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ABSTRACT

MP-regions is an NP-hard problem that groups spatial areas to
produce a maximum number of regions by enforcing a user-defined
constraint at the regional level. Existing approximate algorithms
for MP-regions do not scale for large datasets due to their high
computational cost. This paper introduces SMP; a scalable tech-
nique to support MP-regions on large datasets. SMP works on two
stages. The first stage finds an initial solution through randomized
search, and the second stage improves this solution through effi-
cient heuristic search. SMP optimizes the region building efficiency
and quality by tuning the randomized area selection to trade-off
runtime with region homogeneity. The experimental evaluation
shows the superiority of our technique to support an order of mag-
nitude larger datasets efficiently compared to the state-of-the-art
techniques while producing high-quality solutions.
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1 INTRODUCTION

Regionalization is the process of clustering a set of spatial poly-
gons into spatially contiguous regions that meet user-defined con-
straints [10]. An example of regionalization is clustering cities in
California into regions so that each region has at least 30K COVID-
19 infections. The traditional problem formulations [8, 10, 21] put
a major hurdle on users to input the number of regions p. Such
a hurdle introduced the challenging “spatial scale problem”, as
users fail to determine the appropriate spatial scale according to
the underlying data. A new formulation, called max-p-regions (or
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MP-regions for short), has recently addressed the spatial scale prob-
lem [7] and became popular in different applications. Instead of
forcing users to input p, the MP-regions automatically discovers
the appropriate value of p based on a user-defined constraint on a
certain attribute. This gives the user more tractable and flexible ex-
pressiveness. However, it suffers from severe scalability limitations
and cannot support even moderate-sized datasets.

MP-regions is an NP-hard problem, therefore, finding an exact
solution is prohibitively expensive and impractical in real applica-
tions. Besides, existing approximate algorithms support relatively
small datasets. For ~3,000 US counties, the proposed techniques
in [7, 30] consume from 2.5 minutes up to several hours, depend-
ing on the underlying constraints, for each single regionalization
query. In fact, real applications already use datasets that are an
order of magnitude larger than this dataset. Therefore, such ineffi-
cient time makes existing techniques incapable of supporting many
real-world applications. For example, such limitation is crystal clear
when MP-regions is applied to reduce the uncertainty of American
Community Survey data [29], which help determine how more
than $675 billion in USA federal and state funds are distributed
each year [4] and is heavily used by community organizations, gov-
ernmental agencies, social scientists in various disciplines [5]. It
is explicitly stated in [29] that “Using the algorithm (meaning MP-
regions) requires a tradeoff that is not appropriate in all situations
or for all audiences - one must be willing to reduce the number of
geographic units of analysis.” Similar examples repeat in studying
neighborhoods [23, 30] and studying regional poverty [9]. This scal-
ability limitation urges the need to build scalable regionalization
algorithms to support large-sized data.

This paper proposes SMP; a system-level module that scales up
MP-regions on large spatial datasets. SMP employs a two-phase
approximate search. In the first phase, it employs novel heuristics
to find an initial solution efficiently. Existing regionalization tech-
niques grow as many randomized regions as possible in the first
phase. This produces a large number of enclave areas as randomiza-
tion cause enclave areas to remain unassigned. On the other hand,
SMP is designed to reduce the number of enclaves and maximize
the number of regions. It builds the initial regions with minimal
inter-regional gaps by selecting new borders based on a criterion of
spatial compactness. In the second phase, SMP optimizes existing
heuristics to improve the initial solution. This approximate search
avoids exhaustive exploration of the search space, so it efficiently
supports large datasets that are not currently supported.

Our experiments on real datasets show significant improvements
in regionalization scalability and quality by saving up to 97% of
query time compared to existing competitors. The rest of the pa-
per is organized as follows. Section 2 discusses the related work.
Section 3 formulates the MP-regions problem. Section 4 introduces
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our proposed technique. Finally, Section 5 provides experimental
evaluation and Section 6 concludes the paper.

