,1}|I|∩Yj

∑
i∈C\D

yij +
∑
i∈I\C

αiyij +
∑
i∈D

βiyij − |C\D|−
∑
i∈D

βi + 1 (3a)

subject to
∑
i∈I

ξki yij ≤mk
j (k). (3b)

Sort δk such that δk̄1
≤ . . . ≤ δk̄|Ω|−1

. Let q1 := min
{
l
∣∣∑l

j=1 pk̄j > ε
}

, then the inequality (1) is valid for

(CAP), where γ = δk̄
q1

.

Proof. Let

γ = maximize
yj∈{0,1}|I|∩Yj

∑
i∈C\D

yij +
∑
i∈I\C

αiyij +
∑
i∈D

βiyij − |C\D|−
∑
i∈D

βi + 1 (4a)

subject to
∑

k∈Ω\{ω}

pk1

(∑
i∈I

ξki yij ≤ tj

)
≥ 1− ε. (4b)

yj satisfies the chance constraint (1d) and zω = 0 for computing γ, the inequality (1) is valid for (CAP).

Let ŷj be an optimal solution of (4). Then, there exists at least one k′ ∈ {k̄1, . . . , k̄q1} such that
∑
i∈I

ξk
′

i ŷij ≤

tj . Otherwise, if
∑
i∈I

ξki ŷij > tj for all k ∈ {k̄1, . . . , k̄q1}, then
∑

k∈{k̄1,...,k̄q1}
pk1

(∑
i∈I

ξki ŷij > t

)
> ε, which indicates

1
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that (4b) is violated by ŷj . Therefore, ŷj is a feasible solution of (3) for k= k′. We have δk̄
q1
≥ δk′ ≥ γ, and

(1) is a valid inequality for (CAP) when γ = δk̄
q1

. 2

We further restrict the feasible region of yj in (2) by using (2b) to obtain a stronger valid inequality for

(DR-CAP) in the following theorem.

Theorem 3. For k ∈Ω\{ω}, let δk be defined as in Theorem 2, and sort δk such that δk̄1
≤ . . .≤ δk̄|Ω|−1

.

Let q̄1 := min{l | sup
p∈P

∑l

j=1 pk̄j > ε}. Then, the inequality (1) is valid for (DR-CAP) when γ = δk̄
q̄1

. Moreover,

if {p̂ω}ω∈Ω ∈P, let q̂1 := min{l |
∑l

j=1 p̂k̄j > ε}. Then, q̂1 ≥ q̄1 and the inequality (1) is valid for (DR-CAP)

when γ = δk̄
q̂1

.

Proof. Let

γ = maximize
yj∈{0,1}|I|∩Yj

∑
i∈C\D

yij +
∑
i∈I\C

αiyij +
∑
i∈D

βiyij − |C\D|−
∑
i∈D

βi + 1 (5a)

subject to inf
p∈P

∑
k∈Ω\{ω}

pk1

(∑
i∈I

ξki yij ≤ tj

)
≥ 1− ε. (5b)

yj satisfies the chance constraint (2b) and zω = 0 for computing γ, (1) is valid for (DR-CAP).

Let ŷj be an optimal solution of (5). Then,
∑
i∈I

ξk
′

i ŷij ≤ tj for at least one k′ ∈ {k̄1, . . . , k̄q̄}. Otherwise,

if
∑
i∈I

ξki ŷij > tj for all k ∈ {k̄1, . . . , k̄q̄}, we have sup
p∈P

∑
k∈{k̄1,...,k̄q̄}

pk1

(∑
i∈I

ξki ŷij > t

)
> ε, which indicates that

(5b) is violated by ŷj . Therefore, ŷj is a feasible solution of (3) for k= k′. We have δk̄q̄ ≥ δk′ ≥ γ, then (1) is

a valid inequality for (DR-CAP) when γ = δk̄q̄ . Since sup
p∈P

∑q̂1

j=1 pk̄j ≥
∑q̂1

j=1 p̂k̄j > ε, we have q̂1 ≥ q̄1, which

implies δk̄
q̂1
≥ δk̄

q̄1
≥ γ, and (1) is a valid inequality for (DR-CAP) when γ = δk̄

q̂1
. 2

Appendix B: Proof of Propositions and Theorems

B.1. Proof of Proposition 1

Let y∗j be an optimal solution of (4). Then, there exists at least one k′ ∈ {k1, . . . , kq} such that
∑
i∈I

