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Straggler-Resilient Federated Learning:
Leveraging the Interplay Between Statistical
Accuracy and System Heterogeneity

Amirhossein Reisizadeh, Isidoros Tziotis, Hamed Hassani, Aryan Mokhtari, Ramtin Pedarsani

Abstract—Federated learning is a novel paradigm that involves
learning from data samples distributed across a large network
of clients while the data remains local. It is, however, known
that federated learning is prone to multiple system challenges
including system heterogeneity where clients have different com-
putation and communication capabilities. Such heterogeneity in
clients’ computation speed has a negative effect on the scalability
of federated learning algorithms and causes significant slow-down
in their runtime due to slow devices (stragglers). In this paper,
we propose FLANP, a novel straggler-resilient federated learning
meta-algorithm that incorporates statistical characteristics of the
clients’ data to adaptively select the clients in order to speed up the
learning procedure. The key idea of FLANP is to start the training
procedure with faster nodes and gradually involve the slower ones
in the model training once the statistical accuracy of the current
participating nodes’ data is reached, while the final model for
each stage is used as a warm-start model for the next stage.
Our theoretical results characterize the speedup provided by
the meta-algorithm FLANP in comparison to standard federated
benchmarks for strongly convex losses and i.i.d. samples. For
particular instances, FLANP slashes the overall expected runtime
by a factor of O(In(NVs)), where NV and s denote the total number
of nodes and the number of samples per node, respectively. In
experiments, FLANP demonstrates significant speedups in wall-
clock time —up to 6x— compared to standard federated learning
benchmarks.

I. INTRODUCTION

Federated learning is a distributed framework whose ob-
jective is to train a model using the data of many clients
(nodes), while keeping each node’s data local. In contrast
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with centralized learning, the federated learning architecture
allows for preserving the clients’ privacy as well as reducing
the communication burden caused by transmitting data to a
cloud. Nevertheless, as we move towards deploying federated
learning in practice, it is becoming apparent that several major
challenges still remain and the existing frameworks need to be
rethought to address them. Important among these challenges
is system (device) heterogeneity due to existence of straggling
nodes — slow nodes with low computational capability — that
significantly slow down the model training [2], [3].

In this paper, we focus on system heterogeneity in federated
learning and we leverage the interplay between statistical
accuracy and system heterogeneity to design a straggler-resilient
federated learning method that carefully and adaptively selects
a subset of available nodes in each round of training. Federated
networks consist of thousands of devices with a wide range
of computational, communication, battery power, and storage
characteristics. Hence, deploying traditional federated learning
algorithms such as FedAvg [4] on such a highly heterogeneous
cluster of devices results in significant and unexpected delays
due to existence of slow clients or stragglers. In most of
such algorithms, all the available clients participate in the
model training —regardless of their computational capabilities.
Consequently, in each communication round of such methods,
the server has to wait for the slowest node to complete its local
updates and upload its local model which significantly slows
down the training process.

In this paper, we aim to mitigate the effect of stragglers
in federated learning based on an adaptive node participation
approach in which clients are selected to participate in different
stages of training according to their computation speed. We call
our straggler-resilient scheme a Federated Learning method
with Adaptive Node Participation or FLANP. The key idea
of this scheme is to start the model training procedure with
only a few clients which are the fastest among all the nodes.
These participating clients continue to train their shared models
while interacting with the parameter server. Note that since the
server waits only for the participating nodes, it takes a short
time for the participating (and fast) clients to promptly train
a shared model. This model is, however, not accurate as it is
trained over only a fraction of samples. We next increase the
number of participating clients and include the next fastest
subset of nonparticipating nodes in the training. Note that the
model trained from the previous stage can be a warm-start
initialization for the current stage.

To discuss our main idea more precisely, consider a federated
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network of IV available nodes each storing s data samples and
suppose that we start the learning procedure with only m
clients. Once we solve the empirical risk minimization (ERM)
problem corresponding to m X s samples of these nodes up to
its statistical accuracy, we geometrically increase the number
of participating nodes to n = am where o > 1, by adding
the next n — m fastest clients in the network. By doing so,
the new ERM problem that we aim to solve contains the
samples from the previous stage as well as the samples of the
newly participating nodes. Moreover, the solution for the ERM
problem at the previous stage (with m clients) could be used
as a warm-start for the ERM problem at the current stage with
n = am nodes. This is due to the fact that all samples are
drawn from a common distribution, and as a result, the optimal
solution of the ERM problem with fewer samples is not far
from the optimal solution of the ERM problems with more
samples, as long as the larger set contains the smaller set.

