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ABSTRACT
Knowledge graphs (KGs) are of great importance in various arti-

ficial intelligence systems, such as question answering, relation

extraction, and recommendation. Nevertheless, most real-world

KGs are highly incomplete, with many missing relations between

entities. To discover new triples (i.e., head entity, relation, tail en-

tity), many KG completion algorithms have been proposed in recent

years. However, a vast majority of existing studies often require a

large number of training triples for each relation, which contradicts

the fact that the frequency distribution of relations in KGs often

follows a long tail distribution, meaning a majority of relations

have only very few triples. Meanwhile, since most existing large-

scale KGs are constructed automatically by extracting information

from crowd-sourcing data using heuristic algorithms, plenty of

errors could be inevitably incorporated due to the lack of human

verification, which greatly reduces the performance for KG comple-

tion. To tackle the aforementioned issues, in this paper, we study a

novel problem of error-aware few-shot KG completion and present

a principled KG completion framework REFORM. Specifically, we

formulate the problem under the few-shot learning framework,

and our goal is to accumulate meta-knowledge across different

meta-tasks and generalize the accumulated knowledge to the meta-

test task for error-aware few-shot KG completion. To address the

associated challenges resulting from insufficient training samples

and inevitable errors, we propose three essential modules neigh-
bor encoder, cross-relation aggregation, and error mitigation in each

meta-task. Extensive experiments on three widely used KG datasets

demonstrate the superiority of the proposed framework REFORM

over competitive baseline methods.
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1 INTRODUCTION
Knowledge graph (KG) completion [21, 35] is an increasingly essen-

tial and challenging task in various artificial intelligence systems.

KGs organize a large collection of triples (i.e., head entity, relation,

tail entity) as a special type of graph [20, 38], in which nodes and

edges represent entities and relations, respectively. Generally, KGs

provide us an efficient way to model general-purpose and domain-

specific knowledge base with a variety of applications, such as

question answering [14], relation extraction [12], and recommen-

dation [40]. Nevertheless, most, if not all, of real-world KGs have a

high degree of incompleteness [19], and many relations between

entities are missing. KG completion (i.e., KG link prediction[2]

and KG reasoning[25]) has been intensively studied [21]. Existing

KG completion algorithms could roughly be categorized into two

classes, i.e., logical rule-based and embedding-based. Predicting

relations in few-shot classes is one of the key problems in KG com-

pletion [4, 31, 43, 45]. Many KG completion algorithms rely on a

large number of instances (i.e., entity pairs) in each relation cat-

egory as training samples [35, 41]. However, in real-world KGs,

the frequency distribution of relation categories follows a long

tail distribution [43]. A large proportion of relation categories are

only associated with very few triples, referred to as few-shot rela-
tions. Completing few-shot relations is challenging because of the

insufficient training samples in these relation categories.

Many few-shot KG completion models have been explored [4,

31, 43, 45] in the past few years, but they ignored the significant

impact of errors in KGs. In practice, most existing large-scale KGs

[3, 20, 26] are constructed by automatically extracting information

from crowd-sourcing data using heuristic algorithms. However,

plenty of errors are inevitably incorporated due to the lack of human

verification [1, 20]. For example, NELL [3], a widely-adopted KG,

has an estimated precision of 74% in the early version, which is

far from desirable. While another popular KG, YAGO 4 [26], has a

manually verified accuracy of 95% with some errors existing. Errors

in few-shot relations, when serving as training samples, would have

a considerable negative impact on the few-shot relation completion.

Thus, in this paper, we investigate a novel problem of error-aware
few-shot KG completion. The goal is to predict the missing relations

for entity pairs that belong to few-shot relation categories while
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Figure 1: (Left) An illustration of the training process of the proposed framework REFORM, where red color denotes incorrect
entities. (Right) An illustration of three essential components for each meta-learning task in REFORM.

significantly alleviating the impact of errors in the background

(non-few-shot relations) and few-shot relations.

However, it remains a non-trivial task to perform error-aware
few-shot KG completion. There are three major challenges as follows.

Firstly, errors in KGsmake it difficult to learn reliable entity/relation

representations. Because of the unique data characteristics, many

existing KG embedding algorithms (e.g., TransE [2] and ComplEx

[35]) heavily rely on modeling triple structures. An incorrect entity

or relation would significantly jeopardize the embedding expres-

siveness of its neighbors’ embeddings. For example, if the head

entity of a triple (𝑖𝑃ℎ𝑜𝑛𝑒, 𝑃𝑟𝑜𝑑𝑢𝑐𝑒𝑑𝐵𝑦,𝐴𝑝𝑝𝑙𝑒) is polluted, the em-

bedding representations of Apple will also be affected. Secondly,

relations in KGs have semantic meanings and are more or less cor-

related with each other [46]. For instance, the relations ProducedBy
and Sell are strongly correlated since these two relations may share

many common entities (e.g., products). However, existing few-shot

KG completion algorithms [43, 45] often assume that relation cat-

egories are independent of each other and ignore their inherent

correlations. The third challenge is about the incorrect prediction

resulting from incorrect triples of few-shot relations. Specifically,

given a pair of entities, it is more easily to be misclassified to other

relations if triples of the true few-shot relation are severely polluted.

To tackle the aforementioned challenges, we propose a novel

eRror-awarE Few-shOt gRaph coMpletion framework—REFORM.

Specifically, we formulate the problem under the prevalent few-shot

learning framework, which accumulates meta-knowledge across a

number of meta-training tasks and generalizes to a meta-testing

task for error-aware few-shot KG completion. Essentially, to ad-

dress the aforementioned challenges of few-shot KG completion,

the proposed REFORM has three key components for each meta-

task. Firstly, to alleviate the negative impact of erroneous neighbors,

we design an attention-based neighbor encoder module to select

more reliable neighbors for representation learning. Secondly, to

take advantage of the correlations between different relations in

the support set of each meta-task, we propose a cross-relation ag-

gregation module to utilize the correlations of different relations

for relation embedding via transformer encoders [36]. To alleviate

the adverse impact brought by the errors at the prediction phase,

we design an error mitigation module, which leverages graph con-

volution network (GCN) [17] to model the interactions between the

query instance and the support instances, and generate confidence

weights for different relations regarding each query so that the

confidence of relations containing erroneous support instances will

be reduced. In summary, our main contributions are three-fold:

• Problem Formulation: We discuss the limitations of exist-

ing research works on knowledge graph completion and

make an initial investigation of a novel research problem—

error-aware few shot knowledge graph completion.