ξk
′

i y
∗
ij ≤ tj .

Otherwise, we have
∑
i∈I

ξki y
∗
ij > tj , for k ∈ {k1, . . . , kq}. Since

∑q

j=1 pkj > ε, the inequality P
{∑
i∈I

ξiy
∗
ij ≤ tj

}
≥

1 − ε is violated. This is a contradiction. Therefore, y∗j is a feasible solution of (5) with k = k′. Then

mω
j (kq+1)≥ M̄ω

j , mω
j (kq+1) is an upper bound for M̄ω

j . 2

B.2. Proof of Theorem 1

For j ∈ J and ω ∈ Ω, let M̂ω
j := maximize

yj∈{0,1}|I|
{
∑
i∈I

ξωi yij

∣∣∣ inf
P∈P

P{
∑
i∈I

ξiyij ≤ tj} ≥ 1 − ε, yj ∈ Yj}. We show

that mω
j (kq̄) is an upper bound for M̂ω

j . Let y∗ij be an optimal solution of the above maximization

problem, there exists at least one k′ ∈ Ω̄ := {1, · · · , q̄} such that
∑
i∈I

ξk
′

i y
∗
ij ≤ tj . Otherwise,

∑
i∈I

ξki y
∗
ij >

tj for k ∈ Ω̄, we have infP∈P P
{∑
i∈I

ξiy
∗
ij ≤ tj

}
= infp∈P

∑
ω∈Ω\Ω̄

pω1

(∑
i∈I

ξωi y
∗
ij ≤ tj

)
≤ infp∈P

∑
ω∈Ω\Ω̄

pω =

infp∈P

(
1−

∑
ω∈Ω̄

pω

)
= 1 − sup

p∈P

∑
ω∈Ω̄

pω < 1 − ε, which is a contradiction. Thus, mω
j (kq̄) ≥ M̂ω

j . Therefore,

(DR-CAP) can be rewritten as (8). 2
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B.3. Proof of Proposition 2

Let (y,z) be a feasible solution of the relaxation problem of the binary bilinear reformulation of

(DR-CAP). We have
∑
i∈I

ξωi yij(z
ω
j − 1) − mω

j (kq̄)(z
ω
j − 1) = (zωj − 1)(

∑
i∈I

ξωi yij − mω
j (kq̄)). If mω

j (kq̄) ≥

m̄′jω,
∑
i∈I

ξωj yijm
ω
j (kq̄) ≤ 0, which implies that (zjω − 1)

(∑
i∈I

ξωj yijm
ω
j (kq̄)

)
≥ 0. Consequently,

∑
i∈I

ξωi yij +

mω
j (kq̄)(z

ω
j − 1)≤

∑
i∈I

ξωi yijz
ω
j ≤mω

j (ω)zωj holds. Therefore, (y,z) is a feasible solution of the relaxation prob-

lem of (8). The proof can be similarly extend to (CAP). 2

B.4. Proof of Proposition 3

The set H=
⋂
j∈J {(y,z)|(yj ,zj)∈ Gj} implies that H⊆Gj . Thus, if an inequality is valid for conv(Gj), then

it is also valid for conv(H). If an inequality is facet-defining for conv(Gj), then there exits |I|+N affinely

independent points that satisfy this inequality at equality. Because this inequality does not have coefficients

with respect to a pair of (yj1 ,zj1) for j1 ∈J and j1 6= j, we can extend the |I|+N affinely independent points

to a set of |I|× |J |+ |J |×N affinely independent points by appropriately setting the values of (yj1 ,zj1) for

each j1 ∈J and j1 6= j. 2

B.5. Proof of Proposition 4

The inequality (11) is valid for (10) based on the definition of C.