In the proposed FLANP algorithm, as time progresses, we
gradually increase the number of participating clients until we
reach the full training set and all clients are involved. Note that
in this procedure, the slower clients are only used towards the
end of the learning process, where the model is already close
to the optimal model of the aggregate loss. Another essential
observation is that since the model trained in previous rounds
already has a reasonable statistical accuracy and this model
serves as the initial point of the next round of the iterative
algorithm, the slower nodes are only needed to contribute in
the final rounds of training, leading to a smaller wall-clock
time. This is in contrast with having all nodes participate in
training from the beginning, which leads to computation time
of each round being determined by the slowest node. In this
paper, we formally characterize the gain obtained by using
the proposed adaptive node participation scheme compared to
the case that all available nodes contribute to training at each
round. Next, we state a summary of our main contributions:

e We present a straggler-resilient federated learning meta-
algorithm that leverages the interplay between statistical
accuracy and device heterogeneity by adaptively activating
heterogeneous clients.

e We specify the proposed meta-algorithm with a federated
learning subroutine and present its optimization guarantees for
strongly convex risks. Further, we characterize the wall-clock
time of the proposed straggler-resilient scheme and demonstrate
analytically that it achieves up to O(In(Ns)) speedup gain
compared to standard benchmarks.

e Our numerical results show that our framework sig-
nificantly improves the wall-clock time compared to feder-
ated learning benchmarks —with either full or partial node
participation— for both convex and non-convex risks.

e We extend our adaptive node participation approach to data
heterogeneous setting where each node’s data is drawn from
one of C different distributions. We demonstrate theoretical
speedups of the adaptive scheme in such clustered scenarios
and theoretically examine its performance. We defer this section
to Appendix.

Related Work. System (device) heterogeneity challenge,
which refers to the case that clients have different computa-
tional, communication and storage characteristics, has been
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studied in the literature. Asynchronous methods have demon-
strated improvements in distributed data centers. However,
such methods are less desirable in federated settings as they
rely on bounded staleness of slow clients [5], [6]. The active
sampling approach is another direction in which the server
aims for aggregating as many local updates as possible within
a predefined time span [7]. More recently, [8] proposed a
normalized averaging method to mitigate stragglers in federated
systems and the objective inconsistency due to mismatch in
clients’ local updates. Deadline-based computation has also
been studied to mitigate stragglers in decentralized settings [9].
In a different yet related direction, various federated algorithms
have been studied to address the heterogeneity in clients’ data
distributions [10]-[15].

The idea of adaptive sample size training in which we solve
a sequence of geometrically increasing ERM problems has
been used previously for solving large-scale ERM problems.
In particular, it has been shown that this scheme improves the
overall computational cost of both first-order [16], [17] and
second-order [18]-[20] methods for achieving the statistical
accuracy of the full training set. In this paper, we exploit
this idea to develop FLANP for a different setting to address
the issue of device heterogeneity in federated learning. In
a different setting , i.e. distributed machine learning, [21]
proposes to exponentially increase the number of workers
where the (stochastic) gradient computation task is distributed
among the clients without local training.

As mentioned, FLANP is a general meta-algorithm that can
be employed with any federated learning subroutine studied
in the literature [4], [22]-[34]. In this paper, we showcase
the gain obtained by combining FLANP with the FedGATE
method [11].

II. FEDERATED LEARNING SETUP

In this section, we state our setup. Consider a federated
architecture where N nodes interact with a central server,
and each node i € [N] = {1,---, N} has access to s data
samples denoted by {24, 2¢}. These samples are drawn at
the beginning of the training process, and nodes cannot draw
new samples during training. Further, define £(-,-) : RYx Z —
R as a loss function where £(w, 2?) indicates how well the
model w performs with respect to the sample z}. Also, define
the empirical loss of node i as L*(w) = 1 >_7_, £(w, 2}). For
any 1 < n < N, we denote by L,,(w) the collective empirical
risk corresponding to samples of all nodes {1,--- ,n}, which
is defined as

)

Here, L, (w) represents the average loss over the n x s samples
stored at nodes {1,---,n}. We let w} denote the optimal
minimizer of the loss L, (w), i.e., w = argmin,, L,(w). We
assume that the samples zj’ are i.i.d. realizations of a random
variable Z with probability distribution P. The problem of
finding a global model for the aggregate loss of all available