• Algorithmic Design:We develop a novel few-shot learning

framework for KG completion in the presence of errors. It

consists of three essential modules for each meta-task: (1) an

attention-based neighbor encoder module that reduces the

effects of erroneous neighbors; (2) a cross-relation aggrega-

tion module based on transformer encoders which captures

correlations between relations in the support set; and (3)

a GCN-based error mitigation module that alleviates the

impacts of erroneous triples at the prediction phase.

• Experimental Evaluation: We conduct extensive experi-

ments on real-world knowledge graphs to validate the supe-

riority of our proposed framework.

2 PROBLEM DEFINITION
Formally, a knowledge graph G consists of a number of triples

{(ℎ, 𝑟, 𝑡)} ∈ E × R × E, where E and R are the entity set and

relation set, respectively. Among these triples, many are erroneous

(e.g., incorrect relation or incorrect head/tail entity). KG completion

targets at learning from existing triples and predicting the unseen

relation between a given entity pair: (ℎ, ?, 𝑡), or predicting an entity

given a relation and another entity: (?, 𝑟 , 𝑡) and (ℎ, 𝑟, ?). In this

work, we focus on the former scenario as it is closer to a real-world

scenario where queries are mainly about the missing relations.

As mentioned previously, we aim to complete the triples for the

few-shot relations, for which we use R𝑓 to denote the set of few-
shot relations that have incomplete triples (i.e., the triples whose

relations are missing) and obviously R𝑓 ⊆ R. Given the above,

the studied problem of error-aware few-shot KG completion can be

formally formulated as follows:

Definition 1. Error-aware Few-shotKGCompletion: Given
(i) a knowledge graph G which includes a number of erroneous triples,
(ii) a set of few-shot relations R𝑓 , and (iii) a query entity pair (ℎ, 𝑡),
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our goal is to develop a machine learning model that can accurately
predict the missing relation category 𝑟 of the query entity pair from
the few-shot relation categories R𝑓 .

As each few-shot relation inR𝑓 only consists of a limited amount

of complete triples, we formulate the problem of error-aware few-
shot KG completion under the prevalent few-shot learning paradigm,

which is shown to be effective in many areas such as computer

vision [34], natural language processing [44], and graph analysis

[6]. Specifically, if R𝑓 contains 𝑁 different relation categories, then

we can sample 𝐾 complete triples for each few-shot relation cate-

gory and formulate the problem as an 𝑁 -way 𝐾-shot classification

problem [37]. To mimic the real test environment for few-shot KG

completion, we create a number of meta-training tasks from a dis-

joint relation set R𝑓 ′ ⊆ R and R𝑓 ′ ∩ R𝑓 = ∅. Each meta-training

task T𝑚 consists of the support set S𝑚 and the query set Q𝑚 :

S𝑚 = {(ℎ1
1
, 𝑡1
1
, 𝑟1), . . . , (ℎ𝐾1 , 𝑡

𝐾
1
, 𝑟1), . . . ,

(ℎ1𝑁 , 𝑡
1

𝑁 , 𝑟𝑁 ), . . . , (ℎ
𝐾
𝑁 , 𝑡

𝐾
𝑁 , 𝑟𝑁 )},

Q𝑚 = {( ˜ℎ1
1
, 𝑡1
1
, 𝑟1), . . . , ( ˜ℎ𝑀1 , 𝑡

𝑀
1
, 𝑟1),

( ˜ℎ1𝑁 , 𝑡
1

𝑁 , 𝑟𝑁 ), . . . , ( ˜ℎ
𝑀
𝑁 , 𝑡

𝑀
𝑁 , 𝑟𝑁 )}.

(1)

Here, 𝑟1, 𝑟2, . . . , 𝑟𝑁 , 𝑟1, 𝑟2, . . . , 𝑟𝑁 ∈ R𝑓 ′ . Also, (ℎ
𝑗
𝑖
, 𝑟𝑖 , 𝑡

𝑗
𝑖
) means that

there is a relation 𝑟𝑖 between the instance (i.e., entity pair) (ℎ 𝑗
𝑖
, 𝑡
𝑗
𝑖
),

which is the 𝑗-th instance of relation 𝑟𝑖 in the support set. Simi-

larly, ( ˜ℎ 𝑗
𝑖
, 𝑟𝑖 , 𝑡

𝑗
𝑖
) denotes the 𝑗-th instance of relation 𝑟𝑖 in the query

set Q𝑚 . The support set S𝑚 contains 𝐾 instances for each of 𝑁

relations in R𝑓 ′ while the query set Q𝑚 consists of 𝑀 query in-

stances sampled from the remaining instances from each relation in

R𝑓 ′ . With these, a meta-learning model is trained on a set of meta-
training tasks T𝑡𝑟𝑎𝑖𝑛 = {T𝑚}𝑇𝑚=1

to minimize the loss of predictions

for each query set Q𝑚 . Through this process, the model gradually

learns the meta-knowledge from these sampledmeta-training tasks

and thus can be effectively generalized to the meta-test task for

few-shot KG completion. Specifically, the meta-task T𝑡𝑒𝑠𝑡 also has

a support set S and a query set Q, and is defined in the same way

as the meta-training task except that Q contains all remaining in-

stances from each relation in R𝑓 . The support set S has𝐾 complete

triples for each few-shot relation in R𝑓 (|R𝑓 | = 𝑁 ), and our goal

is to predict the missing few-shot relations for the instances in

the query set Q by exploiting the support set S and the trained

meta-learning model from 𝑇 meta-training tasks.

