
PRUC : P-Regions with User-Defined Constraint
Yongyi Liu

University of California, Riverside

Riverside, California

yliu786@ucr.edu

Ahmed R. Mahmood

Purdue University

West Lafayette, Indiana

amahmoo@cs.purdue.edu

Amr Magdy

University of California, Riverside

Riverside, California

amr@cs.ucr.edu

Sergio Rey

University of California, Riverside

Riverside, California

sergio.rey@ucr.edu

ABSTRACT
This paper introduces a generalized spatial regionalization problem,

namely, PRUC (𝑃-Regions with User-defined Constraint) that parti-

tions spatial areas into homogeneous regions. PRUC accounts for

user-defined constraints imposed over aggregate region properties.

We show that PRUC is an NP-Hard problem. To solve PRUC, we

introduce GSLO (Global Search with Local Optimization), a parallel

stochastic regionalization algorithm. GSLO is composed of two

phases: (1) Global Search that initially partitions areas into regions

that satisfy a user-defined constraint, and (2) Local Optimization
that further improves the quality of the partitioning with respect

to intra-region similarity. We conduct an extensive experimental

study using real datasets to evaluate the performance of GSLO.

Experimental results show that GSLO is up to 100× faster than the

state-of-the-art algorithms. GSLO provides partitioning that is up

to 6× better with respect to intra-region similarity. Furthermore,

GSLO is able to handle 4× larger datasets than the state-of-the-art

algorithms.

PVLDB Reference Format:
Yongyi Liu, Ahmed R. Mahmood, Amr Magdy, and Sergio Rey. PRUC :

P-Regions with User-Defined Constraint. PVLDB, 15(3): 491 - 503, 2022.

doi:10.14778/3494124.3494133

PVLDB Artifact Availability:
The source code, data, and/or other artifacts have been made available at

https://github.com/Yongyi-Liu/PRUC.

1 INTRODUCTION
Spatial regionalization is an important problem that aims at parti-

tioning spatial areas into regions based on specific criteria. Spatial

areas assigned to a region need to be spatially contiguous. Spatial

regionalization has been adopted in numerous applications and do-

mains, such as economics, e.g., imbalance in economic development

[44], urban planning [24, 56], e.g., resource allocation in urban con-

struction [24], environmental science [54, 55], e.g., understanding

of environmental patterns in different geographical locations [55].

This work is licensed under the Creative Commons BY-NC-ND 4.0 International

License. Visit https://creativecommons.org/licenses/by-nc-nd/4.0/ to view a copy of

this license. For any use beyond those covered by this license, obtain permission by

emailing info@vldb.org. Copyright is held by the owner/author(s). Publication rights

licensed to the VLDB Endowment.

Proceedings of the VLDB Endowment, Vol. 15, No. 3 ISSN 2150-8097.

doi:10.14778/3494124.3494133

Spatial regionalization has multiple variations that are studied in

the literature [3, 4, 6, 8, 9, 34, 35]. The 𝑝-regions problem [15, 17] is

a popular spatial regionalization problem that partitions areas into

𝑝 regions while maximizing the intra-region similarity with respect

to a numerical attribute. For example, in urban planning, each area

could be amunicipality, and a region is a group of spatial contiguous

municipalities. Maximization of the similarity of household income

among municipalities within regions is an example of the numerical

attribute. One important requirement of spatial regionalization is to

account for user-defined constraints over regions. A typical use case

in urban planning is to partition areas into a predefined number

of regions where the total population of every region exceeds a

specific threshold. Existing variations of the 𝑝-regions problem do

not support user-defined constraints, which limit its applicability

to various domains and a plethora of use cases.

In this paper, we formalize a generalized spatial regionalization

problem, namely, PRUC (𝑃-Regions with User-defined Constraint).

PRUC aims to partition a set of areas into a predefined number of

regions p while maximizing the similarity over a specific attribute,

e.g., the household income. In PRUC, each region needs to satisfy a

user-defined constraint on some aggregate attribute, e.g., the total

population of each region needs to exceed a specific threshold.

Table 1 shows 12 spatial areas to be partitioned into regions. In

this example, it is required to partition the areas into three regions

while maximizing the similarity of household income between the

areas within each region. The user-defined constraint is having

population above 500 in each region. Figure 1 shows an optimal

PRUC partitioning that satisfies the aforementioned constraints.