N nodes, which can be considered as the empirical risk
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minimization (ERM) in (1) for n = N, i.e.,

1 N . 1 N s .
min Ly (w) =+ Zy(w):m ZZz(w,z;) 2)
=1 =1 j=1

is a surrogate for the expected risk minimization problem
miny, L(w) = Ezp[¢(w, Z)]. Our ultimate goal is to find
the optimal solution of the expected risk w* = arg min, L(w);
however, since distribution P is unknown and we only have
access to a finite number of realizations of the random variable
Z,ie, {z%,--- 21}~ |, we settle for solving problem (2).

Statistical Accuracy. The difference of expected and em-
pirical risks L, (w) — L(w) is referred to as the estimation
error and can be bounded by a function of the sample size. In
particular, since L, (w) captures ns samples, we assume that
there exists a constant V,,; bounding the estimation error with
high probability, supy, |L, (W) — L(w)| < V.

The estimation error V,,; has been deeply studied in the
statistical learning literature [35], [36]. In particular, it has
been shown that for strongly convex functions the estimation
error is proportional to the inverse of sample size [37], [38]. In
this work, we also assume that V,,; = n% for a constant c. Note
that for the loss function L,, once we find a point w that has an
optimization error of V5, i.e., L, (W)—L,,(w}) < V,,,, there is
no gain in improving the optimization error as the overall error
with respect to the expected risk L would not improve. Hence,
when we find a point w such that L,, (W) — L, (w}) < V5, we
state that it has reached the statistical accuracy of L,,. Our goal
is to find a solution w that is within the statistical accuracy
of the ERM problem of the full training set defined in (2).

System Heterogeneity Model. As mentioned earlier, feder-
ated clients attribute a wide range of computational powers
leading to significantly different processing times for a fixed
computing task such as gradient computation and local model
update. To be more specific, for each node i € [N], we let
T; denote the (expected) time to compute one local model
update. The time for such update is mostly determined by the
computation time of a fixed batch-size stochastic gradient of
the local empirical risk L;(w). Clearly, larger T; corresponds
to slower clients or stragglers. Without loss of generality and
for the sake of simplicity in explanation, we assume that the
nodes are sorted from faster to slower, that is, 77 < --- < Ty
with node 1 and N respectively identifying the fastest and
slowest nodes in the network. For practical purposes where the
computing speeds are unknown, we will provide procedures
to determine the (relative) speeds in Section III.

III. ADAPTIVE NODE PARTICIPATION APPROACH

Several federated learning algorithms have been proposed to
solve the ERM problem in (2) such as FedAvg [4], FedProx
[12], SCAFFOLD [10], DIANA [39], and FedGATE [11]. These
methods consist of several rounds of local computations by the
clients and communication with the server. Alas, in all such
approaches, all the available nodes in the network —regardless
of their computational capabilities— contribute to model learning
throughout the entire procedure. As explained earlier, federated
clients operate in a wide range of computational characteristics,
and therefore, the server has to wait for the slowest node in each
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Algorithm 1: FLANP
Initialize fast-to-slow nodes {1,--- , N}, n=ng
participating nodes with initial global model w,,
while n < N do
while L,,(w,,) — L,(w}) > V,,5 do
nodes {1,---,n} are participating and update
local models via Federated_Solver
server aggregates local models from nodes
{1,--- ,n} and updates global model w,,
end
n+ min{2n, N} =

doubling the participants

end

communication round to complete its local computation task.
All in all, the slowest nodes determine the overall runtime of
such federated algorithms which causes significant slow-down.
In this section, we describe our proposed approach to mitigate
stragglers in federated learning, and lay out the intuition
behind that. Our proposal, FLANP, is essentially a meta-
algorithm that can be specified with the choice of any particular
federated learning subroutine. The rest of the section focuses
on a particular case of FLANP where the federated learning
subroutine is picked to be FedGATE proposed by [11].

