

1 FRONT MATTER

2 Title

- 3 · A biomineral-inspired approach of synthesizing **colloidal persistent** phosphors as a multicolor,
- 4 intravital light source
- 5 · Bioinspired nanophosphors for afterglow imaging

6 Authors

7 Fan Yang^{1,2†}, Xiang Wu^{1,2†}, Han Cui^{1,2}, Zihao Ou^{1,2}, Shan Jiang^{1,2}, Sa Cai^{1,2}, Qi Zhou^{1,2}, Bryce G. Wong^{1,2}, Hans Huang^{1,2}, and Guosong Hong^{1,2*}

11 Affiliations

12 ¹ Department of Materials Science and Engineering, Stanford University, Stanford, CA, 94305,
13 USA

14 ² Wu Tsai Neurosciences Institute, Stanford University, Stanford, CA, 94305, USA

15 [†] These authors contributed equally to this work.

16 ^{*} Corresponding author: guosongh@stanford.edu

17 Abstract

18 Many *in vivo* biological techniques, such as fluorescence imaging, photodynamic therapy, and
19 optogenetics, require light delivery into biological tissues. The limited tissue penetration of visible
20 light discourages the use of external light sources and calls for the development of light sources
21 that can be delivered *in vivo*. A promising material for internal light delivery is persistent phosphors;
22 however, **there is a scarcity of materials** with strong persistent luminescence of visible light in a
23 stable colloid to facilitate systemic delivery *in vivo*. Here, we used a bioinspired demineralization
24 (BID) strategy to synthesize stable colloidal solutions of solid-state phosphors in the range of 470-
25 650 nm and diameters down to 20 nm. The exceptional brightness of BID-produced colloids enables
26 their utility as multicolor luminescent tags *in vivo* with favorable biocompatibility. Owing to their
27 stable dispersion in water, BID-produced nanophosphors can be delivered systemically, acting as
28 an intravascular colloidal light source to internally excite genetically encoded fluorescent reporters
29 within the mouse brain.

31 Teaser

32 A bioinspired approach produces bright afterglow colloids that can excite endogenous fluorescent
33 proteins for brain imaging.

39 MAIN TEXT

41 **Introduction**

42 Light is used in a wide range of methods in biology and medicine, such as fluorescence imaging
 43 (1), optogenetics (2), photoactivatable gene editing (3), light-controlled immunotherapy (4), and
 44 photochemotherapy for cancers and viral infections (5). A critical challenge of applying light *in*
 45 *vivo*, such as deep-brain imaging and optogenetics, arises from the poor penetration of photons in
 46 biological tissue due to scattering and absorption (1). Therefore, delivering photons deep into the
 47 body from an external light source requires invasive procedures, such as craniotomy to surgically
 48 remove overlying tissues.

50 Besides conventionally used external light sources, internally delivered light sources represent an
 51 arising opportunity to mitigate the challenges associated with the poor tissue penetration of photons.
 52 On one hand, nanofabricated light sources in a flexible and stretchable platform provide a minimally
 53 invasive strategy for delivering an internal light source *in vivo* (6, 7). On the other hand,
 54 microparticles and nanoparticles with persistent luminescence, also known as the afterglow,
 55 represent another potential approach for internal light delivery owing to their ability to store photon
 56 energy in their chemical structures. Although afterglow imaging with these materials has attracted
 57 substantial research interest (8–10), conventional afterglow materials emit red to near-infrared
 58 (NIR) light to facilitate imaging with deep tissue penetration (8, 9, 11). In contrast, materials with
 59 a strong afterglow in the short-wavelength visible spectrum are needed to fulfill their roles as a light
 60 source to excite fluorescent proteins, opsins, photoswitchable Cas9 (psCas9), etc., due to the
 61 activation spectrum of these proteins in the visible range (2, 12, 13). In addition, these short-
 62 wavelength light sources must have good colloidal stability in physiological aqueous environments
 63 to facilitate their delivery *in vivo*, preferably via the circulatory system. **Despite recent efforts in**
 64 **developing short-wavelength afterglow materials for biological applications (14, 15), the decay**
 65 **lifetimes and brightness of these materials remain to be improved. Thus, there is still a scarcity of**
 66 **afterglow nanomaterials with long lifetimes, sufficiently short wavelengths (especially blue), and**
 67 **colloidal stability to enable *in vivo* use as an internal light source.**

69 We argue that the lack of short-wavelength afterglow colloids reflects an intrinsic gap between wet-
 70 chemical and solid-state reactions for synthesizing persistent luminescence phosphors. On one
 71 hand, wet-chemical approaches (e.g., the sol-gel method) have enabled the synthesis of chromium-
 72 doped gallate ($ZnGa_2O_4:Cr^{3+}$, 695 nm), semiconducting polymers (780 nm), and rare-earth doped
 73 nanoparticles ($NaLnF_4:RE$, >1,000 nm) with sufficient brightness and biocompatibility for deep-
 74 tissue afterglow imaging (8–10, 16–19). However, **the long wavelengths of these materials are**
 75 **energetically unfavorable to excite fluorescent proteins, opsins, and psCas9. It is hypothesized that**
 76 **point defects necessary for strong persistent luminescence in the short-wavelength visible spectrum**
 77 **are thermodynamically and kinetically unfavorable to form at low processing temperatures, thus**
 78 **making conventional sol-gel methods incapable of synthesizing blue-shifted afterglow**
 79 **nanoparticles (20).** On the other hand, solid-state reactions enable the synthesis of inorganic
 80 phosphors with tunable wavelengths down to 400 nm and strong persistent luminescence by
 81 facilitating uniform doping of color centers in host materials of desirable polymorphs (21).
 82 However, solid-state-synthesized phosphors remain refractory to wet chemical methods; moreover,
 83 their large sizes (>10 μm) prohibit their use in a living body (20). **Although mechanical milling**
 84 **represents a plausible route to produce nanoparticles from solid-state products, the plastic**
 85 **deformation process introduces undesired built-in stresses and dislocations into the resulting**
 86 **nanoparticles (22).** These built-in stresses and dislocations lead to mechanical quenching and
 87 defect-induced quenching of milled phosphor nanoparticles (23, 24), thus making mechanical

88 milling an unfavorable approach for producing colloidal light sources from solid-state precursor
89 particles.

90
91 Here we report a bioinspired demineralization (BID) approach to synthesize stable colloidal
92 solutions of solid-state phosphors with tunable wavelengths and remarkable afterglow intensity.
93 The BID approach is a generalizable wet-chemical method to produce colloidal nanophosphors
94 from high-temperature, solid-state reactions, thus bridging the gap between these two conventional,
95 yet mutually incompatible strategies (i.e., sol-gel vs solid-state) discussed above. Additionally, the
96 BID approach is a much more mild alternative to mechanical milling, thereby avoiding the built-in
97 stress and dislocations induced during milling that would otherwise quench the afterglow.
98 Specifically, the BID approach is inspired by the strategy of biominerization in Nature:
99 biominerals, such as apatite in the dental enamel, can be gradually dissolved to nanostructures in a
100 mildly acidic environment yet are resistant to further dissolution (25). In this work, we demonstrate
101 that the kinetic stability of nanostructures is also prevalent in solid-state phosphors and apply this
102 universal strategy to a wide array of phosphors. Specifically, the BID approach can produce stable
103 colloidal solutions of silicates, aluminates, and sulfides with diameters down to 20 nm and
104 afterglow wavelengths from 470 nm to 650 nm. These nanophosphor colloids preserve the high
105 crystallinity, bright luminescence, long afterglow, and specific wavelength of their micron-sized
106 precursors from solid-state reactions. We demonstrate these water-soluble materials as colloidal
107 light sources that can be delivered via intravenous injection, enabling internal excitation of
108 genetically encoded fluorescent proteins *in vivo* with advanced tissue penetration.
109

110 Results

111 **A bioinspired demineralization approach of producing colloidal solutions of nanophosphors**
112 Satisfying the requirement for bright luminescence and tunable wavelengths prohibits the use of
113 sol-gel methods and necessitates solid-state reactions at elevated temperatures to produce persistent
114 phosphors with desired point defects in host materials of specific phases (20). However, solid-state
115 phosphors prepared at high temperatures are usually $>10 \mu\text{m}$ particles composed of water-insoluble
116 materials. As discussed in the Introduction, these solid-state phosphors are refractory to ball milling
117 due to mechanical and dislocation-induced quenching effects. To mitigate this challenge, we
118 leveraged a unique phenomenon found in Nature in the process of demineralization.
119 Demineralization of naturally occurring biominerals (e.g., tooth enamel, seashells, etc.) features a
120 self-preservation behavior, which exhibits the kinetic stability of biomineral nanoparticles in an
121 aqueous solution despite their thermodynamic metastable nature (25, 26). We hypothesize that this
122 kinetic stability of nanostructures is also applicable to solid-state phosphors with a low water-
123 solubility, such as sparingly soluble silicates and aluminates (Fig. 1A) (27, 28). This kinetic stability
124 despite thermodynamic metastability is the basis of the BID technique.
125

126 Specifically, the BID technique contrasts conventional wet chemical etching, which usually
127 exhibits self-accelerating dissolution (such as the dissolution of a cane sugar crystal in water).
128 Smaller particles possess higher specific surface energy and thus greater solubility than larger ones,
129 which is well known as Ostwald ripening (29). This behavior prohibits the use of conventional wet
130 chemical etching to produce a stable colloidal solution of persistent phosphors, especially those <50
131 nm, without complete dissolution of the colloids. In contrast, biominerals, which share similar
132 chemical compositions and sparing solubility as solid-state phosphors, exhibit suppressed
133 dissolution of their nanosized crystallites in undersaturated solutions (25, 26). Specifically, the
134 dissolution of biominerals is facilitated by the formation and growth of pits on the surfaces. It has

135 been theoretically predicted and experimentally validated that the rate of dissolution, R , is related
136 to the radius of the pit, r , as follows (27):

137
$$R = R_\infty \left(1 - \frac{r^*}{r}\right) \quad (1)$$

138 where R_∞ is the dissolution rate at $r \rightarrow \infty$, which is usually achieved in bulk material. r^* is the critical
139 radius of the pit, which determines the size of kinetically preserved nanoparticles and is related to
140 the surface energy and Gibbs free energy of dissolution as follows:

141
$$r^* = -\frac{\gamma_{SL}\Omega}{\Delta g} \quad (2)$$

142 Here, γ_{SL} represents the interfacial tension of a solid in the solution, Ω is the surface area of each
143 dissolution unit, and Δg is the Gibbs free energy of dissolution per dissolution unit. Sparingly
144 soluble solids such as biominerals and inorganic phosphors always have much larger interfacial
145 tension than soluble salts (30), thus resulting in large values of r^* in the range of 10-100 nm.
146 Therefore, we hypothesize that this bioinspired demineralization approach can provide a
147 generalizable method to produce nanophosphors with targeted size distributions determined by r^*
148 (Fig. 1A).

149
150 In the BID process, we used a citrate buffer to mimic the undersaturated environment that etches
151 biominerals to produce colloid solutions of solid-state nanophosphors (see Materials and Methods).
152 **Citrate buffer at pH<10 provides a negative Δg to satisfy eq. (2) (fig. S1-5) instead of serving the**
153 **role of a surfactant in conventional mechanical milling methods.** We selected strontium magnesium
154 silicate doped with Eu²⁺ and Dy³⁺ (Sr₂MgSi₂O₇:Eu,Dy, SMSO) as a representative example of
155 persistent phosphors, owing to its strong and long-lasting blue afterglow that provides excitation
156 for many light-activated proteins such as the yellow fluorescent protein (YFP), **stable step-function**
157 **opsins (SSFO),** and psCas9 (3, 12, 13, 31). SMSO with a strong afterglow cannot be synthesized
158 via a sol-gel method due to crystallinity and doping requirements, thus generally resulting in
159 micron-sized particles that cannot form a stable colloidal suspension in water (32).

160
161 In our experiments, SMSO synthesized in solid-state reactions began with an average size of >10
162 μm , as evidenced by scanning electron microscope (SEM) images (Fig. 1B, i). The large size
163 distribution of these SMSO microparticles prohibited a stable suspension in water, as evidenced by
164 a blue afterglow from the precipitates instead of the supernatant (Fig. 1C, i). In contrast, the BID
165 approach produced a stable colloidal solution of SMSO nanophosphors with a strong and uniform
166 blue afterglow (Fig. 1C, ii) and a size distribution of $43 \pm 11 \text{ nm}$ (Fig. 1B, ii&iii & 1D). We used
167 Fourier-transform infrared (FTIR) spectroscopy, nuclear magnetic resonance (NMR) spectroscopy,
168 and UV-visible absorption spectroscopy to fully characterize the products of the BID process (fig.
169 S1-5).

170
171 **Mechanistic study of the BID technique for producing colloidal solutions of nanophosphors**

172 We next sought to validate the mechanism of kinetic preservation to produce SMSO colloids. First,
173 surface roughening represents a significant hallmark of the self-preserved demineralization process
174 of biominerals (25). We compared the SEM images of large SMSO particles before and after the
175 BID process (Fig. 1B, i and Fig. 1E). In contrast to the smooth surface before, SMSO particles after
176 the BID process exhibited much rougher surfaces, featuring nanostructures such as particles and
177 troughs with sizes $\leq 100 \text{ nm}$, similar to those found during natural demineralization. During surface
178 roughening, every single micron-sized SMSO particle shed $\sim 10^6$ nanoparticles into the solution
179 (Supplementary Text).

181 Second, according to eq. (1), the BID model predicts a size-dependent dissolution rate, approaching
182 zero for colloidal nanoparticles with sizes close to or smaller than r^* . To validate this dependence,
183 we performed real-time confocal fluorescence microscopy to monitor the dissolution rate during
184 the BID process (see Materials and Methods). A clear size-dependent dissolution rate was observed,
185 with a decreasing size-reduction rate for smaller colloidal nanoparticles (Fig. 1F). To quantify the
186 size-dependent dissolution rate, we applied a previously reported constant-composition (CC)
187 technique (25) to extract the dissolution flux rate against time at different undersaturations
188 **determined by the pH of the solution** (Fig. 1G&H; fig. S6&7; see Materials and Methods). The CC
189 dissolution curves reached a plateau prior to complete dissolution, thus indicating the creation of
190 metastable states both for undissolved large SMSO particles with roughened surfaces and colloidal
191 nanoparticles shed into the solution.

192
193 Third, we hypothesized that in the same undersaturated solution, only nanoparticles with sizes $\leq r^*$
194 can be kinetically preserved, while bulk particles can still be dissolved (Fig. 1I). We experimentally
195 verified that fresh, bulk SMSO particles were etched to nanoparticles in the same undersaturated
196 solution despite a suppressed reaction for previously immersed particles (Fig. 1J, top). Furthermore,
197 we found that SMSO colloidal nanoparticles produced in an undersaturated suspension resisted
198 further dissolution after separation and re-immersion in a solution of the same undersaturation (Fig.
199 1J, bottom and fig. S8).

200
201 Lastly, we also verified minimal dissolution of bulk SMSO particles in pure water without citrate
202 ($\text{pH} = 7$), thus confirming the importance of rationally designed undersaturated environments in the
203 BID method (fig. S9). In summary, we have validated the kinetic preservation mechanism to
204 produce stable colloidal solutions of SMSO nanophosphors via the BID approach.

205 **BID-produced SMSO colloids exhibit strong emission with a long luminescence lifetime**

206 We then characterized the luminescence properties of SMSO colloids prepared by the BID method
207 (Fig. 2). The photoluminescence excitation and emission spectra of the SMSO colloid are identical
208 to those of its corresponding bulk phosphor (Fig. 2A&B). In addition, the afterglow spectrum of
209 the SMSO colloid agrees with that of its solid-state precursor (Fig. 2C). Lastly, the emission half-
210 life of the SMSO colloid (~ 60 s) is similar to that of its corresponding bulk phosphor (~ 74 s; Fig.
211 2D). These results represent the first example of producing stable <50 nm colloids with a strong
212 and persistent blue afterglow matching solid-state synthesized phosphors. Importantly, SMSO
213 colloids produced from the BID method represent **one of** the brightest afterglow materials with blue
214 emission and stable colloidal suspension in water (table S2), thus making it an ideal candidate to
215 excite light-activated proteins *in vivo* without an external light source. Specifically, an absolute
216 intensity measurement of an SMSO colloidal solution at 0.49 μM yields a photon emission rate of
217 5.25×10^{11} $\text{p/s/cm}^2/\text{sr}$ (Fig. 2E). **Furthermore, the luminescence quantum yield of SMSO colloidal**
218 **solution was measured to be $\sim 21.0\%$ (Materials and Methods), which is higher than that of**
219 **photochemical afterglow systems as previously reported (14, 33).**

221
222 Next, we evaluated the long-term afterglow stability of SMSO colloids in water, phosphate-
223 buffered saline (PBS), and fetal bovine serum (FBS). The SMSO colloid exhibits the same
224 afterglow intensity in PBS in comparison to that in water, while its lower intensity in FBS is solely
225 attributed to the absorption of FBS at 470 nm instead of chemical instability (Fig. 2F and fig. S10).
226 Despite different environments, the SMSO colloid exhibits chronic stability in afterglow intensity
227 over 14 days in water, PBS, and FBS at room temperature (Fig. 2G). Taken together, these
228 characterizations reveal the BID method as a preferred approach to produce high-quality colloidal

229 solutions of nanophosphors that maintain the strong emission power of their bulk counterparts while
230 significantly improving colloidal stability in water.

231

232 **The BID method is a generalizable approach for synthesizing colloidal solutions of**
233 **nanophosphors spanning the visible spectrum**

234 The different activation spectra of light-responsive proteins require light sources of distinct
235 wavelengths for efficient excitation. To this end, we apply the BID method to produce colloidal
236 solutions of nanophosphors with afterglow wavelengths spanning the entire visible spectrum.
237 Existing bottom-up approaches usually produce afterglow nanoparticles with red to near-infrared
238 emission (table S2), thus prohibiting their use as light sources to excite common light-activatable
239 proteins such as YFP, **SSFO**, and psCas9. In contrast, solid-state reactions offer a wide-range
240 combination of host materials and activating ions to yield phosphors with a strong afterglow and
241 tunable wavelengths, yet many of which remain refractory to wet chemical and mechanical milling
242 methods with limited colloidal stability. For example, phosphors with strong persistent
243 luminescence (19, 34) and desirable phases (35) can only be produced at exceptionally high
244 temperatures, while their color centers may be quenched by built-in stress and dislocations
245 introduced during mechanical milling. We hypothesize that since most solid-state phosphors have
246 low water solubility, eq. (2) predicts 10-100 nm nanoparticles produced via the BID process, thus
247 offering a generalizable method to synthesize colloidal solutions of nanophosphors.

248

249 We rationally chose a select few persistent phosphors that can only be synthesized in solid-state
250 reactions and exhibit strong afterglow spanning the visible spectrum to demonstrate the
251 generalizability of the BID method. These selected phosphors have very low solubility in water and
252 do not react with water (36–38), thus fulfilling the critical size requirement to apply the BID
253 mechanism (eq. 1&2). Specifically, Sr₄Al₁₄O₂₅:Eu,Dy (SAO) exhibits strong afterglow at 490 nm
254 and can only be synthesized at \geq 1350 °C. In addition, wurtzite ZnS:Cu,Al and ZnS:Mn exhibit
255 strong afterglow at 534 nm and 578 nm, respectively, and their specific polymorph can only be
256 formed at \geq 1000 °C. Moreover, Ca_{0.85}Sr_{0.15}S:Eu,Tm (CSS) represents one of the few materials with
257 strong red afterglow at 650 nm and requires a high annealing temperature of 1100 °C (see Materials
258 and Methods). The BID method successfully produced stable colloidal solutions of nanophosphors
259 with emission colors consistent with their bulk precursors (Fig. 3A&B) and sizes below 100 nm
260 (Fig. 3C-E). Furthermore, the afterglow spectra, afterglow kinetics, and XRD spectra of these
261 nanophosphor colloids are all consistent with those of their bulk precursors (Fig. 3F&G; fig. S11).
262 Taken together, these results confirm the BID method as a generalizable approach to synthesize
263 stable nanophosphor colloids in water **with their emission spectra spanning the entire visible**
264 **spectrum (Fig. 3F; fig. S12&S13)** while preserving their desirable polymorphs and afterglow
265 properties.

266

267 **BID-produced colloids are among the brightest reported afterglow materials after delivery *in***
268 ***vivo***

269 We next sought to evaluate the afterglow intensity of BID-produced nanophosphor colloids after
270 delivery *in vivo* and compare it to other reported afterglow materials. Unlike their bulk precursors,
271 BID-produced nanophosphors exhibit superior colloidal stability, thus enabling them to be
272 delivered via conventional administration routes and act as colloidal light sources. We selected two
273 administration methods commonly used to deliver biocompatible colloidal solutions, subcutaneous
274 and intravenous injection (8, 9, 11, 16). We hypothesized that the strong afterglow of BID-produced
275 colloids enabled ultrasensitive *in vivo* imaging by eliminating real-time excitation and tissue
276 autofluorescence. As a result, the afterglow of *in vivo* administered nanophosphor colloids should

277 be detectable in deep tissue despite their much shorter wavelengths than other reported afterglow
278 materials.

280 We subcutaneously injected all five colloidal solutions of persistent nanophosphors produced above
281 (SMSO, SAO, ZnS:Cu,Al, ZnS:Mn, and CSS) and performed multicolor afterglow imaging (Fig.
282 4A). The distinct afterglow colors of these colloids allowed us to resolve their spatial distribution
283 in live mice after delivery (Fig. 4B&C). Quantitative radiance measurements reveal strong emission
284 intensity of all subcutaneously injected colloids despite attenuation through the skin (Fig. 4D).
285 Strikingly, the mass-normalized afterglow intensity of the brightest BID-produced colloids is two
286 orders of magnitude higher than the brightest afterglow nanomaterial reported to date in the same
287 setting, regardless of emission wavelengths (table S2 and Fig. 4E). **Importantly, the superiority of**
288 **BID-produced nanophosphors is validated by comparing both subcutaneously injected materials *in***
289 ***vivo* and an aqueous solution of the material *ex vivo* (table S2).** We attribute the brighter afterglow
290 of BID-produced nanophosphors to their preservation of the optical properties of their bulk
291 counterparts from solid-state reactions, which result in thermodynamically and kinetically more
292 favorable formation of desirable polymorphs and point defects leading to stronger persistent
293 luminescence. In addition, the exceptional afterglow intensity and minimal autofluorescence
294 background enabled us to obtain a much higher signal-to-background ratio (SBR) up to $9,190\times$ than
295 that of fluorescence imaging ($<23\times$) with the same injected colloids (Fig. 4F). Importantly, despite
296 their unfavorably short emission wavelengths, the SBR values of BID-produced colloids even
297 exceeded those obtained with red and NIR afterglow materials (table S2 and Fig. 4G).

298 Having demonstrated subcutaneous delivery of BID-produced nanophosphors, we next aimed to
299 validate their feasibility as systemically delivered light sources via intravenous injection.
300 Specifically, we injected the SMSO or SAO colloid solution, which was charged prior to injection
301 (Fig. 4H and fig. S14), into the mouse tail vein. Immediately after injection, transcranial afterglow
302 imaging through the intact skull reveals that intravenously administered colloids are spatially
303 confined in cerebral vessels. Their afterglow was sufficiently bright to be visualized even through
304 the intact skull despite their short wavelengths (470 nm and 490 nm for SMSO and SAO,
305 respectively) (Fig. 4I&J). Line cross-sectional intensity analysis reveals spatially resolved cerebral
306 vessels with similar widths to those imaged with fluorescence in the second near-infrared (NIR-II)
307 window (Fig. 4K and fig. S15). These images represent the first example of transcranial afterglow
308 imaging of cerebral vessels in the mouse brain.