3 PROPOSED FRAMEWORK
In this section, we introduce the overall structure of our proposed

framework REFORM in detail. As illustrated in Figure 1, we for-

mulate the error-aware few-shot KG completion problem under the

prevalent 𝑁 -way 𝐾-shot few-shot learning framework, which con-

sists of 𝑇 different meta-training tasks {S𝑚,Q𝑚}𝑇𝑚=1
and a meta-

test task {S,Q}. Our goal is to learn the meta-knowledge across 𝑇

different meta-training tasks and then generalize the learned knowl-

edge to the meta-test task for few-shot KG completion. For each

meta-task, our framework first designs a neighbor encoder module

to generate robust embeddings for each entity pair by selecting

more reliable neighboring instances with an attention mechanism.

Then our framework employs a cross-relation aggregation module

to better capture the correlations of relations in the support set.

Moreover, the error mitigation module models the data-dependent

confidence level for each relation in the support set w.r.t. each query

instance. In this way, it can further reduce the false relation pre-

diction risk of query instances induced by erroneous triples in the

support set. Later on, the confidence scores are combined with the

classification scores produced by a matching function and fed into

the final classification layer. It should be noted that the neighbor

encoder module and the error mitigation module both can allevi-

ate the negative impact of errors for few-shot KG completion—the

former module helps learn more reliable representations of entity

pairs at the embedding phase while the latter module reduces the

influence of errors at the relation prediction phase.

Next, we will elaborate on these three key modules that support

error-aware few-shot KG completion.

3.1 Neighbor Encoder
Recent years have witnessed the great success of embedding based

KG completion methods [2, 35, 41]. However, the existence of errors

(e.g., incorrect relations or incorrect head/tail entities) may greatly

jeopardize the expressiveness of the learned embeddings and con-

sequently influence the performance of few-shot KG completion.

The underlying reason is that if an entity or a relation is incorrect,

the error will propagate to its immediate neighbors and neighbors

that are multiple hops away during the embedding learning phase.

To generate more robust embedding representations in the pres-

ence of errors, we propose an attention-based neighbor encoder

module. Specifically, given an instance (i.e., a pair of entities (ℎ, 𝑡)),
for each of its entities we generate a robust embedding representa-

tion by aggregating information from its neighboring relations and

entities with an attention mechanism, such that the incorrect neigh-

bors will be assigned lower weight values and correct neighbors

will have higher weight values during the information aggregation

process. For example, for an entity ℎ and its neighboring entities

𝑒1, 𝑒2, . . . , 𝑒𝑚 with corresponding relations 𝑟1, 𝑟2, . . . , 𝑟𝑚 (𝑚 denotes

the number of neighboring entities of ℎ), we learn the contribution

of 𝑒𝑖 and 𝑟𝑖 for learning the robust embedding of entity ℎ via an

attention mechanism of the bilinear form:

𝑏𝑖 =
e𝑇
ℎ
W𝑛 (r𝑖 ⊕ e𝑖 )√

𝑑𝑝
, (2)

where eℎ ∈ R𝑑𝑝 , e𝑖 ∈ R𝑑𝑝 , and r𝑖 ∈ R𝑑𝑝 are the corresponding pre-

trained embeddings
1
for entities ℎ, 𝑒𝑖 and relation 𝑟𝑖 , respectively,

and 𝑑𝑝 is the embedding size for entities and relations. Besides, ⊕
represents the concatenation operator between two vectors and

W𝑛 ∈ R𝑑𝑝×2𝑑𝑝 is a trainable weight matrix. The above equation pro-

vides an attention weight for each neighbor, and then we normalize

them using a softmax function to obtain the robust embedding of

entity ℎ as:

𝛼𝑖 =
exp(𝑏𝑖 )∑𝑚
𝑘=1

exp(𝑏𝑘 )
, (3)

h = eℎ +
𝑚∑
𝑖=1

𝛼𝑖 (W𝑎 (e𝑖 ⊕ r𝑖 ) + b𝑎) , (4)

1
In this paper, we employ TransE [2] to generate the pretrained embeddings.
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where h is the encoded robust embedding of the head entity ℎ.

W𝑎 ∈ R𝑑𝑝×2𝑑𝑝 and b𝑎 ∈ R𝑑𝑝 are a trainable weight matrix and a

bias term for the robust embedding generation, respectively. In this

way, we select the most reliable neighbors for the given entity ℎ

and aggregate neighbors’ embeddings in a weighted sum format.

Then the pretrained embedding of ℎ is also included to incorporate

the embedding representation of itself.

Similarly, we can also generate a robust embedding t for the tail
entity 𝑡 . Finally, we concatenate the embeddings of the head entity

ℎ and the tail entity 𝑡 together to obtain a final embedding for the

instance (i.e., entity pair) (ℎ, 𝑟 ):

x = h ⊕ t, (5)

where x ∈ R2𝑑𝑝 is the final robust embedding of this instance (ℎ, 𝑡).

3.2 Cross-relation Aggregation
We have generated embeddings for instances (i.e., a pair of entities)

through the previous neighbor encoder module, and now we focus

on generating embeddings for relations in the support set. Different

from image data [37] or text data [9], relations in KGs often come

with semantic meanings and are more or less correlated with each

other via certain levels of interactions [46]. For example, as men-

tioned previously, the relation 𝑃𝑟𝑜𝑑𝑢𝑐𝑒𝑑𝐵𝑦 and the relation 𝑆𝑒𝑙𝑙

apparently have strong correlations as they encode similar semantic

meanings and may share many common entities (e.g., products).

When appearing in the same meta-task, these relations can benefit

each other for learning their embeddings, which is essential as

instances of each relation in the meta-task are often very limited.

However, a vast majority of existing few-shot KG completion mod-

els [43, 45] do not fully take advantage of such correlations and

may lead to suboptimal KG completion results.

Therefore, for each meta-task in our framework, we exploit the

inherent correlations among different relations in the support set

and utilize the correlations for relation embedding learning. More

specifically, we incorporate not only the information from the sup-

port instances (i.e., entity pairs in the support set) of the same

relation category, but also the information regarding the relation

correlations in the support set. Toward this goal, we propose a

cross-relation aggregation module based on transformer encoders

[36] to capture these two types of information. Generally speaking,

the transformer encoders make each input embedding attend to all

other input embeddings based on amulti-head attentionmechanism

and thus have a strong ability in modeling interactions between

different input embeddings.

