PRUC : P-Regions with User-Defined Constraint

Yongyi Liu
University of California, Riverside
Riverside, California
yliu786@ucr.edu

Amr Magdy
University of California, Riverside
Riverside, California
amr@cs.ucr.edu

ABSTRACT

This paper introduces a generalized spatial regionalization problem,
namely, PRUC (P-Regions with User-defined Constraint) that parti-
tions spatial areas into homogeneous regions. PRUC accounts for
user-defined constraints imposed over aggregate region properties.
We show that PRUC is an NP-Hard problem. To solve PRUC, we
introduce GSLO (Global Search with Local Optimization), a parallel
stochastic regionalization algorithm. GSLO is composed of two
phases: (1) Global Search that initially partitions areas into regions
that satisfy a user-defined constraint, and (2) Local Optimization
that further improves the quality of the partitioning with respect
to intra-region similarity. We conduct an extensive experimental
study using real datasets to evaluate the performance of GSLO.
Experimental results show that GSLO is up to 100X faster than the
state-of-the-art algorithms. GSLO provides partitioning that is up
to 6x better with respect to intra-region similarity. Furthermore,
GSLO is able to handle 4% larger datasets than the state-of-the-art
algorithms.

PVLDB Reference Format:

Yongyi Liu, Ahmed R. Mahmood, Amr Magdy, and Sergio Rey. PRUC :
P-Regions with User-Defined Constraint. PVLDB, 15(3): 491 - 503, 2022.
doi:10.14778/3494124.3494133

PVLDB Artifact Availability:
The source code, data, and/or other artifacts have been made available at
https://github.com/Yongyi-Liu/PRUC.

1 INTRODUCTION

Spatial regionalization is an important problem that aims at parti-
tioning spatial areas into regions based on specific criteria. Spatial
areas assigned to a region need to be spatially contiguous. Spatial
regionalization has been adopted in numerous applications and do-
mains, such as economics, e.g., imbalance in economic development
[44], urban planning [24, 56], e.g., resource allocation in urban con-
struction [24], environmental science [54, 55], e.g., understanding
of environmental patterns in different geographical locations [55].

This work is licensed under the Creative Commons BY-NC-ND 4.0 International
License. Visit https://creativecommons.org/licenses/by-nc-nd/4.0/ to view a copy of
this license. For any use beyond those covered by this license, obtain permission by
emailing info@vldb.org. Copyright is held by the owner/author(s). Publication rights
licensed to the VLDB Endowment.

Proceedings of the VLDB Endowment, Vol. 15, No. 3 ISSN 2150-8097.
doi:10.14778/3494124.3494133

491

Ahmed R. Mahmood

Purdue University
West Lafayette, Indiana
amahmoo@cs.purdue.edu

Sergio Rey
University of California, Riverside
Riverside, California
sergio.rey@ucr.edu

Spatial regionalization has multiple variations that are studied in
the literature [3, 4, 6, 8, 9, 34, 35]. The p-regions problem [15, 17] is
a popular spatial regionalization problem that partitions areas into
p regions while maximizing the intra-region similarity with respect
to a numerical attribute. For example, in urban planning, each area
could be a municipality, and a region is a group of spatial contiguous
municipalities. Maximization of the similarity of household income
among municipalities within regions is an example of the numerical
attribute. One important requirement of spatial regionalization is to
account for user-defined constraints over regions. A typical use case
in urban planning is to partition areas into a predefined number
of regions where the total population of every region exceeds a
specific threshold. Existing variations of the p-regions problem do
not support user-defined constraints, which limit its applicability
to various domains and a plethora of use cases.

In this paper, we formalize a generalized spatial regionalization
problem, namely, PRUC (P-Regions with User-defined Constraint).
PRUC aims to partition a set of areas into a predefined number of
regions p while maximizing the similarity over a specific attribute,
e.g., the household income. In PRUC, each region needs to satisfy a
user-defined constraint on some aggregate attribute, e.g., the total
population of each region needs to exceed a specific threshold.
Table 1 shows 12 spatial areas to be partitioned into regions. In
this example, it is required to partition the areas into three regions
while maximizing the similarity of household income between the
areas within each region. The user-defined constraint is having
population above 500 in each region. Figure 1 shows an optimal
PRUC partitioning that satisfies the aforementioned constraints.

PRUC is a generalization of the p-regions problem. The reason
is that PRUC has the same optimization goal as the p-regions prob-
lem, but it enforces an additional user-defined threshold constraint
on each region. The new input user-defined constraint in PRUC
has introduced several challenges on building initial regions. First,
existing techniques have a high probability, up to 80%, of producing
regions that do not satisfy the input constraint. Second, producing
valid solutions requires significant shuffling of spatial areas among
initial regions so that invalid regions become valid but not the
opposite. This adds a restrictive requirement on the spatial connec-
tivity as regions that are vulnerable to spatial disconnection with
shuffling retain the high probability of producing invalid solutions.
Third, the additional overhead of producing valid solutions inflates
the scalability problem and makes it harder to handle large datasets.

https://doi.org/10.14778/3494124.3494133
https://github.com/Yongyi-Liu/PRUC
https://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:info@vldb.org
https://doi.org/10.14778/3494124.3494133
https://www.acm.org/publications/policies/artifact-review-and-badging-current

Table 1: Area attributes

Area | population | income
al 210 1200
a2 120 1300 n
a3 180 1400 E ﬂ
a4 150 1000 H
a5 120 2500
a6 180 2400
a7 150 2700
a8 160 3000
a9 150 4000
al0 100 4100 Figure 1: Partitioned areas
all 180 4300
al2 180 4500

To address these challenges, we propose an efficient parallel
algorithm called GSLO (Global Search with Local Optimization) to
solve PRUC at scale. GSLO is stochastic and its results may vary on
different runs. GSLO is composed of two phases: (1) Global Search
and (2) Local Optimization. The Global Search phase proposes novel
techniques to find a partitioning that satisfies the user-defined
constraint with high probability of success. The regions grown in
GSLO are robust against spatial disconnection and have a high
probability of surviving the shuffling phase. The shuffling phase
consists of two complementary steps that boost the probability of
success. The Local Optimization phase employs parallel stages that
incrementally improve the quality of the partitioning with respect
to the similarity properties within each region.

There are two main approaches to build partitions, top-down
edge-cut and bottom-up seeding. Top-down edge cut approaches [3,
4] are time-consuming and less flexible. They are time-consuming
because they evaluate the effect of each edge cut on the entire graph
and less flexible because once the edges are cut, there is no following
reassignment of areas to regions to further optimize the objective of
the regionalization. GSLO is a bottom-up seeding-based algorithm
that can efficiently grow regions around seed areas locally, which
breaks down the big problem into several smaller ones. The novel
contributions of this paper are summarized as follows:

e We introduce a generalized spatial regionalization problem,
namely, P-regions with User-defined Constraint (PRUC).

o We show that PRUC is an NP-Hard problem.

e We develop GSLO, an efficient parallel algorithm that solves
PRUC with several novel techniques as follows.

— A general seeding strategy that does not require any
domain knowledge.

— A region growth algorithm that maximizes the flexi-
bility of the assignment of areas to regions.

- Two novel complementary inter-region shuffling
strategies that increase the ability of finding a feasible
solution.

— Heuristic search strategies to speed up optimizing the
final solution and provide region-level parallelization.

e We conduct an extensive experimental evaluation using
real datasets.

492

Our extensive experimental study shows that GSLO runs up to
100x faster, achieves up to 6X better solution quality, and scales up
to 4% larger datasets than the state-of-the-art algorithms. The rest
of this paper is organized as follows: Section 2 presents the related
work on spatial regionalization. Section 3 defines the problem, and
Section 4 proves it is an NP-hard problem. Section 5 details our
proposed algorithm GSLO. Section 6 analyzes the complexity of
GSLO. Section 7 presents an extensive experimental evaluation and
Section 8 concludes the paper.

2 RELATED WORK

Spatial regionalization [3, 4, 8, 9, 14, 16, 27, 34] refers to the problem
of grouping spatial areas into multiple regions that are spatially con-
tiguous. There are several variations of the spatial regionalization
problem. The p-regions problem [15] finds p regions that maximize
the similarity between areas within a region. The p-compact regions
problem [35] finds p regions that maximize the spatial compact-
ness. The max-p regions problem [14] computes a maximal-sized
partitioning that maximizes the similarity between areas within
a region. PRUC is a generalization of the p-regions problem that
enforces user-defined constraints.

Traditional clustering algorithms, e.g., k-means [37], are not
directly applicable in spatial regionalization problems, as they are
mainly designed for points rather than polygons and they do not
enforce spatial contiguity that is required in spatial regionalization.
Some techniques have tried to adapt them for regionalization in
different contexts [18, 40, 51]. However, the lack of enforcing spatial
contiguity constraints early in the algorithm makes it harder to scale
for large datasets. To this end, the following approaches have been
proposed to address spatial regionalization: (1) linear programming,
(2) graph partitioning, and (3) seeding.

Duque et al. [15] transforms a spatial regionalization problem
into a mixed integer programming (MIP) problem that can be
solved using software package such as CPLEX [12]. However, this
approach works only for tiny datasets. Hence, this approach is not
suited to address PRUC over large inputs.