2 RELATED WORK

The regionalization literature studies various problems under spa-
tial clustering [13, 20] and spatial graph partitioning [6, 32]. The
latter is related to regionalization as spatial polygons can be mod-
eled as a node-attributed spatial neighborhood graph, and regional-
ization can be expressed as a graph partitioning problem. However,
the different objectives and constraints on the output sub-graphs
make existing spatial graph partitioning techniques inapplicable
for regionalization problems. The most related problems to our
work are the p-regions [2, 8, 14, 16-19, 31] and the max-p-regions
(MP-regions) [1, 7, 9, 11, 22, 25-30]. The p-regions problem is re-
lated in the sense that the MP-regions problem is a successor that
overcomes its limitations. There is an existing literature on the
p-regions problem that ranges from building compact regions [2, 16—
18], network-constrained regionalization [31], and functional re-
gions delimitation [14, 15]. Despite this literature, the fundamental
change in MP-regions compared to p-regions makes it inapplicable
to adopt existing p-regions techniques.

The literature on MP-regions [7] is more related to our work.
MP-regions has variations with a single constraint [7, 28, 30], mul-
tiple constraints [11], and network-aware regionalization [27], in
addition to a variety of applications that are built on top of them [1,
9, 22, 25, 26, 29]. Existing techniques build variations of the same
framework, which is also used in our proposed technique in spirit.
This framework first builds a set of regions as an initial solution,
then uses a heuristic search to improve the solution quality and find
a final approximate solution. The differences among these different
techniques are in the way of performing the two steps, includ-
ing different heuristics to build the initial regions, different types
of heuristic search, processing optimizations of different steps, or
the underlying spatial space, e.g., Euclidean space versus network-
constrained space. Distinguished from all existing work, our work
is the first to build an efficient technique that addresses the scal-
ability issue of MP-regions. Our technique significantly beats all
existing techniques in different performance measures and is able
to support an order of magnitude larger datasets.

3 PROBLEM DEFINITION

This section provides a formal definition for the MP-regions prob-
lem. The problem input is a set of spatial areas A = {ao, a1, a, .., an }.
Each area a; is defined with four attributes: a;=(i, b;, s;, d;), where i
is the area identifier, b; is an arbitrary spatial polygon that defines
the area’s spatial boundaries, s; is a spatially extensive attribute,
and d; is a dissimilarity attribute. A spatially extensive attribute s;
of an area is an attribute whose value is divided over the smaller
sub-areas when the area is fragmented. For example, the population
value of a county is divided over its cities, so the population is a
spatially extensive attribute. This is the opposite of spatially inten-
sive attributes, such as temperature, that are not divided when the
spatial area is fragmented. The dissimilarity attribute d; is used in
computing output regions’ heterogeneity. The MP-regions problem
is defined as follows:
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Input: (1) A set of n areas: A = {ay, a1, az, ..., an }. All the areas
in A are spatially contiguous and form a single spatially connected
component. (2) A threshold T. (3) An objective function H.

Output: A set of regions R = {r1, 12, ..., 7p} of size p, where each
region r; is a non-empty set of spatially continuous areas satisfying
the below constraints and objectives.

Constraints:
e1<p<n
o |ril > 1, Vri €R
erinNr;=0, Vri,rj €ERAN i #j
. Ule ri = A, Vri € R
[ ]
( > sij)=T, VrieR 1)
Vaijer;
Objectives:

e Maximizing p.
e Minimizing the total heterogeneity H(R) in dissimilarity
attributes belonging to the same region.

In this paper, H(R) is defined as follows:

HR = > >0 ldij - dyl @)

Vri€R Va;jajk€r;

The first two constraints impose that the output has at least one
region (p > 1), and each region has at least one area (|r;| > 1). The
third and fourth constraints ensure that each area is assigned to
exactly one region, so the regions are both disjoint and covering
all input areas. The last constraint ensures that each region has a
total value of the spatially extensive attribute s equals to at least
the input threshold T, e.g., total population of each region > T.

The objectives are two-fold. The first objective is maximizing
the number of output regions p. This is the main objective of MP-
regions problems, and it is prioritized over the second objective.
This objective allows to eliminate the number of regions as a user-
input, which addresses a major limitation in the previous region-
alization problems. The second objective favors output regions to
be as homogeneous as possible, measured as a function of a dis-
similarity attribute. This attribute is not necessarily to be a spatial
attribute. For example, a social scientist might need to produce
regions that are homogeneous in average income level.

4 SCALABLE MAX-P REGIONALIZATION
(SMP)

This section presents SMP; which builds on a prevalent two-stage

framework to address NP-hard problems, finding an initial solution

and then improving it. SMP consists of three phases: region growing

phase, region gluing phase, and optimization phase.