309 Furthermore, the utility of BID-produced nanophosphors as systemically delivered light sources
310 relies on their ability to be recharged during circulation *in vivo*. Previous demonstration of *in vivo*
311 recharging of afterglow materials usually involved *in situ* recharging and activation at the same site
312 for imaging (8, 17, 39). Despite the use of red or NIR light for recharging, the efficiency of
313 recharging still remains limited, while recharging and imaging at the same location prohibits
314 simultaneous afterglow imaging during recharging (1). We hypothesize that the intrinsic circulatory
315 system of the animal can be leveraged to efficiently recharge intravenously-delivered BID-
316 produced nanophosphors when they pass through superficial blood vessels, even with short-
317 wavelength excitation light, at a different location in the body. To prove this hypothesis, we
318 performed real-time afterglow imaging of the femoral artery in the mouse hindlimb, while applying
319 remote periodic recharging of the circulating afterglow colloids in superficial hepatic vessels
320 through noninvasive transdermal photoexcitation (Materials and Methods, fig. S16A&B). We
321 found that the afterglow in the femoral artery increased after every recharging pulse, with a baseline
322 intensity $\sim 10\times$ higher than that without recharging at 400 s after injection (fig. S16C). These results

325 represent the first demonstration of remote recharging of afterglow materials *in vivo* via the intrinsic
326 circulatory system.

327
328 The three experiments of afterglow imaging above validated the remarkable afterglow intensity and
329 rechargeability of BID-produced colloids in living mice. Compared to extensively reported
330 afterglow nanoparticles in red and NIR spectra, BID-produced colloids benefit from their strong
331 afterglow of blue-shifted photons, which may activate many blue-light-responsive proteins such as
332 SSFO and psCas9 (Fig. 4E, *Supplementary Text, and table S1*) (3, 13, 31). The demonstrated
333 compatibility with common administration routes, especially intravenous injection, provides a
334 means to uniformly deliver these colloidal light sources throughout the body. To prove the biosafety
335 of intravenously delivered colloidal light sources, we performed detailed biodistribution, secretion,
336 and toxicology studies in mice and found minimal adverse effects to the subject after systemic
337 administration of these colloids (fig. S17-19). These pharmacokinetics data suggest minimal
338 retention of systemically delivered afterglow colloids at 1 week post administration. Nonetheless,
339 multiple injections may be performed to facilitate their long-term utility in the same animal.
340

341 **BID-produced colloidal light sources enable internal excitation of genetically encoded**
342 **fluorescent reporters with greater tissue penetration.**

343 The strong afterglow of BID-produced colloids in the blue spectrum allowed us to postulate their
344 function as an intravital light source to excite light-responsive proteins endogenously expressed in
345 the tissue. Specifically, genetically encoded fluorescent reporters, such as fluorescent proteins and
346 their functional derivatives (e.g., GCaMP etc.), suffer from limited tissue penetration due to strong
347 scattering and autofluorescence of their short excitation wavelengths. This disadvantage
348 necessitates the invasive implantation of a cranial window or a gradient index (GRIN) lens (40)
349 with limited field of view (FoV) and restrained behavior of the subject in a microscopic setup (41).
350 In contrast, widefield afterglow imaging enables a much larger FoV and deeper tissue penetration
351 by eliminating an external excitation, thus reducing scattering and autofluorescence. However,
352 afterglow imaging has never been realized for endogenous fluorescent proteins. We hypothesized
353 that systemically delivered colloidal light sources can enable widefield afterglow imaging of
354 endogenously expressed fluorescent proteins with increased tissue penetration.
355

356 We set out to demonstrate widefield afterglow imaging of YFPs for the first time via BID-produced
357 colloidal light sources. We delivered a colloidal solution of SMSO into the cerebral vessels of a
358 transgenic mouse (B6.Cg-Tg(Thy1-YFP)16Jrs/J, YFP-16) expressing YFPs in neurons (Fig. 5A)
359 (42). The spectral overlap between the afterglow spectrum of SMSO colloids and the excitation
360 spectrum of YFP offers efficient excitation of YFP fluorescence by the afterglow of SMSO (fig.
361 S20). We used widefield acquisition for whole-brain YFP imaging through the intact skull (Fig.
362 5B) to demonstrate a large FoV for potentially imaging free-behaving animals in future studies.
363 When a traditional external excitation was applied, the excitation light was absorbed and scattered
364 by the skull while producing autofluorescence (Fig. 5E). As a result, this process yielded
365 epifluorescence images featuring skull structures that block YFP fluorescence from the underlying
366 brain (Fig. 5F, right and fig. S21-22). Control experiments on wild-type (WT) mice without YFP
367 expression revealed similar patterns in the epifluorescence images (Fig. 5F, left). Pearson
368 correlation analysis between fluorescence images of WT vs YFP-16 mice reveals a high Pearson
369 correlation coefficient of 0.93 (Fig. 5G, right and 5H), thus confirming the origin of these features
370 arising from the skull rather than from the underlying brain (43). These observations confirmed the
371 need to remove or thin the skull in conventional YFP imaging in the mouse brain (40).

372 In contrast to the external excitation, with an internal excitation enabled by systemically delivered
373 colloidal light sources, YFP fluorescence was collected in the afterglow mode (Fig. 5C; see
374 Materials and Methods). The resulting YFP afterglow image of the same mouse brain only revealed
375 the spatial distribution of YFPs in the brain (i.e., in the brain parenchyma while excluding cerebral
376 vessels) without any interference from the skull (Fig. 5D, right and fig. S21). Unlike
377 epifluorescence imaging, afterglow images of WT vs YFP mouse brain exhibited dissimilar patterns
378 (Fig. 5D). A low Pearson correlation coefficient of 0.20 suggests minimal feature colocalization
379 between the WT vs YFP-16 mouse brain in the afterglow mode (Fig. 5G, left and 5H). These results
380 demonstrate the unique ability of afterglow imaging to reveal deep-tissue features unresolvable by
381 conventional fluorescence imaging with the intact skull. In summary, BID-produced colloidal light
382 sources enabled widefield afterglow imaging of YFPs with minimal autofluorescence and scattering
383 background from overlying tissues. Therefore, *in vivo* widefield afterglow imaging offers a much
384 less invasive approach than conventional microscopy through a cranial window for imaging
385 genetically encoded fluorescent reporters in the mouse brain.

386 Discussion

387 Here, we report a generalizable method for producing stable colloidal solutions of nanophosphors
388 from their solid-state bulk materials with exceptionally bright luminescence (up to 5.25×10^{11}
389 p/s/cm²/sr), tunable emission wavelengths down to 470 nm, and small sizes (down to 20 nm). This
390 method was enabled by the bioinspired demineralization (BID) process, which has been found in
391 many biominerals such as tooth enamel and avian eggshells to afford exquisite control of complex
392 nanostructures (25, 26). Colloids produced by this approach exhibited the highest SBR for *in-vivo*
393 imaging among reported materials, yielding the first example of transcranial afterglow imaging of
394 cerebral vessels in the mouse brain. Owing to their strong emission intensity and colloidal stability
395 in water, BID-produced colloidal light sources provide internal excitation of and enable afterglow
396 imaging of genetically encoded fluorescent reporters in a mouse brain through the intact skull.

397 Compared to previously reported afterglow materials, the BID approach and BID-produced colloids
398 have three unique advantages that enable their use as an internal light source. First, the BID
399 approach can be applied to a wide range of solid-state phosphors to produce tunable emission down
400 to 470 nm. These inorganic phosphors usually require specific polymorphs and dopant ions
401 incompatible with conventional sol-gel synthesis and mechanical ball milling. As a result, the BID
402 approach contrasts strongly with the limited range of conventional afterglow materials including
403 $ZnGa_2O_4:Cr^{3+}$ (695 nm), semiconducting polymers (780 nm), and rare-earth doped $NaLnF_4$
404 nanoparticles (>1,000 nm) (8, 9, 16). Second, the BID approach preserves the crystallinity and
405 emission intensity of solid-state phosphors in synthesized colloidal nanophosphors. This
406 preservation is owing to a mild top-down process that produces the colloids, in strong contrast with
407 harsh mechanical milling that usually yields mechanical and dislocation-induced quenching (23,
408 24). Using the *in-vivo* intensity after subcutaneous injection as a metric for comparison, BID-
409 produced colloids ($\sim 3.8 \times 10^{10}$ p/s/cm²/sr/(mg/mL), table S2) are two orders of magnitude higher
410 than the brightest afterglow material reported previously ($\sim 10^8$ p/s/cm²/sr/(mg/mL), table S2).
411 Furthermore, in an *ex vivo* solution, BID-produced colloids are five orders of magnitude brighter
412 (6.2×10^{11} p/s/cm²/sr/(mg/mL), table S2) than the brightest afterglow nanoparticles produced by
413 other methods such as ball milling and grinding (2×10^6 p/s/cm²/sr/(mg/mL), table S2). The high
414 quality of BID-produced colloids is also evidenced by remarkable stability over 1000 repeated
415 recharging and emission cycles (fig. S23) and superior resistance against photobleaching even after
416 prolonged exposure to strong excitation light (fig. S24), in contrast to rapid decay of organic
417 afterglow materials (9, 11). Third, the colloidal stability of BID-produced nanophosphors in water

420 yields sufficient biosafety for them to be used as systemically delivered light sources in live mice
421 (Fig. 5). The demonstrated ability of transcranial afterglow imaging of YFPs thus offers a minimally
422 invasive approach to image and modulate gene expression and neural activity in the mouse brain
423 without any cranial windows or implanted GRIN lenses.

424 Furthermore, the BID method also enables unique opportunities for synthesizing stable colloidal
425 suspensions of other functional materials for biomedical applications. Specifically, besides
426 persistent phosphors, other functional materials that can only be synthesized via high-temperature
427 solid-state reactions or annealing can also be processed via the BID method to yield stable colloidal
428 suspensions in water. Many ceramic materials, such as mechanoluminescent ZnS (44), piezoelectric
429 LiTaO₃ (45), and ferroelectric materials LiNbO₃ (46) can only be produced in the bulk and are thus
430 insoluble in water. Nonetheless, we can leverage the same BID principle to produce corresponding
431 stable colloids while preserving the structure and properties of their bulk counterparts for biological
432 applications, such as *in vivo* fluorescence imaging (41), sono-optogenetics (44), ultrasound and
433 magnetic neuromodulation (47), and flexible optoelectronics (48).

435 Materials and Methods

436 **Chemicals.** Strontium carbonate (SrCO₃, ≥99.9%), silicon dioxide (SiO₂, 99.5%), boric acid
437 (H₃BO₃, ≥99.5%), europium oxide (Eu₂O₃, 99.99%), dysprosium oxide (Dy₂O₃, 99.99%),
438 magnesium carbonate hydroxide pentahydrate [(MgCO₃)₄·Mg(OH)₂·5H₂O, 99.5%], aluminum
439 oxide (Al₂O₃, 99.99%), zinc sulfide (ZnS, 99.99%), copper (II) acetylacetone (≥99.9%),
440 manganese (II) carbonate (MnCO₃, ≥99.9%), sulfur (99.98%), calcium carbonate (CaCO₃,
441 ≥99.95%), thulium (III) acetate hydrate (99.9%), sodium citrate dihydrate (≥99%), strontium
442 chloride (SrCl₂, ≥99.99%), magnesium chloride (MgCl₂, 99.9%), and citric acid (≥99.5%) were
443 purchased from Sigma-Aldrich Inc. Ethanol, fetal bovine serum (FBS), hydrochloric acid, nitric
444 acid (HNO₃), 1× phosphate-buffered saline (PBS), paraformaldehyde, and N,N-
445 dimethylformamide (DMF) were purchased from Thermo Fisher Scientific. Methoxy(polyethylene
446 glycol)-silane (mPEG-silane, 20 kDa) was purchased from Jenkem Technology. All chemicals were
447 used as purchased.

448 **Synthesis of Sr₂MgSi₂O₇:Eu,Dy (SMSO) bulk phosphor and colloidal nanophosphor.** SMSO
449 nanophosphor colloid was prepared by a two-step method. First, SMSO bulk phosphor was
450 synthesized via a high temperature solid-state chemical reaction. In this reaction, 1166.28 mg of
451 SrCO₃ (7.9 mmol), 388.52 mg of (MgCO₃)₄·Mg(OH)₂·5H₂O (0.8 mmol), 480.64 mg of SiO₂ (8
452 mmol), 4.2 mg of Eu₂O₃ (0.012 mmol), 14.92 mg of Dy₂O₃ (0.04 mmol), and 14.83 mg of H₃BO₃
453 (0.24 mmol) were added into an agate mortar and then ground by a pestle for 1 h. Then the mixed
454 precursors were annealed at 1050 °C for 2 h under a reduction atmosphere of 5% H₂ in Ar. After
455 cooling to room temperature, the as-prepared SMSO bulk materials were ball-milled using zirconia
456 beads in a high energy ball mill (8000D Mixer/Mill, SPEX SamplePrep, Metuchen, NJ) for 30 min.
457 In the second step, sodium citrate buffer (0.08 mol/L, pH=6) was prepared as the bioinspired
458 demineralization (BID) solution. Subsequently, the ball-milled SMSO particles (200 mg) and 24
459 mL of sodium citrate buffer were added into a flask and stirred at 80 °C for 72 h, during which the
460 pH of the solution quickly increased to and stabilized at ~10. Final SMSO nanophosphor colloid
461 was obtained by centrifugation at 1000 rpm (Sorvall Legend X1R Centrifuge; Thermo Fisher
462 Scientific, Waltham, MA) for 10 min to remove large parent particles.

463 **Synthesis of Sr₄Al₁₄O₂₅:Eu,Dy (SAO) bulk phosphor and colloidal nanophosphor.** SAO bulk
464 phosphor was prepared by a conventional solid-state reaction. 1476 mg of SrCO₃ (10 mmol), 1784
465 mg of Al₂O₃ (17.5 mmol), 26 mg of Eu₂O₃ (0.075 mmol), and 46 mg of Dy₂O₃ (0.125 mmol) were
466 weighed and thoroughly ground in an agate mortar for 1 h. The mixed powder was annealed at 1350

468 °C for 2 h under the reduction atmosphere of 5% H₂ in Ar. After cooling to room temperature, the
469 prepared SAO bulk powder was milled using zirconia beads in a high energy ball mill for 30 min.
470 The same BID procedure as in the preparation of the SMSO colloid was followed to synthesize the
471 SAO colloid.

472 **Synthesis of ZnS:Cu,Al bulk phosphor and colloidal nanophosphor.** ZnS:Cu,Al bulk phosphor
473 was prepared by a conventional solid-state reaction. First, 2.62 mg of copper acetylacetone (0.01
474 mmol) was dissolved in 1 mL of chloroform to prepare a copper precursor solution (0.01 mol/L).
475 Subsequently, 0.98 g of ZnS (10 mmol) and 3 mg of Al₂O₃ (0.03 mmol) were weighed and put into
476 an agate mortar. Meanwhile, 10 µL of the copper precursor solution and 6 mg of H₃BO₃ as the flux
477 were added into the agate mortar and thoroughly ground for 1 h. Lastly, the mixed powder was
478 annealed at 1100 °C for 2 h under a reduction atmosphere of 5% H₂ in Ar. After cooling to room
479 temperature, the prepared ZnS:Cu,Al powder was ball-milled using zirconia beads in a high energy
480 ball mill for 30 min. The same BID procedure as in the preparation of the SMSO colloid was
481 followed to synthesize the ZnS:Cu,Al colloid.

482 **Synthesis of ZnS:Mn bulk phosphor and colloidal nanophosphor.** ZnS:Mn bulk phosphor was
483 prepared by a conventional solid-state reaction. 0.98 g of ZnS (10 mmol), 1.15 mg of MnCO₃ (0.01
484 mmol), and 6 mg of H₃BO₃ as the flux were weighed and ground in an agate mortar for 1 h. The
485 mixed powder was then annealed at 1100 °C for 2 h under a reduction atmosphere of 5% H₂ in Ar.
486 After cooling to room temperature, the prepared ZnS:Mn powder was ball-milled using zirconia
487 beads in a high energy ball mill for 30 min. The same BID procedure as in the preparation of the
488 SMSO colloid was followed to synthesize the ZnS:Mn colloid.

489 **Synthesis of Ca_{0.85}Sr_{0.15}S:Eu,Tm (CSS) phosphor and colloidal nanophosphor.** CSS bulk
490 phosphor was prepared by a conventional solid-state reaction. 1 g of CaCO₃ (10 mmol), 250 mg of
491 SrCO₃ (1.7 mmol), 0.7 mg of Eu₂O₃ (0.004 mmol), 4.8 mg of thulium (III) acetate hydrate (0.014
492 mmol), and 6 mg of H₃BO₃ (0.1 mmol) as the flux were weighed and ground in an agate mortar for
493 1 h. Then, 1283 mg of sulfur (40 mmol) was added into the mixed powder and annealed at 1100 °C
494 for 1 h using activated charcoal to provide a reducing atmosphere. After cooling to room
495 temperature, the prepared CSS powder was ball-milled using zirconia beads in a high energy ball
496 mill for 30 min. Subsequently, the ball-milled CSS particles (200 mg) and 24 mL of the BID
497 solution were added into a flask and stirred at room temperature for 2 h. Final CSS colloid was
498 obtained by centrifugation at 1000 rpm (Sorvall Legend X1R Centrifuge; Thermo Fisher Scientific,
499 Waltham, MA) for 10 min to remove large parent particles.

500 **Surface functionalization of nanophosphor colloids.** For *in vivo* applications, the as-prepared
501 colloids were functionalized with mPEG-silane (20 kDa). First, the SMSO colloid was transferred
502 into a cellulose dialysis tubing (MWCO = 30 kDa) and dialyzed against water for 2 days to remove
503 excess citrate ions. Subsequently, surface hydroxylation was performed on the surface of the SMSO
504 colloid. Specifically, a 20 µL solution of sodium hydroxide (10 mol/L) was added into 10 mL of
505 SMSO colloid (67 nmol/L) and sonicated for 1 h at room temperature (49). After surface
506 hydroxylation, the SMSO colloid was washed with water and anhydrous DMF three times in each
507 solvent and dispersed in DMF. Finally, 40 mg of mPEG-silane (20 kDa) was added into 10 mL of
508 the SMSO DMF solution and sonicated at 50 °C for 4 h. The PEGylated-SMSO colloid was washed
509 with pure DMF and water three times in each solvent and then dispersed in PBS for *in vivo*
510 experiments. The same PEGylation procedure was followed to prepare the solutions containing
511 SAO, ZnS:Cu,Al, ZnS:Mn, and CSS colloids.

512 **Characterizations.** X-ray diffraction (XRD) patterns were acquired by using a diffractometer
513 (PANalytical Empyrean, Malvern Panalytical Ltd., Malvern, United Kingdom) with Cu K α (λ =
514 1.540598 Å) radiation at a 45 kV tube voltage and a 40 mA tube current. The transmission electron
515 microscope (TEM) images of the samples were captured on a Field Electron and Ion Company

516 Tecnai TEM (FEI Company, Hillsboro, Oregon) equipped with a charge-coupled device (CCD)
517 camera. Scanning electron microscope (SEM) images were recorded by an Apreo S LoVac SEM
518 (Thermo Fisher Scientific, Waltham, MA). Fourier transform infrared (FTIR) spectroscopy was
519 performed using a Nicolet iS50 FT/IR spectrometer (Thermo Fisher Scientific, Waltham, MA) on
520 dried powder samples. Absorption spectra were measured by an Evolution 350 UV-Vis
521 Spectrophotometer (Thermo Fisher Scientific, Waltham, MA). For the UV-Vis measurement of the
522 silica-citrate complex, a Savitzky-Golay filter with a window size of 10 is applied due to its low
523 absorption. All other UV-Vis absorption spectra are displayed as is. Photoluminescence spectra of
524 all samples were measured by a Horiba FluoroLog Fluorometer spectrophotometer (HORIBA Ltd.,
525 Kyoto, Japan) in a 1-cm quartz cuvette. In photoluminescence measurements, the excitation
526 wavelength was 380 nm and the measured range of photoluminescence was 400-700 nm. Elemental
527 analyses of the samples were characterized by an inductively coupled plasma mass spectrometer
528 (ICP-MS, Thermo Scientific X-SERIES II Quadrupole, Thermo Fisher Scientific, Waltham, MA).
529 Nuclear magnetic resonance (NMR) spectra were collected on a 500 MHz Varian Inova NMR
530 spectrometer (Varian, Inc., Palo Alto, CA). The Brunauer-Emmett-Teller (BET) isotherm was
531 measured using a surface area and pore size analyzer (Anton-Paar NovaTouch, Boynton Beach,
532 FL).

533 **Determining molar concentrations of nanophosphor colloids.** The molar concentration of each
534 colloid was calculated with the Beer-Lambert Law ($A = \mathcal{E}lc$), in which A is the absorbance, \mathcal{E} is the
535 extinction coefficient per mole of colloidal nanoparticles per liter (L/mol/cm), l is the optical path
536 length (cm), and c is the molar concentration (mol/L) of the colloidal nanoparticles of the same
537 sample. Specifically, \mathcal{E} was determined by linear fitting of the measured absorbance at 400 nm for
538 a specific colloid at three concentrations against their concentrations determined by ICP-MS
539 measurements.

540 **Real-time confocal fluorescence microscopy of the BID process.** The BID process of SMSO
541 particles in the sodium citrate buffer was characterized with real-time fluorescence imaging, which
542 was performed on a LSM 980 confocal microscope (Carl Zessis, Oberkochen, Germany) using a
543 63 \times oil-immersion Plan-APO objective (numerical aperture: 1.4) with an excitation wavelength of
544 405 nm and an exposure time of 1.62 s per image. The filter set consisted of an excitation filter at
545 405 nm, a beam splitter at 435 nm, and an emission filter at 465 nm. A z-stack of 31 slices with an
546 interval of 0.38 μ m (pinhole size: 1.83 airy unit) was acquired per time frame to account for the
547 vertical drifting of SMSO particles.

548 **The constant-composition (CC) technique.** Dissolution experiments with the CC technique were
549 performed by following previously reported protocols (25, 27). Specifically, all reactions were
550 carried out in magnetically stirred three-neck round-bottom flasks. Undersaturated reaction
551 solutions (60 mL) were prepared by mixing 360 μ L of SrCl_2 (1 mol/L) and 180 μ L of MgCl_2 (1
552 mol/L) solutions with the sodium citrate buffer (0.08 mol/L) such that $[\text{Mg}^{2+}] = 3 \text{ mmol/L}$ and $[\text{Sr}^{2+}]$
553 = 6 mmol/L. The pH was adjusted to the desired value with either hydrochloric acid (12.1 mol/L)
554 or sodium hydroxide (10 mol/L). The undersaturated solution was then heated and kept at 90 °C in
555 a silicon oil bath during the reaction. The CC dissolution reaction was initiated by introducing bulk
556 SMSO particles (100 mg) with a specific surface area of 43,850 cm^2/g (fig. S6). During the reaction,
557 the pH of the solution was constantly monitored using a benchtop pH meter (SevenCompact S230;
558 Mettler Toledo, Greifensee, Switzerland), which provided feedback control for the titrant (0.08
559 mol/L citrate buffer pH = 1.75) to keep the pH within ± 0.1 of the desired value. The composition
560 and concentration of the titrant were calculated to ensure $[\text{MgCit}^-]$, $[\text{SrCit}^-]$, $[\text{HCit}^{2-}]$, and $[\text{Cit}^{3-}]$ all
561 stayed constant during the dissolution reaction if the pH remained constant according to the
562 equation in fig. S1. Due to the unknown stoichiometry of the silica-citrate complex, we did not

control its concentration at a constant, and we argue that the potential formation of silica clusters contributes a unity activity (e.g., independent of its concentration) to the chemical equilibrium.