Graph-partitioning is used in SKATER [3] and SKATER-
CON [4] as the state-of-the-art techniques to address the p-regions
problem. In this approach, graph nodes represent spatial areas and
edges connect spatially contiguous areas. In SKATER, a minimum
spanning tree (MST) is computed from the graph. The MST is then
split into p subtrees, each corresponding to one of the p regions.
However, the greedy approach adopted in MST generation results
in suboptimal regions with low quality. Also, SKATER is computa-
tionally expensive and cannot handle large inputs. SKATERCON [4]
enhances SKATER by generating multiple random spanning trees
(RST). SKATER is then applied to all RSTs to generate multiple
regionalization results. The different results are combined into a
single solution using a consensus-based method [26]. SKATERCON
is slower than SKATER, and cannot handle large inputs. Neither
SKATER nor SKATERCON can be directly applied to solve PRUC
as they do not support user-defined constraints.

Seeding is an important category of spatial regionalization al-
gorithms. In seeding, multiple spatial areas are chosen as seeds for
spatial regions. Then, regions grow around seeds by incrementally
adding neighboring areas. REGAL [9] and SPATIAL [8] are two

seeding algorithms that have been tailored to solve the school re-
districting problem, so they cannot be used to solve PRUC. The
reason is that they do not support general user-defined constraints.
MERGE [35] is a seeding framework for solving the p-compact
regions problem. However, MERGE cannot be used to solve PRUC
as it is tailored to the p-compact regions problem and does not
support user-defined constraints as well.

Recently, parallelization has been adopted to speedup spatial
regionalization algorithms. Laura et al. [33] introduced a parallel
algorithm to solve the p-compact-regions problem. Also, Sindhu
et al. [48] used a parallel algorithm to address the max-p regions
problem. Similarly, GSLO is a parallel algorithm to make the best
use of multi-core environments.

3 PROBLEM DEFINITION

In this section, we give a formal definition of PRUC. Table 2 sum-
marizes the notations used throughout this paper. Spatial region-
alization is the problem of partitioning spatial areas into non-
overlapping regions while satisfying specific constrains. An area,
say a, is a spatial polygon that is represented by a set of geographi-
cal coordinates, i.e., longitude and latitude. Two areas are neighbors
if they share a common border. The list of neighbor areas of an
area, say a;, is represented as a;.NBR4.

A region, say r, is a set of spatially contiguous areas {a;, a;
, ...;. Each r has a unique identifier r.id. Figure 1, shows spatial
areas that are partitioned into regions, where areas having the
same color constitute a region. Each spatial area is associated with
numerical attributes, e.g., population and household income as
shown in Table 1. We denote the attribute used to quantify the
similarity among areas as the similarity attribute, i.e., a;.sim. For
example, in Figure 1, the average household income of an area is
the similarity attribute. This attribute is used to group areas into
regions having similar household income. We call the attribute
used in region constraints the extensive attribute. The extensive
attribute of an area, say qj, is represented as a;.ext. In Figure 1,
aj.ext is the population. For example, aj.ext = 210. The region
to which an area, say a, belongs to is termed a.r. The aggregate
extensive attribute of region r is represented as r.ext, that is defined
as the sum of the extensive attribute over all the areas in the region.
In Figure 1, the extensive attribute of the green region refers to the
total population of this region, which is computed as ryreen.ext =
as.ext + ag.ext + ay.ext + ag.ext = 610.

The set of neighbor areas of a region r, i.e., r.NBRy4, is defined as
the set of areas that do not belong to r and are neighbor to at least
one area in r. In Figure 1, r,.q.NBR4 = {as, a¢, a7, ag}. Formally,

r.NBRy = {a|3a;(aj.r =r.id A a.r # aj.r Aa; € a.NBRy)}

The set of neighbor regions of an area, i.e., a.NBRR, is defined
as the set of regions that have at least one area a; within the region
that is a neighbor area of a. In Figure 1, the neighbor regions of ag

= {rred> plue }- Formally,
a.NBRg = {r|3ai(aj.r =r.id A a.r # r.id A aj € a.NBRy)}

The set of margin areas of a region, say r, is defined as the set
of areas that have at least one neighbor area that belongs to a
neighbor region or is unassigned. In Figure 1, all of the areas in
T'rveq are margin areas because they have at least one neighbor area

493

that belongs to a neighbor region. Formally,
r.margin = {ala.r = r.id A Ja;(a; € a.NBRg A aj.r # a.r)}

An area is considered an articulation area if removing this area
disconnects its region, i.e., areas of the region are not contiguous.
The set of articulation areas in r is represented as r.art. In Figure 1,
Ired-art = {az, as}, since removing any of them breaks the region’s
contiguity.

A user-defined constraint is a numerical constraint that all
regions must satisfy. In Figure 1, the user-defined constraint is that
the aggregate population of each region must be at least 500. A re-
gion is incomplete if it does not satisfy the user-defined constraint
and complete if it does.

A partition, say P, of a set of areas is the set of regions
{ri,r2, ..y rp} that includes all areas. Each area belongs to only one
region. P is feasible if all its regions are complete, i.e., satisfy the
user-defined constraint.

Heterogeneity is inversely proportional to the similarity among
areas. The heterogeneity of a; and a; reflects the degree of dissimi-
larity between a; and a; and it is defined as the absolute difference
between the similarity attribute of the two areas:

h(ai, aj) = |aj.sim — aj.sim|

For example, in Figure 1, the similarity attribute is the average
household income. h(ay, az) = |ay.sim — az.sim| = 100. The hetero-
geneity of a region, say r, is defined as the heterogeneity sum of all
pairs of areas in r:

2

h(r) = h(ai,aj)
Vi<j,aj.r=aj.r=r.id

In Figure 1, h(rpeq) = h(a1, az) + h(ai, as) + h(a1, a4) + h(az, as) +
h(ag, as) + h(as, as) = 1300. The heterogeneity of a partition h(P)
is defined as the sum of the heterogeneity of all the regions:

h(P) = Z h(r)
VreP
In Figure 1, h(P) = h(ryeq) + h(rgreen) + h(rpye) = 5000.
A good partition has low heterogeneity and high intra-region simi-
larity.

PRUC Problem. P-Regions with User-Defined Constraint
(PRUC) problem is formally defined as follows: Given: (1) A set
of n areas: A = {ay, ay, ..., an}. (2) An integer p. (3) A threshold T.
PRUC finds a partition of regions P = {ry, ra, ..., rp} of size p, where
each region r; is a non-empty set of spatially continuous areas,
|ri] > 1, so that: (i) r; Nrj = ®,Vri,rj € PA i # j, ie., all regions
are disjoint. (ii) Ujl.’zl ri = A. (iii) rj.ext > T. (iv) The heterogeneity
of P, h(P), is minimum.

4 NP-HARDNESS OF PRUC

In this section, we provide a proof for the NP-hardness of PRUC
problem using a reduction from the Node-attributed Spatial Graph
Partitioning (NSGP) problem [6]. NSGP is an NP-Hard problem that
aims to partition a node-attributed spatial graph into k subgraphs.
The number of nodes in each subgraph must exceed a specific
threshold. The nodes of this graph represent spatial locations and
each node has an associated set of attributes. The objective of the
NSGP is to minimize the heterogeneity of the generated subgraphs

Table 2: Summary of Notations

Notation Description
n The number of areas
p The number of regions
A A set of areas
a A spatial area
P A partition
e An enclave area
s A seed
r A region
a.r The region that a is assigned to
a.ext The extensive attribute of area a
a.sim The similarity attribute of area a
r.margin The margin areas of r
r.art The articulation areas of r
NBRy Neighboring areas
NBRr Neighboring regions
h() Heterogeneity
c(r) The number of areas in r
hi(a,r) Heterogeneity increase of a to r
conn(a,r) connectivity of a to r
MBDRY((r1,rz) | movable boundary between rq and ry

and the number of edges with endpoints belonging to different
subgraphs.

Let X be an instance of NSGP problem and X = (A, E, N, k, s, g)
where A is the set of spatial areas, E is the set of neighborhood
relations, N is the set of node attributes, k is the number of sub-
graphs, s is the minimum number of nodes in a subgraph, and g
is the optimization goal of NSGP. Let Y be an instance of PRUC
problem and Y = (A, p, T, f) where A is the set of spatial areas,
p is the predefined number of regions, and T is the user-defined
threshold. f is the optimization goal of PRUC. We make f to be
the same as g (Note that changing the optimization goal in PRUC
would not affect the way it works). We set the extensive attribute of
each area in A to 1, and set p equal to k in the NSGP problem. Thus
X is a special case of Y, and we construct Y from X in polynomial
time, hence the proof.

5 PROPOSED SOLUTION

We introduce Global Search with Local Optimization (GSLO), a two-
phase algorithm to efficiently address PRUC. The Global Search
phase aims to find a feasible partition. Local optimization aims
to further improve the heterogeneity over the partition without
violating the user-defined constraint.

5.1 Global Search

The Global Search phase aims to find a feasible partition with high
probability of success. This phase is divided into the following steps:
Seed Identification, Region Growth, Enclaves Assignment, Inter-
region Update, and Indirect Flow Push. Each step is optimized to
increase the probability of successfully finding a feasible partition.
The rest of this section details each step.