The region growing phase efficiently builds a set of initial regions
with a maximum size over multiple iterations. The region gluing
phase finalizes building the initial regions by assigning any remain-
ing areas that do not belong to any region. Finally, the optimization
phase improves the quality of the solution.

The main observation of our technique is that all existing tech-
niques generate a large number of enclave areas while growing
initial regions. These enclaves are scattered all over the space, so
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they leave gaps between regions but cannot form regions them-
selves. SMP employs a layered growing technique that increases the
number of initial regions through optimizing the area selection
criteria for this objective while maintaining an efficient runtime.
The layered growing technique changes the criteria of choosing the
seed areas and the criteria of growing the regions from total ran-
domness to constrained randomness. Existing techniques select a
random seed area every time they grow a new region. Then, the
region grows based on the spatial neighbors of this seed area. The
criteria of selecting a total random seed for every region does not
give any guarantee about the relative spatial distribution of regions.
So, on average, it scatters regions all around the space and leaves
a large number of enclaves in between. In state-of-the-art region
growing, Figure 1a, six enclave areas are scattered in the space,
leaving gaps between the two grown regions. The layered-growth
instead groups these enclaves in one part of the space, enabling
to grow three regions instead of two and reduces the number of
enclaves as depicted in Figure 1b.

Region Growing Phase. At the beginning of the phase, the seed
for the first region r; is chosen at random. Then all the neighbor
areas of ry are stored in a queue g,,. While growing ry, we add
the first unassigned area from g, to the region and update g,
accordingly. This ensures that the unassigned neighbor areas of r;
are processed and added to the region layer by layer, which leads to
a compact region shape that reduces the probability of forming gaps
between r; and other regions to be grown later. If there exists no
unassigned neighbor areas but the total extensive attribute of r; is
still below the threshold, then all the areas are marked as enclaves.
Once the region reaches the threshold, it is added to the list of
regions and a new region starts growing. After the first region,
for all subsequent regions, the seed area is chosen from the direct
neighbor areas of existing regions. For region r;41, the seed area
is the first unassigned area from the last grown region r;’s queue
qr;. If all the areas in g, are assigned, then the algorithm turns to
Qri_1> Qri_y> Up to gr,. This phase is repeated MI times to produce
different initial solutions, and the solution with the largest number
of regions p is kept for further processing.

Region Gluing Phase. The initial solution produced by the
region growing phase might include enclave areas that are not
assigned to any region. The region gluing phase assigns enclave
areas to existing regions. To do this, we iterate over the list of
enclave areas. For each enclave area, we list their neighbor areas
from the spatial neighborhood graph, and in turn we list their
neighbor regions. If it has no neighbor regions, we skip it in this
step, and it is picked up again when at least one of its neighbors
is assigned to a region. If it has one neighbor region, it is assigned
to that region. If it has multiple neighbor regions, it is assigned to
the region that gives the lowest heterogeneity value increase. We
repeat this process until assigning all the enclaves.

Optimization Phase. The optimization phase optimizes the
heterogeneity value H(R) of the initial solution. We use a heuristic
search technique based on a modified simulated annealing (MSA)
algorithm [30]. The technique moves areas from a region to another
neighbor region so that the H(R) value is improved. The original
simulated annealing algorithm [7] generates a set of movable areas
by identifying all the areas that could be moved from one region
(donor region) to the neighboring regions (recipient regions). The
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(a) State-of-the-art regions (b) Layered-growth regions
Figure 1: Layered-growth impact on the number of regions

algorithm then selects an area to move randomly without violating
the input constraints. The move is accepted if it improves the H(R)
value of the current solution. Otherwise, the move is accepted with
a probability calculated using the Boltzmann’s equation: ¢™® #/TM
where -A H represents the heterogeneity variation on both donor re-
gion and recipient region, and TM represents the temperature. The
temperature TM is decreased at each iteration at a fixed cooling rate
PH until TM reaches a predefined value. The MSA algorithm [30]
reduces the overhead of recomputing valid moves and introduces a
tabu list, similar to tabu search [12], to prevent search cycles.

An area is considered movable if it satisfies two conditions: (1) the
donor region’s threshold remains above T after removing the area,
(2) The area is not an articulation area (i.e. moving the area does
not break the spatial contiguity of the donor region). Enforcing the
second condition involves identifying the articulation areas which
is a computational bottleneck. To solve this, we employ Tarjan’s
algorithm [24] to find all the articulation areas in a single graph
traversal.