Consider the following |C\D| feasible points of (10): for k ∈ C\D, set yij = 1,∀i ∈ C\{D ∪ k}, yij = 0,∀i ∈

k
⋃

(I\C), and yij = 1,∀i∈D; These |C\D| points are affinely independent and satisfy (11) at equality. When

|C| ≤ ρj + 1, these |C\D| points are feasible. 2

B.6. Proof of Lemma 1

Suppose that there exists ŷj that serves as a member of the set {yj ∈ {0,1}|I||
∑
i∈I

ξωi yij ≤mω
j (ω),yj ∈Yj , yij =

1,∀i ∈ D} such that
∑

i∈C\D
ŷij ≤ |C\D| − 1 and

∑
i∈C\D

ŷij +
∑

i∈I\C
αiŷij > |C\D| − 1. Let r := max{k|

∑
i∈C\D

ŷij +∑
i∈π(k)

αiŷij ≤ |C\D|− 1}. We have

∑
i∈C\D

ŷij +
∑

i∈π(r+1)

αiŷij =
∑
i∈C\D

ŷij +
∑
i∈π(r)

αiŷij + (|C\D|− 1− objπr+1
)ŷπr+1,j ≤ |C\D|− 1,

which is a contradiction. Thus, (12) is valid for (14).

Consider the following |I\D| feasible points of (14): for k ∈ C\D, set yij = 1,∀i ∈ C\{D ∪ k}, and yij =

0,∀i∈ k
⋃

(I\C); for k= 1, · · · , |I\C|, set yπkj = 1, yij = 0,∀i∈ {πk+1, · · · , π|I\C|}, and {yij}i∈(C\D)
⋃
{π1,...,πk−1}

are the optimal solutions of (13). All these points have yij = 1,∀i ∈D. When |C| ≤ ρj + 1, the above |I\D|

points are feasible, satisfy (12) at equality and are affinely independent. 2

B.7. Proof of Lemma 2

Suppose that we have ŷj ∈ Qjω that violates (15). κ can be partitioned into D0 := {i ∈ κ|ŷij = 0} and

D1 := {i ∈ κ|ŷij = 1}. We assume that the last element in the set D0 is κh where h ≤ |D|. Then, we have∑
i∈C\D

ŷij +
∑

i∈I\C
αiŷij > |C\D|+

∑
i∈D0

βi−1. Note that |C\D|+
∑
i∈D0

βi−1 = |C\D|+objκh
−

∑
i∈κ(h−1)

βi−|C\D|+

1 +
∑

i∈D0\κh

βi − 1 = objκh
−

∑
i∈κ(h−1)

βi +
∑

i∈D0\κh

βi. Based on the definition of objκh
, we have that ŷj is a



Wang, Li and Mehrotra: Distributionally Robust Chance-Constrained Assignment
4 INFORMS Journal on Optimization 00(0), pp. 000–000, c© 0000 INFORMS

feasible solution of (16) with l = h. Then, objκh
−

∑
i∈κ(h−1)

βi +
∑

i∈D0\κh

βi ≥
∑

i∈C\D
ŷij +

∑
i∈I\C

αiŷij . This is a

contradiction. Thus, (15) is valid for conv(Qjω).

Consider the following |I| feasible points of conv(Qjω): when yij = 1,∀i∈D, then there exists |I\C| feasible

points that are independent and satisfy the inequality (15) at equality based on Lemma 1; for l ∈ {1, · · · , |D|},

set yj is the optimal solution of (16). When |C| ≤ ρj + 1, these |I| points are feasible, satisfy the inequality

(15) at equality and are affinely independent. 2

B.8. Proof of Theorem 2

We first prove that for (CAP) if the coefficients are described in Theorem 2, then, (21) is valid for conv(Gj).