494

5.1.1 Seed Identification. A seed, say s, is a set of p areas, i.e,
s = [az1, ...ap]. Regions incrementally grow by attaching unassigned
neighbor areas to the seed areas. The seeding-based regionaliza-
tion literature [8, 9, 14, 33-35, 53] either selects seed areas ran-
domly [14, 33-35, 53] or selects the seed areas manually according
to problem-specific guidelines [8, 9]. In this section, we propose a
general seeding method that does not require any domain knowl-
edge. Having seed areas close to each other can restrict the growth
of regions and increase the probability of failure. Hence, the ob-
jective is to select a seed whose areas are scattered. The distance
between a; and a; refers to the euclidean distance between the
centroids of a; and a; and is represented as dist(a;, aj). The qual-
ity q(s) of a seed s is defined as the minimum euclidean distance
between the centroids of all pairs of areas in s.

min

dist(a;, aj)
a;EsAajEsNi#]

q(s) =
The objective is to maximize g(s). First, p areas are selected ran-
domly as the seed. The pair of seed areas having the least pair-
wise distance, say (a;, aj), is identified. Then, an area that does
not belong to the seed is chosen at random to replace one of the
areas (a;, aj). The replacement takes place only when there is im-
provement in g(s). The last step is repeated m times, where m is a
user-defined parameter.

The above Seed Identification algorithm assumes no islands
present in the dataset, i.e., there is only one connected component.
To support datasets with islands, first, we run a graph traversal
algorithm on the spatial neighborhood graph to detect different
connected components. We then compute the total extensive at-
tribute on each connected component. If the total extensive attribute
of any island is less than the user-defined constraint value, then the
current user-defined constraint cannot be solved. Otherwise, the
connected components are sorted in ascending order according to
their total extensive attribute, i.e., V0 < i < j < C, ccj.ext < ccj.ext,
where C is the number of connected components, cc; is the ith com-
ponent, and cc;.ext is cc;’s extensive attribute. Starting from cc, for
each component cc;, we put a number of seed areas proportional
to the ratio of cc;.ext divided by the total extensive attribute of the
whole input, where at least one seed area is placed in each com-
ponent cc;. In each connected component, we perform a number
of iterations that are proportional to its number of seed areas to
scatter seed areas in space as described above.

The Seed Identification phase aims to find spatially scattered
seed areas. There are several metrics that can be used to quantify
seed quality, i.e., scatteredness of the seed, e.g., sum of pairwise
distance or minimum pairwise distance between seed areas. We
choose minimum pairwise distance between seed areas as it guar-
antees that no pair of seed areas are close to each other. Other
metrics may result in nearby seed areas that restrict region growth.
Figure 4 shows that as the seed quality monotonically increases,
the heterogeneity of the partition improves and converges to an
optimal value.

Complexity analysis. Seed identification performs m iterations
to improve the seed quality. The number of seed areas is p, each
iteration takes O(p?) time, which gives a total time of O(mp?).

REMARK 5.1. Time complexity of Seed Identification is O(mp?).

a3 a4
a5 = a7 ﬂ
a6
a9 al0
al2

(a) Before Region Growth

(b) After Region Growth

Figure 2: Region Growth

5.1.2 Region Growth. After the Seed Identification step, the seed
areas become the initial p regions that will subsequently grow. A
growing step of a region, say r, adds one of the unassigned areas
from neighbor areas, i.e., r.NBR4 to r. A region r stops growing
when: (1) r satisfies the user-defined constraint, i.e., becomes a
complete region, or (2) all the neighbor areas of r are assigned to
other regions. If the user-defined constraint is not met for a region,
the region is marked incomplete. The region with the least extensive
attribute is chosen for each growing step in order to achieve a
balanced distribution on the extensive attribute over each region.

Having many articulation areas in regions restricts the movement
of areas across regions. This hinders the ability to find a feasible
partition or the refinement of the partition in Local Optimization. So,
amain objective of this step is minimizing the number of articulation
areas in the partition. We define the robustness of a region, say r, to
be the number of areas in its margin, i.e., r.margin divided by the
number of articulation areas in r.margin. The greater the robustness
of a region, the less likely r becomes disconnected while attempting
to move an area to the neighbor region.

Region Growth algorithm grows regions while attempting to
increase their robustness. A basic approach would be to iterate over
all the unassigned areas of r.NBR4 and choose the area that gives
the greatest increase in the robustness of r. However, identifying
the articulation areas for every growing step is rather expensive.
To this end, we adopt an approximate approach to find areas to be
added to regions that improves the robustness of regions. We define
the connectivity between a region r and an area a as the number
of neighbor areas of a that belong to r.

conn(a,r) = |{ajla;.r =r.id A a; € a.NBRy}|

Region Growth algorithm grows a region, say r, by choosing
the neighbor area, say a, that has the greatest connectivity, i.e.,
conn(a,r). We call this area a,p,s;. Ties are broken arbitrarily.

Region Growth phase aims at building robust regions that pro-
vide reassignment flexibility rather than focusing only on hetero-
geneity. Region robustness is achieved by reducing the number of
articulation areas. So, the region sustains its spatial connectivity
even after moving areas to another region. This allows flexibility in
area reassignments across regions in subsequent phases of GSLO,
and leads to improved effectiveness and heterogeneity.

Figure 2 illustrates the Region Growth. Figure 2(a) illustrates the
initial seed from the Seed Identification step. Figure 2(b) shows the

495

regions after Region Growth. There are no articulation areas in any
region. Hence, all regions have great robustness.

Complexity analysis. The Region Growth phase incremen-
tally grows the regions from the seed areas. Assume c(r) denotes
the number of areas in region r, and r’ denotes the region that
is selected to grow in the it iteration. In each iteration, retriev-
ing the region with the minimum r.ext takes O(p). For a growing
region r, we need to evaluate all its unassigned neighbor areas.
Spatial neighborhood relations of areas are represented with a pla-
nar graph where nodes are areas and an edge exists between any
pair of neighbor areas. Since the average degree of the vertices in a
planar graph is strictly less than six [50], this implies: (i) the size
of r.NBR4 is O(6¢(r)) = O(c(r)), and (ii) computing conn(a,r),
for a € r.NBRy, is O(1). Meanwhile, computing the heterogeneity
increase of a to r requires time O(c(r)) because we need to com-
pute the heterogeneity between a and all areas in r. Consequently,
in each iteration, growing a region r takes time O(c(r)) + O(p).
Region Growth phase performs in total O(n) iterations, each adds
an area to a region. Then, the total runtime of Region Growth
phase is (X1, O(c(rh)) + O(p)), where 1 < c(r’) < n, which is
0(n?) + 0(np) = O(n?).

REMARK 5.2. Time complexity of Region Growth phase is O(n?).

5.1.3 Enclaves Assignment. After the Region Growth step, some
areas may remain unassigned. The reason is that Region Growth
of a region terminates when it satisfies the user-defined constraint.
This can prevent some areas from being assigned to regions. We
name the remaining unassigned areas enclaves. In Enclaves Assign-
ment, all enclaves are identified and processed one by one. The
intuition of Enclaves Assignment is rather straightforward. An
enclave area is assigned to a region that minimizes heterogeneity
increase to keep the overall heterogeneity score at its minimum
level before the Local Optimization phase. If an enclave, say a, is
surrounded by only enclaves, it can not be assigned to any neighbor
region at this moment. The assignment of a is delayed until some
or all surrounding enclaves have been assigned to regions. If a is
surrounded by one or more complete regions, we assign this enclave
to the region with the minimum heterogeneity increase [14].

Complexity analysis. In Enlaves Assignment, there are v en-
claves, v < n. Retrieving the next enclave to process takes O(v).
Processing each enclave is O(n), in the worst case, to compute het-
erogeneity increase to all neighboring regions. This gives time
complexity O(v + n) for processing a single enclave, which is
O(v * (v +n)) = O(v? +vn) for v enclaves. As v < n,ie., v = O(n),
the phase complexity is bounded by O(n?) in its worst case.

REMARK 5.3. Time complexity of Enclaves Assignment is O(n?).

5.1.4 Inter-region Update. After the Enclaves Assignment step,
all areas are assigned to regions. However, incomplete regions, i.e.,
regions that fail to satisfy the user-defined constraint, might still
exist. This step attempts to render all regions complete by moving
some areas from complete regions to neighbor incomplete regions.
First, incomplete regions are identified and added to a queue. Then,
for every incomplete region r;, all its complete neighbor regions are
identified. The Inter-region Update algorithm attempts to make r;
complete by moving an area a from one of /s complete neighbor
region to r;. The region that donates an area is called r4,,,,, and the

region that receives that area is called rreceier- A move is defined
as a triple (a, Tgonor » Treceiver)-

For a given rj,po, and a given rreceiver, Area a from r gy, is
movable if it satisfies all the following properties:

e aisnot an articulation area for r 3,0, 1.€. @ & T'gonor-art.
e ais aneighbor area of rreceiver, 1-€., a € rreceiver- NBRA.

The articulation areas of a region are identified using Tarjan al-
gorithm [45] to speedup excluding invalid moves that cause spatial
disconnection. The above conditions do not prevent moves that
switch complete regions to incomplete regions, which is an incorrect
switch. However, this gives more flexibility and higher scalability
to this step to fill incomplete regions. In case this incorrect switch
happens for some regions, they are switched back to complete re-
gions in the following step that indirectly flow extra areas from
complete regions to all other incomplete regions.

Algorithm 1 describes the Inter-region Update step. In each iter-
ation, we dequeue an incomplete region and consider it as rreceiver-
If rreceiver does not have a complete neighbor region, then we add
the rreceiver back to the queue to be processed later. Otherwise,
the rreceiver’s complete neighbor regions are sorted based on the
extensive attribute in descending order. Suppose the sorted com-
plete neighbor regions are {rq, rp, rc, ...}, we attempt to consider
neighbor region with largest extensive attribute r, as the rg,p,,, and
try to find the movable area from 7,0, tO r'receiver that has the
largest extensive attribute. If the list of movable areas is empty, then
we turn to the region with the second-largest extensive attribute ry,
and so on. If no movable area is found among all the complete neigh-
bor regions, then we put the current ryeceiver back to the queue
to be processed later and start the next iteration. If rreceiver is still
incomplete after the move, then we add ryeceiver back to the queue.
If 7gonor becomes incomplete after the move, then we add 7,0,
to the queue as well. This procedure is repeated until a feasible
partition is found or the maximum of n iterations allowed has been
exhausted without finding a feasible partition.