5 EXPERIMENTAL EVALUATION

This section provides an experimental evaluation for SMP.
Experimental Setup. We evaluate our proposed technique SMP
against two alternatives: (1) state-of-the-art technique for MP-
regions problem [30], denoted as MP, (2) An optimized version
of MP, denoted as MP?*, that uses a set instead of a list to maintain
the regions’ unassigned neighbors while growing the regions. We
use three performance measures: runtime as a measure for scalabil-
ity, number of regions p and heterogeneity as measures for solution
quality. We use the dataset size (DS) to evaluate the performance
with the following values: ~ 10, 20, 30, 35, 40, 50, 60, 70 (><103) areas.
The maximum iterations for the region growing phase MI is set to
40, the threshold T is set to 250 x10°, and the number of iterations
in the optimization phase NI is set to 50. The length of the tabu
list (LI), the temperature of computing the Boltzmann’s probability
(TM), and its cooling rate (PH), are set to 100, 1, and 0.9, respec-
tively, extending the optimal values from [7]. All the experiments
are based on Java 14 implementation and run on Ubuntu 16.04 with
a quad-core 3.5GHz processor and 128GB of memory.
Evaluation datasets. We evaluate all techniques on the TIGER
Line shape files for (i) the census tracts of the US states, and (II) the
county subdivisions [3]. In our experiment, we define the spatially
extensive attribute over the AWATER attribute that represents the
water area. The dissimilarity attribute is defined over the ALAND
attribute that represents the land area. The county subdivisions
dataset includes 35x10° areas. For the census tracts dataset, the



SIGSPATIAL ’22, November 1-4, 2022, Seattle, WA, USA

SMP EEEEEN NP EEEEEE MP*

(seconds)

Time
IS
o
o

L 3
10 20 30 35 40 50 60 70
Dataset Size (thousand)

(a) Dataset Size (DS)
Figure 2: Runtime scalability varying DS values

SMP EEEEN MP EEEEER MP* SMP EEEEE MP EEEEEE MP*
7x10?
6x10%?

5x10'?

14000
12000
10000
8000
6000
4000
2000

= 4ax10?
= 3x10'7
2x10"2

N
=
N
N
N
N
N
N
A
N
N
N
\
12
\ 1x10
\

B B
N BN BN BN [ BN
10 20 30 35 40 50 60 70

Dataset Size (thousand)

(b) Impact on the Heterogeneity

o BN BN BN BN B BN B
10 20 30 35 40 50 60 70

Dataset Size (thousand)
(a) Impact on p
Figure 3: Solution quality varying DS values

shape files of different neighboring states are merged together to
form seven datasets of increasing sizes ranging from 10x10° to
70x10° areas.

Performance Evaluation. Figure 2a shows that SMP have linear
runtime scalability with increasing dataset size ranging 0.9 to 54
seconds. While on the other hand, MP encounters an exponentially
increasing runtime ranging from 22 to 1297 seconds. MP* is faster
than MP with a runtime ranging from 2 to 53 seconds but is still
slower than SMP. Our technique is 10 to 29 times faster than MP
for the largest dataset. The speedup ratio increases with dataset
sizes. The changes introduced in SMP, either in the region growing
phase or the optimization phase, are the dominating factors in
speeding up the processing. Figure 3 shows that increasing DS
increases both p (Figure 3a) and the heterogeneity (Figure 3b) for
all alternatives. Since larger datasets have more areas, using the
same default threshold value leads to growing more regions that
adds to the heterogeneity score. SMP generates 26-370 regions more
than MP and MP*. SMP has a significantly lower heterogeneity
than the other competitors. The better p value of SMP comes from
growing the regions with small inter-regional gaps, which leads
to smaller number of scattered enclaves and increases the number
of regions. Dividing the same dataset into more regions leads to
reducing the heterogeneity due to having a fewer number of area
pairs that contribute to computing the heterogeneity.

6 CONCLUSIONS

This paper addresses the scalability issue of MP-regions. MP-regions
is a regionalization problem that clusters spatial areas into homo-
geneous regions. MP-regions is an NP-hard problem. Many of the
existing work experience performance degradation when solving
MP-regions on large datasets. We propose SMP module to provide
efficient and scalable approximate solutions for MP-regions. It em-
ploys multiple phases to find an initial solution then optimize it
using heuristic search. Our experimental evaluation has shown the
superiority of our technique against the state-of-the-art techniques
in both scalability and solution quality.
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