Proving kinetically preserved dissolution to produce nanophosphor colloids. In this kinetically preserved dissolution experiment, 1000 mg of ball-milled SMSO particles and 120 mL of sodium citrate buffer (0.08 mol/L, pH=6) were added into a flask and stirred at 80 °C for 10 min. Then, the SMSO suspension was centrifuged at 1000 rpm for 10 min to remove large parent particles and at 8000 rpm for 20 min to separate nanoparticles. The supernatant, which contained an undersaturated solution for SMSO, was collected and equally divided into two parts: Solution 1 was added with the SMSO nanophosphor colloid and kept stirring at 80 °C for 3 days. A bright field image, an image showing the Tyndall effect with a 632.8 nm HeNe laser beam (ThorLabs), and an afterglow image were taken at day 0 and day 3 for this mixture (Fig. 1J, bottom row). Meanwhile, the UV-vis spectrum of this mixture was measured at day 0 and day 3 (fig. S8). Solution 2 was added with SMSO bulk precursor particles and kept stirring at 80 °C for 3 days. The same images were taken at day 0 for the mixture of Solution 2 and at day 3 for the mixture of Solution 2 after passing 1000 rpm for 10 min (Fig. 1J, top row).

Spectral characterizations of persistent luminescence. Persistent luminescence spectra of bulk phosphors and colloidal nanophosphors were acquired using a fiber-coupled spectrometer (OCEAN-HDX-VIS-NIR; Ocean Optics, Orlando, FL) that measures the whole spectrum in the range of 350-900 nm spontaneously. A polydimethylsiloxane (PDMS) phantom containing a specific phosphor or nanophosphor colloid was used as the sample for spectral characterizations. Specifically, the PDMS phantom was charged by a 365-nm light emitting diode (LED; SOLIS-365C, Thorlabs, Newton, NJ) at 5.7 mW/mm² for 10 s. The persistent luminescence spectrum was acquired immediately after the charging light was turned off. Averaging over multiple measurements was applied as needed to reduce the noise of the spectrum.

Time-resolved intensity measurements of persistent luminescence. PDMS phantoms as prepared above were charged for 10 s by a 365-nm LED at 0.13 mW/mm², and a photomultiplier tube (PMT1001; Thorlabs, Newton, NJ) was put in the close vicinity of the phantom to collect the persistent luminescence after the charging light was turned off. The output voltage from the PMT, which exhibits a linear dependence on light intensity, was then collected by a multifunction input/output (I/O) device (NI USB-6221, National Instruments, Austin, TX).

Luminescence quantum yield measurement. The luminescence quantum yield measurement was conducted by following protocols established in previous reports (14, 33, 50). Specifically, the SMSO nanophosphor colloid was excited by a collimated 365-nm light beam coupled from an LED (M365LP1, Thorlabs, Newton, NJ). An integrating sphere (IS200, Thorlabs, Newton, NJ) and a non-scanning fiber-coupled spectrometer (OCEAN-HDX-VIS-NIR; Ocean Optics, Orlando, FL) were used to redirect and collect the excitation and emission light simultaneously both during and after the recharging. The absorbed photons were measured by replacing the SMSO colloid with water and repeating the above procedure. The luminescence quantum yield was then calculated as follows:

$$QY = \frac{\text{Photons emitted}}{\text{Photons absorbed}} = \frac{\int_0^{t_{\text{Lum}}} I_{\text{Em}} dt}{(I_{\text{Ex_ref}} - I_{\text{Ex_SMSO}}) t_{\text{Ex}}}$$

where QY is the luminescence quantum yield; I_{Em} is the emission light intensity; $I_{\text{Ex_ref}}$ and $I_{\text{Ex_SMSO}}$ are the excitation light intensity in the presence of water or SMSO nanophosphor colloid, respectively; t_{Lum} and t_{Ex} are the duration of luminescence and excitation light, respectively.

Repetitive recharging stability assessment. PDMS phantoms as prepared above were charged by a 365-nm LED at 1 mW/mm² for 100-ms, followed by image acquisition using a scientific CMOS camera (CS165MU, Thorlabs, Newton, NJ) with 1-Hz frame rate for 5 frames, resulting in a

609 recharging duty cycle of 2%. The same recharging and image acquisition cycle was repeated for
610 1000 times to assess the repetitive recharging stability of BID-produced nanophosphor.

611 **Photobleaching resistance assessment.** PDMS phantoms as prepared above were charged by a
612 365-nm LED at 1 mW/mm² for 100-ms, followed by image acquisition using a scientific CMOS
613 camera. Afterwards, the phantoms were bleached by 1 mW/mm² for 24 hr continuously. Then the
614 same recharging and image acquisition procedure was repeated, and the afterglow intensities of the
615 phantoms were normalized against those before photobleaching.

616 **Vertebrate animal subjects.** Adult (20-30 g) BALB/cJ mice (male, 8 weeks old, Jackson
617 Laboratory, Bar Harbor, ME), J:Nu nude mice (male, 6 weeks old, Jackson Laboratory, Bar Harbor,
618 ME), C57BL/6J mice (male, 6 weeks old, Jackson Laboratory, Bar Harbor, ME), and B6.Cg-
619 Tg(Thy1-YFP)16Jrs/J mice (male, 6 weeks old, Jackson Laboratory, Bar Harbor, ME) were the
620 vertebrate animal subjects used in this study. All procedures performed on mice were approved by
621 Stanford University's Administrative Panel on Laboratory Animal Care (APLAC). The animal care
622 and use programs at Stanford University meet the requirements of all federal and state regulations
623 governing the humane care and use of laboratory animals, including the USDA Animal Welfare
624 Act, and PHS Policy on Humane Care and Use of Laboratory Animals. The laboratory animal care
625 program at Stanford is accredited by the Association for the Assessment and Accreditation of
626 Laboratory Animal Care (AAALAC International). Animals were group-housed on a 12 h: 12 h
627 light: dark cycle in the Stanford University's Veterinary Service Center (VSC) and fed with food
628 and water ad libitum as appropriate.

629 **Persistent luminescence imaging of subcutaneously injected nanophosphor colloids.** Nude
630 mice were anesthetized by intraperitoneal injection of 80 mg/kg ketamine (KetaVed®, Vedco, Inc.,
631 St. Joseph, MO) and 1 mg/kg dexdomitor (Dexmedesed™, Dechra Veterinary Products, Overland
632 Park, KS). To maintain the body temperature and prevent hypothermia, a homeothermic blanket
633 (Harvard Apparatus, Holliston, MA) was set to 37 °C and placed underneath the anesthetized
634 mouse. A blackout fabric (BK5; Thorlabs, Newton, NJ) was put underneath the mice to reduce the
635 background reflection when taking the image. 50 µL of colloidal solutions (SMSO, 146 nmol/L;
636 SAO, 4 nmol/L; ZnS:Cu,Al, 80 nmol/L; ZnS:Mn, 31 nmol/L; CSS, 81 nmol/L) were then injected
637 subcutaneously at five different locations under the dorsal skin as indicated by Fig. 4A. The colloids
638 were then charged by a 365-nm LED at 0.5 mW/mm² for 5 s before image acquisition. Color images
639 in Fig. 4C were acquired using the above-mentioned color digital camera with an ISO of 12800 and
640 an exposure time of 10 s. The image in Fig. 4D was acquired using an IVIS Spectrum small animal
641 imaging system (Spectral Instruments Imaging; Tucson, AZ) with an exposure time of 0.5 s **at 10 s**
642 **after the cease of the charging light.**

643 **Persistent luminescence brain vascular imaging.** BALB/cJ mice were anesthetized using the
644 above-mentioned ketamine/dexdomitor cocktail, and placed on the homeothermic blanket set to 37
645 °C. Hair removal lotion (Nair®, Church & Dwight, Ewing, NJ) was used for depilation of the mouse
646 head, and iodophor was applied to sterilize the depilated scalp skin. Incision and its elongation were
647 made by surgical scissors to expose the cranial bone. The blackout fabric was placed underneath
648 the mouse as mentioned above. 200 µL of pre-charged nanophosphor colloids dispersed in 1× PBS
649 (SMSO, 493 nmol/L; SAO, 8 nmol/L) were then delivered into the bloodstream through tail-vein
650 injection, and the persistent luminescence image was acquired immediately after the injection using
651 an electron-multiplying CCD (EMCCD, iXon Ultra 888, Andor Technology, Belfast, United
652 Kingdom) with a 30 s exposure time.

653 **Remote recharging and afterglow imaging of the femoral artery.** Nude mice were anesthetized
654 using the above-mentioned ketamine/dexdomitor cocktail, and placed on the homeothermic blanket
655 set to 37 °C. Incision and its elongation on the hindlimb skin were made by surgical scissors to
656 expose the femoral artery. The blackout fabric was placed underneath the mouse as mentioned

657 above. 200 μ L of pre-charged nanophosphor colloids dispersed in 1 \times PBS (SAO, 8 nmol/L) were
658 then injected intravenously. 5 s after the injection, 15 frames of afterglow images (~ 31.5 s in total)
659 were acquired without recharging using the EMCCD with 2 s exposure time and 0.1 s interframe
660 latency. Subsequently, a collimated 365-nm light beam (1 mW/mm²) coupled from a LED was
661 turned on for 2 s to recharge the circulating nanophosphors in the hepatic vessels in the liver region.
662 10 frames of afterglow images (~ 21 s in total) were acquired using the EMCCD with the same
663 imaging parameters following each recharging pulse. This remote recharging and afterglow
664 imaging cycle was repeated for 10 periods. See fig. S16A for more information.

665 **Afterglow imaging of YFPs in the mouse brain.** After delivery of an SMSO colloidal solution
666 (493 nmol/L), the scalp was removed to expose the skull, and the SMSO colloid in the brain blood
667 vessels was charged by a 365-nm LED at 0.5 mW/mm² for 5 s before image acquisition using the
668 EMCCD with 30 s exposure time. Two afterglow images were collected using a 482-nm bandpass
669 (482 BP) filter and a 550-nm longpass (550 LP) filter, respectively. To account for the spatial
670 variation of the light source inside blood vessels and get the YFP afterglow images in Fig. 5D, we
671 subtracted the background of the 550 LP and 482 BP images and then performed flat-field
672 correction by normalizing the 550 LP image against the 482 BP image.

673 **In vivo biodistribution study.** ICP-MS was used to study the biodistribution of systemically
674 delivered SMSO colloids *in vivo*. Six BALB/cJ mice intravenously injected with 200 μ L of SMSO
675 colloid dispersed in 1 \times PBS (493 nmol/L) were divided into two groups (n = 3 for each group).
676 Then the two groups of mice were sacrificed at 24 h and 168 h post-injection, respectively, and
677 main organs including the heart, liver, spleen, lung, kidneys, and brain were collected. Organs were
678 weighed and dissolved in 35% HNO₃ at 70 °C overnight. The digested HNO₃ solutions were diluted
679 20 times by water and measured by ICP-MS. The percent injected dose per gram of tissue
680 (%ID/gram) in each organ was obtained by normalizing the amount of nanophosphors retained in
681 the organ against both the initial injected dose and the organ mass.

682 **Histological study of potential tissue damage after colloid injection.** Three BALB/cJ mice
683 intravenously injected with 200 μ L of SMSO colloids dispersed in 1 \times PBS (493 nmol/L) were
684 sacrificed at 30 days post-injection. In addition, three uninjected mice were sacrificed as the control
685 group. Major organs (brain, heart, liver, spleen, lungs, and kidneys) were harvested and fixed in 4%
686 paraformaldehyde. After 48 h fixation, these organs were embedded in paraffin, followed by
687 sectioning at 10 μ m slices. These organ slices were stained with hematoxylin and eosin (H&E) and
688 imaged using a microscope (Leica DM2700 M, Wetzlar, Germany).

689 **Metabolic study for quantifying excretion of injected nanophosphor colloids.** Three BALB/cJ
690 mice were individually housed in a metabolic cage after being intravenously injected with 200 μ L
691 of SMSO colloids dispersed in 1 \times PBS (493 nmol/L). Feces and urine samples were collected over
692 7 days. These samples were weighed and dissolved in 35% HNO₃ at 70 °C overnight and then
693 measured by ICP-MS. The %ID/gram value in each sample was obtained by normalizing the
694 amount of nanophosphors detected in the sample against both the initial injected dose and the
695 excreta mass.

696 **Statistical analysis.** The variance in SBR of afterglow or fluorescence imaging (Fig. 4F) and
697 Pearson's correlation coefficients of WT and YFP-16 afterglow or fluorescence images (Fig. 5H)
698 was calculated, by which the pooled standard deviation (SD) among each experimental group was
699 determined. Comparisons between experimental groups were made using one-way analysis of
700 variance (ANOVA) without normality assumption given its reasonable tolerance of violations to
701 normal distribution (51). *P* values of less than 0.05 were considered statistically significant. The
702 values of *N*, *F* and *P* are provided in the figure captions.

703

704

705 **References**

- 706 1. G. Hong, A. L. Antaris, H. Dai, Near-infrared fluorophores for biomedical imaging. *Nature Biomedical Engineering* **1**, 0010 (2017).
- 707 2. L. Fenco, O. Yizhar, K. Deisseroth, The development and application of optogenetics. *Annu. Rev. Neurosci.* **34**, 389–412 (2011).
- 708 3. Y. Nihongaki, F. Kawano, T. Nakajima, M. Sato, Photoactivatable CRISPR-Cas9 for 711 optogenetic genome editing. *Nat. Biotechnol.* **33**, 755–760 (2015).
- 712 4. Z. Huang, Y. Wu, M. E. Allen, Y. Pan, P. Kyriakakis, S. Lu, Y.-J. Chang, X. Wang, S. 713 Chien, Y. Wang, Engineering light-controllable CAR T cells for cancer immunotherapy. *Sci Adv.* **6**, eaay9209 (2020).
- 714 5. S. H. Yun, S. J. J. Kwok, Light in diagnosis, therapy and surgery. *Nat Biomed Eng.* **1** (2017), doi:10.1038/s41551-016-0008.
- 715 6. Y. Yang, M. Wu, A. J. Wegener, A. Vázquez-Guardado, A. I. Efimov, F. Lie, T. Wang, Y. 716 Ma, A. Banks, Z. Li, Z. Xie, Y. Huang, C. H. Good, Y. Kozorovitskiy, J. A. Rogers, Preparation and use of wireless reprogrammable multilateral optogenetic devices for 719 behavioral neuroscience. *Nat. Protoc.* **17**, 1073–1096 (2022).
- 720 7. A. D. Mickle, S. M. Won, K. N. Noh, J. Yoon, K. W. Meacham, Y. Xue, L. A. McIlvried, B. 721 A. Copits, V. K. Samineni, K. E. Crawford, K. Do Hoon, P. Srivastava, B. H. Kim, S. Min, 722 Y. Shiuan, Y. Yun, M. A. Payne, J. Zhang, H. Jang, Y. Li, H. Henry Lai, Y. Huang, S.-I. 723 Park, R. W. Gereau, J. A. Rogers, A wireless closed-loop system for optogenetic peripheral 724 neuromodulation. *Nature* **565** (2019), pp. 361–365.
- 725 8. T. Maldiney, A. Bessière, J. Seguin, E. Teston, S. K. Sharma, B. Viana, A. J. J. Bos, P. 726 Dorenbos, M. Bessodes, D. Gourier, D. Scherman, C. Richard, The in vivo activation of 727 persistent nanophosphors for optical imaging of vascularization, tumours and grafted cells. 728 *Nat. Mater.* **13**, 418–426 (2014).
- 729 9. Q. Miao, C. Xie, X. Zhen, Y. Lyu, H. Duan, X. Liu, J. V. Jokerst, K. Pu, Molecular 730 afterglow imaging with bright, biodegradable polymer nanoparticles. *Nat. Biotechnol.* **35**, 731 1102–1110 (2017).
- 732 10. Z. Li, Y. Zhao, K. Huang, L. Huang, Y. Zhang, H. Yang, G. Han, Enhancing Rechargeable 733 Persistent Luminescence via Organic Dye Sensitization. *Angew. Chem. Int. Ed Engl.* **60**, 734 15886–15890 (2021).
- 735 11. Y. Jiang, J. Huang, X. Zhen, Z. Zeng, J. Li, C. Xie, Q. Miao, J. Chen, P. Chen, K. Pu, A 736 generic approach towards afterglow luminescent nanoparticles for ultrasensitive in vivo 737 imaging. *Nat. Commun.* **10**, 2064 (2019).
- 738 12. R. N. Day, M. W. Davidson, The fluorescent protein palette: tools for cellular imaging. 739 *Chem. Soc. Rev.* **38**, 2887–2921 (2009).
- 740 13. X. X. Zhou, X. Zou, H. K. Chung, Y. Gao, Y. Liu, L. S. Qi, M. Z. Lin, A Single-Chain

742 Photoswitchable CRISPR-Cas9 Architecture for Light-Inducible Gene Editing and
743 Transcription. *ACS Chemical Biology*. **13** (2018), pp. 443–448.

744 14. X. Su, X. Kong, K. Sun, Q. Liu, Y. Pei, D. Hu, M. Xu, W. Feng, F. Li, Enhanced Blue
745 Afterglow through Molecular Fusion for Bio-applications. *Angew. Chem. Int. Ed Engl.*,
746 e202201630 (2022).

747 15. L. Ma, X. Zou, M. Hossu, W. Chen, Synthesis of ZnS:Ag,Co water-soluble blue afterglow
748 nanoparticles and application in photodynamic activation. *Nanotechnology*. **27**, 315602
749 (2016).

750 16. P. Pei, Y. Chen, C. Sun, Y. Fan, Y. Yang, X. Liu, L. Lu, M. Zhao, H. Zhang, D. Zhao, X.
751 Liu, F. Zhang, X-ray-activated persistent luminescence nanomaterials for NIR-II imaging.
752 *Nat. Nanotechnol.* (2021), doi:10.1038/s41565-021-00922-3.

753 17. Z. Li, Y. Zhang, X. Wu, L. Huang, D. Li, W. Fan, G. Han, Direct Aqueous-Phase Synthesis
754 of Sub-10 nm “Luminous Pearls” with Enhanced in Vivo Renewable Near-Infrared
755 Persistent Luminescence. *J. Am. Chem. Soc.* **137**, 5304–5307 (2015).

756 18. Q. L. M. De Chermont, C. Chanéac, J. Seguin, F. Pellé, S. Maîtrejean, J.-P. Jolivet, D.
757 Gourier, M. Bessodes, D. Scherman, Nanoprobes with near-infrared persistent luminescence
758 for in vivo imaging. *Proceedings of the National Academy of Sciences*. **104**, 9266–9271
759 (2007).

760 19. F. Liu, W. Yan, Y.-J. Chuang, Z. Zhen, J. Xie, Z. Pan, Photostimulated near-infrared
761 persistent luminescence as a new optical read-out from Cr³⁺-doped LiGa₅O₈. *Scientific
762 Reports*. **3** (2013), , doi:10.1038/srep01554.

763 20. Y. Li, M. Gecevicius, J. Qiu, Long persistent phosphors—from fundamentals to applications.
764 *Chem. Soc. Rev.* **45**, 2090–2136 (2016).

765 21. P. F. Smet, K. Van den Eeckhout, O. Q. De Clercq, D. Poelman, Persistent Phosphors.
766 *Including Actinides* (2015), pp. 1–108.

767 22. C. Suryanarayana, Mechanical alloying and milling. *Prog. Mater Sci.* **46**, 1–184 (2001).

768 23. D. Tu, C.-N. Xu, Y. Fujio, S. Kamimura, Y. Sakata, N. Ueno, Phosphorescence quenching
769 by mechanical stimulus in CaZnOS:Cu. *Applied Physics Letters*. **105** (2014), p. 011908.

770 24. X. Qin, X. Liu, W. Huang, M. Bettinelli, X. Liu, Lanthanide-Activated Phosphors Based on
771 4f-5d Optical Transitions: Theoretical and Experimental Aspects. *Chem. Rev.* **117**, 4488–
772 4527 (2017).

773 25. R. Tang, L. Wang, C. A. Orme, T. Bonstein, P. J. Bush, G. H. Nancollas, Dissolution at the
774 Nanoscale: Self-Preservation of Biominerals. *Angewandte Chemie*. **116** (2004), pp. 2751–
775 2755.

776 26. D. Athanasiadou, W. Jiang, D. Goldbaum, A. Saleem, K. Basu, M. S. Pacella, C. F. Böhm,
777 R. R. Chromik, M. T. Hincke, A. B. Rodríguez-Navarro, H. Vali, S. E. Wolf, J. J. Gray, K.
778 H. Bui, M. D. McKee, Nanostructure, osteopontin, and mechanical properties of calcitic

779 avian eggshell. *Sci Adv.* **4**, eaar3219 (2018).

780 27. R. Tang, G. H. Nancollas, C. A. Orme, Mechanism of dissolution of sparingly soluble
781 electrolytes. *J. Am. Chem. Soc.* **123**, 5437–5443 (2001).

782 28. P. M. Dove, N. Han, J. J. De Yoreo, Mechanisms of classical crystal growth theory explain
783 quartz and silicate dissolution behavior. *Proc. Natl. Acad. Sci. U. S. A.* **102**, 15357–15362
784 (2005).

785 29. L. Ratke, P. W. Voorhees, *Growth and Coarsening: Ostwald Ripening in Material*
786 *Processing* (Springer Science & Business Media, 2013).

787 30. W. Wu, G. H. Nancollas, Determination of interfacial tension from crystallization and
788 dissolution data: a comparison with other methods. *Adv. Colloid Interface Sci.* **79**, 229–279
789 (1999).

790 31. E. S. Boyden, F. Zhang, E. Bamberg, G. Nagel, K. Deisseroth, Millisecond-timescale,
791 genetically targeted optical control of neural activity. *Nat. Neurosci.* **8**, 1263–1268 (2005).

792 32. I. P. Sahu, D. P. Bisen, N. Brahme, R. Sharma, Luminescence properties of Eu²⁺, Dy³⁺-
793 doped Sr₂MgSi₂O₇, and Ca₂MgSi₂O₇ phosphors by solid-state reaction method. *Research*
794 *on Chemical Intermediates*. **41** (2015), pp. 6649–6664.

795 33. Q. Zhou, M. Xu, W. Feng, F. Li, Quantum Yield Measurements of Photochemical Reaction-
796 Based Afterglow Luminescence Materials. *J. Phys. Chem. Lett.* **12**, 9455–9462 (2021).

797 34. Y. Gao, R. Li, W. Zheng, X. Shang, J. Wei, M. Zhang, J. Xu, W. You, Z. Chen, X. Chen,
798 Broadband NIR photostimulated luminescence nanoprobes based on CaS:Eu²⁺, Sm³⁺
799 nanocrystals. *Chem. Sci.* **10**, 5452–5460 (2019).