For k ∈ {1, . . . , |Ω̄|}, let (ŷj , ẑj) ∈ Gj . If ẑjω = 1 for ω ∈ Ωk, then (21) is valid for conv(Gj). Otherwise, let

τ be partitioned into Ω0
k = {ω ∈ τ |ẑjω = 0} and Ω1

k = {ω ∈ τ |ẑjω = 1}. We assume that the last element of

Ω0
k is τh where h≤ |Ωk|. (21) becomes

∑
i∈C\D

ŷij +
∑

i∈I\C
ᾱiŷij +

∑
i∈D

β̄iŷij ≤ |C\D|+
∑
i∈D

β̄i − 1 +
∑
ω∈Ω0

k

γ̄ω. Note

that |C\D|+
∑
i∈D

β̄i− 1 +
∑
ω∈Ω0

k

γ̄ω = objτh −
∑

ω∈τ(h−1)

γ̄ω +
∑

ω∈{Ω0
k
\τh}

γ̄ω. Since (ŷj , ẑj) satisfies (25) with k = h,

we have objτh −
∑

ω∈τ(h−1)

γ̄ω +
∑

ω∈{Ω0
k
\τh}

γ̄ω ≥
∑

i∈C\D
ŷij +

∑
i∈I\C

ᾱiŷij +
∑
i∈D

β̄iŷij . Thus, (21) is valid for conv(Gj)

when γ̄τl = objτl−|C\D|+1−
∑
i∈D

β̄i−
∑

ω∈τ(l−1)

γ̄ω for l= 1, · · · , |Ωk|. Note that ᾱπ̄l
= |C\D|−1− min

ω∈Ωk

objπ̄l
(ω),

based on the definition of objπ̄l
(ω), it is easy to see that objπ̄1

(ω) is integer, and consequently ᾱπ̄1
is integer.

If ᾱπ̄1
is integer, then objπ̄2

(ω) is integer, which implies ᾱπ̄2
is integer. Using these arguments we know that ᾱ

is integer. Similarly, β̄ is also integer. Since the coefficients in (21) are integers, and y and z are binary, objτl

is integer. objrτl is an upper bound on objτl and objτl is integer, thus bobjrτlc is also an upper bound on objτl .

Therefore, (21) is valid for conv(Gj) when γ̄τl = bobjrτlc − |C\D|+ 1−
∑
i∈D

β̄i −
∑

ω∈τ(l−1)

γ̄ω for l = 1, · · · , |Ωk|.

The proof is similarly extended to G′j . 2

B.9. Poof of Theorem 3

The algorithm processes a finite number of nodes as it is based on branching on a finite number of binary

variables. When there exists an oracle that solve (SPj) to optimality, we can obtain an optimal solution of

(SPj) and verify the feasibility of (yk,zk) from (MP) to (DR-CAP). In addition, since a finite number of

integer solutions are obtained from (MP), (SPj) is solved finite times and the set of feasibility cuts generated

in line 12 is finite. Thus, Algorithm 1 terminates in finitely many iterations. Next, we show that the cuts

(28) and (29) can remove the current infeasible solution and never cut off any feasible solutions of (DR-

CAP). It can be verified that (28) and (29) can remove the current infeasible solution. Also,
∑
ω∈Ω

pkωzjω ≥

inf
p∈P

∑
ω∈Ω

pωzjω ≥ 1− ε. Thus, (28) never cuts off any feasible solutions of (DR-CAP). We assume that ỹ is a

new future solution from (MP) and the corresponding set Ĩ1
j . Let yij = ỹij , for i∈ I. Then the feasibility cut

(29) becomes
∑
i∈I1

j

ỹij ≤ |I1
j |−1, which is decomposed to

∑
i∈I1

j
∩Ĩ1

j

ỹij+
∑

i∈I1
j
\Ĩ1

j

ỹij ≤ |I1
j ∩Ĩ1

j |+ |I1
j \Ĩ1

j |−1 ⇐⇒∑
i∈I1

j
\Ĩ1

j

ỹij ≤ |I1
j \Ĩ1

j | − 1. If I1
j ⊆ Ĩ1

j , ỹ is not a feasible solution, and does not satisfy the feasibility cut.