PRUC is a generalization of the 𝑝-regions problem. The reason

is that PRUC has the same optimization goal as the 𝑝-regions prob-

lem, but it enforces an additional user-defined threshold constraint

on each region. The new input user-defined constraint in PRUC

has introduced several challenges on building initial regions. First,

existing techniques have a high probability, up to 80%, of producing

regions that do not satisfy the input constraint. Second, producing

valid solutions requires significant shuffling of spatial areas among

initial regions so that invalid regions become valid but not the

opposite. This adds a restrictive requirement on the spatial connec-

tivity as regions that are vulnerable to spatial disconnection with

shuffling retain the high probability of producing invalid solutions.

Third, the additional overhead of producing valid solutions inflates

the scalability problem and makes it harder to handle large datasets.

491

https://doi.org/10.14778/3494124.3494133
https://github.com/Yongyi-Liu/PRUC
https://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:info@vldb.org
https://doi.org/10.14778/3494124.3494133
https://www.acm.org/publications/policies/artifact-review-and-badging-current

Table 1: Area attributes

Area population income

a1 210 1200

a2 120 1300

a3 180 1400

a4 150 1000

a5 120 2500

a6 180 2400

a7 150 2700

a8 160 3000

a9 150 4000

a10 100 4100

a11 180 4300

a12 180 4500

Figure 1: Partitioned areas

To address these challenges, we propose an efficient parallel

algorithm called GSLO (Global Search with Local Optimization) to

solve PRUC at scale. GSLO is stochastic and its results may vary on

different runs. GSLO is composed of two phases: (1) Global Search

and (2) Local Optimization. The Global Search phase proposes novel

techniques to find a partitioning that satisfies the user-defined

constraint with high probability of success. The regions grown in

GSLO are robust against spatial disconnection and have a high

probability of surviving the shuffling phase. The shuffling phase

consists of two complementary steps that boost the probability of

success. The Local Optimization phase employs parallel stages that

incrementally improve the quality of the partitioning with respect

to the similarity properties within each region.

There are two main approaches to build partitions, top-down

edge-cut and bottom-up seeding. Top-down edge cut approaches [3,

4] are time-consuming and less flexible. They are time-consuming

because they evaluate the effect of each edge cut on the entire graph

and less flexible because once the edges are cut, there is no following

reassignment of areas to regions to further optimize the objective of

the regionalization. GSLO is a bottom-up seeding-based algorithm

that can efficiently grow regions around seed areas locally, which

breaks down the big problem into several smaller ones. The novel

contributions of this paper are summarized as follows:

• We introduce a generalized spatial regionalization problem,

namely, 𝑃-regions with User-defined Constraint (PRUC).

• We show that PRUC is an NP-Hard problem.

• We develop GSLO, an efficient parallel algorithm that solves

PRUC with several novel techniques as follows.

– A general seeding strategy that does not require any

domain knowledge.

– A region growth algorithm that maximizes the flexi-

bility of the assignment of areas to regions.

– Two novel complementary inter-region shuffling

strategies that increase the ability of finding a feasible

solution.

– Heuristic search strategies to speed up optimizing the

final solution and provide region-level parallelization.

• We conduct an extensive experimental evaluation using

real datasets.

Our extensive experimental study shows that GSLO runs up to

100× faster, achieves up to 6× better solution quality, and scales up

to 4× larger datasets than the state-of-the-art algorithms. The rest

of this paper is organized as follows: Section 2 presents the related

work on spatial regionalization. Section 3 defines the problem, and

Section 4 proves it is an NP-hard problem. Section 5 details our

proposed algorithm GSLO. Section 6 analyzes the complexity of

GSLO. Section 7 presents an extensive experimental evaluation and

Section 8 concludes the paper.

2 RELATEDWORK
Spatial regionalization [3, 4, 8, 9, 14, 16, 27, 34] refers to the problem

of grouping spatial areas into multiple regions that are spatially con-

tiguous. There are several variations of the spatial regionalization

problem. The 𝑝-regions problem [15] finds 𝑝 regions that maximize

the similarity between areas within a region. The 𝑝-compact regions

problem [35] finds 𝑝 regions that maximize the spatial compact-

ness. The max-𝑝 regions problem [14] computes a maximal-sized

partitioning that maximizes the similarity between areas within

a region. PRUC is a generalization of the 𝑝-regions problem that

enforces user-defined constraints.