A. FLANP: A Straggler-Resilient FL Meta-Algorithm

Our proposal to address the device heterogeneity and mitigate
the stragglers is as follows.The server first solves the ERM
problem corresponding to ng fastest nodes, where ng is much
smaller than the total number of available nodes V. To identify
the ng fastest nodes, the server first broadcasts a short hand-
shake message to all nodes and waits for the first ny nodes
that respond. These ng nodes will participate in the training
process in the first stage. Using Federated_Solver which
is a federated learning subroutine of choice, e.g., FedAvg or
FedGATE, the ng participating nodes proceed to minimize the
empirical risk corresponding to their data points, which we
denote by L, (w) as defined in (1). This continues until the ng
nodes reach their corresponding statistical accuracy, that is, they
reach a global model wy,, such that Ly, (Wp,) — Ln, (W), ) <
Vios- Note that at this stage the server has to wait only for
the slowest client among the participating ones, i.e., node ny,
which is potentially much faster than the network’s slowest
node N.

Per our discussion in Section II, a more accurate solution than
Wy, would not help improving the optimality gap. Therefore,
once statistical accuracy is achieved, the procedure is terminated
and we increase the number of participating nodes from ng to
2ny. To select the 2n( fastest nodes, we repeat the hand-shaking
communication protocol that we discussed. Then, the selected
nodes use Federated_Solver to find the minimizer of the
loss corresponding to 2ng participating nodes, while using
the solution of the previous stage w,,, as their starting point.
Note that since the samples of nodes come from the same
distribution, we can show that the solutions of two successive
stages with ny and 2ng participants are close to each other, as
we discuss in Section IV.
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Again, in this stage, the training process terminates when
we find a point wg,, within the statistical accuracy of the loss
corresponding to 2ng participating nodes, i.e., Lan, (Wan,) —
Lon, (W3,,) < Van,s. In the stage with 2ng participating nodes,
the computation delay is determined by the slowest participating
node among 2ny nodes, which is slower than the previous
stage with ng participating nodes, but still faster than the
slowest node of the network. The procedure of geometrically
increasing the number of participating nodes continues till
the set of participating nodes contains all the available N
nodes, and these nodes find the final global model w within
the statistical accuracy of the global loss function Ly (w).
Algorithm 1 summarizes the straggler-resilient meta-algorithm.

Remark 1. In our proposed scheme, clients’ computation
speeds are not needed, and the parameter server figures out
the fastest n nodes only via several approaches including the
following:

e Handshaking protocol: In the beginning of each stage,
the parameter server identifies the fastest n nodes by first
broadcasting a short hand-shake message to all nodes and
then waiting for the first n nodes that respond. Alternatively,
the server may wait for all the nodes to respond which enables
it to have the speed ranking of all the devices up front. By
doing so, only one execution of handshaking is sufficient.

e The parameter server may assign a unique (and small)
computing task to all the devices before the actual training
starts. Each node report its computing time to the server which
enables the server to determine the ranking of the computing
speed s of the devices.

From a high-level perspective, Algorithm 1 exploits faster
nodes in the beginning of the learning procedure to promptly
reach a global model withing their statistical accuracy. By doing
so, the server avoids waiting for slower nodes to complete their
local updates; however, the optimality gap of such models
are relatively large since only a fraction of data samples have
contributed in the global model. By gradually increasing the
number of participating nodes and activating slower nodes, the
quality of the global model improves while the synchronous
computation slows down due to slower nodes. The key point
is that slower nodes join the learning process towards the end.

The criterion in Algorithm 1, that is L, (w,) — L,(w}) >
Vs, verifies that the current global model does not satisfy
the statistical accuracy corresponding to n participating nodes
{1,---,n}. This condition, however, is not easy to check since
the optimal solution w7}, is unknown. A sufficient and computa-
tionally feasible criterion is to check if |V L, (w,)[|? < 2uVjs,
when ¢ is p-strongly convex.

B. FLANP via FedGATE

As FLANP in Algorithm 1 is a general mechanism to mitigate
stragglers in federated settings, one needs to specify the inner
optimization subroutine Federated_Solver to quantify the
speedup of the proposed approach. This subroutine could be any
federated learning algorithm, but here we focus on FedGATE
[11], a federated learning algorithm that employs gradient
tracking variables to provide tight convergence guarantees for
nodes with heterogeneous data distributions.
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Algorithm 2: FLANP via FedGATE
Initialize n = ng participating nodes, initial model
Wy, initial gradient tracking 62(0) = 0 for participating