Complexity analysis. In each iteration, for an incomplete region
r, retrieving neighbor regions is O(c¢(r)) = O(n) and sorting them
is O(plogp). Applying Tarjan algorithm takes O(c(r)+e(r)), where
e(r) denotes the number of edges within a spatial neighborhood
graph G for region r’s areas. As region r is also a planar graph, it
has e(r) < 3c¢(r) — 6 [50], so e(r) = O(c(r)), and applying Tarjan
algorithm is O(c(r)) = O(n). Moving an area a from a donor region
r’ to a receiver region r takes O(c(r) +¢(r’)) = O(n) time to locate
a and compute heterogeneity changes of r and r’. The same applies
if multiple donor regions are explored. Then, the runtime of a single
iteration is O(plogp + n). For n iterations, the overall complexity is
O(n? + nplogp).

REMARK 5.4. Time complexity of Inter-region Update is O(n® +
nplogp).

5.1.5 Indirect Flow Push. If there are remaining incomplete re-
gions after Inter-region Update, then Indirect Flow Push is adopted
to attempt transforming these regions into complete. In Inter-region
Update, after an incomplete region r; is converted to a complete
region, it might serve as a donor region for some other incomplete
neighbor region since it has now become complete. However, mov-
ing an area from r; to its neighbor incomplete regions would likely

496

Algorithm 1: Inter-region Update

Input: R : regions
maxiter : the maximum number of attempts
Output: a feasible partition or FAILURE

incomplete-rs = new queue()
fori=0topdo
if R[i] is incomplete then
| incomplete-rs.enqueue(R[i])
for i = 0 to maxiter do
if incomplete-rs is empty then
| return R
Treceiver = incomplete-rs.dequeue()
if rreceiver does not have complete neighbor region then
| incomplete-rs.enqueue(rreceiver)
else
donors = all rreceiver s neighbor complete regions
while donors is not empty do
T'donor =T With max r.ext from donors
a = movable area from rg,,,, that has the largest
extensive attribute
if a is not null then
move a from rgonor 10 I'receiver
if rgonor is incomplete then
| incomplete-rs.enqueue(rgonor)
break
else
| donors.remove(rgonor)
if rreceiver is incomplete then

| incomplete-rs.enqueue(treceiver)
return FAILURE

to make r; incomplete again because the extensive attribute of r;
is just above the threshold. In this case r; is converted back to in-
complete again. Those incomplete regions could frequently change
status between complete and incomplete. This makes it hard for all
the incomplete regions to become complete regions. We call this
phenomena the chained-flipping problem.

We propose Indirect Flow Push to solve the chained-flipping
problem. This phase is entered only if Inter-region Update does not
find a feasible partition. The chained-flipping problem is caused
by starting from incomplete regions and borrowing areas from
neighbor complete regions. In Indirect Flow Push, instead of starting
from incomplete regions and borrowing areas from the neighbor
complete regions, we start with the complete regions with the largest
extensive attribute and push its margin areas to neighbor regions
that need them.

The partition of regions is considered as a flow network where
regions are considered as nodes and extensive attribute is consid-
ered as flow. We push the flow through the network to ensure that
there is a balanced distribution of extensive attribute over the re-
gions. Each region in the flow network is assigned a state from the
following:

o Unprocessed (UP): This is the initial state of a region. This
region has at least two neighbor regions that it could donate
areas to or receive areas from.

o Exhausted-incomplete (EI): This is an incomplete region hav-
ing only one neighbor region that it can donate areas to or
receive areas from.

Exhausted-complete (EC): This is a complete region having
only one neighbor region that it can donate areas to or
receive areas from.

Processed (P): This is the final state of a region. This region
cannot donate or receive other areas.

Algorithm 2: Indirect Flow Push
Input: R : set of regions
Output: a feasible partition or FAILURE

while exists incomplete region do
if exists UP region then
| rselect = UP region with max r.ext
else
Iselect = EC region with max rext

if rgplect is null then

| return FAILURE
RSEc = EC regions among rsejecs NBRR

while RSgc is not empty do
rg =r with maxr.ext from RSgc
Apest = best area from MBDRY (g, Tselect)
if ap.g; is null then
| rg.status =P
else
\ move apeg; from rg 10 Tselect
RSEr = El regions among rsejec; NBRR
while RSg; is not empty do
rs =r with minr.ext from RSgy
Apest = best area from MBDRY (rgeppects T's)
if ap.g; is null then
| return FAILURE
else
Move Apegy frOM Fgepecr 10 Ts
if r is complete then
| rg.status =P
RSyp = UP regions among rgeject-NBRR
while RSyp is not empty do
rs =r with minr.ext from RSyp
Apest = best area from MBDRY (FgepectsT's)
if apeg; is null then
| RSyp.remove(rs)
else

| move apegy from reepecr t0Ts
Tselect-Status = P
return R

Initially, all the regions are labeled as UP. Notice that regions
with only one neighbor region are labeled as EC or EI according to
their satisfaction of the user-defined constraint. The Indirect Flow
Push step keeps track of all incomplete regions. At any stage, if the
partition no longer contains incomplete region, this step terminates.

We define the movable boundary between r and ro MBDRY(r1,r2)
to be the set of areas A where each area a in A needs to satisfy the
following properties:

e a belongs to rq , i.e., a.r = ry.id, and neighbor to ry, ie.,
a €ry.NBRy.

497

El region receives an area that introduces
new NON-P neighbors

\y

num of an incomplete UP region's NON-P
neighbors = 1

wnu
Cc
v
3

| = siogybau
d-NON s,uoibai dn a1a|dwod e jo

219{dWwod S8W09q pue Baie Uk SaA@Ia1 uoibal |3

EC region is selected and terminates processing, @
or EC region is a neighbor of the selected region

and terminates processing

Figure 3: The states of regions in Indirect Flow Push

e Removing a from r; would not make ry incomplete, i.e.,
ri.ext — a.ext > threshold.
e qis not an articulation area for ry, i.e., a & ry.art.

In this phase, for a given MBDRY(ry,rz), the best area in
MBDRY (r1,r2) to move from r; to rz is defined as the area ap,s;
that maximizes conn(apegs, r2) — conn(apes;, r1)- Ties are broken
arbitrarily. The area chosen to be moved from r; to rp has the most
connections to areas in rp compared to ri. Notice that this move
may not result in the best heterogeneity improvement because the
objective here is to ensure high robustness of regions. This allows
areas to move without disconnecting regions.

Then, in each iteration, if there are UP regions, we select the
UP region with the largest extensive attribute to be processed and
name it as rseje¢;- If there are no UP regions but EC regions, then
we choose the EC region with the largest extensive attribute. If there
are no UP or EC regions while having incomplete regions, then
GSLO fails to identify a feasible partition of the input areas.

Algorithm 2 describes Indirect Flow Push and proceeds as fol-
lows: In each iteration, if rgej0c; has EC neighbor regions, we select
the EC neighbor region with the largest extensive attribute, say
rg and we compute MBDRY (ry, 'seject). If MBDRY (rg, select) is
empty, then r is transformed to P. The reason is that ry is complete
and cannot afford to donate any other area. Otherwise, we move
Apest from 7 10 rseecs- If Tselecr has EI neighbor regions, we take
the EI neighbor region with the least extensive attribute, say rs and
we compute MBDRY (Fgejecss V's). If MBDRY (Fgpjecss T's) is empty,
and ry is still incomplete, then the last chance of making rs; com-
plete has been exhausted. In this case, Indirect Flow Push step fails.
Otherwise, we move apeg; from reppec; to rs. If rg becomes complete
after this move, then rg is transformed into P. Notice that when the
EI neighbor region receives an area from rg,j,¢;, One or more new
NON-P neighbor regions of this EI region might be introduced. If
this is the case, this EI region converts to UP as it now has two
or more NON-P neighbor regions. If rs,j..; does not have any EC
or EI neighbor regions, then we choose the UP neighbor region
with the least extensive attribute, say r{, where MBDRY (¥sejects 4)
is not empty. If no movable area is found after all the neighbor UP

regions are exhausted, rsejec; converts to P. If MBDRY (rgejecss e)
is not empty, we move apeg; from repjecs to rs.

For a given rgejecs» We give priority to EC and EI neighbor regions.
This is the only opportunity for these regions to exchange an area
with rgejecs. For a neighbor EC region, we move the EC region’s
margin areas to rgeje.; until any further move would disconnect
the EC region or make the EC region incomplete. This is because we
want the total extensive attribute of this region to be just above the
threshold. After the processing of r¢,jec, all the redundant extensive
attribute in this EC neighbor region would become stagnant, as this
EC neighbor region will convert to P. For an EI neighbor region,
Tselect 1S the last opportunity to make it complete. Once rgpject
finishes processing, the EI neighbor region will not have a chance
to exchange an area with its neighbor regions. EI region is converted
to P once it becomes complete. We can think of areas within regions
as flow that is being pushed from regions that have high extensive
attribute to regions that have low extensive attribute. The state
diagram of the Indirect Flow Push step is shown in Figure 3.