Traditional clustering algorithms, e.g., k-means [37], are not

directly applicable in spatial regionalization problems, as they are

mainly designed for points rather than polygons and they do not

enforce spatial contiguity that is required in spatial regionalization.

Some techniques have tried to adapt them for regionalization in

different contexts [18, 40, 51]. However, the lack of enforcing spatial

contiguity constraints early in the algorithmmakes it harder to scale

for large datasets. To this end, the following approaches have been

proposed to address spatial regionalization: (1) linear programming,
(2) graph partitioning, and (3) seeding.

Duque et al. [15] transforms a spatial regionalization problem

into a mixed integer programming (MIP) problem that can be

solved using software package such as CPLEX [12]. However, this

approach works only for tiny datasets. Hence, this approach is not

suited to address PRUC over large inputs.

Graph-partitioning is used in SKATER [3] and SKATER-

CON [4] as the state-of-the-art techniques to address the 𝑝-regions

problem. In this approach, graph nodes represent spatial areas and

edges connect spatially contiguous areas. In SKATER, a minimum

spanning tree (MST) is computed from the graph. The MST is then

split into 𝑝 subtrees, each corresponding to one of the 𝑝 regions.

However, the greedy approach adopted in MST generation results

in suboptimal regions with low quality. Also, SKATER is computa-

tionally expensive and cannot handle large inputs. SKATERCON [4]

enhances SKATER by generating multiple random spanning trees

(RST). SKATER is then applied to all RSTs to generate multiple

regionalization results. The different results are combined into a

single solution using a consensus-based method [26]. SKATERCON

is slower than SKATER, and cannot handle large inputs. Neither

SKATER nor SKATERCON can be directly applied to solve PRUC

as they do not support user-defined constraints.

Seeding is an important category of spatial regionalization al-

gorithms. In seeding, multiple spatial areas are chosen as seeds for

spatial regions. Then, regions grow around seeds by incrementally

adding neighboring areas. REGAL [9] and SPATIAL [8] are two

492

seeding algorithms that have been tailored to solve the school re-

districting problem, so they cannot be used to solve PRUC. The

reason is that they do not support general user-defined constraints.

MERGE [35] is a seeding framework for solving the 𝑝-compact

regions problem. However, MERGE cannot be used to solve PRUC

as it is tailored to the 𝑝-compact regions problem and does not

support user-defined constraints as well.

Recently, parallelization has been adopted to speedup spatial

regionalization algorithms. Laura et al. [33] introduced a parallel

algorithm to solve the 𝑝-compact-regions problem. Also, Sindhu

et al. [48] used a parallel algorithm to address the max-𝑝 regions

problem. Similarly, GSLO is a parallel algorithm to make the best

use of multi-core environments.

3 PROBLEM DEFINITION
In this section, we give a formal definition of PRUC. Table 2 sum-

marizes the notations used throughout this paper. Spatial region-

alization is the problem of partitioning spatial areas into non-

overlapping regions while satisfying specific constrains. An area,
say 𝑎, is a spatial polygon that is represented by a set of geographi-

cal coordinates, i.e., longitude and latitude. Two areas are neighbors

if they share a common border. The list of neighbor areas of an

area, say 𝑎𝑖 , is represented as 𝑎𝑖 .𝑁𝐵𝑅𝐴 .

A region, say 𝑟 , is a set of spatially contiguous areas {𝑎𝑖 , 𝑎 𝑗
, ...}. Each 𝑟 has a unique identifier 𝑟 .𝑖𝑑 . Figure 1, shows spatial

areas that are partitioned into regions, where areas having the

same color constitute a region. Each spatial area is associated with

numerical attributes, e.g., population and household income as

shown in Table 1. We denote the attribute used to quantify the

similarity among areas as the similarity attribute, i.e., 𝑎𝑖 .𝑠𝑖𝑚. For

example, in Figure 1, the average household income of an area is

the similarity attribute. This attribute is used to group areas into

regions having similar household income. We call the attribute

used in region constraints the extensive attribute. The extensive
attribute of an area, say 𝑎𝑖 , is represented as 𝑎𝑖 .𝑒𝑥𝑡 . In Figure 1,

𝑎𝑖 .𝑒𝑥𝑡 is the population. For example, 𝑎1 .𝑒𝑥𝑡 = 210. The region

to which an area, say 𝑎, belongs to is termed 𝑎.𝑟 . The aggregate

extensive attribute of region 𝑟 is represented as 𝑟 .𝑒𝑥𝑡 , that is defined
as the sum of the extensive attribute over all the areas in the region.