nodes i € {1,--- ,ng}
while n < N do
r=20 % reset round counter for each stage
for participating nodes i € {1,--- ,n} do
‘ 51(0) =0 % reset gradient tracking
end
while ||V L, (w,)||? > 2uV,s do
for participating nodes i € {1,--- ,n} do
WEO’T) =Wy,
forc=0,---,7,—1do
set dEC’T) = %Li(wgc’r)) - 51@
update WECH’T) = wgc’r) — ndff”“)
end
send A" = (w, — w!™")/n, to server
update 6" =" 4+ %H(Al(-r) — AM)
end
server broadcasts A" = 15" | Al
server broadcasts Wy, < Wy, — 7 Yn A"
participating nodes i € {1,--- ,n} upload
gradients VL!(w,,) to server
r—r+1
end

n < min{2n7 N} % doubling the participants

end

Why FedGATE? We would like to reiterate that FLANP
is a meta-procedure that can be used for any federated
learning solver including FedGATE to make it resilient against
straggling nodes. Nevertheless, we use FedGATE as the
subroutine since it provides convergence bounds that scale
with the number of participating nodes (which translates to
the number of incorporated data samples), which is desired
for the purpose of our adaptive node method. Algorithm 2
demonstrates how adaptive node participation in FLANP is
adopted to mitigate straggler delays in FedGATE.

We begin the first stage of Algorithm 2 with activating
the n = ny fastest nodes {1,--- ,no} and initialize them with
global model w,,,. We also reset the gradient tracking variables
6§0) to be zero for all participating nodes at the beginning
of each stage. Variables §; aim to correct the directions of
local updates at node ¢ by tracking the difference of local
gradients VL* and global gradients VL,, such that directions
d; closely follow the correct global gradient direction. After
T, iterations of local updates at any participating node in
round 7, accumulations of local gradients AET) are uploaded
to the server where it updates the global model w, using
two stepsizes 7,,yn. Note that the stepsizes 7, v, are fixed
throughout each stage with n participating nodes but vary for
different stages as n increases. After updating the global model
w,, at the end of each round, participating nodes upload their
local gradients VL!(w,,) such that the server aggregates and
computes the global gradient VL,,(w,,) and checks whether
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VL, (wn)||? < 2uVi,s. After R,, rounds of communications,
this condition is satisfied and the set of n participating nodes
reach the model w,, within their statistical accuracy. Therefore,
we augment the set of participating nodes (from faster to slower)
from {1,--- ,n} to {1,---,2n} leading to a new stage. The
above procedure continues until the set of participating nodes
contains all N available nodes.

IV. THEORETICAL RESULTS

In this section, we provide rigorous analysis for FLANP
outlined in Algorithm 2, which employs FedGATE as its
subroutine. We first characterize optimization guarantees of
Algorithm 2. Using such results, we derive the expected runtime
of our proposed algorithm and the speedup gain it provides
compared to naive methods.

A. Optimization Guarantees

Next, we analyze FLANP outlined in Algorithm 2, which
employs FedGATE as its subroutine. We first characterize
optimization guarantees of Algorithm 2. Using such results,
we derive the expected runtime of our proposed algorithm and
the speedup it provides compared to naive methods.

Connection between two successive stages. As we dis-
cussed in Section III-A, we expect the solution of each stage
with m participating nodes to be close to the solution of
the next stage with n nodes, where n > m, if the larger
set of nodes contain the smaller set. This is due to the fact
that within each cluster, samples are drawn from the same
distribution. To formalize this claim, consider a subset of m
participating nodes and a model w},, within their statistical
accuracy, i.e., Ly, (W) — L (W) < Vins. Next, we show
that the suboptimality error of w,, for the next loss with n
nodes is small, when the set of n nodes contains m nodes.

Proposition 1. Consider two subsets of nodes N,, C N,
and assume that model w,, attains the statistical accuracy
for the empirical risk associated with nodes in N,,, i.e.,
VLWl < 2uVys where the loss function { is p-
strongly convex. Then the suboptimality of w, for risk L, is
w.h.p. bounded above by

2(n—m)

Proof: We defer the proof to the Appendix. ]
Proposition 1 demonstrates that a model attaining the
statistical accuracy for m nodes can be used as an initial model
for the ERM corresponding to a larger set with n nodes. In
particular, when the number of participating nodes is doubled,
i.e., n = 2m, then the initial sub-optimality error is bounded
above by Ln(WnL) - Ln(w;';) S 3‘/7ns~
Next, we characterize the required communication and
computation for solving each subproblem. Specifically, consider
the case that we are given a model w,,, which is within the
statistical accuracy of L,, corresponding to m fastest nodes
in each cluster, and the goal is to find a new model w,, that
is within the statistical accuracy of L, corresponding to n
fastest nodes of each cluster, where n = 2m. To analyze
this procedure, we must specify three parameters: the choice
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of stepsizes 7,,vn, the number of local updates 7,, at each
participating node, and the number of communication rounds
with the server R,,. For these parameters we use index n, as
they refer to the case that n nodes participate in the training.
Next, we state our main assumptions.