Otherwise,
∑

i∈I1
j
\Ĩ1

j

ỹij = 0 and |I1
j \Ĩ1

j | − 1≥ 0. 2
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Appendix C: Algorithm Details

C.1. Dynamic Programming for Up-lifting Coefficient

For k = 1, . . . , |I\C|, λ1 = 0, . . . , |C\D| − 1, and λ2 = 0, . . . , ρj − 1 − |D|, let Aπk
(λ1, λ2) =

minimize
yj∈{0,1}|(C\D)∪π(k−1)|

{
∑

i∈C\D
ξωi yij +

∑
i∈π(k−1)

ξωi yij |
∑

i∈C\D
yij +

∑
i∈π(k−1)

αiyij ≥ λ1,
∑

i∈C\D
yij +

∑
i∈π(k−1)

yij ≤ λ2} and

lt, t= 0, . . . , |C\D|− 1 be the sum of the t smallest ξωi , i∈ C\D. Algorithm 1 gives an outline of our dynamic

programming framework. Since Algorithm 1 is a dynamic programming based approach, it is easy to see

that it has the complexity O (|I\C| · (ρ− |D|) · |C\D|) for calculating the up-lifting coefficients exactly.

Algorithm 1: Dynamic Programming for the Lifting Coefficients

1 for λ2 = 0, . . . , ρj − 1− |D| do
2 for λ1 = 0, . . . , |C\D|− 1 do
3 if λ1 ≤ λ2 then
4 Aπ1

(λ1, λ2) = lλ1
.

5 end

6 else
7 Aπ1

(λ1, λ2) = +∞.

8 end
9 end

10 end

11 for k= 1, . . . , |I\C| do

12 objπk = max

{
λ1 :Aπk(λ1, ρj − 1− |D|)≤mω

j (ω)− ξωπk −
∑
i∈D

ξωi }
}

, απk = |C\D|−1− objπk .

13 for λ2 = 0, . . . , ρj − 1− |D| do
14 for λ1 = 0, . . . , |C\D|− 1 do
15 if λ1 ≥ απk and λ2 ≥ 1 then
16 Aπk+1

(λ1, λ2) = min
{
Aπk(λ1, λ2),Aπk(λ1−απk , λ2− 1) + ζωπk

}
.

17 end

18 else
19 Aπk+1

(λ1, λ2) =Aπk(λ1, λ2).

20 end
21 end
22 end
23 end

C.2. Separation Heuristic for (1)

Algorithm 2 gives an overview of separation heuristic for (1).

C.3. Separation Heuristic for (21)

Algorithm 3 gives an overview of separation heuristic for (21).
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Algorithm 2: Separation Heuristic for (1)

1 Given the LP relaxation optimal solution (ŷ, ẑ).

2 for j = 1, . . . , |J | do
3 for ω= 1, . . . ,N do
4 if zjω = 1 then
5 Sort ŷj: ŷi1j ≥ ...≥ ŷi|I|j. Let C = {i1, . . . , io} where o≤ |I| is a smallest number

such that C is a cover.