In Figure 1, the extensive attribute of the green region refers to the

total population of this region, which is computed as 𝑟𝑔𝑟𝑒𝑒𝑛 .𝑒𝑥𝑡 =

𝑎5 .𝑒𝑥𝑡 + 𝑎6 .𝑒𝑥𝑡 + 𝑎7 .𝑒𝑥𝑡 + 𝑎8 .𝑒𝑥𝑡 = 610.

The set of neighbor areas of a region 𝑟 , i.e., 𝑟 .𝑁𝐵𝑅𝐴 , is defined as

the set of areas that do not belong to 𝑟 and are neighbor to at least

one area in 𝑟 . In Figure 1, 𝑟𝑟𝑒𝑑 .𝑁𝐵𝑅𝐴 = {𝑎5, 𝑎6, 𝑎7, 𝑎8}. Formally,

𝑟 .𝑁𝐵𝑅𝐴 = {𝑎 |∃𝑎𝑖 (𝑎𝑖 .𝑟 = 𝑟 .𝑖𝑑 ∧ 𝑎.𝑟 ≠ 𝑎𝑖 .𝑟 ∧ 𝑎𝑖 ∈ 𝑎.𝑁𝐵𝑅𝐴)}
The set of neighbor regions of an area, i.e., 𝑎.𝑁𝐵𝑅𝑅 , is defined

as the set of regions that have at least one area 𝑎𝑖 within the region

that is a neighbor area of 𝑎. In Figure 1, the neighbor regions of 𝑎6
= {𝑟𝑟𝑒𝑑 , 𝑟𝑏𝑙𝑢𝑒 }. Formally,

𝑎.𝑁𝐵𝑅𝑅 = {𝑟 |∃𝑎𝑖 (𝑎𝑖 .𝑟 = 𝑟 .𝑖𝑑 ∧ 𝑎.𝑟 ≠ 𝑟 .𝑖𝑑 ∧ 𝑎𝑖 ∈ 𝑎.𝑁𝐵𝑅𝐴)}
The set of margin areas of a region, say 𝑟 , is defined as the set

of areas that have at least one neighbor area that belongs to a

neighbor region or is unassigned. In Figure 1, all of the areas in

𝑟𝑟𝑒𝑑 are margin areas because they have at least one neighbor area

that belongs to a neighbor region. Formally,

𝑟 .𝑚𝑎𝑟𝑔𝑖𝑛 = {𝑎 |𝑎.𝑟 = 𝑟 .𝑖𝑑 ∧ ∃𝑎𝑖 (𝑎𝑖 ∈ 𝑎.𝑁𝐵𝑅𝐴 ∧ 𝑎𝑖 .𝑟 ≠ 𝑎.𝑟)}

An area is considered an articulation area if removing this area

disconnects its region, i.e., areas of the region are not contiguous.

The set of articulation areas in 𝑟 is represented as 𝑟 .𝑎𝑟𝑡 . In Figure 1,

𝑟𝑟𝑒𝑑 .𝑎𝑟𝑡 = {𝑎2, 𝑎3}, since removing any of them breaks the region’s

contiguity.

A user-defined constraint is a numerical constraint that all

regions must satisfy. In Figure 1, the user-defined constraint is that

the aggregate population of each region must be at least 500. A re-

gion is incomplete if it does not satisfy the user-defined constraint

and complete if it does.
A partition, say 𝑃 , of a set of areas is the set of regions

{𝑟1, 𝑟2, ..., 𝑟𝑝 } that includes all areas. Each area belongs to only one

region. 𝑃 is feasible if all its regions are complete, i.e., satisfy the

user-defined constraint.