Assumption 1. The loss {(w,z) is p-strongly convex with
respect to w, and the gradient V{(w,z) is L-Lipschitz
continuous. The condition number is defined as x = L/ p.

The conditions in Assumption 1 imply that the empirical
risks L, (w) and local loss functions L‘(w) are u-strongly
convex and have L-Lipschitz gradients. As we discussed in
Section II, the gap between the expected and the empirical risks
corresponding to ns data samples can be bounded as | L, (w)—
L(w)| < Vs, with high probability. Next, we formalize this
assumption.

Assumption 2. The approximation error for the expected loss
L(w) using ns samples of n nodes in the empirical risk L, (w)
is w.h.p. upper-bounded as sup,, |L,(w)—L(w)|<V,, where
Vs = O(1/ns).

Moreover, we assume that the approximation error for
gradients is upper-bounded by sup,, ||V Ly, (w) — VL(w)|| <
Vs, Wh.p.

We now turn our focus to the proposed Algorithm 2.

Theorem 1. Consider the federated ERM problem in (2)
and suppose Assumptions 1 and 2 hold. Let the proposed
FLANP in Algorithm 2 be initialized with the fastest ng nodes
in {1,--- ,no} and the model w,,. Moreover, suppose the
variance of stochastic local gradients is bounded above by
o2, ie., E[|VL{(w) — VLi(w)||?] < 0?2 for all nodes i. At
any stage of Algorithm 2 with n participating nodes, if for
sufficiently small o, the stepsizes are 1, = T:‘—”ﬁ, Yo = ﬁ,
and each node runs 1, = 1.5s02 /¢ local updates, where
c captures the constant term in the statistical accuracy
Vs = i, then nodes reach the statistical accuracy of L,
after R, = 12k 1n(6) rounds of communication.

Proof: We defer the proof to the Appendix. [ ]
The result in Theorem 1 guarantees that if we initialize
Algorithm 2 with n( fastest nodes and in each stage the
participating nodes update their local models according to
Algorithm 2 for 7 = O(s) iterations and R = O(k) rounds,
before doubling the number of participating nodes, then
at the end of the final stage in which all N nodes are
participating, we reach a model wy that attains the statistical
accuracy of the empirical risk Ly (w). Specifically, we have
E[Ln(wn) — Ly(wy)] < Vns. Note that to obtain the
best guarantee, 7,, and R, are independent of number of
participating nodes n, while the stepsizes 7,, and -, change
as the number of participating nodes increases.

B. Wall-Clock Time Analysis

We have thus far established the convergence properties
of Algorithm 2. It is, however, equally important to show
that it provably mitigates stragglers in a federated learning
framework and hence speeds up the overall wall-clock time.
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In the following, we first characterize the running time of
Algorithm 2 and then compare it with the one for straggler-
prone FedGATE benchmarks.

Let 77 < --- < Ty denote the computation times of the
N available nodes. We also denote by Terayp the average
runtime of FLANP in Algorithm 2 to reach the overall statistical
accuracy of the ERM problem corresponding to all nodes
defined in (2). As discussed before, at the stage of FLANP
with n participating nodes, the slowest node determines the
computation time of that stage. More precisely, the computation
time of each iteration of FLANP with n participating node per
cluster is T, = max{T},---,T,}. Since each stage consists of
R communication rounds each with 7 local updates, the average
run-time of each stage is R77T,,. Therefore, the overall wall-
clock time of Algorithm 2 is on average Trianp = R7(T,, +
Topny + -+ Tn) with R = 12x1n(6) and 7 = 1.5s02/c as
characterized in Theorem 1.

This further demonstrates how the adaptive node participation
approach incorporates faster nodes in order to save in the
overall wall-clock time. As Theorem 1 shows, it suffices for
each participating node in the straggler-resilient Algorithm 2 to
run R = O(k) rounds of local updates and 7 = O(s) iterations
per round to reach the final statistical accuracy. Therefore, the
overall wall-clock time of Algorithm 2 is order-wise Teranp =
O(kso*(Tpy + Ton, + -+ + Th)).