Firstly, to incorporate the information from support instances of

the same relation type, we apply a transformer encoder to produce

an intermediate embedding for each relation category in the support

set as follows:

r̂𝑖 = mean

(
Transformer(x1𝑖 , x

2

𝑖 , . . . , x
𝐾
𝑖 )

)
, (6)

where x𝑗
𝑖
denotes the embedding of the 𝑗-th support instance of the

𝑖-th relation in the support set, which is generated by the neighbor

encoder module in the previous subsection. 𝐾 is the number of sup-

port instances for each relation category and r̂𝑖 is the intermediate

embedding of the 𝑖-th relation. By applying the transformer encoder

for all the instances of the same relation category and calculating

the mean, it enables us to obtain a comprehensive understanding

for all the instances of the 𝑖-th relation in the support set.

Secondly, to further capture the inherent correlations among

different relations in the support set, we apply another transformer

encoder based on the intermediate embedding representations:

r𝑎 = mean (Transformer(r̂1, r̂2, . . . , r̂𝑁 )) , (7)

where 𝑁 denotes the number of relations for each relation category

in the support set. Here, r𝑎 can be interpreted as a context em-

bedding which encodes the inherent interactions among different

relation categories in the same support set.

Then an element-wise product operation is applied to obtain the

final embedding of the 𝑖-th relation in the support set:

r𝑖 = r̂𝑖 ⊙ r𝑎, (8)

where ⊙ denotes the element-wise product operation. In this way,

we can fuse the information regarding the instances of the 𝑖-th

relation and the information regarding relation interactions in the

same support set more synergistically.

3.3 Error Mitigation
As mentioned before, errors widely exist in KGs [3, 13]. Under

the few-shot learning framework [37], the number of support in-

stances in each meta-task is very limited, and thus a small number

of errors in the support set can greatly affect the accumulation of

meta-knowledge and consequently influence the KG completion

performance [9]. Although the previous neighbor encoder module

helps reduce the impact of errors at the embedding phase, incorrect

relation predictions may still occur for query instances (i.e., entity

pairs in the query set) due to inevitable errors in the support set.

To reduce the adverse impact of inevitable errors, we leverage

graph convolution network (GCN) [17] to generate confidence

weights of different relations for each query instance. The intuition

is that due to inevitable errors in the support set, the confidential

levels of different relations are different. For example, if a relation

contains a large number of erroneous support instances, the con-

fidence that a specific query instance belonging to this relation

should also be reduced, which means this relation is not reliable for

the relation prediction. A natural way to solve this problem is to

assign a confidence weight for each relation based on the informa-

tion of its support instances. Specifically, we measure the impact of

different instances in the support set for a specific query instance,

and build a query-oriented graph with nodes representing different

support instances and edges representing their affinities. Notice

that the graphs are distinct for different query instances, so this

module can be flexibly adapted to different query instances. To con-

struct such query-oriented graph, we first obtain the embeddings

for each node as follows:

v𝑗 = 𝜙𝑣
(
x𝑞 ⊕ x𝑗 ⊕ (x𝑞 + x𝑗 ) ⊕ (x𝑞 ⊙ x𝑗 )

)
, (9)

V = (v1; v2; . . . ; v𝑁𝐾 ) ∈ R𝑁𝐾×𝑑ℎ , (10)

where x𝑗 is the embedding of the 𝑗-th support instance in the

support set and x𝑞 is the embedding of a specific query instance

(both can be obtained from the neighbor encoder module). 𝜙𝑣 is a

fully-connected layer that maps the concatenated input to a new

embedding space. V is an 𝑁𝐾 × 𝑑ℎ final embedding matrix for
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different nodes (w.r.t. a specific query instance) and 𝑑ℎ is the em-

bedding size. Besides, ⊕ represents the concatenation operator and

⊙ denotes the element-wise product operation. In this way, we

can model the interactions between a specific query instance and

different support instances, resulting in a node embedding matrix

V of the query-oriented graph.

Then we apply another fully-connected layer to calculate the

similarity matrix of different nodes in the query-oriented graph

and normalize it in a row-wise manner:

[A]𝑖 𝑗 = 𝜙 (v𝑖 )𝑇𝜙 (v𝑗 ), (11)

Ã = softmax(A), (12)

where [A]𝑖 𝑗 denotes the 𝑖-th row and the 𝑗-th column of matrix

A and the softmax function is applied on each row of A to ensure

the sum of each row is normalized to one. Similar as [47], we

make use of a GCN layer with residual connection to measure the

trustworthiness of each support instance for the query instance:

u = sigmoid

(
(V + ÃVW𝑣)W𝑢

)
∈ R𝑁𝐾 , (13)

whereW𝑣 ∈ R𝑑ℎ×𝑑ℎ andW𝑢 ∈ R𝑑ℎ are the parameters to learn. In

the above formulation, ÃVW𝑣 propagates information across differ-

ent nodes in the query-oriented graph and “V+" can be considered

as a residual connection [39]. Since the graph is fully-connected,

one layer is enough for the information propagation. Through the

sigmoid function, the output is a vector of length 𝑁𝐾 with each

element denoting the confidence score of each support instance for

a specific query instance. Then we take the maximum value along

the rows of the reshaped matrix to generate a confidence weight

for each relation w.r.t. a specific query instance:

U = reshape(u) ∈ R𝑁×𝐾 , (14)

[w]𝑖 = max {[U]𝑖1, [U]𝑖2, . . . , [U]𝑖𝐾 } , (15)

where [w]𝑖 denotes the confidence weight for the 𝑖-th relation w.r.t.

a specific query instance. As such, we can quantify the trustwor-

thiness of each relation for a specific query instance and naturally

mitigate the inevitable errors in KGs.