Complexity analysis. It takes O(p) to find the neighbor re-
gion 7 that has either the minimum or the maximum extensive
attribute. Then, computing MBDRY (r,7), using Tarjan algorithm,
takes O(c(r)). Filtering out all the areas in r that make r incomplete
when removed or not in 7.NBR 4 also takes O(c(r)). Last of all, eval-
uating conn(a,r) and conn(a,r) for the remaining areas that takes
O(c(r)), since there are (c(r)) areas in the boundary and comput-
ing conn(.) is O(1) due to the average constant degree of anode in a
spatial neighborhood graph, which is a planar graph. Also, comput-
ing the heterogeneity variation on r and r takes time O(c(r) +¢(7)).
Therefore, each move takes O(c(r) + ¢(7)) + O(p) = O(n). Each
area could be moved at most O(p) times because an area never
has a chance to be moved back to the same region where it comes
from and there are in total n areas. Consequently, the overall time
complexity of Indirect Flow Push is O(n)O(np) = O(np).

REMARK 5.5. Time complexity of Indirect Flow Push is O(n’p).

5.2 Local Optimization

If a feasible partition is found in the Global Search phase, Local
Optimization is applied to further improve the heterogeneity over
the partition. Most regionalization algorithms [8, 9, 14, 34, 35, 53]
include an optimization phase that improves the objective function
by changing the membership of the border areas of the regions using
heuristic searching strategies. Some regionalization algorithms [8, 9,
14] perform an extremely expensive exhaustive search of all possible
reassignments of border areas just to pick only one reassignment
step. This makes it hard to use on large datasets.

The Local Search in [53] has superior performance for the fol-
lowing reasons: (1) Local Search identifies movable areas instead of
all the possible moves, (2) Local Search does not recalculate a new
set of movable areas until the previous list has been exhausted. This
makes Local Search efficient in improving the overall heterogeneity
of the partition without performing extremely expensive computa-
tions that do not scale up for large data. An area a within region r
is movable if: (i) a is on the margin of r, (ii) a is not an articulation
area of r, (iii) r remains complete after the area a is removed. In each
iteration, all the movable areas are put into a list. A random area
is chosen to be moved to the neighbor region with the minimum

498

heterogeneity. If the move decreases the heterogeneity over the cur-
rent partition, then the move is accepted. Otherwise, the acceptance
of the move is determined by the Boltzmann probability [31]. After
a move is performed, all the areas belonging to the donor region
and the receiver region are removed from the list. The heuristic
does not identify the movable areas again unless the list of movable
areas has been exhausted.

We further extend this heuristic to speed up the searching pro-
cess and improve the optimization goal. First, for each selected
movable unit, we reassign it to the neighboring region that results
in the minimum heterogeneity increase instead of the neighboring
region that has the minimum heterogeneity. Second, we parallelize
Local Search by searching for movable areas of regions concurrently.
Third, we adopt Tarjan algorithm [45] to find all the articulation
areas that are not allowed to move. These improvements lead to
100x faster search in Local Optimization.

Complexity analysis. In Local Optimization, parallelly locating
all the movable areas using Tarjan algorithm from each region takes
Zf:l O(':(Tri)) = O(#) where T is the number of threads available
in the parallel environment. After each move, areas from donor and
receiver regions are removed from the list. So, on average, ‘% moves
are performed. For each move, computing the heterogeneity change
and selecting receiver region for reassigning area a in a.NBRp, takes

time Z,!Z'INBer c(ri) = O(n). Consequently, each move attempt
takes time O(n) + O(%)/% = O(n). So, the overall runtime of
Local Optimization is «O(n), where « is the number of total move

attempts and O(n) is the cost for each move attempt.

REMARK 5.6. Time complexity of Local Optimization is O(an).

6 COMPLEXITY ANALYSIS

This section gives time and space complexity of GSLO. According
to Remark 5.1, Remark 5.2, Remark 5.3, Remark 5.4, Remark 5.5,
and Remark 5.6, the overall time complexity of GSLO is O(n?p +
mp? + an), where « is the actual number of move attempts in the
Local Optimization and m is the maximum number of iterations
during Seed Identification. The value of « is mainly affected by the
number of iterations in Local Optimization (ILO), i.e., the maximum
number of non-improving moves allowed. Empirically, the value of
a is 1-2 orders of magnitude of ILO parameter value (Table 3).

The space complexity of GSLO is O(n). The input stores each area
and its corresponding attributes, i.e., extensive attributes, similarity
attributes, marginal coordinates and etc, which takes O(n) storage.
GSLO stores the neighbor areas of each input area. Since the spatial
neighborhood is a planar graph, the number of neighbors is strictly
less than six [50]. Consequently, storing the neighbors takes 6 =
O(n) = O(n) space. On the region level, for each region r, we
need to store r.margin and r. NBRy4. Note that Zle ri.margin =
O(n) and Zf: ri.NBR4 = O(n). Consequently, the overall space
complexity of GSLO is O(n).

7 EXPERIMENTAL EVALUATION

In this section, we present extensive experimental evaluation to
demonstrate the efficiency of GSLO. We use the following datasets:
(1) TIGER shapefile dataset [10], and (2) Health, Income and Diver-
sity dataset [19]. The TIGER dataset is a real dataset of the census

tracts of individual states within the United States [10]. Each item in
the TIGER dataset is a spatial polygon of census tract with multiple
numerical attributes. The size of the dataset used in the experi-
ments ranges from 2k to 40k spatial polygons, which is an order of
magnitude larger than any dataset used in evaluating regionaliza-
tion to the best of our knowledge. In our experiments, we consider
the ALAND, which represents the current land area of a census
tract, as the extensive attribute. Also, we consider AWATER, which
represents the current water area of a census tract, as the similarity
attribute.

The Health, Income and Diversity dataset [19] has 3k elements.
Each item in this dataset is a county within the United States
that is associated with multiple numerical attributes. We consider
cz_pop2000 as the extensive attribute and it represents the popula-
tion of U.S. counties. We consider ratio as the similarity attribute and
it represents each county’s median income divided by the state’s
median income. For both datasets, all the island areas are removed.
All experiments are based on Java 14 implementation using an Intel
Xeon(R) server with CPU E5-2637 v4 (3.50 GHz) and 128GB RAM
running Ubuntu 16.04. Table 3 summarizes the parameters used
throughout the experimental evaluation. The bold values indicate
the default setting for each parameter.

Our evaluation metrics are: (1) heterogeneity, (2) runtime, and
(3) effectiveness, i.e., the probability of finding a feasible partition.
The heterogeneity is calculated as the mean value from feasible
partitions. If no feasible partition is generated among all the runs,
then the heterogeneity is represented as inf. The number of runs
in all experiments is 100 except for that the number of runs in the
scalability test is 10 to avoid extremely long experimentation time.

We compare GSLO against four alternatives: (1) SKATER [3],
(2) SKATERCON [4], (3) GS, and (4) Greedy. SKATER and SKATER-
CON are the state-of-the-art algorithms for the p-regions problem.
GS is GSLO without Local Optimization. Greedy is a greedy base-
line algorithm that proceeds as follows: (i) randomly select p seed
areas, (ii) select the region with the least extensive attribute to grow
by adding a neighboring area that results in the minimum hetero-
geneity increase, (iii) regions stop growing once the user-defined
constraint has been satisfied or there are no neighboring areas,
(iv) enclaves are assigned similar to GSLO.

Notice that SKATER and SKATERCON cannot directly solve
PRUC because they do not consider user-defined constrains as de-
scribed in Section 2. We modify SKATER and SKATERCON into
SKATER* and SKATERCON?, respectively, to allow them to solve
PRUC. SKATER* changes the tree-partitioning phase in SKATER
as follows: The edge selection in SKATER™ adopts the edge selection
from SKATER. However, SKATER" enforces that the edge chosen
to be split must be feasible, i.e., the subtrees produced by the split
must exceed the threshold of the extensive attribute. SKATER™ splits
the tree in each iteration by choosing the edge cut that brings
the greatest heterogeneity reduction among all feasible edge cuts.
SKATERCON is modified to SKATERCON™ by using SKATER*
instead of SKATER and parallelizing the generation of spanning
trees. The execution of SKATER* is also parallelized. Additionally,
the subgraph with the largest extensive attribute is given the high-
est priority for partitioning in the last step of SKATERCON". The
runtime complexity for SKATER" is O(n3p) and the runtime com-
plexity for SKATERCON* is O(fBn3p) where n is the total number

499

of spatial areas in the input, p is the predefined number of regions,
and f is the number of random spanning trees in SKATERCON™.

7.1 GSLO Parameter Tuning

In this section, we experimentally identify the optimal values for
the parameters of GSLO.

Number of Iterations in Seed Identification Figure 4 shows
the heterogeneity and the runtime of GSLO under different num-
ber of iterations in Seed Identification (ISI) on the TIGER dataset.
This figure shows that increasing the number of iterations results
in improvement in the seed quality and the overall heterogeneity.
Note that the seed quality is defined as the minimum area-area pair
distance, which is discussed in Section 5.1.1 and only applicable
for Seed Identification in GSLO. However, increasing the number
of iterations increases the runtime of GSLO. We set the number of
iterations to 1DS as it results in a balance between heterogeneity
and overall runtime. Also, we compare our seeding strategy with
random seeding and k-means++ [2] seeding, denoted as GSLO-
random and GSLO-kmeans++, respectively. k-means++ seeding is
reported as the lowest error seeding for k-means clustering [43].
Figure 4(c) shows that around 1DS, GSLO seeding, random seeding,
and k-means++ seeding achieve nearly the same runtime. Regarding
heterogeneity, GSLO seeding slightly outperforms random seeding
and k-means++ seeding. Figure 4(b) shows that the best heterogene-
ity GSLO obtained around 1DS, i.e., the optimal setting as discussed
above, achieves 11.1% better heterogeneity compared to random
seeding and 4% better heterogeneity compared to k-means++ seed-
ing, which demonstrates the superiority of our Seed Identification.