To quantify the speedup gain provided by our proposed
method, we need to characterize the wall-clock time for the non-
adaptive benchmark FedGATE. Note that in this benchmark,
all the N available nodes participate in the training from the
beginning.

Proposition 2. The average runtime for the non-adaptive
benchmark FedGATE fo solve the federated ERM problem
(2) and to reach the statistical accuracy of all the samples of
the N nodes is Treacare = O(kso? In(Ns)Ty) where Ty is
the unit computation time of the slowest node.

Proof: We defer the proof to the Appendix. ]
As expected, the result in Proposition 2 indicates that as
all N nodes participate in training since the beginning of the
algorithm, the overall wall-clock time depends only on the
slowest node with computation time T = max{7y,--- ,Tn}.
Thus far, we have characterized the order-wise expressions of
the average wall-clock time for FLANP and FedGATE methods
as follows

TFLANP = O(Ksoj (Tno + T2n0 +--- 4+ TN))7

Treacarz = O(ks0? In(Ns)Ty). 3)

To establish the speedup for the straggler-resilient method,
we consider a random exponential time model for clients
computation times, which has been widely used to capture the
computation delay for distributed clusters [40], [41]. We assume
that nodes computation time are independent realizations of an
exponential random variable and characterize the speedup of the
resilient Algorithm 2 compared to the benchmark FedGATE.

Theorem 2. Suppose the clients’ computation times are i.i.d.
random variables drawn from an exponential distribution
with parameter \. That is, T1,--- ,Tn ~ exp(\). Then, the
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speedup gain of the FLANP Algorithm 2 compared to the naive
FedGATE method is

E%F]} =0 (lnulm)'

Proof: We defer the proof to the Appendix. [ ]
Theorem 2 establishes a O(In(Vs)) speedup gain for FLANP
compared to its non-adaptive and straggler-prone benchmark
FedGATE, when the clients’ computation times are drawn
from a random exponential time model.

We have so far considered device heterogeneous federated
clients with potentially well-spread computation speeds and
demonstrated the speedup gain obtained by adaptive node
participation approach, particularly in Theorem 2. We would
like to add that our method provides provable speedups even
for device homogeneous clients with identical speeds, i.e.,
Ty = --- = Tn. Comparing the expected runtimes in (3) yields
that FLANP in Algorithm 2 slashes the expected wall-clock
time of FedGATE by a factor In(N's)/In(V). This observation
demonstrates that the adaptive node participation approach
results in two different speedup gains: () leveraging faster
nodes to speedup the learning and (¢¢) adaptively increase the
effective sample size by participating more clients.

V. NUMERICAL EXPERIMENTS

We conduct various numerical experiments for convex and
nonconvex risks and evaluate the performance of the proposed
method versus other benchmarks.

Benchmarks. Bellow is a brief description for multiple
federated learning benchmarks that we use to compare with
the proposed FLANP in Algorithm 2. In these benchmarks, all
the available N nodes participate in the training process.

e FedAvg [4]. Nodes update their local model using a
simple SGD rule for 7 local iterations in each round, before
uploading to the server.

e FedGATE [11]. This is the subroutine used in Algorithm
2. Here we consider it as a benchmark running with all the
available N nodes with model update rule similar to the
subroutine in Algorithm 2.

e FedNova [8]. In each round, each node ¢ updates its
local model for 7; iterations where 7;s vary across the nodes.
To mitigate the heterogeneity in 7;s, the server aggregates
normalized updates (w.r.t. 7;) from the clients and updates the
global model.

We compare the performance of FLANP with such bench-
marks in terms of communication rounds and wall-clock time.
We examine FLANP against the benchmarks under both full and
partial node participation scenarios and highlight its practicality.
We consider computation speeds that are uniformly distributed
and exponentially distributed.

Uniform computation speeds.

Data and Network. We use three main datasets for different
problems: MNIST (60,000 training, 10,000 test samples),
CIFAR10 (50, 000 training, 10, 000 test samples) and synthetic
(10,000 samples) datasets. To implement our algorithm, we
employ a federated network of N € {20, 50,100} heteroge-
neous clients and in order to model the device heterogeneity,
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Fig. 5: Partial node participation

we realize and then fix the computation speed of each node i,
i.e. T; from the interval [50, 500] uniformly at random.