After that, we further make use of the concept of the energy

function in KG completion [2, 35, 41] to generate an energy score

for each relation 𝑖 in the support set:

𝑠𝑖 = −𝐸 (x𝑞, r𝑖 ) = −𝜎 (W𝑒x𝑞)𝑇𝜎 (r𝑖 ), (16)

where 𝐸 (.) denotes the energy function, x𝑞 and r𝑖 denote the em-

bedding of the 𝑗-th query instance and the 𝑖-th relation, respectively.

W𝑒 is a trainable weight matrix and 𝜎 denotes an activation func-

tion which is specified as tanh in our framework.

Lastly, we multiply these energy scores with the confidence

weights as the final class assignment probability for each relation:

𝑧′𝑖 =
exp(𝑠𝑖 )∑𝑁
𝑗=1 exp(𝑠 𝑗 )

[w]𝑖 , 𝑧𝑖 =
𝑧′
𝑖∑𝑁

𝑗=1 𝑧
′
𝑖

, (17)

Afterwards, the classification loss for all the query instances in the

meta-training task can be formulated by the cross-entropy loss:

L = − 1

|Q|

|Q |∑
𝑗=1

𝑁∑
𝑖=1

𝑦
𝑗
𝑖
ln𝑧

𝑗
𝑖
, (18)

where 𝑦
𝑗
𝑖
denotes whether the 𝑗-th query instance belongs to the

𝑖-th relation of the support set in the ground truth, and is either

0 or 1. 𝑧
𝑗
𝑖
denotes the class assignment probability such that the

𝑗-th query instance is assigned to the 𝑖-th relation category in the

support set (through Eq. (17)).

Algorithm 1 Detailed learning process of REFORM.

Input: A knowledge graph G consisting of a number of triples

{(ℎ, 𝑟, 𝑡)} ∈ E × R × E (some triples in G are erroneous), set

of few-shot relations R𝑓 of the meta-test task, set of relations

R ′
𝑓
of the meta-training tasks, few-shot KG completion task

T𝑡𝑒𝑠𝑡 = {S,Q}, 𝑇 , 𝑁 , and 𝐾 .

Output: Predicted relations of query instances in the query set Q.
// Meta-training phase

1: 𝑖 ← 0

2: while 𝑖 < 𝑇 do
3: Sample a meta-training task T𝑖 = {S𝑖 ,Q𝑖 } from R𝑓 ′ ;
4: Compute representations for instances in S𝑖 and Q𝑖 as well

as relations in S𝑖 ;
5: Generate confidence weights for each relation in S𝑖 with

respect to each query instance in Q𝑖 ;
6: Predict relations for query instances in Q𝑖 ;
7: Update the model parameters with the meta-training loss of

T𝑖 according to Eq. (18) by one gradient descent step;

8: 𝑖 ← 𝑖 + 1
9: end while

// Meta-test phase
10: Compute representations for instances in S and Q as well as

relations in S;
11: Generate confidence weights for each relation inS with respect

to each query instance in Q;
12: Predict relations for query instances in Q;

3.4 Training Process
The overall training process of our proposed framework REFORM

is in Algorithm 1. Firstly we sample𝑇 meta-training tasks under the

𝑁 -way 𝐾-shot few-shot learning framework with relations from

the relation set R𝑓 ′ . Specifically, for each meta-training task, 𝑁

relations are sampled from R𝑓 ′ and meanwhile 𝐾 instances (e.q.,

pairs of entities) are sampled from each of the 𝑁 relations, resulting

in a support set. Then another different𝑀 instances are also sam-

pled from each of the 𝑁 relations to form a query set. The support

set and the query set together build up a meta-training task. Then

we perform predictions on the query set of the meta-training task

and finally compute the cross-entropy loss according to Eq. (18).

We apply gradient descent methods to update the model param-

eters by one gradient descent step according to the loss on each

meta-training task [8]. And after the training of a total number of

𝑇 meta-training tasks, we can obtain a fully-trained meta-learning

model for the meta-test task. Finally, we apply the learned model

on the meta-test task to predict the relations for query instances in

the query set Q of the meta-test task.
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4 EXPERIMENTS
In this section, we evaluate the proposed framework on a number

of KG datasets which are widely used for KG completion tasks and

show that our framework achieves superior performance on the

studied problem of error-aware few-shot KG completion.We further

demonstrate how different modules of REFORM contribute to the

KG completion performance. We first introduce the datasets and

experimental settings before presenting details of the experiments
2
.

4.1 Datasets
We perform experiments on three KG datasets which are widely

used for the KG completion task [41, 43, 45]. The first two datasets

are NELL and Wiki, which are constructed and used by GMatching

[43]. The NELL dataset is based on the NELL [20], a system that

continuously collects information from websites and constructs

knowledge from it. The Wiki dataset is based on the Wikidata [38],

a much larger dataset that has more entities and relations than

many other datasets. To further demonstrate the effectiveness of

our proposed framework, we also make use of another widely used

dataset for the KG completion, the FB15K-237 dataset [11]. The

total number of few-shot relations in these three datasets NELL,
Wiki, and FB15K-237 are 67, 183, and 119, respectively. We follow

the conventional settings of few-shot KG completion [4, 43, 45] to

split the training/validation/test relations as 40/5/22, 156/16/11, and

75/11/33 for NELL, Wiki, and FB15K-237, respectively. The detailed
statistics of these three datasets are shown in Table 1.

Table 1: Detailed statistics of the used datasets. # Ents. de-
notes the number of entities, # Rels. denotes the number of
all relations, # Triples denotes the number of triples, and #
Few-Rels. denotes the number of few-shot relations.

Dataset # Ents. # Rels. # Triples # Few-Rels.
NELL 68,545 358 181,109 67

Wiki 4,838,244 822 5,859,240 183

FB15K-237 14,541 237 281,624 119

4.2 Experimental Settings
To verify the effectiveness of the proposed framework REFORM,

we compare it with the following baseline methods:

• Prototypical Network [32]: Prototypical Network encodes

the prototype for each class of the support set and matches

the query embedding with prototypes.

• Relation Network [34]: Relation Network utilizes neural

networks to measure the similarity between a query instance

and support instances.