Heterogeneity is inversely proportional to the similarity among

areas. The heterogeneity of 𝑎𝑖 and 𝑎 𝑗 reflects the degree of dissimi-

larity between 𝑎𝑖 and 𝑎 𝑗 and it is defined as the absolute difference

between the similarity attribute of the two areas:

ℎ(𝑎𝑖 , 𝑎 𝑗) = |𝑎𝑖 .𝑠𝑖𝑚 − 𝑎 𝑗 .𝑠𝑖𝑚 |

For example, in Figure 1, the similarity attribute is the average

household income. ℎ(𝑎1, 𝑎2) = |𝑎1 .𝑠𝑖𝑚 − 𝑎2 .𝑠𝑖𝑚 | = 100. The hetero-

geneity of a region, say 𝑟 , is defined as the heterogeneity sum of all

pairs of areas in 𝑟 :

ℎ(𝑟) =
∑︁

∀𝑖< 𝑗,𝑎𝑖 .𝑟=𝑎 𝑗 .𝑟=𝑟 .𝑖𝑑

ℎ(𝑎𝑖 , 𝑎 𝑗)

In Figure 1, ℎ(𝑟𝑟𝑒𝑑) = ℎ(𝑎1, 𝑎2) + ℎ(𝑎1, 𝑎3) + ℎ(𝑎1, 𝑎4) + ℎ(𝑎2, 𝑎3) +
ℎ(𝑎2, 𝑎4) + ℎ(𝑎3, 𝑎4) = 1300. The heterogeneity of a partition ℎ(𝑃)
is defined as the sum of the heterogeneity of all the regions:

ℎ(𝑃) =
∑︁
∀𝑟 ∈𝑃

ℎ(𝑟)

In Figure 1, ℎ(𝑃) = ℎ(𝑟𝑟𝑒𝑑) + ℎ(𝑟𝑔𝑟𝑒𝑒𝑛) + ℎ(𝑟𝑏𝑙𝑢𝑒) = 5000.

A good partition has low heterogeneity and high intra-region simi-

larity.

PRUC Problem. P-Regions with User-Defined Constraint

(PRUC) problem is formally defined as follows: Given: (1) A set

of 𝑛 areas: 𝐴 = {𝑎1, 𝑎2, ..., 𝑎𝑛}. (2) An integer 𝑝 . (3) A threshold 𝑇 .

PRUC finds a partition of regions 𝑃 = {𝑟1, 𝑟2, ..., 𝑟𝑝 } of size 𝑝 , where
each region 𝑟𝑖 is a non-empty set of spatially continuous areas,

|𝑟𝑖 | ≥ 1, so that: (i) 𝑟𝑖 ∩ 𝑟 𝑗 = Φ,∀𝑟𝑖 , 𝑟 𝑗 ∈ 𝑃 ∧ 𝑖 ≠ 𝑗 , i.e., all regions

are disjoint. (ii)

⋃𝑝

𝑖=1
𝑟𝑖 = 𝐴. (iii) 𝑟𝑖 .𝑒𝑥𝑡 > 𝑇 . (iv) The heterogeneity

of 𝑃 , ℎ(𝑃), is minimum.

4 NP-HARDNESS OF PRUC
In this section, we provide a proof for the NP-hardness of PRUC

problem using a reduction from the Node-attributed Spatial Graph

Partitioning (NSGP) problem [6]. NSGP is an NP-Hard problem that

aims to partition a node-attributed spatial graph into 𝑘 subgraphs.

The number of nodes in each subgraph must exceed a specific

threshold. The nodes of this graph represent spatial locations and

each node has an associated set of attributes. The objective of the

NSGP is to minimize the heterogeneity of the generated subgraphs

493

Table 2: Summary of Notations

Notation Description
𝑛 The number of areas

𝑝 The number of regions

𝐴 A set of areas

𝑎 A spatial area

𝑃 A partition

𝑒 An enclave area

𝑠 A seed

𝑟 A region

𝑎.𝑟 The region that 𝑎 is assigned to

𝑎.𝑒𝑥𝑡 The extensive attribute of area 𝑎

𝑎.𝑠𝑖𝑚 The similarity attribute of area 𝑎

𝑟 .𝑚𝑎𝑟𝑔𝑖𝑛 The margin areas of 𝑟

𝑟 .𝑎𝑟𝑡 The articulation areas of 𝑟

𝑁𝐵𝑅𝐴 Neighboring areas

𝑁𝐵𝑅𝑅 Neighboring regions

ℎ() Heterogeneity

𝑐 (𝑟) The number of areas in 𝑟

ℎ𝑖 (𝑎, 𝑟) Heterogeneity increase of 𝑎 to 𝑟

𝑐𝑜𝑛𝑛(𝑎, 𝑟) connectivity of 𝑎 to 𝑟

𝑀𝐵𝐷𝑅𝑌 (𝑟1, 𝑟2) movable boundary between 𝑟1 and 𝑟2

and the number of edges with endpoints belonging to different

subgraphs.