6 Delete elements from C in non-decreasing order of ŷj to get a minimal cover C.

7 Let D= {i∈ C : ŷij = 1} and I0 = {i∈ I\C|ŷij = 0}. Calculate αi for i∈ I\(C ∪I0).

8 if
∑

i∈C\D
ŷij +

∑
i∈I\(C∪I0)

αiŷij > |C\D|− 1 then

9 Calculate βi for i∈D, and αi for i∈ I0.

10 Calculate δk, k ∈Ω\ω, set γ = δk̄
q1

for (CAP), γ = δk̄
q̄1

for (DR-CAP). Obtain

the inequality (1).
11 end
12 end
13 end
14 end

Algorithm 3: Separation Heuristic for (21)

1 Given the LP relaxation optimal solution (ŷ, ẑ).

2 for j = 1, . . . , |J | do
3 Let Ω1 = {ω ∈Ω|ẑjω = 1}.

4 if
∑
ω∈Ω1

pωẑjω ≥ 1− ε (for (CAP)) or inf
p∈P

∑
ω∈Ω1

pωẑjω ≥ 1− ε (for (DR-CAP)) then

5 Sort ŷj in non-increasing order: ŷi1j ≥ ...≥ ŷi|I|j.

6 for ω ∈Ω1 do
7 Let C = {i1, . . . , io} where o≤ |I| is a smallest number such that C is a cover for ω.

8 Delete elements from C in non-decreasing order of ŷj to get a minimal cover C.

9 Let set D= {i∈ C|ŷij = 1} and I0 = {i∈ I\C|ŷij = 0}. Calculate ᾱi for

i∈ I\(C ∪I0).

10 if
∑

i∈C\D
ŷij +

∑
i∈I\(C∪I0)

ᾱiŷij > |C\D|− 1 then

11 Calculate β̄i for i∈D, ᾱi for i∈ I0, and γω for ω ∈Ω1. Obtain the violated

inequality (21).
12 end

13 If (21) is obtained, go to step 2.
14 end
15 end
16 end
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C.4. Branch-and-Cut Algorithm

The branch-and-cut algorithm is provided in Algorithm 4.

Algorithm 4: Branch-and-Cut Implementation

1 Initialize UB = +∞, LB =−∞, k= 0. Node list N = {o}, o is a branching node without constraints.
2 while (N is nonempty) do
3 Select a node o∈N , N ←N/{o}.
4 At the node o, solve the LP relaxation problem of (IP). k= k+ 1.
5 Obtain an optimal solution (yk,zk) and objective value objk.
6 if objk <UB then
7 if (yk,zk) is fractional then
8 if Violated inequalities are found then
9 Add the violated inequalities to the LP relaxation problem. Go to line 5.

10 end
11 else
12 Branch, resulting in nodes o∗ and o∗∗, N ←N ∪{o∗, o∗∗}.
13 end
14 end
15 else
16 Update UB, UB = objk, (y∗,z∗)=(yk,zk).
17 end
18 end
19 end
20 return UB and its corresponding optimal solution (y∗,z∗).

C.5. Branch-and-Cut with Probability Cuts Algorithm for (DR-JCAP)

Algorithm 5 gives an overview of the branch-and-cut with probability cuts algorithm for (DR-JCAP).

Appendix D: Dynamic Programming Approach for Computing Big-M values

In this appendix, we use the dynamic programming approach proposed by ? to compute the Big-M values

in the model reformulation. For j ∈ J , let D(|I|, tj , ρj) represents (5), where |I| denotes the |I| variables of

yj . Let D(n, tj , ρj) be a subproblem of D(|I|, tj , ρj), where n denotes the first n variables of yj in (5). Let

S(n, tj , ρj) be the optimal objective value of D(n, tj , ρj). If D(n, tj , ρj) is infeasible, we set S(n, tj , ρj) =−∞.

Note that if ynj = 0, S(n, tj , ρj) is equal to S(n− 1, tj , ρj). If ynj = 1, S(n, tj , ρj) is equal to S(n− 1, tj −

ξkn, ρj − 1) + ξωn , Thus, we have

S(n, tj , ρj) = max{S(n− 1, tj , ρj), S(n− 1, tj − ξkn, ρj − 1) + ξωn},

where n= 2, . . . , |I|, with an initial condition S(1, tj , ρj). Hence,

mω
j (k) = S(|I|, tj , ρj).