• GMatching [43]: GMatching encodes entities w.r.t. differ-

ent neighbors and matches queries with support instance

embeddings via a recurrent matching processor [37].

• FSRL [45]: FSRL encodes entities with attentions, aggregates

instances in a single relation via a recurrent autoencoder

aggregation network [10], and matches queries with support

instances via a recurrent matching network [37].

2
Code and data are available at https://github.com/SongW-SW/REFORM

• FAAN [31]: FAAN encodes instances with attentions for

different relations, utilizes transformer encoders within each

entity pair, and matches queries with support instances via

an attention-based matching processor.

Prototypical Network [32] and Relation Network [34] are conven-

tional few-shot learning methods for i.i.d. data such as image data.

To make them applicable to our few-shot KG completion problem,

we use concatenated pretrained entity embeddings as the input in-

stance embeddings and then follow the process in the corresponding

papers to conduct few-shot learning. GMatching [43], FSRL [45],

and FAAN [31] are recently proposed methods for the few-shot KG

completion task, but they formulate the problem as a 𝐾-shot entity

ranking problem for each few-shot relation and cannot be directly

compared with our proposed framework. As mentioned previously,

we formulate the problem as a relation classification problem which

is closer to real-world scenarios where the queries are mainly about

missing relations. To make a fair comparison with these methods,

we adapt them to the 𝑁 -way 𝐾-shot learning scenario. Specifically,

given a head entity, these models make predictions via ranking tail

entities by generating scores for them. In the 𝑁 -way 𝐾-shot setting

we use their models to produce 𝑁𝐾 these scores as the classification

scores to make predictions. Notice that here we do not compare our

model with traditional KG embedding methods such as TransE [2],

because in the previous work of GMatching [43] and FSRL [45],

the experimental results have already shown that traditional KG

embedding methods do not perform well in the few-shot scenario

and are outperformed by their models. Therefore, we compare our

model with traditional few-shot learning methods which are more

suitable for our problem setting.

All the compared models and our proposed REFORM framework

are implemented based on PyTorch [24]. Since we formulate the

few-shot KG completion as a classification problem, we adopt the

classification accuracy as the final evaluation metric.

In our experiments, we follow the settings of [31, 43, 45] to split

the data into two parts: background KG and few-shot triples. The

background KG contains all other triples except for triples belong-

ing to few-shot relations and is used to generate the pretrained

TransE [2] embeddings for each entity and relations that are not

few-shot. Notice that for each dataset, we make sure all entities in

few-shot relations have already appeared in the background KG

so that a pretrained embedding is available during training
3
. Then

as mentioned in the problem definition part, in the 𝑁 -way 𝐾-shot

learning paradigm, 𝑁 relations as well as 𝐾 instances for each of

them are sampled to form a meta-training task, where 𝑁 equals

to the number of relations in the support set of the meta-test task.

Then a number of 𝑀 query instances are sampled for each meta-

training task. Specifically, 𝑁 in our general experiments equals

to the number of relations in the meta-test task. Additionally, we

specify 𝐾 = 5 and𝑀 = 5, and a more detailed analysis of the impact

of these two hyperparameters can be found in Section 4.5.

Since we are in short of reliable ground truth on whether a triple

is erroneous or not, we randomly inject different levels of errors into

the background KG as well as few-shot triples. Specifically, when

a background triple or a few-shot triple is selected, we randomly

perturb its head entity or the tail entity to another entity to generate

3
If random embeddings are used, this constraint could be removed
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an incorrect triple. During the perturbation process, we also ensure

the generated triple does not belong to the original KG.

For the pretrained embeddings, we adopt the TransE [2] embed-

ding generated by the OpenKE [11] toolkit, where the embedding

size 𝑑𝑝 is 100 for NELL and FB15K-237 and 50 for Wiki. Then the

entity and relation embeddings are trained on the background KG

and used as pretrained embeddings for all models in experiments.

Notice that the embeddings are trained on the polluted background

KG to simulate the real-world scenario, which means the errors will

also impact the quality of pretrained embeddings, further bringing

challenges to the error-aware few-shot KG completion.

For the hyperparameter settings of our proposed framework,

the neighbor encoder adopts a maximum of 50 neighbors for each

entity, the transformer encoder includes 3 layers and 4 heads and

the dimension of embeddings in the error mitigation module 𝑑ℎ
is 100 for NELL and FB15K-237 and 50 for Wiki. For the model

optimization, we adopt Adam [16] with the learning rate of 0.001

and a dropout rate of 0.5, and 𝑇 is set to 5000 for all models.

4.3 Overall Evaluation Results
We first show the performance of error-aware few-shot KG comple-

tion by different methods in Table 2. Specifically, to better demon-

strate the robustness of our model against errors, we show the

results by varying the error rate ranging from 0 to 20%. From the

table we can make the following observations:

• Our proposed framework REFORM achieves the best few-

shot KG completion performance than any other baselines

in all datasets with different error rates, which validates

the effectiveness of our proposed framework in completing

few-shot KG completion in the presence of errors.

• Conventional few-shotmodels such as RelationNetwork [32]

and Prototypical Network [34] are not explicitly designed

for the KG completion task, and their performance is infe-

rior to the recent few-shot KG completion methods such as

GMatching [43], FSRL [45] and FAAN [31].

• When the error rate is increased from 0 to 20%, our proposed

framework REFORM has the least performance degradation

compared with all other baseline methods. The main reason

could be attributed to the fact that our proposed framework

explicitly considers the adverse impact of errors in the em-

bedding learning phase by neighbor encoder module and

prediction phase by error mitigation module.

• The improvements of few-shot KG completion models (i.e.,

REFORM, GMatching) over conventional few-shot baselines

are relatively higher on the Wiki dataset. The reason is that

this dataset contains a larger number of triples than the

other two datasets, and few-shot KG completionmethods can

better exploit the interactions among entities and relations

at the learning phase.