800 35. Y. Lin, Z. Tang, Z. Zhang, C. W. Nan, Anomalous luminescence in Sr₄Al₁₄O₂₅:Eu, Dy
801 phosphors. *Appl. Phys. Lett.* **81**, 996–998 (2002).

802 36. H. Li, S. Yin, Y. Wang, T. Sekino, S. W. Lee, T. Sato, Green phosphorescence-assisted
803 degradation of rhodamine B dyes by Ag₃PO₄. *J. Mater. Chem. A Mater. Energy Sustain.* **1**,
804 1123–1126 (2013).

805 37. C. Zhang, M. Zhang, W. Zheng, J. Wei, S. Wang, P. Huang, X. Cheng, T. Dai, Z. Chen, X.
806 Chen, A new class of luminescent nanoprobes based on main-group Sb³⁺ emitters. *Nano*
807 *Res.* **15**, 179–185 (2022).

808 38. J. Wang, Y. Zhu, C. A. Grimes, Q. Cai, Multicolor lanthanide-doped CaS and SrS near-
809 infrared stimulated luminescent nanoparticles with bright emission: application in broad-
810 spectrum lighting, information coding, and bio-imaging. *Nanoscale*. **11** (2019), pp. 12497–
811 12501.

812 39. X. Qiu, X. Zhu, M. Xu, W. Yuan, W. Feng, F. Li, Hybrid Nanoclusters for Near-Infrared to
813 Near-Infrared Upconverted Persistent Luminescence Bioimaging. *ACS Appl. Mater.*
814 *Interfaces*. **9**, 32583–32590 (2017).

815 40. W. Yang, R. Yuste, In vivo imaging of neural activity. *Nat. Methods.* **14**, 349–359 (2017).

816 41. J. K. Adams, V. Boominathan, S. Gao, A. V. Rodriguez, D. Yan, C. Kemere, A.
817 Veeraraghavan, J. T. Robinson, In vivo fluorescence imaging with a flat, lensless
818 microscope. *bioRxiv* (2020), p. 2020.06.04.135236.

819 42. G. Feng, R. H. Mellor, M. Bernstein, C. Keller-Peck, Q. T. Nguyen, M. Wallace, J. M.
820 Nerbonne, J. W. Lichtman, J. R. Sanes, Imaging neuronal subsets in transgenic mice
821 expressing multiple spectral variants of GFP. *Neuron.* **28**, 41–51 (2000).

822 43. K. W. Dunn, M. M. Kamocka, J. H. McDonald, A practical guide to evaluating
823 colocalization in biological microscopy. *Am. J. Physiol. Cell Physiol.* **300**, C723–42 (2011).

824 44. X. Wu, X. Zhu, P. Chong, J. Liu, L. N. Andre, K. S. Ong, K. Brinson Jr, A. I. Mahdi, J. Li,
825 L. E. Fenno, H. Wang, G. Hong, Sono-optogenetics facilitated by a circulation-delivered
826 rechargeable light source for minimally invasive optogenetics. *Proc. Natl. Acad. Sci. U. S. A.*
827 **116**, 26332–26342 (2019).

828 45. J. Szanics, T. Okubo, M. Kakihana, Preparation of LiTaO₃ powders at reduced temperatures
829 by a polymerized complex method. *J. Alloys Compd.* **281**, 206–210 (1998).

830 46. L. H. Wang, D. R. Yuan, X. L. Duan, X. Q. Wang, F. P. Yu, Synthesis and characterization
831 of fine lithium niobate powders by sol- gel method. *Crystal Research and Technology.* **42**
832 (2007), pp. 321–324.

833 47. A. Singer, S. Dutta, E. Lewis, Z. Chen, J. C. Chen, N. Verma, B. Avants, A. K. Feldman, J.
834 O’Malley, M. Beierlein, C. Kemere, J. T. Robinson, Magnetoelectric Materials for
835 Miniature, Wireless Neural Stimulation at Therapeutic Frequencies. *Neuron.* **107**, 631–
836 643.e5 (2020).

837 48. X. Ou, X. Qin, B. Huang, J. Zan, Q. Wu, Z. Hong, L. Xie, H. Bian, Z. Yi, X. Chen, Y. Wu,
838 X. Song, J. Li, Q. Chen, H. Yang, X. Liu, High-resolution X-ray luminescence extension
839 imaging. *Nature.* **590**, 410–415 (2021).

840 49. N. Kohler, G. E. Fryxell, M. Zhang, A Bifunctional Poly(ethylene glycol) Silane
841 Immobilized on Metallic Oxide-Based Nanoparticles for Conjugation with Cell Targeting
842 Agents. *Journal of the American Chemical Society.* **126** (2004), pp. 7206–7211.

843 50. Y. Zhong, Z. Ma, F. Wang, X. Wang, Y. Yang, Y. Liu, X. Zhao, J. Li, H. Du, M. Zhang, Q.
844 Cui, S. Zhu, Q. Sun, H. Wan, Y. Tian, Q. Liu, W. Wang, K. C. Garcia, H. Dai, In vivo
845 molecular imaging for immunotherapy using ultra-bright near-infrared-IIb rare-earth
846 nanoparticles. *Nat. Biotechnol.* **37**, 1322–1331 (2019).

847 51. J. Cohen, *Statistical Power Analysis for the Behavioral Sciences* (Academic Press, 2013).

848 52. T. Liu, L. Li, X. Teng, X. Huang, H. Liu, D. Chen, J. Ren, J. He, F. Tang, Single and
849 repeated dose toxicity of mesoporous hollow silica nanoparticles in intravenously exposed
850 mice. *Biomaterials.* **32**, 1657–1668 (2011).

851 53. F. J. Martin, K. Melnik, T. West, J. Shapiro, M. Cohen, A. A. Boiarski, M. Ferrari, Acute

852 Toxicity of Intravenously Administered Microfabricated Silicon Dioxide Drug Delivery
853 Particles in Mice. *Drugs in R & D.* **6**, 71–81 (2005).

854 54. X. Wu, Y. Jiang, N. J. Rommelfanger, F. Yang, Q. Zhou, R. Yin, J. Liu, S. Cai, W. Ren, A.
855 Shin, K. S. Ong, K. Pu, G. Hong, Tether-free photothermal deep-brain stimulation in freely
856 behaving mice via wide-field illumination in the near-infrared-II window. *Nat Biomed Eng*
857 (2022), doi:10.1038/s41551-022-00862-w.

858 55. O. Yizhar, L. E. Fenno, M. Prigge, F. Schneider, T. J. Davidson, D. J. O'Shea, V. S. Sohal, I.
859 Goshen, J. Finkelstein, J. T. Paz, K. Stehfest, R. Fudim, C. Ramakrishnan, J. R. Huguenard,
860 P. Hegemann, K. Deisseroth, Neocortical excitation/inhibition balance in information
861 processing and social dysfunction. *Nature*. **477**, 171–178 (2011).

862 56. A. Berndt, O. Yizhar, L. A. Gunaydin, P. Hegemann, K. Deisseroth, Bi-stable neural state
863 switches. *Nat. Neurosci.* **12**, 229–234 (2009).

864 57. X. Gong, D. Mendoza-Halliday, J. T. Ting, T. Kaiser, X. Sun, A. M. Bastos, R. D. Wimmer,
865 B. Guo, Q. Chen, Y. Zhou, M. Pruner, C. W.-H. Wu, D. Park, K. Deisseroth, B. Barak, E. S.
866 Boyden, E. K. Miller, M. M. Halassa, Z. Fu, G. Bi, R. Desimone, G. Feng, An Ultra-
867 Sensitive Step-Function Opsin for Minimally Invasive Optogenetic Stimulation in Mice and
868 Macaques. *Neuron*. **107**, 38–51.e8 (2020).

869 58. B. A. Hartl, H. Hirschberg, L. Marcu, S. R. Cherry, Characterizing low fluence thresholds
870 for in vitro photodynamic therapy. *Biomed. Opt. Express*. **6**, 770–779 (2015).

871 59. E. H. Kim, S. Park, Y. K. Kim, M. Moon, J. Park, K. J. Lee, S. Lee, Y.-P. Kim, Self-
872 luminescent photodynamic therapy using breast cancer targeted proteins. *Sci Adv.* **6** (2020),
873 doi:10.1126/sciadv.aba3009.

874 60. J. Schubert, A. Lindenbaum, Stability of Alkaline Earth—Organic Acid Complexes
875 Measured by Ion Exchange1. *J. Am. Chem. Soc.* **74**, 3529–3532 (1952).

876 61. J. L. Meyer, Formation constants for interaction of citrate with calcium and magnesium ions.
877 *Anal. Biochem.* **62**, 295–300 (1974).

878 62. P. C. Bennett, M. E. Melcer, D. I. Siegel, J. P. Hassett, The dissolution of quartz in dilute
879 aqueous solutions of organic acids at 25°C. *Geochim. Cosmochim. Acta*. **52**, 1521–1530
880 (1988).

881 63. A. Heller, A. Barkleit, H. Foerstendorf, S. Tsushima, K. Heim, G. Bernhard, Curium(III)
882 citrate speciation in biological systems: a europium(III) assisted spectroscopic and quantum
883 chemical study. *Dalton Transactions*. **41** (2012), p. 13969.

884 64. D. T. Sawyer, P. J. Paulsen, Properties and Infrared Spectra of Ethylenediaminetetraacetic
885 Acid Complexes. II. Chelates of Divalent Ions1. *J. Am. Chem. Soc.* **81**, 816–820 (1959).

886 65. A. Gácsi, B. Kutus, Á. Buckó, Z. Csendes, G. Peintler, I. Pálinkó, P. Sipos, Some aspects of
887 the aqueous solution chemistry of the Na⁺/Ca²⁺/OH⁻/Cit³⁻ system: The structure of a new
888 calcium citrate complex forming under hyperalkaline conditions. *Journal of Molecular
889 Structure*. **1118** (2016), pp. 110–116.

890 66. A. Bodor, I. Bányai, L. Zékány, I. Tóth, Slow dynamics of aluminium-citrate complexes
891 studied by ^1H - and ^{13}C -NMR spectroscopy. *Coord. Chem. Rev.* **228**, 163–173 (2002).

892 67. F. R. Bacon, F. C. Raggon, Promotion of attack on glass and silica by citrate and other
893 anions in neutral solution. *J. Am. Ceram. Soc.* **42**, 199–205 (1959).

894 68. L. Zamarri, A. Macià Escatllar, J. Mariñoso Guiu, P. Ugliengo, S. T. Bromley, What Can
895 Infrared Spectra Tell Us about the Crystallinity of Nanosized Interstellar Silicate Dust
896 Grains? *ACS Earth Space Chem.* **3**, 2323–2338 (2019).

897 69. A. I. Bortun, L. N. Bortun, A. Clearfield, Hydrothermal Synthesis of Sodium Zirconium
898 Silicates and Characterization of Their Properties. *Chem. Mater.* **9**, 1854–1864 (1997).

899 70. Z. Li, N. Yu, J. Zhou, Y. Li, Y. Zhang, L. Huang, K. Huang, Y. Zhao, S. Kelmar, J. Yang, G.
900 Han, Coloring Afterglow Nanoparticles for High-Contrast Time-Gating-Free Multiplex
901 Luminescence Imaging. *Adv. Mater.* **32**, e2003881 (2020).

902 71. Y.-J. Li, C.-X. Yang, X.-P. Yan, Biomimetic Persistent Luminescent Nanoplatform for
903 Autofluorescence-Free Metastasis Tracking and Chemophotodynamic Therapy. *Anal. Chem.*
904 **90**, 4188–4195 (2018).

905 72. Y.-F. Gao, R. Zou, G.-F. Chen, B.-M. Liu, Y. Zhang, J. Jiao, K.-L. Wong, J. Wang, Large-
906 Pore Mesoporous-Silica-Assisted synthesis of high-performance
907 $\text{ZnGa}_2\text{O}_4:\text{Cr}^{3+}/\text{Sn}^{4+}$ @MSNs multifunctional nanoplatform with optimized optical probe
908 mass ratio and superior residual pore volume for improved bioimaging and drug delivery.
909 *Chem. Eng. J.* **420**, 130021 (2021).

910 73. Y. Wang, C.-X. Yang, X.-P. Yan, Hydrothermal and biominerization synthesis of a dual-
911 modal nanoprobe for targeted near-infrared persistent luminescence and magnetic resonance
912 imaging. *Nanoscale*. **9**, 9049–9055 (2017).

913 74. A. Abdukayum, J.-T. Chen, Q. Zhao, X.-P. Yan, Functional near infrared-emitting
914 $\text{Cr}^{3+}/\text{Pr}^{3+}$ co-doped zinc gallogermanate persistent luminescent nanoparticles with
915 superlong afterglow for in vivo targeted bioimaging. *J. Am. Chem. Soc.* **135**, 14125–14133
916 (2013).

917 75. Y. Feng, R. Liu, L. Zhang, Z. Li, Y. Su, Y. Lv, Raspberry-Like Mesoporous
918 $\text{Zn}_{1.07}\text{Ga}_{2.34}\text{Si}_{0.98}\text{O}_{6.56}:\text{Cr}_{0.01}$ Nanocarriers for Enhanced Near-Infrared Afterglow
919 Imaging and Combined Cancer Chemotherapy. *ACS Appl. Mater. Interfaces*. **11**, 44978–
920 44988 (2019).

921 76. Y.-J. Li, X.-P. Yan, Synthesis of functionalized triple-doped zinc gallogermanate
922 nanoparticles with superlong near-infrared persistent luminescence for long-term orally
923 administrated bioimaging. *Nanoscale*. **8**, 14965–14970 (2016).

924 77. J. Shi, X. Sun, S. Zheng, J. Li, X. Fu, H. Zhang, A new near-infrared persistent luminescence
925 nanoparticle as a multifunctional nanoplatform for multimodal imaging and cancer therapy.
926 *Biomaterials*. **152**, 15–23 (2018).

927 78. Y. Lv, D. Ding, Y. Zhuang, Y. Feng, J. Shi, H. Zhang, T.-L. Zhou, H. Chen, R.-J. Xie,

928 Chromium-Doped Zinc Gallogermanate@Zeolitic Imidazolate Framework-8: A
929 Multifunctional Nanoplatform for Rechargeable In Vivo Persistent Luminescence Imaging
930 and pH-Responsive Drug Release. *ACS Appl. Mater. Interfaces.* **11**, 1907–1916 (2019).

931 79. M. Pellerin, E. Glais, T. Lecuyer, J. Xu, J. Seguin, S. Tanabe, C. Chanéac, B. Viana, C.
932 Richard, LaAlO₃:Cr³⁺, Sm³⁺: Nano-perovskite with persistent luminescence for in vivo
933 optical imaging. *J. Lumin.* **202**, 83–88 (2018).

934 80. T. Ai, W. Shang, H. Yan, C. Zeng, K. Wang, Y. Gao, T. Guan, C. Fang, J. Tian, Near
935 infrared-emitting persistent luminescent nanoparticles for Hepatocellular Carcinoma imaging
936 and luminescence-guided surgery. *Biomaterials.* **167**, 216–225 (2018).

937 81. T. Maldiney, A. Lecointre, B. Viana, A. Bessière, M. Bessodes, D. Gourier, C. Richard, D.
938 Scherman, Controlling electron trap depth to enhance optical properties of persistent
939 luminescence nanoparticles for in vivo imaging. *J. Am. Chem. Soc.* **133**, 11810–11815
940 (2011).

941 82. Z. Xue, X. Li, Y. Li, M. Jiang, H. Liu, S. Zeng, J. Hao, X-ray-Activated Near-Infrared
942 Persistent Luminescent Probe for Deep-Tissue and Renewable in Vivo Bioimaging. *ACS
943 Appl. Mater. Interfaces.* **9**, 22132–22142 (2017).

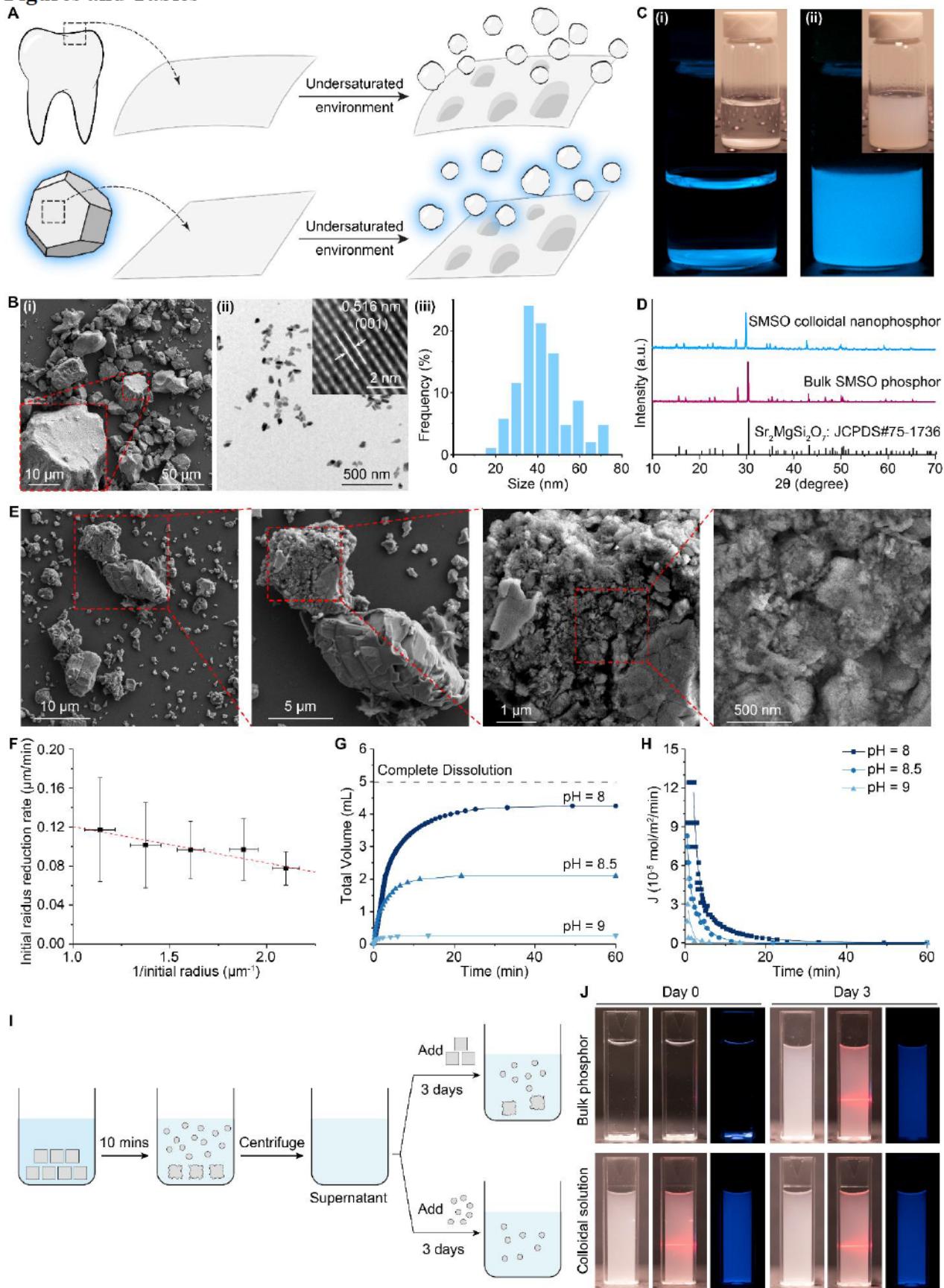
944 83. B. Zheng, Y. Bai, H. Chen, H. Pan, W. Ji, X. Gong, X. Wu, H. Wang, J. Chang, Near-
945 Infrared Light-Excited Upconverting Persistent Nanophosphors in Vivo for Imaging-Guided
946 Cell Therapy. *ACS Appl. Mater. Interfaces.* **10**, 19514–19522 (2018).

947 84. X. Chen, Y. Li, K. Huang, L. Huang, X. Tian, H. Dong, R. Kang, Y. Hu, J. Nie, J. Qiu, G.
948 Han, Trap Energy Upconversion-Like Near-Infrared to Near-Infrared Light Rejuvenateable
949 Persistent Luminescence. *Adv. Mater.* **33**, e2008722 (2021).

950 85. C. Xie, X. Zhen, Q. Miao, Y. Lyu, K. Pu, Self-Assembled Semiconducting Polymer
951 Nanoparticles for Ultrasensitive Near-Infrared Afterglow Imaging of Metastatic Tumors.
952 *Adv. Mater.* **30**, e1801331 (2018).

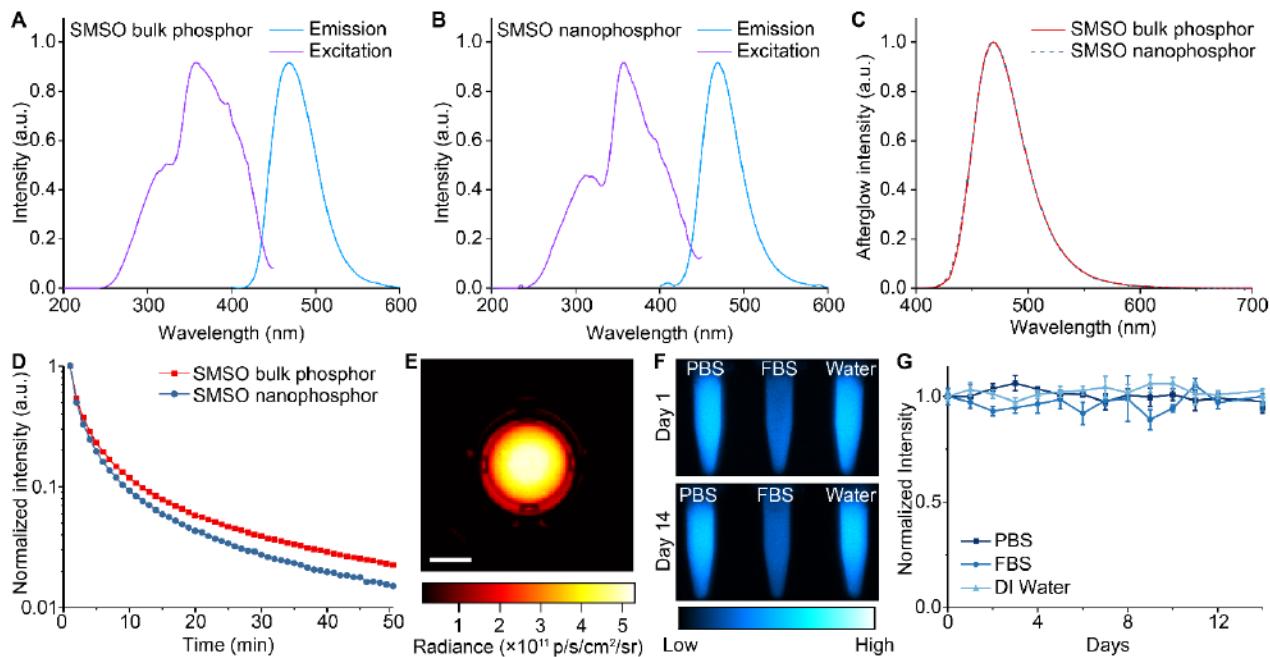
953 86. X. Zhen, Y. Tao, Z. An, P. Chen, C. Xu, R. Chen, W. Huang, K. Pu, Ultralong
954 Phosphorescence of Water-Soluble Organic Nanoparticles for In Vivo Afterglow Imaging.
955 *Adv. Mater.* **29**, 201606665 (2017).