Iterations in Local Optimization Iterations in Local Optimiza-
tion (ILO) refer to the maximum number of non-improving moves
allowed in Local Optimization that is describe in 5.2. Figure 5 shows
the heterogeneity and runtime under different ILO using the TIGER
dataset. We see that the heterogeneity improves as the number of
iterations in Local Optimization increases. However, the overall
runtime also increases as ILO increases. We set the number of iter-
ations in Local Optimization to 1DS, i.e., the size of the dataset, as
it achieves a good balance between runtime and heterogeneity in
Local Optimization.

7.2 Performance Evaluation

This section analyzes the performance of GSLO under different
parameter settings.

7.2.1 Time Breakdown Analysis. Figure 6 provides time break-
down analysis of GSLO under the TIGER dataset that shows the
average runtime of each phase under different p. The figure shows
that the runtime of Local Optimization dominates the runtime of
GSLO and it decreases as p increases since larger p means less
flexibility to reassign the border areas without violating the user-
defined constraint. Seed Identification runtime increases slightly as
p increases because more seed areas are involved. Region Growth
runtime increases as p increases because there are more regions
to grow. Enclaves Assignment runtime decreases as p increases
because there are fewer enclaves to assign. Also, the runtime of
Inter-region Update and Indirect Flow increases as p increases
because a larger p results in a higher probability of generating
incomplete regions and thus a higher probability of invoking both

Table 3: Parameters and values

Parameter Values
TIGER dataset size (DS) 2k, 3k(with island), 5k, 10k, 30k, 40k
HID dataset size (DS) 3k

p
Threshold (% of extensive attribute)
Num of iterations in Local Optimization (ILO)
Num of iterations in Seed Identification (ISI)

5, 10, 15, 20, 25, 30, 35, 40, 45, 50
1%, 2%, 3% , 4%, 5%, 6%, 1%, 8%, 9%, 10%
0.001DS, 0.01DS, 0.1DS, 1DS, 10DS, 100DS

0.001DS, 0.01DS, 0.1DS, 1DS, 10DS, 100DS, 1000DS

N
S

s

—
—-—
—

GSLO
GSLO-random
GSLO-kmeans++

&

-

Runtine (s)
S

GSLO —e—
GSLO-random =—te—
|GSLO-kmeans++ =

Heterogeneity/10

0 / 5
5 / °
0% o] o 3 o o 6‘0 o o 3 o o o o%
“@o Q@v R TS \’ng @an K .on R R \@v @Q\) “&o
S o o
Is1 Is1
(a) Seed quality q(s) (b) Heterogeneity

Figure 4: The effect of the number of iterations in Seed Identification under

the TIGER dataset
N
ST EEEEE EA TFP
RG 3 1U LO KA
~ 10*
9]
E 103
Q
£ 10°
-
45 101 '} lﬂ
3
& 190
107t
0

5 10 15 20 25 30 35
P

Effectiveness
o

o o o o
o v s o ®

5 10 15 20 25 30 35 40 45 50
P P

5 10 15 20 25 30 35 40 45 50

(a) Effectiveness (b) Heterogeneity

Figure 7: Support of islands

steps. Note that in this experiment the average runtime is computed
from solved cases only. When p = 50, no feasible partition is found.

7.2.2 Exploring Island Dataset. In this section, we experimen-
tally explore the efficiency of GSLO over a dataset containing is-
lands. We use a dataset that consists of two connected components

S H O L L P
L P PP
S & & &
N SRR

181

(c) Runtime

500

Heterogeneity/10°

0
0% 40° 49° 49° ©° ©F
K Q_s“ﬂ\.“* o> YA

0% A9% 19° 40°, ©° ©°
“_@xmv PR AE NS

1L0 110

(a) Heterogeneity (b) Runtime
Figure 5: The effect of the number of iterations
in Local Optimization under the TIGER dataset

of size 3k, and 0.2k, respectively. SKATER* and SKATERCON" do
not support islands because the input for both must be a connected
spatial neighborhood graph. Thus, we compare GSLO with Greedy.
Figure 7 shows that GSLO consistently achieves better heterogene-
ity and effectiveness than Greedy in all cases. Notice that when
p > 10, Greedy does not find a feasible partition at all, whereas
GSLO finds the feasible partition with high probability in all solv-
able cases. GSLO’s high effectiveness results from all phases of
GSLO that take the extensive attribute into consideration.

7.2.3 The effect of the number of regions p. Figure 8a, Fig-
ure 8b, and Figure 8c show the performance of all alternatives under
different p using the TIGER dataset. Note that the effectiveness of
SKATER” is either 0 or 1 because SKATER* is deterministic. The
result shows that GSLO consistently achieves the best heterogene-
ity and effectiveness. For the TIGER dataset, GSLO achieves up
to 5.22X improvement in heterogeneity compared to GS, which
demonstrates the efficiency of Local Optimization to further opti-
mize the heterogeneity. GSLO achieves up to 9X improvement in
heterogeneity compared to Greedy. Although the runtime in Greedy
is the smallest among all, the worst effectiveness and heterogeneity
make it impractical to use. Greedy has bad effectiveness because
it does not balance the extensive attribute across different regions,
and has bad heterogeneity because it makes local greedy decisions
when growing regions, which leads to suboptimal solutions. GSLO
achieves up to 4.3x improvement in heterogeneity compared to
SKATER* and up to 8.8%x improvement compared to SKATERCON™.
Moreover, GSLO is up to 90.6x faster than SKATER* and up to
229.7x faster than SKATERCON™. Figure 8d, Figure 8e, and Fig-
ure 8f show that using the HID dataset, GSLO achieves up to 2.24x
better heterogeneity compared to GS, and up to 31.6% improvement
in heterogeneity compared to Greedy. GSLO achieves up to 21.5%
improvement in heterogeneity compared to SKATER* and up to
52.3% improvement compared to SKATERCON™. With respect to

GSLO GSLO GSLO
c— c— c—
. SKATER* SKATER* N SKATER*
D SKATERCOg* ezzzzza SKATERCOI(\I;‘ zzzzza w SKATERCOQ* ezzzzza
B reedy @ reedy 9] reedy]
g inf 3 10 I R R 1| m
& 1 5 10! N O 2 i A
g10 Z do oMo £ 0.8 A
0 {| {l {l {l {l {l [\
8101 g1 paaanm go.s| [|
3] -1 I LV L Y “ ! N
= Lot 10 O [N T [[@ 0.4 |
B il |t i
10 o | fk il bl 0.2 | [i
I I IR AN L e AR IR BN [\ NH B
9 -3 i il L i £ 4l I 4 i 1 [l i
10 10 0
5 10 15 20 25 30 35 40 45 50 5 10 15 20 25 30 35 40 45 50
P P P
(a) Heterogeneity - TIGER (b) Runtime - TIGER (c) Effectiveness - TIGER
GSLO GSLO GSLO
n c— c— c—
= SKATER* SKATER* B SKATER*
~ SKATERCON* SKATERCON* 0 SKATERCON*
3‘ ‘ Greedy i 103 Greedy g N Greedy
in m =
3 i FERUC S T T O T O g
s ¢ i ot W W i i i po.-8
b)
& sl | 2ot | MW M S 0.6
5 | | ERO I | @
5oz N i 10 /[i Al (1 i @ 0.4
\ A Y vl |V Yl
= 1| I Il R [B I | 1 |t i i | i 0.2
| i A i Kia |y | i i i
0 it} i BiYH b WiV WA N W 1072 H Wi B {h o Bifh /A 0
5 520 0 35 40 45 50 015 5 5 40 0

[

(d) Heterogeneity - HID

(e) Runtime - HID

5

25 30 35 40 45 50
p

(f) Effectiveness - HID

Figure 8: The effect of p under the TIGER and HID datasets

runtime, GSLO is up to 97.1x faster than SKATER" and up to 244.7x
faster than SKATERCON™. The percentage of heterogeneity reduc-
tion in the TIGER dataset of GSLO compared to the other baseline
algorithms is much greater than in the HID dataset. This is because
the similarity attribute in the TIGER dataset has a greater range
and variance, thus different partitions constructed from the TIGER
dataset have greater difference regarding heterogeneity compared
to the HID dataset where the similarity attribute has closer values.
Due to the fact that Greedy is inefficient and GS is part of GSLO,
in the following experiments we will only compare GSLO with
SKATER* and SKATERCON™.

Notice that the runtime of SKATER* and SKATERCON" increases
as p increases. Furthermore, SKATERCON™ has a higher runtime
than SKATER* as SKATER* is a phase of SKATERCON*. However,
GSLO requires less runtime as p increases. The reason is that, as p
increases, the number of areas that can move between regions in
Local Optimization is smaller. Hence, the number of possible moves
is also smaller. This results in less runtime. Notice that GSLO is
able to early detect that there is no feasible solution to the input
problem up to 302.6X faster than SKATER* and SKATERCON™. The
reason is that GSLO is able to make an early decision about the
feasibility of the input problem in the Global Search phase.