Appendix E: Statistics of Surgery Duration

Table 1 presents the statistics of surgery duration for the real-life data, i.e. mean, standard deviation and

the percentage for each surgery type.

Appendix F: Computational Results using Weaker Big-M in (CAP)

Table 2 reports computational results for the weaker big-M of (CAP)
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Algorithm 5: Branch-and-Cut Algorithm with Probability Cuts for (DR-JCAP)

1 Initialize P0 ∈P, the number of iteration k= 0, UB = +∞, LB =−∞, N = {o}, o has no

branching constraints.

2 Initialize the root node with the LP relaxation of (MP). Let the LP relaxation of (MP) be

denoted by (LMP).

(MP) minimize
(y,z′)∈{{0,1}|I||J|×{0,1}N}∩X

∑
i∈I

∑
j∈J

cijyij

subject to (1b), (1c), (33b),

3 while (N is nonempty) do
4 Select a node o∈N , N ←N/{o}.

5 Solve (LMP) at the node o. k= k+ 1.

6 Obtain the optimal solution (yk, z′k) and the optimal objective lobjk of (LMP).

7 if lobjk <UB then
8 if (yk, z′k) is an integer then
9 Solve (SP), and obtain an optimal solution (pk) and objective value uobjk

10 if uobjk < 1− ε then
11 Add the cuts (34) and

∑
j∈J

∑
i∈I1

j

yij ≤ |I|− 1 to (LMP).

12 end

13 if The cuts in Step 11 are found then
14 Go to step 5.

15 end

16 else
17 UB = lobjk, (y∗, z′∗) = (yk, z′k).

18 end
19 end

20 if (yk,z′k) is fractional then
21 Use the algorithms that are similar to Algorithm 2 and 3 to find the violated

inequalities (35) and (38).

22 if Violated inequalities are found then
23 Add the violated inequalities to (LMP). Go to line 5.

24 end

25 else
26 Branch, resulting in nodes o∗ and o∗∗, N ←N ∪{o∗, o∗∗}.

27 end
28 end
29 end
30 end

31 return UB and its corresponding optimal solution (y∗, z′∗).
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Table 1 For each surgery type, the mean (mean),

standard deviation (std) in hours, and the percentage for

each surgery type (percentage) are reported

surgery type mean (hrs) std (hrs) percentage
Gynaecology 1.1 1.3 0.29
Galactophore 1.6 1.0 0.15

Lymphatic 3.2 1.1 0.14
Ear 2.8 1.7 0.13

Urology 2.3 1.7 0.07
Vascular 2.6 1.5 0.07

Obstetrics 1.5 0.5 0.06
Joint 2.8 1.3 0.06

Orthopeadic 3.2 1.8 0.03

Table 2 The average time (in seconds) for the weaker big-M

computations (AvT-M), the branch-and-cut algorithm

(AvT-B&C), the average number of nodes (# of nodes), and

the number of instances solved to optimality (solved).

ε N AvT-M AvT-B&C # of nodes solved

0.12
500 11.4 122.6 1,798 5/5
1000 43.8 219.7 2,088 5/5
1500 98.7 771.0 5,090 5/5

0.1
500 11.4 164.9 3,914 5/5
1000 43.8 604.7 7,192 5/5
1500 98.7 2,298.8 11,049 5/5

0.08
500 11.4 1,290.8 42,876 5/5
1000 43.8 2,777.8 25,874 5/5
1500 98.7 8,459.9[0.03] 103,689 4/5

0.06
500 11.4 [0.11] 2,232,748 0/5
1000 43.8 [0.21] 632,822 0/5
1500 98.7 [0.28] 362,215 0/5

“[ · ]” in column of AvT-B&C means the average sub-optimality

gap for instances that cannot be solved to optimality within 10

hours time limit.
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