956 87. F. Zhang, M. Xu, X. Su, W. Yuan, W. Feng, Q. Su, F. Li, Afterglow Implant for Arterial
957 Embolization and Intraoperative Imaging. *Chemistry.* **28**, e202103795 (2022).

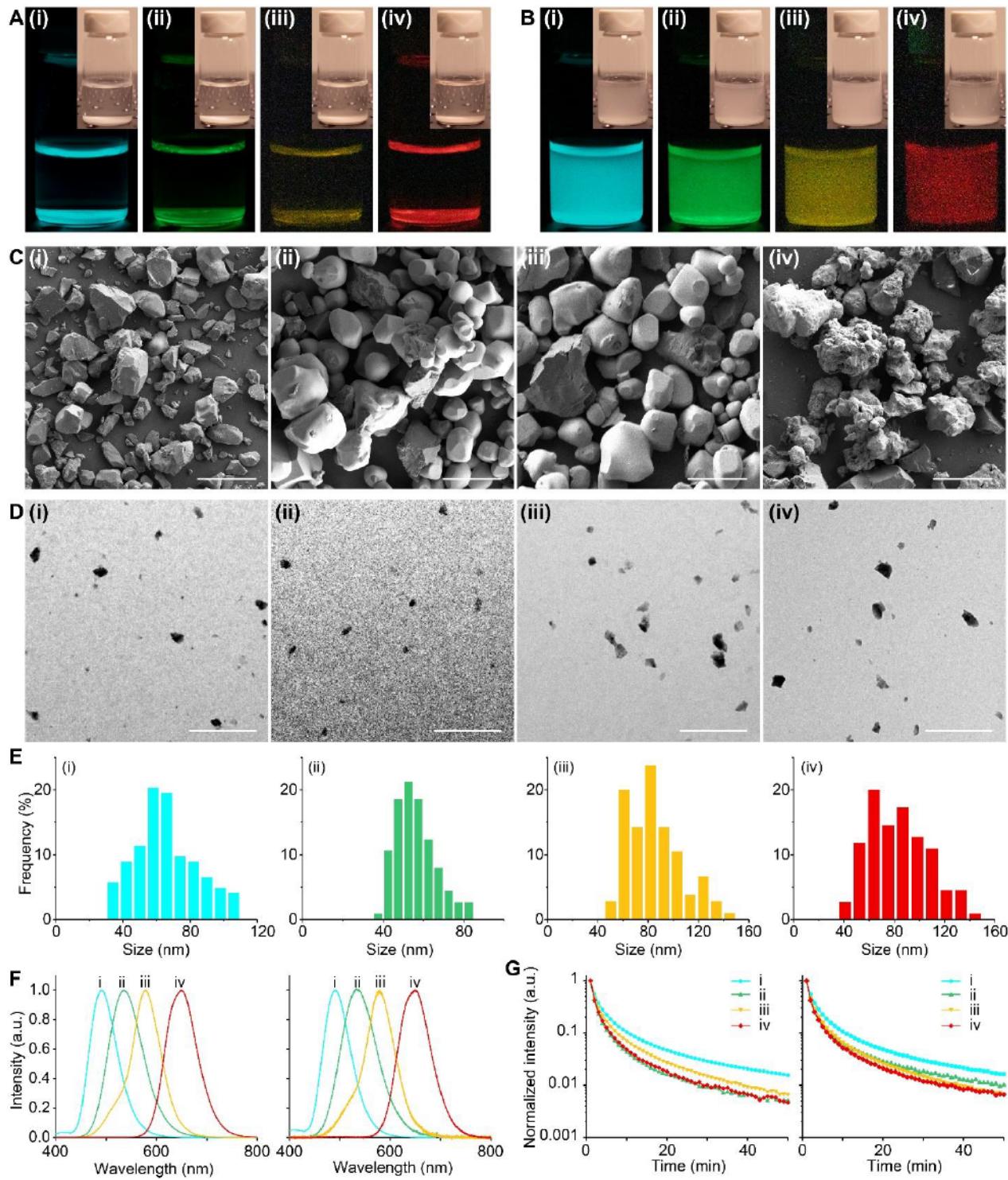

958 88. X. Wang, W. Yuan, M. Xu, X. Su, F. Li, Visualization of Acute Inflammation through a
959 Macrophage-Camouflaged Afterglow Nanocomplex. *ACS Appl. Mater. Interfaces.* **14**, 259–
960 267 (2022).

961 89. X. Ni, X. Zhang, X. Duan, H.-L. Zheng, X.-S. Xue, D. Ding, Near-Infrared Afterglow
962 Luminescent Aggregation-Induced Emission Dots with Ultrahigh Tumor-to-Liver Signal
963 Ratio for Promoted Image-Guided Cancer Surgery. *Nano Lett.* **19**, 318–330 (2019).

965 **Acknowledgments**

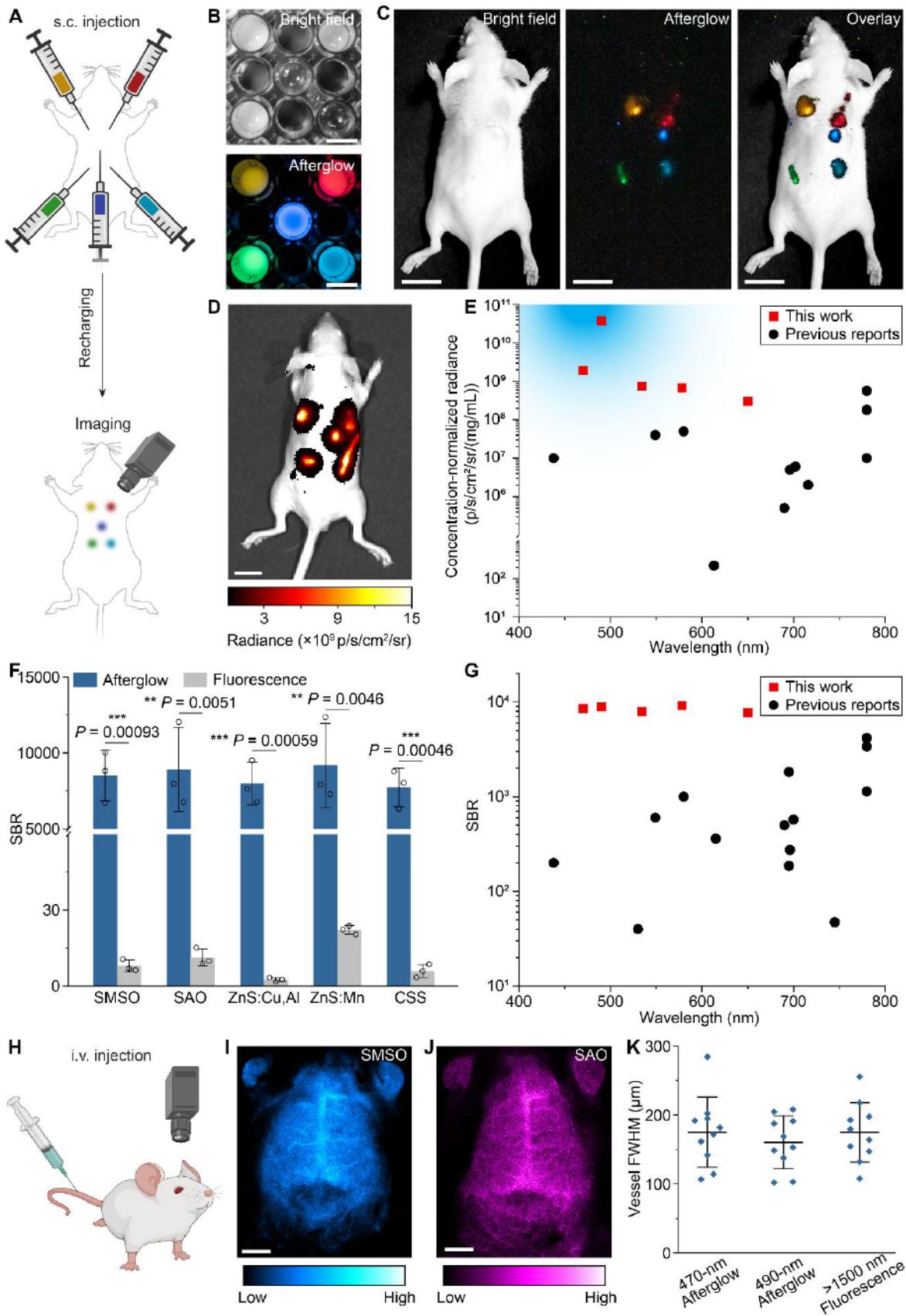

966 We thank the Stanford Animal Histology Services for help with preparation of histologic
967 specimens. Part of this work was performed at the Stanford Nano Shared Facilities (SNSF),
968 supported by the National Science Foundation under award ECCS-2026822. Confocal imaging was
969 performed at the Stanford Wu Tsai Neuroscience Microscopy Service. **Funding:** G.H.
970 acknowledges two awards by NIH (5R00AG056636-04 and 1R34NS127103-01), a National
971 Science Foundation (NSF) CAREER award (2045120), an NSF EAGER award (2217582), a Rita
972 Allen Foundation Scholars Award, a Beckman Technology Development Grant, a grant from the
973 focused ultrasound (FUS) Foundation, a gift from the Spinal Muscular Atrophy (SMA) Foundation,
974 a gift from the Pinetops Foundation, two seed grants from the Wu Tsai Neurosciences Institute, and
975 a seed grant from the Bio-X Initiative of Stanford University. X.W. acknowledges the support by a
976 Stanford Graduate Fellowship. Z.O. acknowledges the support by a Wu Tsai Neurosciences
977 Institute Interdisciplinary Scholar Award. Some schematics were created with BioRender.com.
978 **Author contributions:** F.Y., X.W., and G.H. conceived and designed the project, F.Y., X.W., H.C.,
979 Z.O., S.C., Q.Z., and B.G.W. performed the experiments. F.Y., X.W., H.C., Z.O., S.C., Q.Z., H.H.,
980 and G.H. analyzed the data. F.Y., X.W., H.C., and G.H. wrote the manuscript. All authors discussed
981 the results and commented on the manuscript. **Competing interests:** The authors declare no
982 competing interests. **Data and materials availability:** All data needed to evaluate the conclusions
983 in the paper are present in the paper and the Supplementary Materials.

Figures and Tables

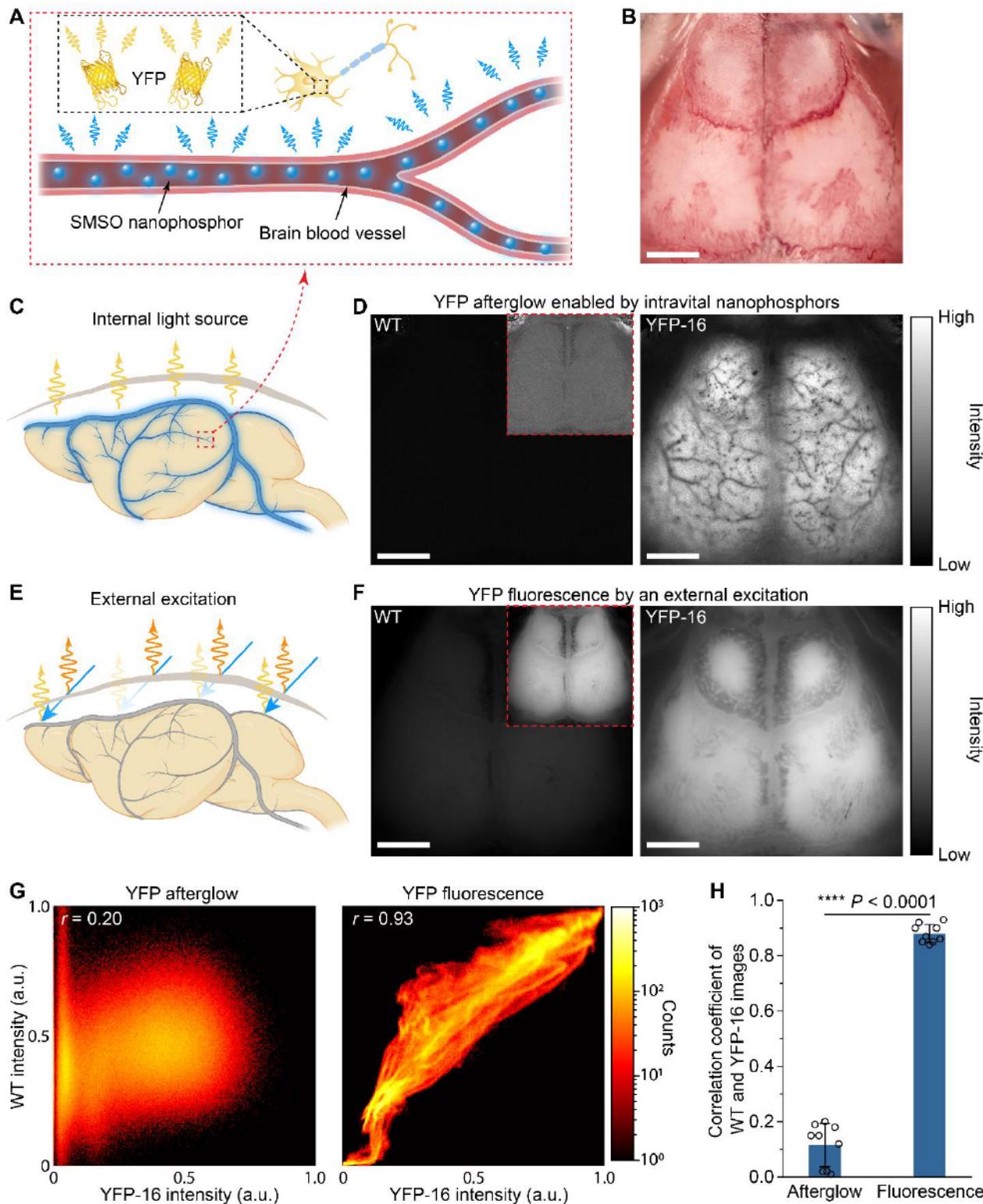


985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002

Fig. 1. BID approach for synthesizing colloidal SMSO solutions. (A) Schematics showing the BID mechanism for dissolving tooth enamel (top) and sparingly soluble phosphors (bottom) into nanoparticles in an undersaturated solution. (B) SEM (i) and TEM (ii) images of the bulk SMSO phosphor and its colloidal nanoparticles, respectively. The inset in ii shows the HRTEM image of a SMSO nanoparticle. A histogram showing the size distribution of SMSO colloids is shown in iii. (C) Afterglow images and brightfield images (insets) of an aqueous suspension of bulk SMSO phosphor (i) and its stable colloidal solution of nanophosphors (ii). (D) XRD spectra of bulk SMSO phosphor and its colloidal nanoparticles. An average domain size of 52 nm was obtained by analyzing peak widths in the XRD spectrum of SMSO colloids with the Scherrer equation. (E) SEM images of bulk SMSO particles after reaching a metastable equilibrium. (F) Plot showing the average instantaneous dissolution rate of SMSO particles as a function of their average inverse radius. The data is represented as mean values +/- standard deviation (SD). (G) Plots of the titrant volume as a function of time for kinetically preserved dissolution of SMSO at different pH. (H) Plots of the flux rate (J) as a function of time for SMSO dissolution at different undersaturations. (I) Schematic showing the steps of an experimental procedure that verifies the BID mechanism. (J) Brightfield image (left), Tyndall effect (middle), and afterglow image (right) of colloidal solutions prepared under different conditions (see Materials and Methods).



1003 **Fig. 2. Strong and persistent afterglow of BID-produced SMSO nanophosphor colloids.** (A)
1004 The excitation and emission spectra of untreated, bulk SMSO phosphor. (B) The excitation and
1005 emission spectra of a colloidal solution of SMSO nanophosphors. (C) The afterglow spectra of
1006 SMSO bulk phosphor and colloidal nanophosphor. (D) Afterglow curves of SMSO bulk phosphor
1007 and colloidal nanophosphor. (E) Afterglow image of a colloidal solution of SMSO nanophosphors
1008 (493 nmol/L) in a 48 well plate acquired by the IVIS imaging system. The scale bar represents 0.5
1009 cm. (F) Afterglow images of colloidal solutions of SMSO nanophosphors in PBS (left), FBS
1010 (middle) and water (right) at Day 1 (top) and Day 14 (bottom). The decrease in afterglow
1011 intensity for FBS is due to the absorption of FBS at the emission wavelengths of SMSO colloids
1012 and does not reflect the instability of SMSO afterglow (fig. S10). (G) Chronic stability of
1013 normalized afterglow intensity of SMSO colloidal solutions in PBS, FBS and water. All data are
1014 presented as mean values +/- SD.



1015 **Fig. 3. Generalizability of the BID method.** (A) Afterglow images and their corresponding
1016 brightfield images (insets) of SAO (i), ZnS:Cu,Al (ii), ZnS:Mn (iii), and CSS (iv) bulk phosphors.
1017 (B) Afterglow images and their corresponding brightfield images (insets) of SAO (i), ZnS:Cu,Al
1018 (ii), ZnS:Mn (iii), and CSS (iv) nanophosphor colloids. (C) SEM images of SAO (i), ZnS:Cu,Al
1019 (ii), ZnS:Mn (iii), and CSS (iv) bulk phosphors. The scale bars represent 50 μ m. (D) TEM images
1020 of SAO (i), ZnS:Cu,Al (ii), ZnS:Mn (iii), and CSS (iv) nanophosphor colloids. The scale bars
1021 represent 500 nm. (E) Histograms showing the size distributions of SAO (i), ZnS:Cu,Al (ii),
1022 ZnS:Mn (iii), and CSS (iv) bulk phosphors. (F) Normalized intensity (a.u.) vs wavelength (nm)
1023 for SAO (i), ZnS:Cu,Al (ii), ZnS:Mn (iii), and CSS (iv) nanophosphor colloids. (G) Normalized
1024 intensity (a.u.) vs time (min) for SAO (i), ZnS:Cu,Al (ii), ZnS:Mn (iii), and CSS (iv) nanophosphor
1025 colloids.

1022 ZnS:Mn (iii), and CSS (iv) nanophosphor colloids. **Each histogram is based on 100 colloidal**
1023 **nanoparticles in the TEM images.** (F) Afterglow spectra of SAO (i), ZnS:Cu,Al (ii), ZnS:Mn (iii),
1024 and CSS (iv) bulk phosphors (left) and colloidal nanophosphors (right). (G) Luminescence decay
1025 curves of SAO (i), ZnS:Cu,Al (ii), ZnS:Mn (iii), and CSS (iv) bulk phosphors (left) and colloidal
1026 nanophosphors (right).

1029 administration. **(B)** Brightfield (top) and afterglow (bottom) images of five colloidal solutions in a
1030 multiwell plate. **(C)** Brightfield (left), afterglow (middle), and overlay (right) images of
1031 subcutaneously administered colloidal solutions. **(D)** Afterglow image of subcutaneously injected
1032 colloids acquired using the IVIS imaging system. **(E)** Scatter plot of concentration-normalized
1033 afterglow radiance vs. emission wavelength for subcutaneously injected colloids in this work and
1034 previous reports. The blue shade represents the desirable power density for activating SSFO and
1035 psCas9 in various biological applications. **(F)** Statistical analysis of the SBR for afterglow and
1036 fluorescence imaging with BID-produced nanophosphor colloids. All data are presented as mean
1037 values +/- SD. $n = 3$ for all groups. ** $P < 0.01$; *** $P < 0.001$. **(G)** Scatter plot of the SBR vs.
1038 emission wavelength for subcutaneously injected colloidal solutions of nanophosphors in this work
1039 and previous reports. **(H)** BID-produced colloidal solutions of nanophosphors can be delivered via
1040 intravenous administration for brain imaging. **(I&J)** Transcranial afterglow images of brain
1041 vascular structures after intravenous injection of SMSO **(I)** and SAO **(J)** colloidal solutions. **(K)**
1042 The full-width at half maximum (FWHM) of the smallest discernible cerebral vessels in afterglow
1043 images of this work and an NIR-II (>1500 nm) fluorescence image in Ref. (50) under the same
1044 level of magnification. The scale bars are 1 cm in **(B&D)**, 1.5 cm in **(C)** and 2.5 mm in **(I&J)**.

1045
1046
1047
1048
1049
1050

Fig. 5. BID-produced colloids as an intravital light source for YFP imaging. (A) Schematic showing SMSO colloids in blood vessels as an internal light source for exciting YFP fluorescence *in situ*. (B) Photo of the mouse head with the intact skull, which is dominated by the intrinsic skull features. (C&E) Schematic of brain fluorescence imaging with an internal light source (C) or a conventional external light source (E). The blue glow represents the internal excitation light. The blue, yellow, and orange arrows represent external excitation light, YFP fluorescence, and skull

1051 autofluorescence, respectively. The fluorescence image excited by a conventional external light
1052 source (**E**) is contaminated by skull features due to spatially varying skull attenuation and
1053 autofluorescence. (**D&F**) YFP afterglow (**D**) or fluorescence (**F**) images of the WT (left) and YFP-
1054 16 (right) mouse brains excited by the intravenously delivered colloidal light source (**D**) or an
1055 external light source (**F**). The insets in the left panels are WT images with digitally enhanced
1056 brightness to match YFP-16 images. All images in **B,D&F** were taken with the intact skull. All
1057 scale bars represent 2 mm. (**G**) Intensity scatter plot of the WT and YFP-16 images under the
1058 afterglow (left) or fluorescence (right) modes. The Pearson's correlation coefficient r is provided
1059 on the image. (**H**) Statistical analysis of Pearson's correlation coefficients (indicating similarity)
1060 between the WT and YFP-16 images under the afterglow or fluorescence modes. All data are
1061 presented as mean values +/- SD. ****, $P < 0.0001$.

Supplementary Materials for

A biomineral-inspired approach of synthesizing colloidal persistent phosphors as a multicolor, intravital light source

Fan Yang^{1,2†}, Xiang Wu^{1,2†}, Han Cui^{1,2}, Zihao Ou^{1,2}, Shan Jiang^{1,2}, Sa Cai^{1,2}, Qi Zhou^{1,2}, Bryce G. Wong^{1,2}, Hans Huang^{1,2}, and Guosong Hong^{1,2*}

*Corresponding author. Email: guosongh@stanford.edu

This PDF file includes:

Supplementary Text
Figs. S1 to S24
Tables S1 to S2

Supplementary Text

Estimation of the ratio of bulk SMSO precursor particles to kinetically preserved SMSO nanoparticles

In compliance with the kinetic preservation model of the BID method, two plausible but not mutually exclusive models exist to explain the origin of produced nanoparticles. Specifically, each micron-sized particle may be etched to a single nanoparticle with its size resistant to further dissolution. Alternatively, during dissolution of a micron particle, it may “shed” multiple nanoparticles from its surface as the pit expands. To this end, we calculated the final concentration of nanoparticles after the BID process as follows:

In a typical BID experiment described in Materials and Methods, an overall yield of 13% was found for SMSO nanophosphors, and the initial particle concentration of bulk SMSO precursor particles and kinetically preserved SMSO nanoparticles were 5.59×10^6 and 9.08×10^{12} particles/mL, respectively, based on UV-Vis absorption measurement and their respective sizes. This result indicates that on average, every single micron-sized SMSO particle produces $\sim 10^6$ nanoparticles during the kinetically preserved dissolution process. Therefore, although the first model cannot be excluded, the second model dominates the BID process to produce many small nanoparticles from their parent micron-sized particles. Further evidence is found from a close-up view of the large particles during dissolution, revealing many small nanoparticles loosely attached to the surfaces (Fig. 1E, the far right panel). A similar phenomenon has been observed during demineralization of tooth enamel, in which nanosized particles were released into the solution by fluid diffusion flux (25).