In this part, we validate the importance of three essential mod-

ules of REFORM by conducting the ablation study on NELL and

FB15K-237 (we have similar observations on Wiki). Firstly, we re-
move the neighbor encoder module and directly use the pretrained

embeddings of entities, and we refer this variant as REFORM w/o
neighbor encoder. The second variant is to remove the cross-relation

aggregation module such that we do not consider the correlations

Figure 2: Ablation study of REFORM on NELL

Figure 3: Ablation study of REFORM on FB15K-237

between different relations in the support set, and we refer this

variant as REFORMw/o cross-relation aggregation. The final one is to
remove the error mitigation module, which means the confidence

weights are the same for all relations, and we refer this variant as

REFORM w/o error mitigation. The ablation study results are shown

in Figure 2 and Figure 3. From the result we can see that all three

modules play crucial roles in our proposed framework. Specifically,

the removal of the neighbor encoder causes a great decrease in the

few-shot KG completion performance. Also, the incorporation of

the cross-relation aggregation module brings a decent performance

improvement for REFORM. More importantly, when the error miti-

gation module is not used, the KG completion performance drops

quickly when the error rate increases, demonstrating the significant

effect of this module in the presence of errors.

4.4 Effects of 𝐾 and𝑀 in REFORM
In this subsection, we conduct experiments to show how the shot

size 𝐾 (i.e., the number of support instances per relation) and the

number of query instances𝑀 in each meta-training task affect the

performance of REFORM. Figure 4 reports the results of REFORM

when varying the value of 𝐾 and 𝑀 on the NELL dataset with an

error rate of 0. Specifically,𝑀 is set to 5 when we vary the value of

𝐾 , and similarly, 𝐾 is set to 5 when the value of𝑀 is changed. From
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Table 2: The overall error-aware few-shot KG completion results (accuracy in %) of various models under different error rates.

Dataset NELL Wiki FB15K-237

Error Rate 0 5% 10% 15% 20% 0 5% 10% 15% 20% 0 5% 10% 15% 20%

Relation Network 53.89 53.76 46.74 45.79 40.18 47.54 43.03 40.68 39.98 37.73 62.21 61.94 55.31 52.97 52.41

Proto Network 69.59 68.07 65.06 64.29 63.23 61.26 58.13 57.28 54.80 53.44 84.06 83.20 81.30 78.54 78.03

GMatching 77.50 76.52 75.22 73.43 71.94 71.07 68.63 66.13 65.50 63.35 84.75 84.40 81.76 79.05 78.67

FSRL 75.78 72.63 72.55 71.70 70.31 59.57 47.92 47.34 43.86 39.47 83.27 79.72 78.08 73.86 72.85

FAAN 77.10 76.33 74.80 74.11 70.83 70.19 64.87 63.61 62.57 59.34 86.32 85.19 83.31 78.63 77.23

REFORM (Ours) 80.70 79.22 78.19 77.55 75.54 75.03 71.90 70.84 70.19 68.50 88.10 86.14 84.09 80.81 80.46

Table 3: The few-shot KG completion results for each few-shot relation of different methods in the test set of NELL dataset.

Relations REFORM GMatching FAAN FSRL Relations REFORM GMatching FAAN FSRL

SportsGameSport 1.0000 1.0000 1.0000 1.0000 CountryStates 0.8476 0.6341 0.8293 0.8293

CarDealerCity 1.0000 0.9711 1.0000 1.0000 StateOfHeadquarter 0.9826 0.9565 0.9826 0.9391

AthleteInjured 1.0000 0.8438 0.9375 0.7969 FoodCauseDisease 1.0000 0.9615 0.9808 0.9423

PoliticalLocation 0.3623 0.2754 0.2101 0.1232 OrganizationAs 0.3929 0.3036 0.3036 0.2679

PoliticianEndorses 0.9816 0.9501 0.9790 0.9711 AnimalEatVegetable 0.9595 0.9364 1.0000 0.7746

AnimalInvertebrate 0.2366 0.1488 0.0585 0.0951 FatherOfPerson 0.9029 0.9029 0.7767 0.8252

SportSchoolCountry 1.0000 1.0000 1.0000 1.0000 CountryCapital 0.9375 0.9135 0.8894 0.6154

AgriculturalProduct 0.9852 0.8519 0.9852 0.9704 PersonMoveToState 0.9909 0.9545 0.9955 0.9727

CarDealerCountry 1.0000 0.9890 0.8681 0.9670 PersonKnownAs 0.2329 0.1233 0.2192 0.1096

TeamCoach 0.9970 0.9940 0.9911 0.9821 OfficeInCountry 0.0000 0.0719 0.0144 0.2590
ProducedBy 0.9856 0.9519 0.9760 0.9856 AnimalEatInsect 0.9700 0.9528 0.9957 0.8112

Figure 4: Results with different𝐾 (left) and𝑀 (right) on NELL

the figure we can find that the few-shot KG completion results

increase when 𝐾 increases. The reason is that a larger support set

helps produce better embeddings for few-shot relations. Also, the

error mitigation module becomes more powerful with more support

instances and thus benefits the final results. Also, involving more

query instances during training (i.e., increasing the value of 𝑀)

slightly increases the performance as a larger training set helps

alleviate the over-fitting problem.

4.5 Results on Different Few-shot Relations
Aside from the overall results from all few-shot relations in Table 2,

we further conduct experiments to evaluate the effectiveness of

REFORM for each relation in the NELL dataset with an error rate of

15%. Table 3 shows the results of our framework and other few-shot

KG completion baselines. The best results are highlighted in bold.

From the results we can find that each model performs distinctly in

different relations. The reason may be that some relations contain

entities that appear much more times in other relations, which

reduces the impact of errors due to their interactions with other

relations. Even so, our proposed framework REFORM achieves the

best performance in 18/22 ≈ 81.82% relations while the runner-up

FAAN only achieves the best performance in half of the relations.

5 RELATED WORK
We review related works from three aspects: (1) relational learning

for knowledge graphs; (2) error detection in knowledge graphs; and

(3) few-shot learning in knowledge graphs.