With respect to runtime, GSLO outperforms SKATER* and
SKATERCON*, because GSLO is a seeding-based algorithm that
incrementally grows regions around seed areas. However, SKATER*
and SKATERCON* require finding successive expensive edge cuts
on the input graph. From a theoretical perspective, the time com-
plexity of SKATER* and SKATERCON* is cubic in n while the time
complexity of GSLO is quadratic in n. This gives GSLO a consistent
edge over SKATER” and SKATERCON™. GSLO achieves superior
heterogeneity due to the Local Optimization step that reassigns
areas to regions to improve the overall heterogeneity, whereas
in SKATER* and SKATERCON?, once a partition is generated, no

501

adjustment is made to further optimize the heterogeneity. GSLO
has higher effectiveness due to Inter-region Update and Indirect
Flow Push phases that produce complete regions. SKATER* and
SKATERCON* do not have these abilities.

7.2.4 The effect of varying the threshold. Figure 9 shows the
heterogeneity, runtime, and effectiveness of GSLO, SKATER*, and
SKATERCON™ under different threshold values in the TIGER and
HID datasets. Figure 9a, Figure 9b, and Figure 9c show that, under
the TIGER dataset, GSLO achieves up to 6.1X better heterogeneity
than SKATER" and up to 8.6X better heterogeneity than SKATER-
CON*. Additionally, GSLO is up to 26X faster than SKATER* and
up to 74.5% faster than SKATERCON". Figure 9d, Figure 9e, and
Figure 9f show that, under the HID dataset, GSLO achieves up to
12.8% better heterogeneity than SKATER™ and up to 48.1% better
heterogeneity than SKATERCON™. GSLO is up to 37.5X faster than
SKATER* and up to 95.9x faster than SKATERCON™ under the HID
dataset. GSLO achieves the best effectiveness in both datasets. The
reason behind the good performance is similar to the one explained
in Section 7.2.3.

7.2.5 Using GSLO to Solve the p-regions problem. When the
threshold value is set to 0, PRUC resembles the basic p-regions
problem [15]. In this experiment, we compare GSLO to SKATER
and SKATERCON when solving the p-regions problem. Figure 10
illustrates that GSLO achieves better results than both SKATER
and SKATERCON for both heterogeneity and runtime. Under the
TIGER dataset, GSLO achieves up to 4.1X better heterogeneity
than SKATER and 8.7X better heterogeneity than SKATERCON. In
addition, GSLO is up to 31.2x faster than SKATER and up to 73.2X
faster than SKATERCON. Under the HID dataset, GSLO achieves
up to 22% better heterogeneity than SKATER and up to 23.3% better
heterogeneity than SKATERCON. Moreover, GSLO is up to 180.9%
faster than SKATER and up to 425X faster than SKATERCON.

GSLO mmmmm GSLO mmmmm GSLO mmmmm
) SKATER*] SKATER* T SKATER*]
,, inf [[SKATERCON* g SKATERCON* N SKATERCON*
9 \ 10 0
\ —~
pey N 7 v
@ N - g NIN R IR
g0t \ g g L
o v o8 8 8 [MR N £ 10t 5 0.8 NIN N IN
o R RAAAINNR N O 2 NEYIY IR IR
a N NN MNININ N 2 13} NAN BN AN IN
NN [N ININ N N =} 0.6 NN AN IR BN
s NN ININJN &N \ 3 2 NINEN IR N .
©10%° NN N AN IV IN \ & 0.4 NN AN AN IN B IR
2 ViV I N 10 i VIV
NINEN IR I WY = NEIN AN N IR AR Y
NESEN BN I N N 0.2 NAN AN AN AN N IR
N N
NINEININ I Y \ NININIRIN I Y
10° NEN BN BN BN BN N 107! o LANBN BN UN U UN BN Hp
1% 2% 3% 4% 5% 6% 7% 8% 9%10% % 2% 3% 4% 5% 6% 7% 8% 9%10% 1% 2% 3% 4% 5% 6% 7% 8% 9%10%
Threshold Threshold Threshold
(a) Heterogeneity - TIGER (b) Runtime - TIGER (c) Effectiveness - TIGER
GSLO GSLO mmmmm GSLO mmmmm
o SKATER*] 10° SKATER* T SKATER*]
S SKATERCON* SKATERCON* ® SKATERCON*
N a
2 ing . @ iR 2 1y
et \ 2 AR\ I IOy I L e N
N [N
g \ T A Sos [y
$2.5 \ i NN NN N I Ml I
52 \ £ NN TN NN N so-s I IV I Bk
g " \ S| NN NI NNl & ol [
5, | ot I I IV T ot IR
2 2. N N N = N N BN N
Q 1N (N \ NN IR I 0.2 LN IN I Y
= A \ "IN “THRBE R
1.5 Lab NN N 1 NEN BN BN BN BN BN BN BN o LAN BN BN BN WY UN
1% 2% 3% 4% 5% 6% 7% 8% 9%10% 1% 2% 3% 4% 5% 6% 7% 8% 9%10% 1% 2% 3% 4% 5% 6% 7% 8% 9%10%
Threshold Threshold Threshold

(d) Heterogeneity - HID

(e) Runtime - HID

(f) Effectiveness - HID

Figure 9: The effect of threshold under the TIGER and HID datasets

-

s

Heterogeneity
-
Runtime (s)

1

(b) Runtime - TIGER

(a) Heterogeneity - TIGER

s

Heterogeneity/10

GSLO GSLO
SKATER L 3 SKATER L1
SKATERCON 107 |'|skATERCON
o
1]
E
4
D
o
3
4
5 10 15 20 25 30 35 40 45 50 5 10 15 20 25 30 35 40 45 50

P P

(c) Heterogeneity - HID (d) Runtime - HID

Figure 10: Solving p-regions problem under the TIGER and HID datasets

7.2.6 The scalability of GSLO. Figure 11 demonstrates the scal-
ability of GSLO compared to SKATER* and SKATERCON* on the
TIGER dataset of different sizes. Within a predefined time limit,
i.e., 4 hours, GSLO can handle up to 40k dataset while SKATER*
and SKATERCON* can only handle up to 10k. Furthermore,GSLO
achieves up to 5x better heterogeneity than SKATER* and SKATER-
CON*. This experiment shows that GSLO can handle up to 4X larger
datasets than SKATER* and SKATERCON™.

O M— SLO
* —

G
SKATER
SKATERCON

*

=

Runtime (s)

T g K
Dataset
(a) Heterogeneity (b) Runtime(s)

Figure 11: Scalability test under the TIGER dataset

502

8 CONCLUSION

In this paper, we introduce PRUC, a generalized version of the
p-regions problem that accounts for user-defined constraints. We
develop an efficient parallel stochastic solution to PRUC which is
divided into Global Search and Local Optimization. Experimental
results show that GSLO is up to more than 100X faster and achieves
up to 6X better heterogeneity than the state-of-the-art algorithms.
In addition, GSLO solves the original p-regions problem with up
to 4X better heterogeneity than existing algorithms. With respect
to future work, we plan to use GSLO to solve other spatial region-
alization problems, e.g., p-compact region problem [35], school
redistricting problem [8, 9], Node-attributed Spatial Graph Parti-
tioning [6], and MAX-P regions problem [14]. Also, we plan to
investigate the support of incremental changes to the properties of
input areas and multiple user-defined constraints.

ACKNOWLEDGMENTS

This work is partially supported by the National Science Foundation,
USA, under grants IIS-1849971, SES-1831615, and CNS-2031418.

REFERENCES

(1]
(2]
(3]

(4]

[10]

(1]

[12]

[13]

[19

[21]

[22]

[23]

[24]
[25]

[26]

[27]

[28]

J. Aldstadt. Spatial Clustering. In Handbook of applied spatial analysis, pages
279-300. Springer, 2010.

D. Arthur and S. Vassilvitskii. k-means++: The Advantages of Careful Seeding.
Technical report, Stanford, 2006.

R. M. Assuncdo, M. C. Neves, G. Camara, and C. Da Costa Freitas. Efficient
Regionalization Techniques for Socio-economic Geographical Units Using Mini-
mum Spanning Trees. International Journal of Geographical Information Science,
IJGIS, 20(7):797-811, 2006

O. Aydin, M. V. Janikas, R. Assun¢éo, and T.-H. Lee. SKATER-CON: Unsupervised
Regionalization via Stochastic Tree Partitioning Within a Consensus Framework
Using Random Spanning Trees. In Proceedings of the ACM SIGSPATIAL Interna-
tional Workshop on Al for Geographic Knowledge Discovery, ACM GeoAl pages
33-42, 2018.

O. Aydin, M. V. Janikas, R. M. Assungdo, and T. H. Lee. A Quantitative Comparison
of Regionalization Methods. International Journal of Geographical Information
Science, IJGIS, 35(11):2287-2315, 2021.

D. Bereznyi, A. Qutbuddin, Y. Her, and K. Yang. Node-attributed Spatial Graph
Partitioning. In Proceedings of the ACM SIGSPATIAL International Conference on
Advances in Geographic Information Systems, ACM GIS, pages 58-67, 2020.

L. Bertolini and W. Salet. Planning Concepts for Cities in Transition: Region-
alization of Urbanity in the Amsterdam Structure Plan. Planning Theory and
Practice, 4(2):131-146, 2003.

S. Biswas, F. Chen, Z. Chen, C. T. Lu, and N. Ramakrishnan. Incorporating
Domain Knowledge into Memetic Algorithms for Solving Spatial Optimization
Problems. In Proceedings of the ACM SIGSPATIAL International Conference on
Advances in Geographic Information Systems, ACM GIS, pages 25-35, 2020.

S. Biswas, F. Chen, Z. Chen, A. Sistrunk, N. Self, C. T. Lu, and N. Ramakrishnan.
REGAL: A Regionalization Framework for School Boundaries. In Proceedings
of the ACM SIGSPATIAL International Conference on Advances in Geographic
Information Systems, ACM GIS, pages 544-547, 2019.