Estimation of highest achievable afterglow power density *in vivo* after intravenous delivery for biological applications

We first estimate the afterglow emission power per unit mass of nanophosphors ($\frac{P}{m_{BID}}$) using the *ex vivo* radiance measurement data (i.e., Fig. 2E) as follows:

$$\int_0^{h_0} \int_0^{r_0} 10^{-\varepsilon_{BID} \cdot \sqrt{r^2 + h^2}} \cdot C_{BID} \frac{P}{m_{BID}} C_{BID} \frac{2\pi r}{4\pi(r^2 + h^2)} dr dh = \Omega \cdot hc/\lambda \cdot L_\Omega$$

where h_0 and r_0 are the height and radius of the BID-produced nanophosphor solution in a 48 well plate, respectively; ε_{BID} is the absorption coefficient of the BID-produced nanophosphor solution at its corresponding peak emission wavelength; C_{BID} is the concentration of the nanophosphor solution; $\Omega = 4\pi$ is the solid angle; hc/λ is the energy of a single photon at the peak emission wavelength, and L_Ω is the radiance measured by the IVIS system.

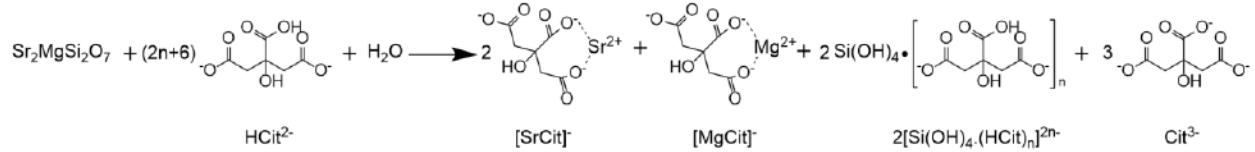
Then the highest achievable afterglow power density in different organs *in vivo* after intravenous delivery is estimated as follows:

$$I = \int_0^{l_0} \frac{P}{m_{BID}} C_{BID,blood} v/v_{blood} \exp(-\mu_{eff} l) dl$$

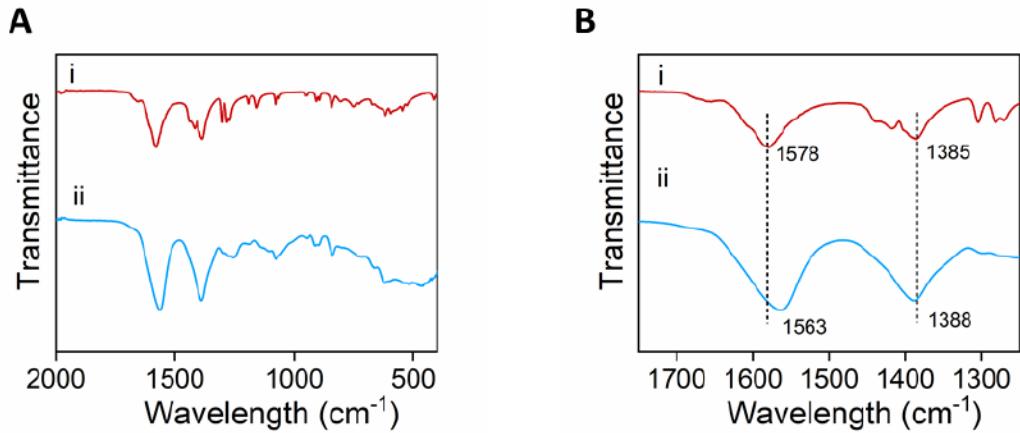
where l_0 is the estimated dimension of the mouse organ; $C_{BID,blood}$ is the estimated highest achievable concentration of BID-produced nanophosphor solution in the blood based on previous reports (52, 53); v/v_{blood} is the volume percentage of blood in specific organs; μ_{eff} is the effective attenuation coefficient of specific organ tissue at the peak emission wavelength of the nanophosphor based on previous reports (54). The results for the blue-emitting nanophosphors are summarized below in table S1:

Table S1. Estimated power densities of systemically delivered nanophosphors in different organs.

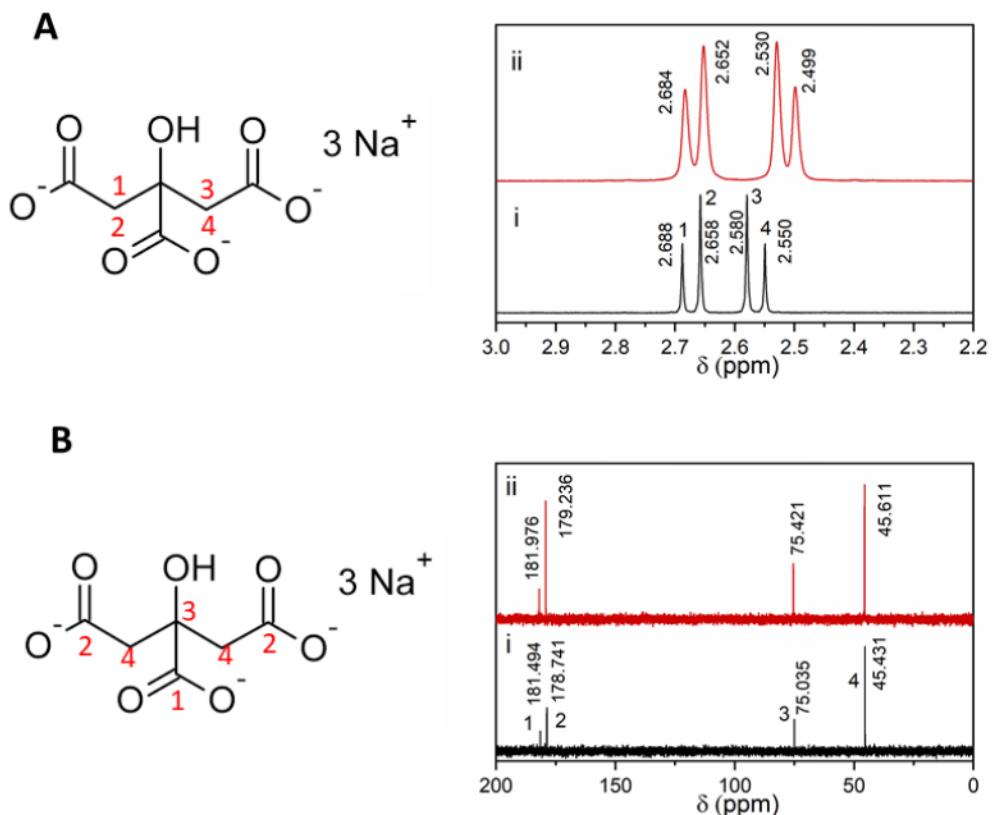
	Brain ($\mu\text{W}/\text{cm}^2$)	Liver ($\mu\text{W}/\text{cm}^2$)
SMSO	0.627	1.01
SAO	21.8	36.2

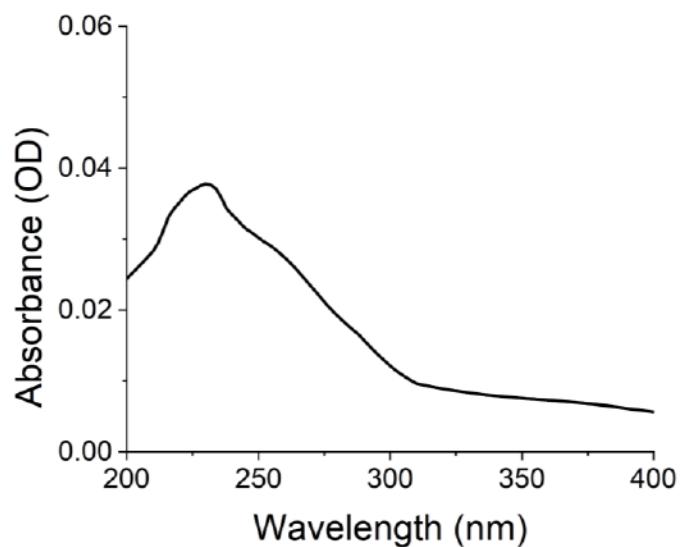

Furthermore, we have also compared the estimated highest achievable power density above with the power needed for various biological applications.

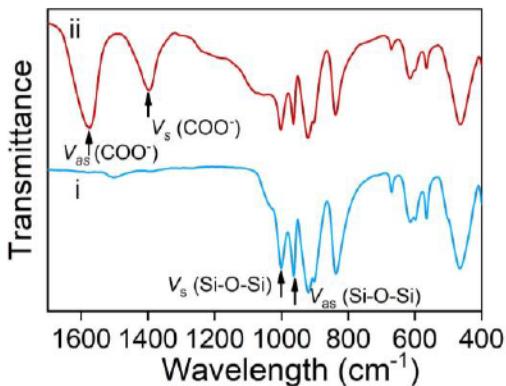
First, for optogenetics neuromodulation, it has been previously reported that channelrhodopsins with slow dynamics (such as SSFO, stable step-function opsin) can act as photon integrators, and their photocurrent is determined by the total photon exposure even under extremely low light conditions (55, 56). Specifically, it has been experimentally verified that the apparent time constants for activation of SSFO under ~ 1.6 and $2.9 \mu\text{W}/\text{cm}^2$ 470-nm light are ~ 59 and 38 s, respectively (55). As calculated above, BID-produced SAO nanophosphor colloid can provide enough photons to activate SSFO across the entire brain within 5 s upon intravenous delivery. Furthermore, the recently developed ultra-sensitive step-function opsin (SOUL) requires even less photon exposure at 470-nm than SSFO (57), thus enabling SOUL to be activated with a lower SAO dosage or a shorter time interval after delivery.

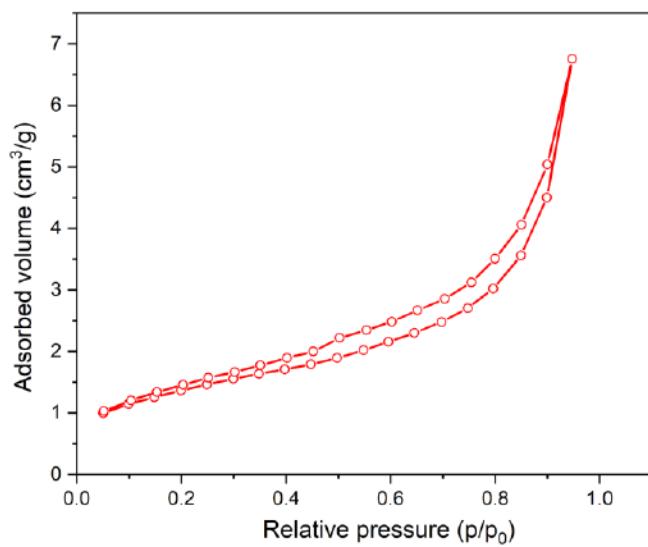

Second, for light-mediated gene-editing, the single-chain psCas9 based on pdDronpa can be activated with $10 \mu\text{W}/\text{cm}^2$ 500-nm light (13). The calculations above suggest that the intravenous delivery of SAO can provide enough power density in both the brain and the liver for activating psCas9.

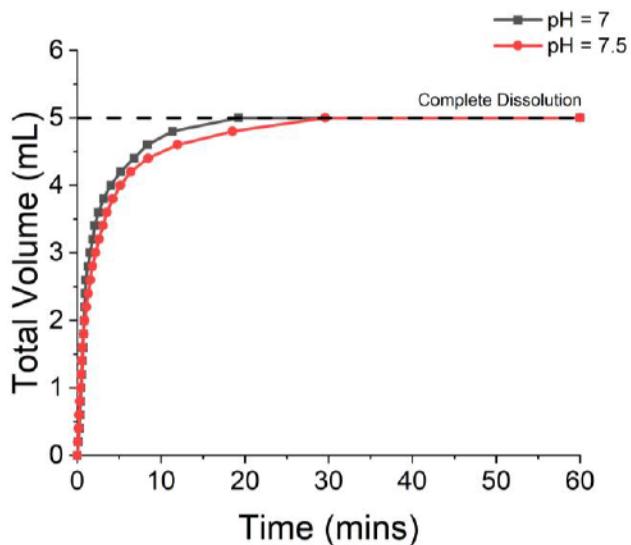
Third, for photodynamic therapy, previous *in vitro* studies have demonstrated that the low fluence threshold for a commercially available photosensitizer TPPS_{2a} under $\sim 0.28 \mu\text{W}/\text{cm}^2$ blue light illumination was $12 \text{ mJ}/\text{cm}^2$ (58). Such power density and light fluence should be achievable within ~ 5.5 min after intravenous delivery of SAO nanophosphors, while the *in vivo* afterglow intensity can be maintained at a relatively high level by applying constant remote recharging and leveraging the intrinsic circulatory system, as demonstrated in fig. S16. Furthermore, another recent report utilized bioluminescence to locally activate photosensitizer for photodynamic therapy *in vivo*, and the effective bioluminescence radiation was estimated to be as low as $15.6 \text{ mJ}/\text{cm}^2$ ($26 \mu\text{W}/\text{cm}^2$ for 10 min) at 500 nm (59). This light fluence requirement can also be achieved by using SAO nanophosphors as an internal light source after intravenous injection with constant remote recharging.

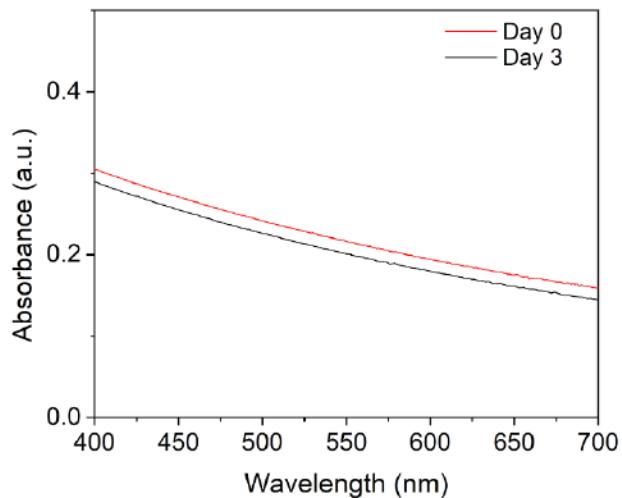

In summary, our calculations above suggest the feasibility of applying the blue-emitting nanophosphor colloids reported in this work as circulation-delivered internal light sources for various advanced biological applications, such as optogenetics neuromodulation based on SSFO or SOUL, light-mediated genome modification based on psCas9, and photodynamic therapy. Compared with conventional methods of light delivery, the systemically delivered internal light source is advantageous as it can reach deep tissue through blood circulation, illuminate the whole organ of interest uniformly, and does not require invasive implants such as an LED or an optical fiber. Nonetheless, the advanced biological applications proposed above remain to be explored in future studies.

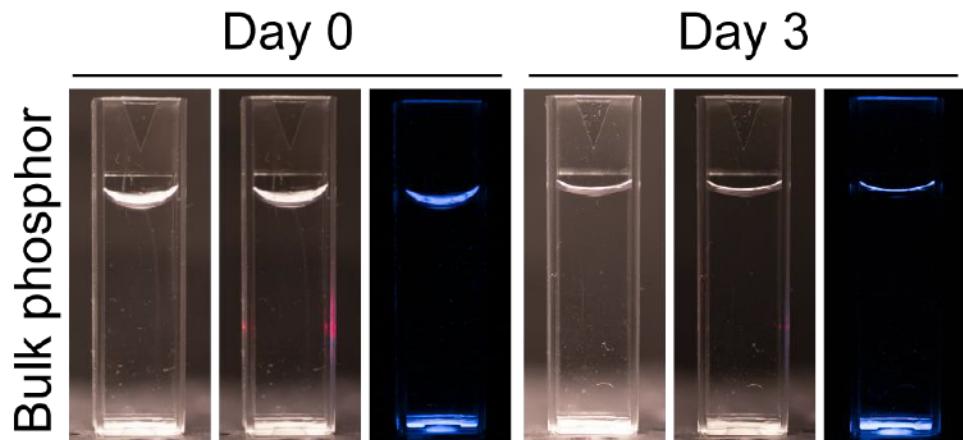

Fig. S1. Hypothesized reaction during the BID process. HCit^{2-} represents the doubly-deprotonated citrate anion, and Cit^{3-} represents the triply-deprotonated citrate anion. Sr^{2+} and Mg^{2+} cations form coordination complexes with the citrate anion with 1:1 stoichiometry (60). Triply-deprotonated citrate anions are the dominant form in these complexes in our pH range of interest (e.g., 6~10) (61). In addition, it has been reported that silica forms complexes with citrate with unknown stoichiometry (thus the subscript of n) to dissolve in an aqueous solution (62).

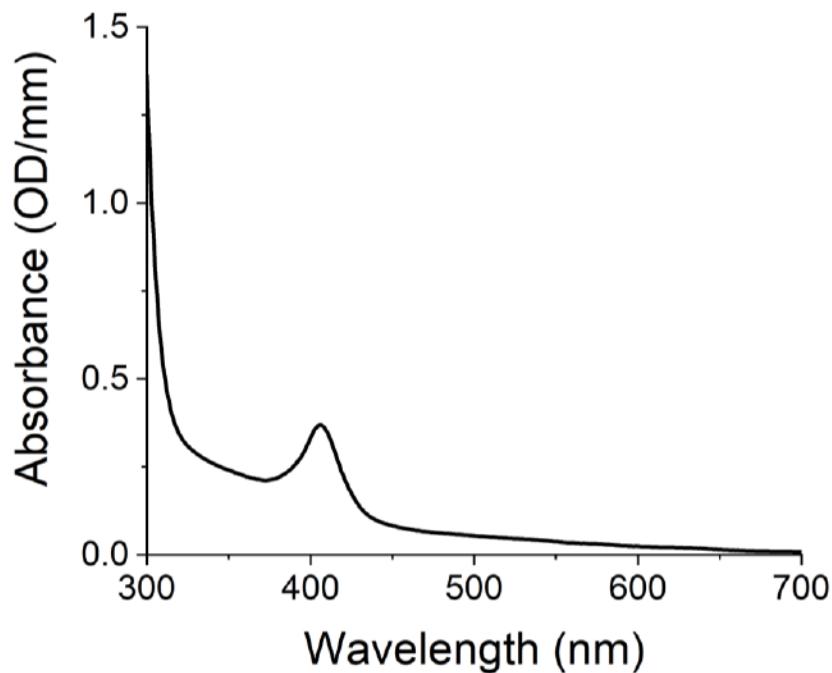

Fig. S2. FTIR spectra of trisodium citrate and the BID solution. Full-range (A) and close-up view (B) of FTIR spectra of trisodium citrate (i) and the citrate etchant after dissolving SMSO bulk particles (ii), revealing the chemical identity of coordinated metal cations in the solution after dissolution. The significant downshift of the antisymmetric stretching band of $-\text{COO}^-$ [i.e., $\nu_{\text{as}}(-\text{COO}^-)$] from 1578 cm^{-1} to 1563 cm^{-1} indicates the formation of the metal-carboxylate bond (63, 64). Therefore, coordinated metal cations such as $-\text{COOMg}$, $-\text{COOSr}$, $-\text{COOEu}$, and $-\text{COODy}$ should exist in the solution after dissolution. In addition, the upshift of the symmetric stretching band of $-\text{COO}^-$ [i.e., $\nu_s(-\text{COO}^-)$] from 1385 cm^{-1} to 1388 cm^{-1} is attributed to the formation of the metal-carboxylate bond. Based on this data, we postulate that metal-citrate complex ions are the most probable form of dissolved metals after dissolution of bulk SMSO.

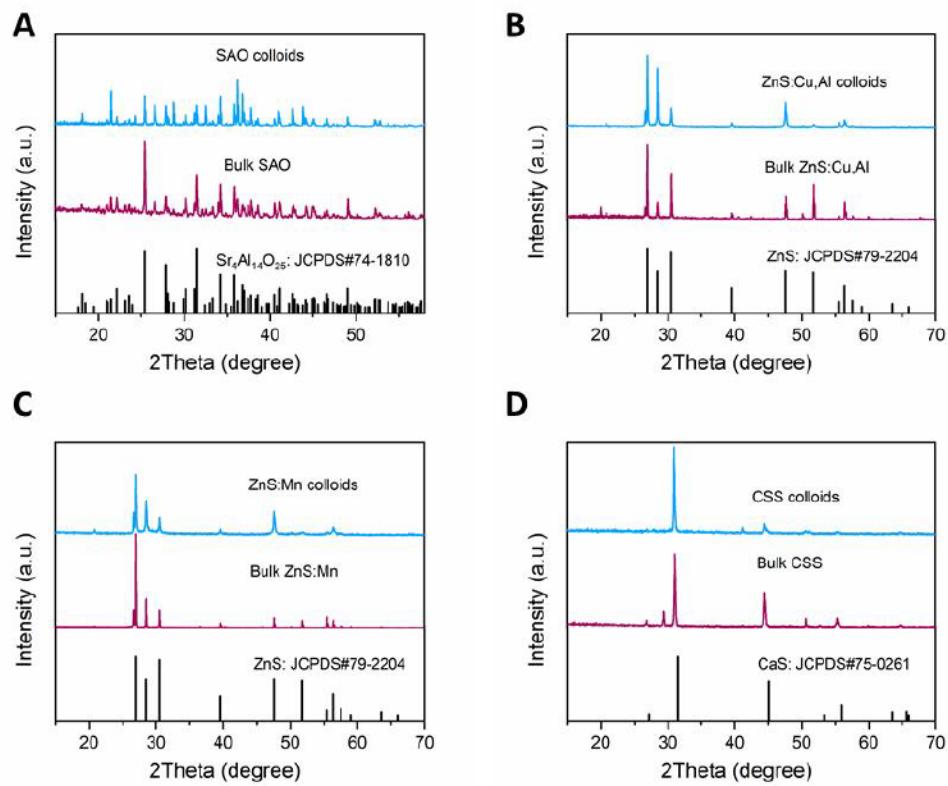

Fig. S3. NMR spectra of trisodium citrate and the BID solution. ^1H (A) and ^{13}C (B) NMR spectra of trisodium citrate (i) and the citrate etchant after dissolving SMSO bulk particles (ii), confirming the formation of metal-carboxyl bonds in the solution. Previous work reported a downshift of α -H atoms with peak broadening and an upshift of all C atoms when citrate forms coordination complexes with metal cations (65, 66).