Logistic Regression. We use the MNIST dataset to learn a
multi-class logistic regression model. In a network of N = 50
nodes, each client stores s = 1200 samples from the MNIST
dataset. As demonstrated in Figure 1 (left), FLANP is slightly
outperformed by FedGATE at the initial rounds. This is
however expected as FLANP starts with only a fraction of
nodes participating which leads to less accurate models. With
respect to wall-clock time however, FLANP outperforms both
FedAvg and FedGATE benchmarks due to the fact that the
initial participating nodes are indeed the fastest ones. As Figure
1 (right) shows, the adaptive node participation approach leads
FLANP to speedup gains of up to 2.1x compared to FedGATE.

Neural Network Training. We train a fully connected neural
network with two hidden layers with 128 and 64 neurons and
compare with three other benchmarks including FedNova
which is stragglers-resilient. We conduct two sets of experi-
ments over CIFAR10 and MNIST on a network of N = 20
clients, as demonstratd in Figures 2 and 3 where FLANP
accelerates the training by up to 3x compared to FedNova.

Random exponential computation speeds. We conduct
another set of experiments using the same setup described
earlier. However, we here pick the clients’ computation speed
to be i.i.d. random exponential variables, i.e. consistent with
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Theorem 2. We train a fully connected neural network with
two hidden layers with 128 and 64 neurons on MNIST and
compare with benchmarks FedAvg, FedGATE and FedNova
as demonstrated in Figure 4.

Comparison with partial node participation methods.
Thus far, we have compared the FLANP method with federated
benchmarks in which all of the available nodes participate in
training in every round. To demonstrate the resiliency of FLANP
to partial node participation methods, we consider two different
scenarios. First, we compare the wall-clock time of a neural
network training of FLANP with partial node participation
FedGATE in which only £ out of N = 50 nodes are randomly
picked and participate in each round. As demonstrated in
Figure 5(a), FLANP is significantly faster than FedGATE with
partial node participation. Second, we consider the case that
the k participating nodes are not randomly picked, but are
the fastest clients. As shown in Figure 5(b), although partial
participation methods with & fastest nodes begin to outperform
FLANP, towards the end of the training, they suffer from higher
training error saturation as the data samples of only k nodes
contribute in the learned model and hence the final model is
significantly inaccurate.

FLANP with other federated solvers. To illustrate the
compatibility of FLANP with solvers other than FedGATE,
we train the neural network on MNIST and employ FedAvg
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and FedNova as solvers of FLANP. As shown in Figure 6(a),
FLANP is able to significantly speedup all three solvers.

FLANP on other datasets (FEMNIST). Next, we demon-
strate the performance of FLANP with another commonly used
dataset that is FEMNIST which includes lower-case and upper-
case letters and digits (Figure 7). In our implementation, we
include 60,000 samples from upper-case letters and digits and
implement over a federated network of 60 clients.

Lastly, we note that from the practical point of view, there are
several heuristic approaches to estimate the constant parameters
u, ¢, Vi, s in Algorithm 2. We conducted an experiment to learn
a linear regression model with Gaussian synthetic data in which
none of the constants are assumed to be known. Rather, we
heuristically tune the threshold for each stage transition (i.e.
doubling the nodes) by monitoring the norm of the global
gradient and successively halving the threshold. As shown
in Figure 6(b), the performance of such heuristic methods is
indeed close to FLANP which highlights its practicality.

VI. CONCLUDING REMARKS

In this paper, we targeted straggler and system heterogeneity
challenge in federated learning frameworks and proposed an
adaptive node participation scheme to mitigate slow nodes
during the training, namely FLANP. In our proposal, the
training begins with only a handful of devices which are the
fastest among the total N available nodes in the network. After
the trained model on such devices reaches their corresponding
statistical accuracy, FLANP doubles the number of participating
nodes. We rigorously discussed how such doubling procedure
enables the trained model at the end of each stage to be a
proper warm-up initial model for the next stage. Doubling the
participants continues till all the N nodes are incorporated in
the training. For strongly convex objectives, we characterized
the convergence guarantees of FLANP when combined with
FedGATE as the inner federated learning solver. We also
established order-wise speedup gain of the proposed adaptive
methods compared to its non-adaptive counter method. Our
numerical experiments also demonstrate significant speedups
in different convex and non-convex scenarios, where we
highlighted the practicality of the proposed method as well.
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