5.1 Relational Learning for Knowledge Graphs
Recently, various kinds of embeddings models have been proposed

to represent entities and relations in knowledge graphs as contin-

uous vectors for knowledge graph completion tasks. The general

idea is to learn embeddings for entities and relations and then com-

pute ranking scores for prediction. Among them, RESCAL [23] is

one of the classic models, which models the relationships using

tensor operations. TransE [2] models relationships as translating

operation on embeddings of entities in the vector space. NTN [33]

combines linear transformations and multiple bilinear forms of en-

tities for expressiveness while having a large number of parameters.

Besides, ComplEx [35] is also proposed as an advanced model. More

recently, deep neural networks have also been applied on these

embedding models. For example, ConvE [5] utilizes convolutional

neural networks for further improvements.

Although deep neural network based embedding models have

shown strong performance in learning representations for entities

and relations in knowledge graph completion tasks, they usually
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assume that there are adequate training instances for all entities

and relations, which is far from the real-world scenario as described

previously. Besides, they do not consider about the situation that a

certain number of inevitable errors exist in real-world knowledge

graphs, which may jeopardize the performance of these approaches

potentially. To better fit in the real-world scenario and take pos-

sibly existing errors into consideration, our model proposes to

conduct knowledge graph completion tasks with very limited num-

ber of training instances while maintaining considerable robustness

against errors, which is important since the impacts of errors will

possibly be amplified due to scarce training instances.

5.2 Error Detection in Knowledge Graphs
The error detection task in knowledge graphs, which is also referred

to as noise detection, is to detect the erroneous information such as

incorrect relations or incorrect head/tail entities. The necessity of

this task lies on the fact that errors are inevitably incorporated along

with the process of constructing knowledge graphs (regardless of

manually or automatically constructed) [18]. For example, YAGO 4

[26]—a large semantic knowledge base, is derived from Wikidata

with its accuracy manually evaluated. The NELL [20] system con-

tinuously extracts facts from webs to construct its knowledge base

while automatically assigning confidence values to candidate triples

using heuristics and constantly updating them with human super-

vision. These examples exhibit a situation that manual detection

is extremely labor-intensive and thus necessitate the research on

automatic error detection [22] in KGs.

Some recent methods heavily rely on external information to

perform error detection and the error detection performance is

largely dependent on the quality of external information. For exam-

ple, Knowledge Vault [7] estimates a probability score of reliability

to determine the quality of a triple via several prior models fitted

with existing KGs and web contents. The similar concept of judg-

ments for each triple is also applied in CKRL [42] and NKRL [30], in

which the values are called confidences. The former model gener-

ates confidence values for triples via internal structure information

and utilizes them in representation learning to produce robust rep-

resentations, while the latter improves it in the aspect of sample

selection. The authors in [15] propose to learn the confidence in a

supervised manner by measuring correctness at three levels, which

are entity level, relationship level, and KG global level. Different

from these methods, our model proposes to reduce the influence

brought by potentially existing errors in knowledge graphs in the

few-shot scenarios, where errors are more likely to have impacts on

performance since the number of training instances is very limited.

5.3 Few-shot Learning in Knowledge Graphs
Few-shot learning aims to obtain considerable classification per-

formance while using very few training samples for each class. In

general, few-shot learning methods can be divided into two cate-

gories: metric-based models and meta-optimizer-based models. The

former kind targets at learning an effective metric as well as a suit-

able matching function to measure the distance between classes. As

a classic example, Matching Networks [37] output predictions via

the similarity between the query sample and each support sample.

And Prototypical Networks [32] propose to generate a prototype

representation for each class and measure its distance to the query

sample. The latter kind aims to optimize the model parameters via

gradients on few-shot samples to make the model quickly general-

ize to new concepts. Among them, MAML [8] updates parameters

with few gradients and conducts fast learning on new data while

LSTM-based meta-learner [29] learns the step size during training

to optimize the model parameters.

In the field of knowledge graphs, some models are proposed re-

cently for few-shot relational learning. GMatching [43], FSRL [45]

and FAAN [31] propose to handle the challenge in few-shot KG

completion with GMatching focusing on one-shot learning and the

other two models dedicating to deeper model structures with atten-

tionmechanism. Bothmethodsmake use of neighbor information of

entities and output predictions for each few-shot relation. Although

attention mechanism is also utilized in our model, the purposes are

different from previous works. In the cross-relation aggregation,

the attention mechanism is applied within the transformer block to

fully take advantage of correlations between relations. And in the

error mitigation module, the confidence weights can be considered

as attention weights for reducing the impact of errors. MetaR [4]

utilizes meta-learning on this task by extracting relation-specific

meta information and uses it for few-shot relational predictions. ZS-

GAN [27] proposes to make use of generative adversarial networks

[28] to conduct zero-shot relational learning via generating relation

embeddings from texts. It should be noted that previous few-shot

learning works in knowledge graphs only aim at predicting enti-

ties under a given relation while ignoring potential errors during

training. To the best of our knowledge, we are the first to study

error-aware few-shot knowledge graph completion and focus on

the relation prediction which is closer to the real-world scenario.

6 CONCLUSION
In this paper, we study a novel problem of error-aware few-shot KG

completion due to the widely existing errors and the long tail distri-

bution of relations in KGs and present a novel framework REFORM.

We formulate the problem under the few-shot learning framework

and propose to accumulate meta-knowledge across different meta-

tasks to effectively conduct error-aware few-shot KG completion. To

address the associated challenges resulting from insufficient train-

ing samples and inevitable errors, REFORM utilizes three essential

modules: neighbor encoder, cross-relation aggregation, and error

mitigation to perform effective encoding with erroneous neighbors,

capture correlations between relations, and reduce the impacts of

errors during predictions, respectively. Extensive experimental re-

sults on three widely used KG datasets demonstrate that REFORM

outperforms many state-of-the-art baseline methods. Besides, the

ablation study also verifies the effectiveness of each module in the

proposed framework. Toward this newly presented task, there are

still a lot of challenges needed to be addressed in the future. Future

work may consider alleviating the effect of errors in the query set

in meta-training tasks or utilizing external information to further

improve the model robustness against errors.
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