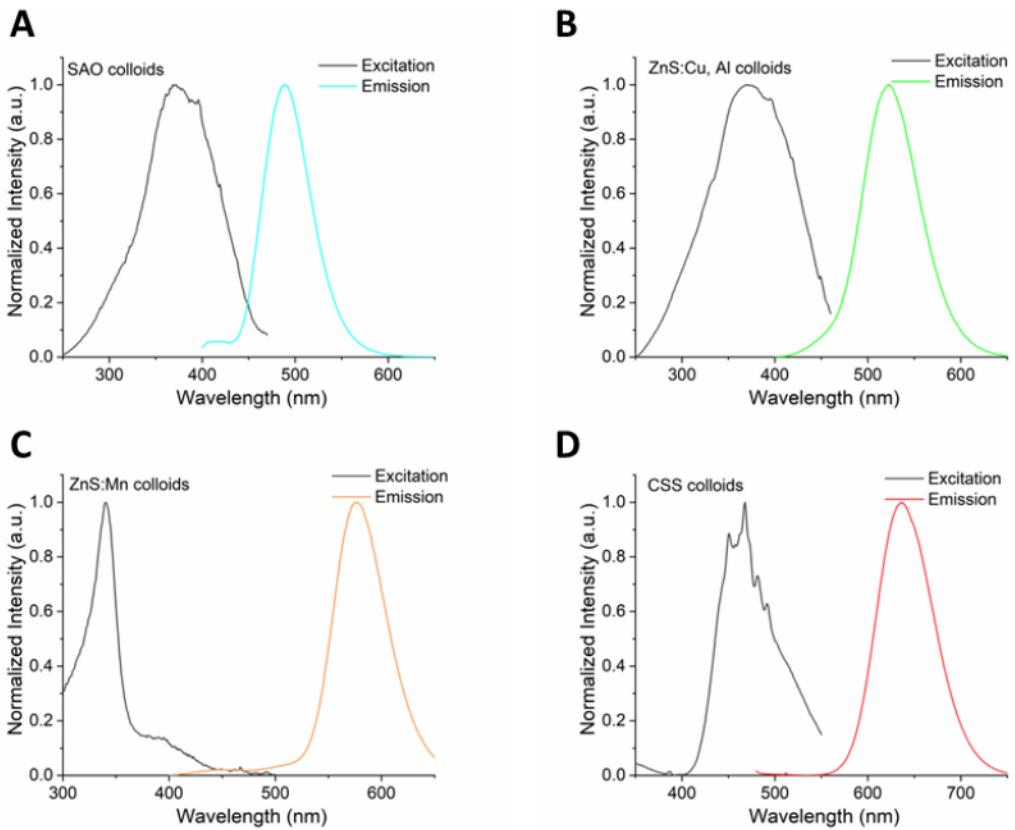

Fig. S4. UV absorption spectrum of the BID solution. UV absorption spectrum of the citrate etchant after dissolving SMSO bulk phosphor reveals the formation of silicate-citrate complexes. Such complexes were implied by a previous work studying the dissolution of silica by citrate (67), while an absorption peak near 240 nm suggests the formation of silicate-citrate complexes due to charge transfer (62).

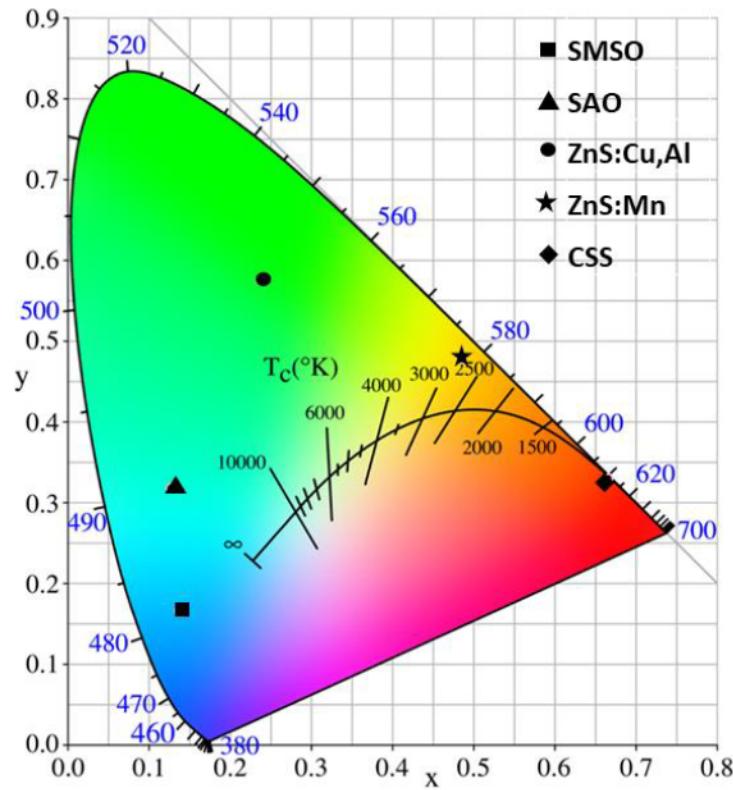

Fig. S5. FTIR spectra of SMSO bulk phosphor (i) and colloidal nanophosphor (ii). Peaks at 964 cm^{-1} and 1000 cm^{-1} correspond to Si-O-Si stretching modes (68, 69), which are missing from the IR spectrum of the etched solution (fig. S2). This result suggests the absence of Si-O-Si bonds in the soluble products after dissolution, thus confirming a soluble form of silica-citrate complex in fig. S1. Additionally, the presence of symmetric and antisymmetric stretching bands of $-\text{COO}^-$ [i.e., $\nu_s(-\text{COO}^-)$ and $\nu_{as}(-\text{COO}^-)$] as labeled in ii suggests the adsorption of citrate anions on the surface of SMSO colloid to improve its colloidal stability when dispersed in water.

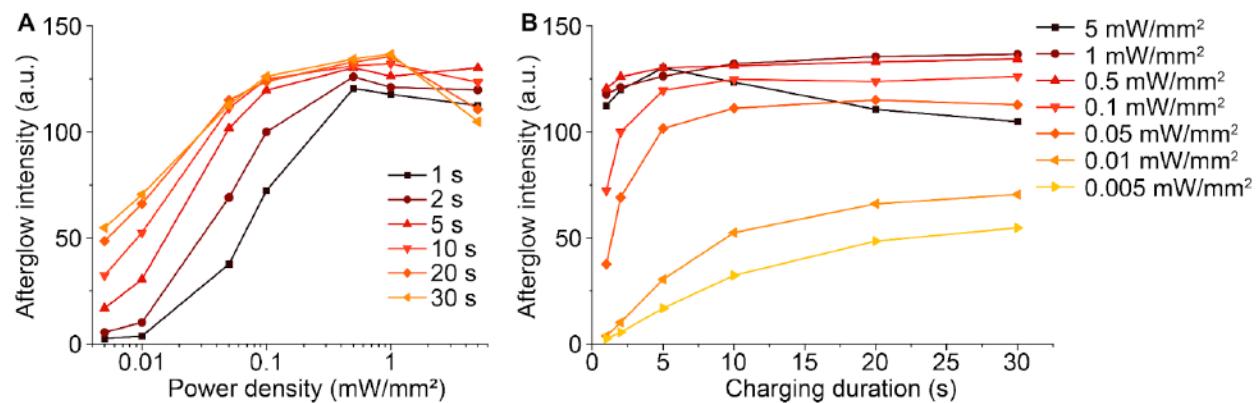

Fig. S6. BET isotherm of SMSO bulk particles prior to the BID process. We obtained a specific surface area of $43,850 \text{ cm}^2/\text{g}$ from this isotherm, thus yielding a total surface area of $4,385 \text{ cm}^2$ for kinetically preserved dissolution in the CC experiments.

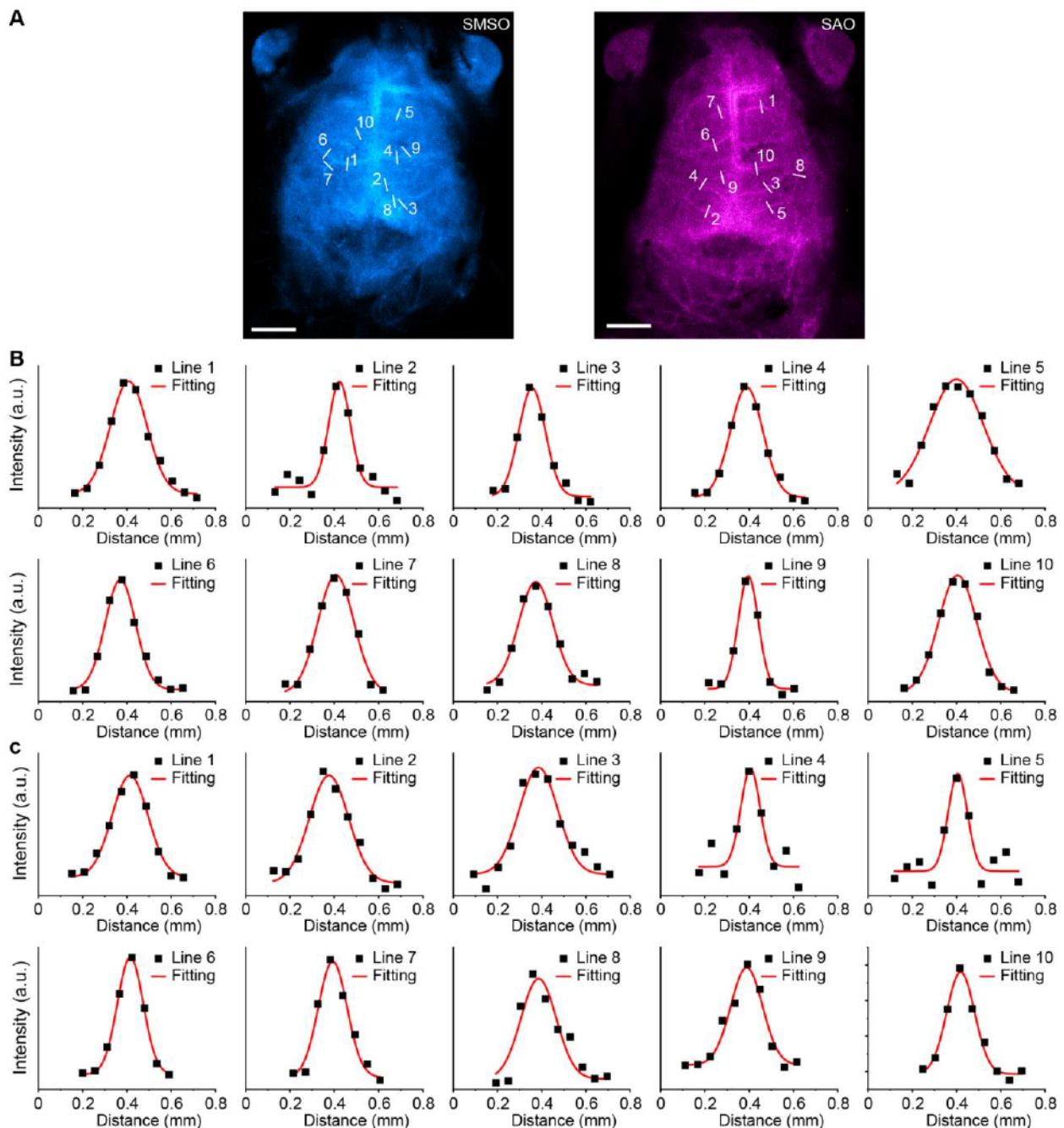

Fig. S7. Titration curves at lower pH. Plots of titrant volume as a function of time for complete dissolution of SMSO at pH 7 and pH 7.5 with the CC technique (see Materials and Methods).

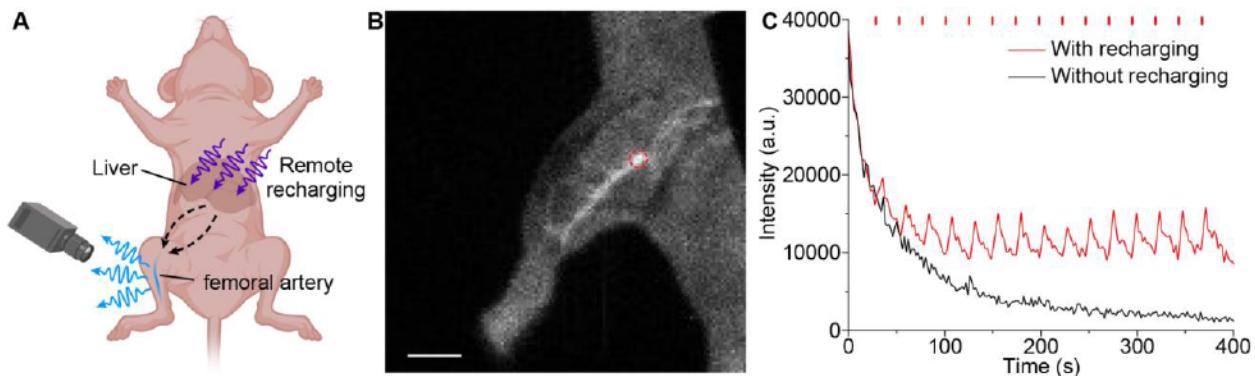

Fig. S8. UV absorption spectra of SMSO colloidal solutions. UV spectra of two solutions corresponding to Fig. 1J, bottom row, reveal the resistance of critically sized nanoparticles to further dissolution. Note that the 400-nm absorbance of SMSO colloidal solution in water is proportional to its molar concentration by an extinction coefficient of 2.7×10^8 L/mol/cm.

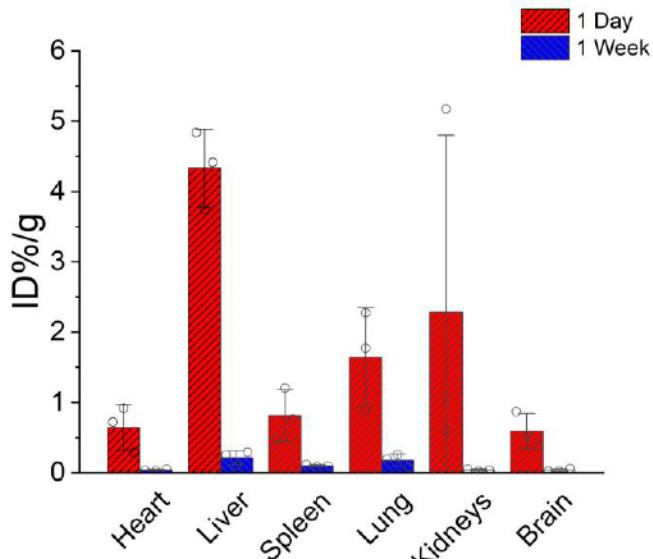

Fig. S9. Images of bulk SMSO particles in pure water. Bright-field image (left), Tyndall effect (middle), and afterglow image (right) of bulk SMSO particles in pure water without citrate (pH = 7) before and after mixing for 3 days under the same experimental conditions as the BID process with citrate, showing negligible dissolution of SMSO in pure water. This result ruled out the possibility of SMSO dissolving in pure water, which is consistent with the limited aqueous solubility of alkaline earth silicates. The lack of dissolution in pure water strongly contrasts with complete dissolution in citrate buffer at the same pH (fig. S7). Taken together, these results confirm the hypothesis that citrate ions provide the main drive for a negative Δg , while the pH modulates undersaturation due to the consumption of protons in the reaction (fig. S1).

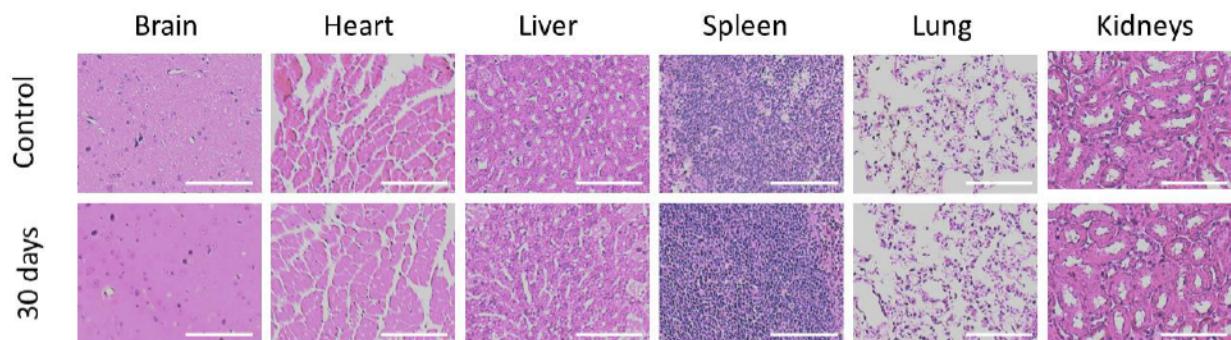

Fig. S10. The absorption spectrum of FBS in the 300-700 nm range with a 1 mm optical path. Note the absorbance of 0.06 mm^{-1} at 470 nm, the emission wavelength of the SMSO colloid. This absorbance value corresponds to the attenuation of 56% in a microcentrifuge tube, agreeing with $\sim 50\%$ reduction in the afterglow of SMSO colloid in FBS observed in Fig. 2F.

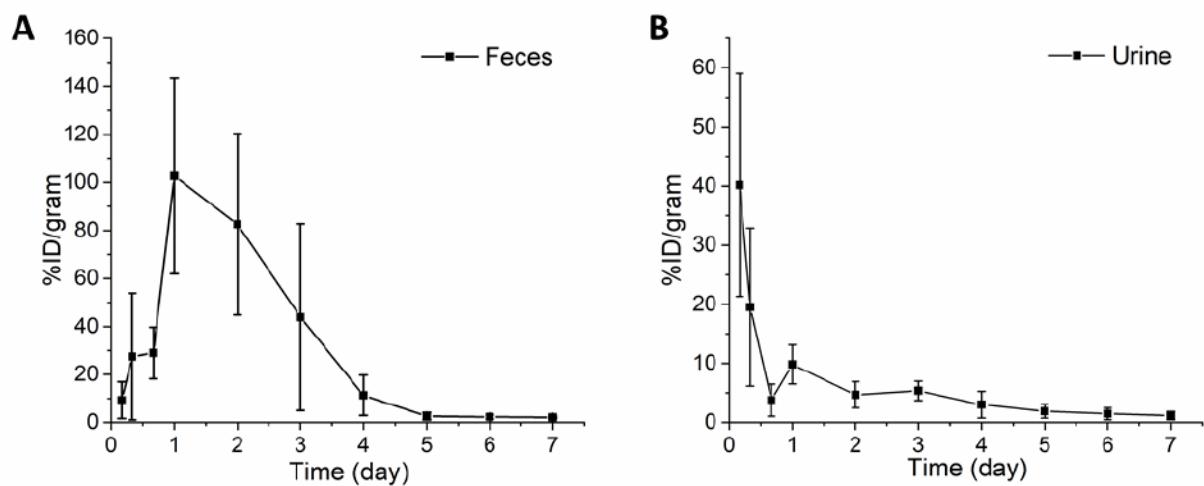

Fig. S11. XRD spectra of different phosphors. XRD spectra of bulk phosphors and their corresponding colloids for different materials: (A) SAO; (B) ZnS:Cu,Al; (C) ZnS:Mn; and (D) CSS.

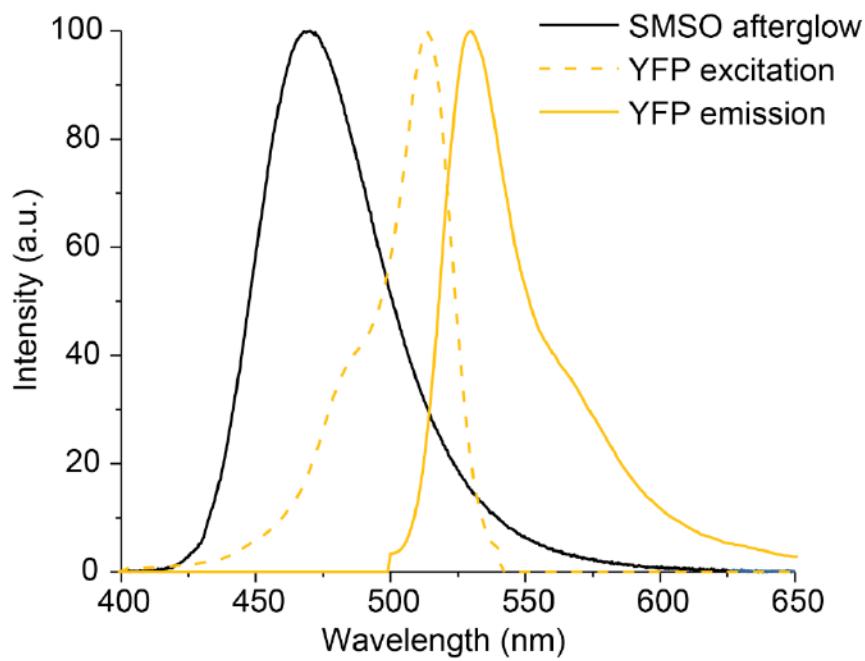

Fig. S12. Photoluminescence characterization of different colloidal nanophosphors. The excitation and emission spectra of different nanophosphor colloids produced by the BID approach: (A) SAO; (B) ZnS:Cu,Al; (C) ZnS:Mn; and (D) CSS.

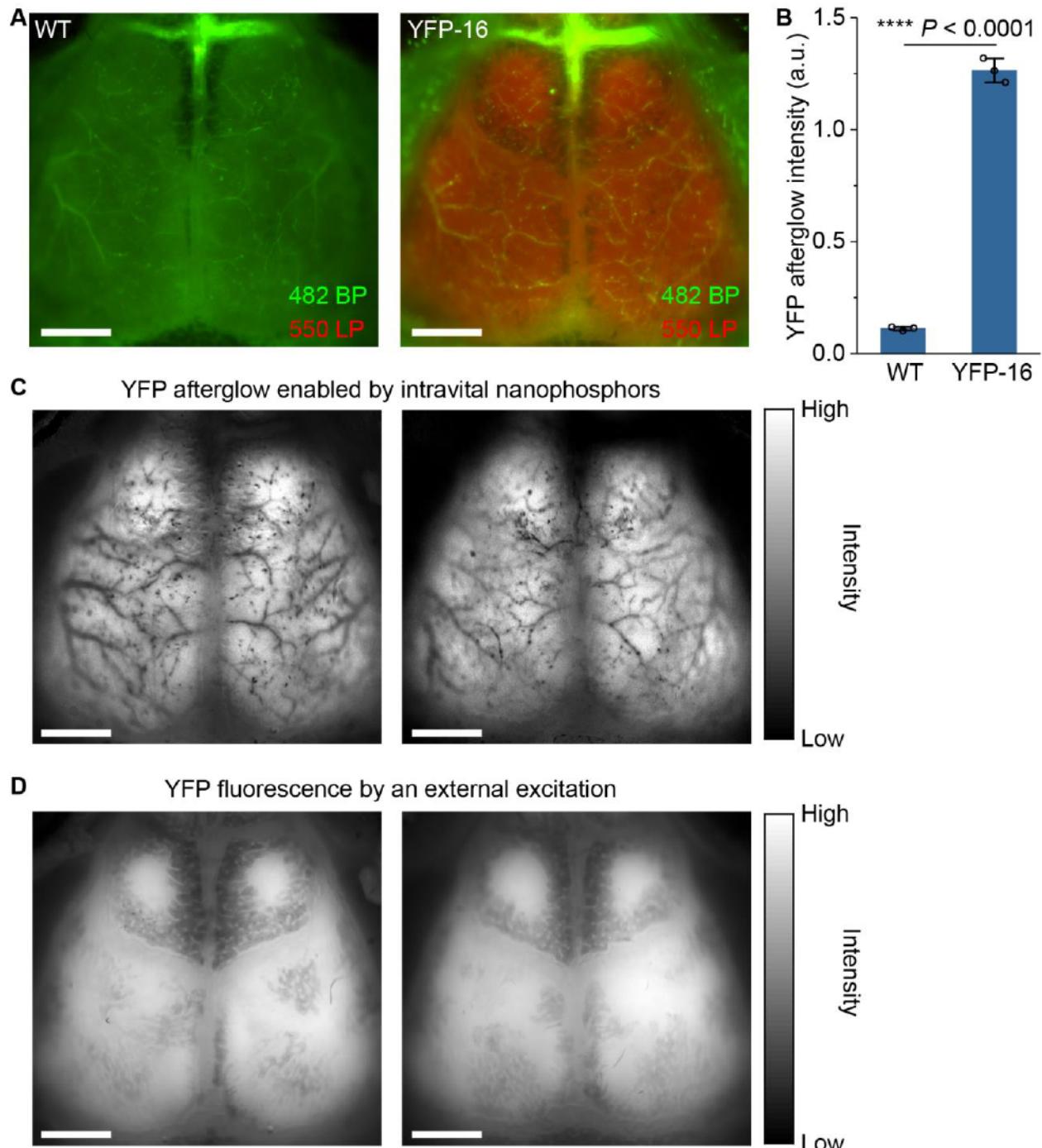

Fig. S13. CIE chromaticity diagram of five BID-produced nanophosphor colloids.