U. C. Bureau. TIGER/Line Shapefile, 2016, Series Information for the Current
Census Tract State-based Shapefile, 2021. https://catalog.data.gov/dataset/tiger-
line-shapefile-2016-series-information-for-the-current-census-tract-state-
based-shapefile.

P. S. Cowpertwait. A Regionalization Method Based on a Cluster Probability
Model. Water Resources Research, 47(11), 2011.

I L Cplex. V12. 1: User’s Manual for CPLEX. International Business Machines
Corporation, 46(53):157, 2009.

F. Csillag, S. Kabos, and T. K. Remmel. A Spatial Clustering Perspective on
Autocorrelation and Regionalization. Environmental and ecological statistics,
15(4):385-401, 2008.

J. C. Duque, L. Anselin, and S. J. Rey. The Max-P-Regions Problem. Journal of
Regional Science, JRS, 52(3):397-419, 2012.

J. C. Duque, R. L. Church, and R. S. Middleton. The p-Regions Problem. Geo-
graphical Analysis, 43(1):104-126, 2011.

J. C. Duque, R. Ramos, and J. Surifiach. Supervised Regionalization Methods: A
Survey. International Regional Science Review, IRSR, 30(3):195-220, 2007.

J. C. Duque, M. C. Vélez-Gallego, and L. C. Echeverri. On the Performance of
the Subtour Elimination Constraints Approach for the p-Regions Problem: A
Computational Study. Geographical Analysis, 50(1):32-52, 2018.

M. M. Fischer. Regional Taxonomy: A Comparison of Some Hierarchic and
Non-hierarchic Strategies. Regional Science and Urban Economics, 10(4):503-537,
1980.

2000 Health, Income and Diversity Shapefile, 2021. https://geodacenter.github.io.
F. Glover. Heuristics for Integer Programming Using Surrogate Constraints.
Decision Science, 8(1):156—-166, 1977.

D. Guo. Regionalization with Dynamically Constrained Agglomerative Cluster-
ing and Partitioning (REDCAP). International Journal of Geographical Information
Science, IJGIS, 22(7):801-823, 2008.

J. Harff and J. C. Davis. Regionalization in Geology by Multivariate Classification.
Mathematical Geology, 22(5):573-588, 1990.

X. He and B. Wei. A Hybrid Heuristic Algorithm for School District Division. The
International Archives of Photogrammetry, Remote Sensing and Spatial Information
Sciences, 42:1113-1120, 2020.

J. Hurley. Regionalization and the Allocation of Healthcare Resources to Meet
Population Health Needs. HealthcarePapers, 5:34-39, 2004.

A. K. Jain and R. C. Dubes. Algorithms for Clustering Data. Prentice-Hall, Inc.,
1988.

G. Karypis and V. Kumar. A Fast and High Quality Multilevel Scheme for Partition-
ing Irregular Graphs. SIAM Journal of Scientific Computing, SISC, 20(1):359-392,
1998.

H. Kim, Y. Chun, and K. Kim. Delimitation of Functional Regions Using a p-
Regions Problem Approach. International Regional Science Review, IRSR, 38(3):235—
263, 2015.

K. Kim, Y. Chun, and H. Kim. p-Functional Clusters Location Problem for
Detecting Spatial Clusters with Covering Approach. Geographical Analysis,

503

[29]

(30]

(31]

(32]

(34]

(35]

[36]

(37]

[41]

[42]

[44]

[45

[46]

[47]

49(1):101-121, 2017

K. Kim, Y. Chun, and H. Kim. A Robust Heuristic Approach for Regionalization
Problems. In GeoComputational Analysis and Modeling of Regional Systems, pages
305-324. Springer, 2018.

K.Kim, D. J. Dean, H. Kim, and Y. Chun. Spatial Optimization for Regionalization
Problems with Spatial Interaction: a Heuristic Approach. International Journal
of Geographical Information Science, IJGIS, 30(3):451-473, 2016.

G. Kirkpatrick and M. Vechi. Optimization by Simulated Annealing. Science,
220(4598):671-680, 1983.

P. M. Lankford. Regionalization: Theory and Alternative Algorithms. Geograph-
ical Analysis, 1(2):196-212, 1969.

J. Laura, W. Li, S. J. Rey, and L. Anselin. Parallelization of a Regionalization
Heuristic in Distributed Computing Platforms — a Case Study of Parallel-p-
compact-regions Problem. International Journal of Geographical Information
Science, IFGIS, 29(4):536-555, 2015.

W. Li, R. L. Church, and M. F. Goodchild. An Extendable Heuristic Framework to
Solve the p-compact-regions Problem for Urban Economic Modeling. Computers,
Environment and Urban Systems, 43:1-13, 2014.

W. Li, R. L. Church, and M. F. Goodchild. The p-compact-regions Problem.
Geographical Analysis, 46(3):250-273, 2014.

A. Ligmann-Zielinska. Spatial Optimization. International Encyclopedia of Geogra-
phy: People, the Earth, Environment and Technology: People, the Earth, Environment
and Technology, pages 1-6, 2016.

J. MacQueen et al. Some Methods for Classification and Analysis of Multivariate
Observations. In Proceedings of the fifth Berkeley symposium on mathematical
statistics and probability, volume 1, pages 281-297, 1967.

R. T. Marler and J. S. Arora. Survey of Multi-objective Optimization Methods for
Engineering. Structural and multidisciplinary optimization, 26(6):369-395, 2004.
L. Miranda, J. Viterbo Filho, and F. C. Bernardini. Regk-means: A Clustering
Algorithm Using Spatial Contiguity Constraints For Regionalization Problems.
In Brazilian Conference on Intelligent Systems (BRACIS), pages 31-36, 2017.

A. T. Murray and T. K. Shyy. Integrating Attribute and Space Characteristics in
Choropleth Display and Spatial Data Mining. International Journal of Geographi-
cal Information Science, IJGIS, 14(7):649-667, 2000.

J. Niesterowicz, T. Stepinski, and J. Jasiewicz. Unsupervised Regionalization
of the United States into Landscape Pattern Types. International Journal of
Geographical Information Science, IJGIS, 30(7):1450-1468, 2016.

S. Openshaw. A Geographical Solution to Scale and Aggregation Problems in
Region-Building, Partitioning and Spatial Modelling. Transactions of the Institute
of British Geographers, pages 459-472, 1977.

J. Ortiz-Bejar, E. S. Tellez, M. Graft, J. Ortiz-Bejar,]J. C. Jacobo, and A. Zamora-
Mendez. Performance Analysis of k-means Seeding Algorithms. In 2019 [EEE
International Autumn Meeting on Power, Electronics and Computing (ROPEC),
pages 1-6, 2019.

M. M. Rahman. Regionalization of Urbanization and Spatial Development: Plan-
ning Regions in Bangladesh. The Journal of Geo-Environment, 4:31-46, 2004.

T. Robert. Depth-first Search and Linear Graph Algorithms. SIAM Journal on
Computing, SICOMP, 1(2):146-160, 1972.

B. She, J. C. Duque, and X. Ye. The Network-max-P-regions Model. International
Journal of Geographical Information Science, IJGIS, 31(5):962-981, 2017.

A. Sheshasaayee and D. Sridevi. A Combined System for Regionalization in
Spatial Data Mining Based on Fuzzy C-Means Algorithm with Gravitational
Search Algorithm. In Proceedings of the 5th International Conference on Frontiers
in Intelligent Computing: Theory and Applications, pages 517-524, 2017.

V. Sindhu. Exploring Parallel Efficiency and Synergy for Max-P Region Problem
Using Python. Master’s thesis, Georgia State University, 2018.

D. Tong and A. T. Murray. Spatial Optimization in Geography. Annals of the
Association of American Geographers, 102(6):1290-1309, 2012.

R. J. Trudeau. Introduction to graph theory. Courier Corporation, 2013.

R. Webster and P. A. Burrough. Computer-Based Soil Mapping of Small Areas
From Sample Data: Ii. Classification Smoothing. European Journal of Soil Science,
EJSS, 23(2):222-234, 1972

R. Wei, S. Rey, and T. H. Grubesic. A Probabilistic Approach to Address Data
Uncertainty in Regionalization. Geographical Analysis, 0:1-22, 2021.

R. Wei, S. Rey, and E. Knaap. Efficient Regionalization for Spatially Explicit
Neighborhood Delineation. International Journal of Geographical Information
Science, IFGIS, 35(1):135-151, 2021.

D. White, M. Richman, and B. Yarnal. Climate Regionalization and Rotation of
Principal Components. International Journal of Climatology, 11(1):1-25, 1991.
X. Yang, J. Magnusson, and C.-Y. Xu. Transferability of Regionalization Methods
under Changing Climate. Journal of Hydrology, 568(March 2018):67-81, 2019.
X. Ye, B. She, and S. Benya. Exploring Regionalization in the Network Urban
Space. Journal of Geovisualization and Spatial Analysis, JGSA, 2(1):1-11, 2018.
B. Zhang, M. Hsu, and U. Dayal. K-Harmonic Means - A Spatial Clustering
Algorithm with Boosting. In International Workshop on Temporal, Spatial, and
Spatio-Temporal Data Mining, pages 31-45, 2000.

Y. Zhou, H. Cheng, and J. X. Yu. Graph Clustering Based on Structural/Attribute
Similarities. Proceedings of the VLDB Endowment, PVLDB, 2(1):718-729, 2009.