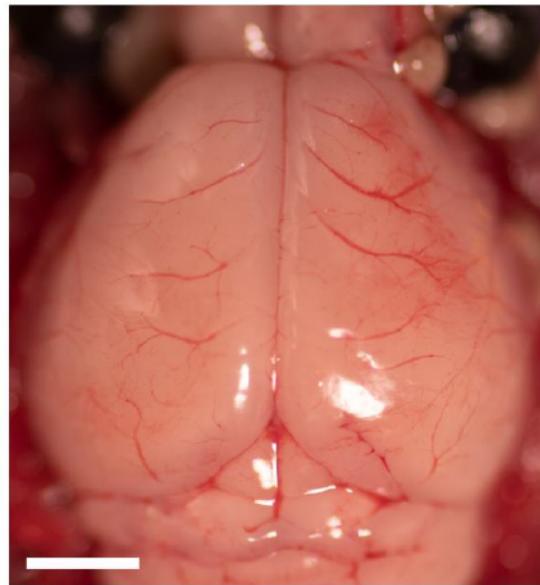

Fig. S14. Optimization of the afterglow intensity of the SMSO colloid by varying the power density and duration of recharging. The afterglow intensity is plotted against the recharging power density and duration in (A) and (B), respectively.

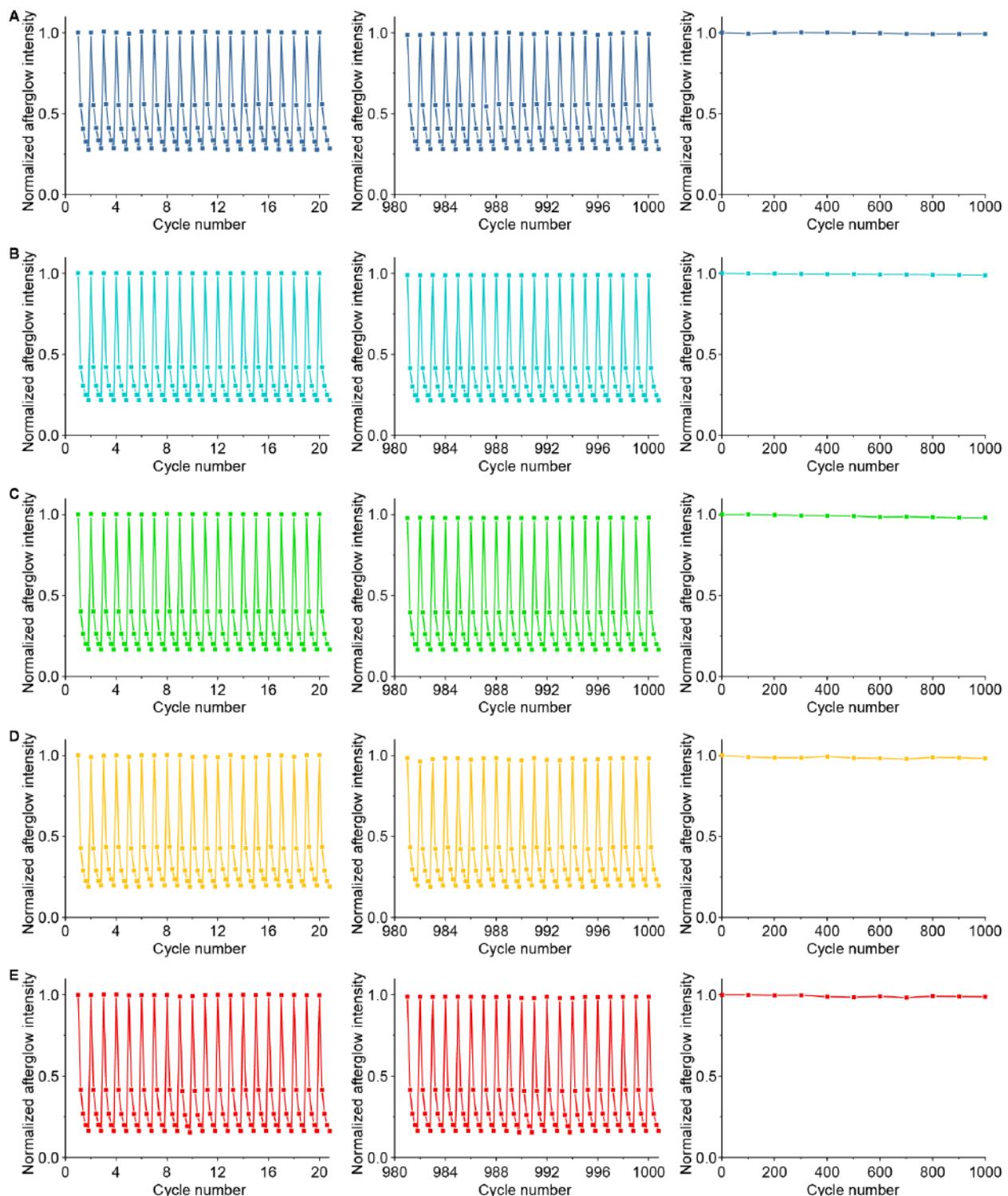

Fig. S15. Vessel width analysis of transcranial afterglow brain imaging. (A) Transcranial afterglow images of brain vessels after intravenous injection of SMSO (left) and SAO (right) colloidal solutions. Vessels used for width analysis are highlighted with short white lines. Scale bars represent 2.5 mm. (B,C) Raw and fitted line profiles for the SMSO (B) and SAO (C) afterglow images in (A).


Fig. S16. Remote recharging of circulating nanophosphor colloids *in vivo*. (A) Schematic showing remote recharging of circulating nanophosphor colloids in hepatic vessels and afterglow imaging of the femoral artery in the mouse hindlimb. The intrinsic circulatory system of the mouse brings the charged nanophosphors in the hepatic vessels to the femoral artery. (B) An afterglow image of the femoral artery. The dashed red circle highlights the region for analyzing the afterglow intensity dynamics. The scale bar represents 5 mm. (C) Afterglow intensity dynamics of the femoral artery with (red) or without (black) remote recharging in hepatic vessels. The red ticks above the plot represent periodic remote recharging events.


Fig. S17. Biodistribution of systemically delivered SMSO colloids (493 nmol/L) in major organs on one day (red bars) and one week (blue bars) post-injection. All data are presented as mean values +/- SD, with individual data shown in open circles. $n = 3$ mice for both time points.


Fig. S18. Histological analysis of mouse organs. H&E stained images of major mouse organs 30 days after intravenous injection of an SMSO colloidal solution (493 nmol/L, bottom row), in comparison with those from the control group (top row). No noticeable tissue damage or pathological lesion was found in organs of colloid-injected mice. Scale bars represent 100 μ m.


Fig. S19. Clearance study of SMSO nanophosphor colloids *in vivo*. The excretion profile of intravenously injected SMSO colloids in the feces (A) and urine (B) All data are presented as mean values +/- SD. ($n = 3$ mice).


Fig. S20. The afterglow spectrum of SMSO colloid overlaid with the excitation and emission spectra of the YFP.

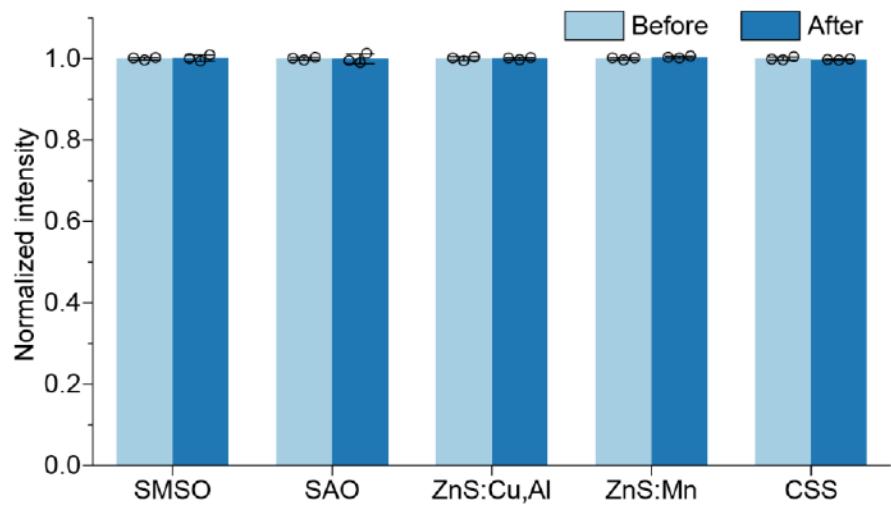

Fig. S21. YFP imaging with intravital and external excitation sources. (A) Overlay of raw afterglow images collected with 482BP (green, collecting SMSO afterglow only) or 550LP (red, collecting YFP afterglow only) filters in the brains of WT (left) and YFP-16 (right) mice in Fig. 5D. (B) Statistical analysis of YFP afterglow intensity of WT and YFP-16 mice in Fig. 5D. All data are presented as mean values \pm SD. $n = 3$ for all groups. (One-way ANOVA, $F(1,4) = 1344.12$, $P < 0.0001$). (**** $P < 0.0001$) (C,D) Additional YFP afterglow images via an intravital light source (C) and YFP fluorescence images via an external excitation (D) in the brains of two additional YFP-16 mice. All scale bars represent 2 mm.

Fig. S22. Photo of the mouse brain shown in Fig. 5B after removing the skull. The scale bar represents 2 mm.

Fig. S23. Photostability of nanophosphor colloids. The afterglow intensity of SMSO (A), SAO (B), ZnS:Cu,Al (C), ZnS:Mn (D), and CSS (E) in the first 20 (left), last 20 (middle), and every 100 (right) recharging cycles.

Fig. S24. Normalized intensity of SMSO, SAO, ZnS:Cu,Al, ZnS:Mn, and CSS before and after 24-hr continuous bleaching by 1 mW/mm² 365-nm light. The data are represented as mean \pm SD. $n = 3$ for all groups.

Table S2. Comparison of BID-produced nanophosphors with previous reports.

	Materials	Emission Wavelength	Half-life Time	<i>In vivo</i> afterglow intensity of subcutaneous injection	<i>Ex vivo</i> afterglow intensity	Sizes	References
Inorganic Persistent Phosphors							
1	Sr ₂ MgSi ₂ O ₇ :Eu,Dy	470 nm	60 s	1.9×10^9 p/s/cm ² /sr/(mg/mL)	2.0×10^{10} p/s/cm ² /sr/(mg/mL)	43±12 nm	This study
	Sr ₄ Al ₁₄ O ₂₅ :Eu,Dy	490 nm	77 s	3.8×10^{10} p/s/cm ² /sr/(mg/mL)	6.2×10^{11} p/s/cm ² /sr/(mg/mL)	69±19 nm	
	ZnS:Cu,Al	534 nm	52 s	7.5×10^8 p/s/cm ² /sr/(mg/mL)	3.6×10^9 p/s/cm ² /sr/(mg/mL)	56±9 nm	
	ZnS:Mn	578 nm	56 s	6.8×10^8 p/s/cm ² /sr/(mg/mL)	3.2×10^9 p/s/cm ² /sr/(mg/mL)	88±22 nm	
	Ca _{0.85} Sr _{0.15} S:Eu,Tm	650 nm	52 s	3.0×10^8 p/s/cm ² /sr/(mg/mL)	1.4×10^9 p/s/cm ² /sr/(mg/mL)	86±26 nm	
2	SiO ₂ /CdSiO ₃ : In ³⁺	438 nm	~25 s	$\sim 1 \times 10^7$ (p/s/cm ² /sr)/(mg/mL)	Absolute intensity not reported for <i>ex vivo</i> imaging	~70 nm	(70)
	SiO ₂ /CdSiO ₃ : In ³⁺ ,Mn ²⁺	580 nm	~35 s	$\sim 5 \times 10^7$ (p/s/cm ² /sr)/(mg/mL)			
	SiO ₂ /CdSiO ₃ : In ³⁺ ,Tb ³⁺	549 nm	~35 s	$\sim 4 \times 10^7$ (p/s/cm ² /sr)/(mg/mL)			

	$\text{SiO}_2/\text{CdSiO}_3:$ $\text{In}^{3+},\text{Dy}^{3+}$	578 nm	~ 45 s	Subcutaneous injection not performed			
3	$\text{ZnGa}_2\text{O}_4:\text{Cr}_{0.004}$	696 nm	~ 60 s	$\sim 5 \times 10^6$ (p/s/cm ² /sr)/(mg/mL)	$\sim 4 \times 10^7$ (p/s/cm ² /sr)/(mg/mL)	~ 9 nm	(17)
4	$\text{Ca}_{0.2}\text{Zn}_{0.9}\text{Mg}_{0.9}\text{Si}_2\text{O}_6:$ $\text{Eu}^{2+}, \text{Dy}^{3+}, \text{Mn}^{2+}$	690 nm	~ 60 s	$\sim 5 \times 10^5$ (p/s/cm ² /sr)/(mg/mL)	<i>Ex vivo</i> imaging not performed	50-100 nm	(18)
5	$\text{ZnGa}_2\text{O}_4:\text{Cr}^{3+}$ -BSA-TAMRA	702 nm	~ 2 s	$\sim 6 \times 10^6$ (p/s/cm ² /sr)/(mg/mL)	<i>Ex vivo</i> imaging not performed	59 nm	(10)
6	$\text{ZnGa}_{1.995}\text{Cr}_{0.005}\text{O}_4$	695 nm	~ 200 s (excited with 5700 lumen LED array); ~ 1000 s (excited with 6W UV lamp)	Subcutaneous injection not performed	<i>Ex vivo</i> imaging not performed	80 nm	(8)
7	Si-Pc functionalized $\text{Zn}_{1.25}\text{Ga}_{1.5}\text{Ge}_{0.25}\text{O}_4:0.5\%\text{Cr}^{3+}, 2.5\%\text{Yb}^{3+}, 0.25\%\text{Er}^{3+}$ Core@hSiO ₂ @CCM	695 nm	~ 15 s	Subcutaneous injection not performed	Absolute intensity not reported for <i>ex vivo</i> imaging	176 nm	(71)

8	ZnGa ₂ O ₄ :C Ir ³⁺ /Sn ⁴⁺ @ MSNs- PEG	695 nm	~15 s	Absolute intensity not reported for subcutaneous afterglow imaging.	Absolute intensity not reported for <i>ex vivo</i> imaging.	103 nm	(72)
9	HA-Gd ₂ O ₃ - ZnGa ₂ O ₄ :C Ir ³⁺	695 nm	~10 s	Subcutaneous injection not performed.	Absolute intensity not reported for <i>ex vivo</i> imaging.	142 nm	(73)
10	c(RGDyK)-PEG- Zn _{2.94} Ga _{1.96} Ge ₂ O ₁₀ :Cr ³⁺ , Pr ³⁺	700 nm	~seconds	Absolute intensity not reported for subcutaneous afterglow imaging.	Absolute intensity not reported for <i>ex vivo</i> imaging	132 nm	(74)
11	Raspberry-like mesoporous Zn _{1.07} Ga _{2.34} Si _{0.98} O _{6.56} : Cr _{0.01}	698 nm	~100 s	Subcutaneous injection not performed	Absolute intensity not reported for <i>ex vivo</i> imaging	~110 nm	(75)

12	Folate acid-functionalized Zn _{1.25} Ga _{1.5} Ge _{0.25} O ₄ :0.5%Cr ³⁺ ,2.5%Yb ³⁺ , 0.25%Er ³⁺	691 nm	~350 s	Absolute intensity not reported for subcutaneous afterglow imaging	<i>Ex vivo</i> imaging not performed	44 nm	(76)
13	mSiO ₂ @Gd ₃ Ga ₅ O ₁₂ :Cr ³⁺ , Nd ³⁺	745 nm	~30 s	Absolute intensity not reported for subcutaneous afterglow imaging	Absolute intensity not reported for <i>ex vivo</i> imaging	50 nm	(77)
14	Zn _{1+x} Ga _{2-2x} Ge _x O ₄ :Cr ³⁺ @zeolitic imidazolate framework-8	699 nm	~40 s	Subcutaneous injection not performed	Absolute intensity not reported for <i>ex vivo</i> imaging	100-200 nm	(78)
15	LaAlO ₃ :Cr ³⁺ ,Sm ³⁺	735 nm and 750 nm	~60 s	Subcutaneous injection not performed	<i>Ex vivo</i> intensity measurement not performed on the suspension of nanoparticles	<100 nm	(79)
16	ZnGa ₂ O ₄ Cr _{0.004}	696 nm	~90 s	Subcutaneous injection not performed	Absolute intensity not reported for <i>ex vivo</i>	10 nm	(80)

					imaging		
17	CaMgSi ₂ O ₆ :Eu ²⁺ ,Mn ²⁺ , Pr ³⁺	685 nm	~270 s	Subcutaneo us injection not performed	<i>Ex vivo</i> imaging not performed		(81)
18	Core–shell-structured Ln-doped NaY(Gd)F ₄ (Ln = Nd ³⁺ , Ho ³⁺ , Tm ³⁺ , Er ³⁺)	1064 nm (Nd ³⁺)	~250 s	Subcutaneo us injection not performed	Absolute intensity not reported for <i>ex vivo</i> imaging	42 nm	(16)
		1180 nm (Ho ³⁺)	~200 s				
		1475 nm (Tm ³⁺)	~100 s				
		1525 nm (Er ³⁺)	~100 s				
19	ZnGa ₂ O ₄ :Cr	700 nm	~180 s	Absolute intensity not reported for subcutaneo us afterglow imaging	Absolute intensity not reported for <i>ex vivo</i> imaging	141 nm	(82)
20	(Zn ₂ SiO ₄ :Mn):Y ³⁺ , Yb ³⁺ , Tm ³⁺	525 nm	~420 s	Subcutaneo us injection not performed	Concentrati on of nanoparticl es not reported for <i>ex vivo</i> imaging	120-160 nm	(83)

21	CaSnO ₃ :Bi ₂₊	810 nm	~970 s	Subcutaneous injection not performed	Absolute intensity not reported for <i>ex vivo</i> imaging	50-100 nm	(84)
22	LiGa ₅ O ₈ :Cr ₃₊	716 nm	~2900 s	$\sim 2 \times 10^6$ (p/s/cm ² /sr) (mg/mL)	$\sim 2 \times 10^6$ (p/s/cm ² /sr) (mg/mL)	50-150 nm	(19)
23	Zn _{1.1} Ga _{1.8} Ge _{0.1} O ₄ :0.5% Cr core and β -NaYbF ₄ :Tm@NaYF ₄ shell nanocluster	700 nm	~5 s	Subcutaneous injection not performed	Absolute intensity not reported for <i>ex vivo</i> imaging	~100 nm	(39)

Organic Persistent Phosphors

24	SPPVN	780 nm	288 s	$\sim 1.0 \times 10^7$ (p/s/cm ² /sr) (mg/mL)	$\sim 1.2 \times 10^8$ (p/s/cm ² /sr) (mg/mL)	24 nm	(85)
25	MEHPPV-based SPN-NCBS	780 nm	396 s	$\sim 5.7 \times 10^8$ (p/s/cm ² /sr) (mg/mL)	$\sim 1.8 \times 10^9$ (p/s/cm ² /sr) (mg/mL)	40 nm	(9)
26	DPhCzT-based OSN-T / OSN-B	530 nm	<1 s	$\sim 1.3 \times 10^7$ (p/s/cm ² /sr) /mM	$\sim 1.3 \times 10^7$ (p/s/cm ² /sr) /mM	20-60 nm	(86)
27	PFVA-NCBS-DO	780 nm	~180 s	$\sim 1.8 \times 10^8$ (p/s/cm ² /sr) (mg/mL)	$\sim 1.1 \times 10^{10}$ (p/s/cm ² /sr) (mg/mL)	~125 nm	(11)
28	Sodium alginate gel loaded with PdPc(OBu)	613 nm	~1 s	$\sim 2.2 \times 10^2$ (p/s/cm ² /sr) (mg/mL)	$\sim 2.2 \times 10^2$ (p/s/cm ² /sr) (mg/mL)	~100 nm	(87)

	8-4-(5,6-dihydro-2-phenyl-1,4-oxathiin-3-yl)-N,N-dimethylbenzenamine-Eu(TPPO) ₂ (β-NTA)-based nanoparticles						
29	Si-Pc-CUEM afterglow nanoparticles	613 nm	~1.5 s	Absolute intensity not reported for subcutaneous afterglow imaging	Absolute intensity not reported for <i>ex vivo</i> imaging	~225 nm	(14)
30	UCANPs@RAW	615 nm	~17 s	Absolute intensity not reported for subcutaneous afterglow imaging	Absolute intensity not reported for <i>ex vivo</i> imaging	~320 nm	(88)
31	AGL AIE dots	650 nm	~2880 s	Subcutaneous injection not performed	~1.5 x 10 ⁸ (p/s/cm ² /sr) /(mg/mL)	~95 nm	(89)

Abbreviations: PEG: polyethylene glycol; BSA: bovine serum albumin; TAMRA: 5-carboxy-tetramethylrhodamine; Si-Pc: silicon phthalocyanine; hSiO₂: hollow silica; CCM: cancer cell membrane; MSNs: mesoporous silica nanoparticles; HA: hyaluronic acid; c(RGDyK): cyclic arginine-glycine-aspartic acid-tyrosine-lysine pentapeptide; mSiO₂: mesoporous silica; PPV: amphiphilic poly(*p*-phenylenevinylene); SPPVN: self-assembled amphiphilic poly(*p*-phenylenevinylene) nanoagents; MEHPPV: poly[2-methoxy-5-(2-ethylhexyloxy)-1,4-phenylene] end-capped with dimethylphenyl ; SPN: semiconducting polymer nanoparticles; NCBS: silicon 2,3-naphthalocyanine bis(trihexylsilyl oxide); DPhCzT: 4,6-Diphenyl-2-carbazolyl-1,3,5-triazine; OSN-T/B: organic semiconducting nanoparticles synthesized via Top-down/Bottom-up approach;

PFVA: poly[(9,9'-dioctyl-2,7-divinylenefluorenylene)-alt-(9,10-anthracene)]; DO: (N,N-dimethyl-4-(3-phenyl-5,6-dihydro-1,4-dioxin-2-yl)aniline); PdPc(OBu)₈: 1,4,8,11,15,18,22,25-octabutoxyphthalocyaninato-palladium(II); TPPO: Triphenylphosphine oxide; NTA: nitrilotriacetic acid; UCANPs@RAW: PdPc(OBu)₈, 4-(5,6-dihydro-2-phenyl-1,4-oxathiin-3-yl)-N,N-dimethylbenzenamine, and Eu(TTA)₃Phen-based macrophage-camouflaged afterglow nanocomplex; AGL: afterglow luminescent; AIE: aggregation-induced emission.