Let 𝑋 be an instance of NSGP problem and 𝑋 = (𝐴, 𝐸, 𝑁 , 𝑘, 𝑠, 𝑔)
where 𝐴 is the set of spatial areas, 𝐸 is the set of neighborhood

relations, 𝑁 is the set of node attributes, 𝑘 is the number of sub-

graphs, 𝑠 is the minimum number of nodes in a subgraph, and 𝑔

is the optimization goal of NSGP. Let 𝑌 be an instance of PRUC

problem and 𝑌 = (𝐴, 𝑝,𝑇 , 𝑓) where 𝐴 is the set of spatial areas,

𝑝 is the predefined number of regions, and 𝑇 is the user-defined

threshold. 𝑓 is the optimization goal of PRUC. We make 𝑓 to be

the same as 𝑔 (Note that changing the optimization goal in PRUC

would not affect the way it works). We set the extensive attribute of
each area in 𝐴 to 1, and set 𝑝 equal to 𝑘 in the NSGP problem. Thus

𝑋 is a special case of 𝑌 , and we construct 𝑌 from 𝑋 in polynomial

time, hence the proof.

5 PROPOSED SOLUTION
We introduce Global Search with Local Optimization (GSLO), a two-

phase algorithm to efficiently address PRUC. The Global Search

phase aims to find a feasible partition. Local optimization aims

to further improve the heterogeneity over the partition without

violating the user-defined constraint.

5.1 Global Search
The Global Search phase aims to find a feasible partition with high

probability of success. This phase is divided into the following steps:

Seed Identification, Region Growth, Enclaves Assignment, Inter-

region Update, and Indirect Flow Push. Each step is optimized to

increase the probability of successfully finding a feasible partition.
The rest of this section details each step.

5.1.1 Seed Identification. A seed, say 𝑠 , is a set of 𝑝 areas, i.e,

𝑠 = [𝑎1, ...𝑎𝑝]. Regions incrementally grow by attaching unassigned

neighbor areas to the seed areas. The seeding-based regionaliza-

tion literature [8, 9, 14, 33–35, 53] either selects seed areas ran-

domly [14, 33–35, 53] or selects the seed areas manually according

to problem-specific guidelines [8, 9]. In this section, we propose a

general seeding method that does not require any domain knowl-

edge. Having seed areas close to each other can restrict the growth

of regions and increase the probability of failure. Hence, the ob-

jective is to select a seed whose areas are scattered. The distance

between 𝑎𝑖 and 𝑎 𝑗 refers to the euclidean distance between the

centroids of 𝑎𝑖 and 𝑎 𝑗 and is represented as 𝑑𝑖𝑠𝑡 (𝑎𝑖 , 𝑎 𝑗). The qual-
ity 𝑞(𝑠) of a seed 𝑠 is defined as the minimum euclidean distance

between the centroids of all pairs of areas in 𝑠 .

𝑞(𝑠) = min

𝑎𝑖 ∈𝑠∧𝑎 𝑗 ∈𝑠∧𝑖≠𝑗
𝑑𝑖𝑠𝑡 (𝑎𝑖 , 𝑎 𝑗)

The objective is to maximize 𝑞(𝑠). First, 𝑝 areas are selected ran-

domly as the seed. The pair of seed areas having the least pair-

wise distance, say (𝑎𝑖 , 𝑎 𝑗), is identified. Then, an area that does

not belong to the seed is chosen at random to replace one of the

areas (𝑎𝑖 , 𝑎 𝑗). The replacement takes place only when there is im-

provement in 𝑞(𝑠). The last step is repeated𝑚 times, where𝑚 is a

user-defined parameter.

The above Seed Identification algorithm assumes no islands

present in the dataset, i.e., there is only one connected component.

To support datasets with islands, first, we run a graph traversal

algorithm on the spatial neighborhood graph to detect different

connected components. We then compute the total extensive at-
tribute on each connected component. If the total extensive attribute
of any island is less than the user-defined constraint value, then the

current user-defined constraint cannot be solved. Otherwise, the

connected components are sorted in ascending order according to

their total extensive attribute, i.e., ∀0 < 𝑖 < 𝑗 ≤ 𝐶, 𝑐𝑐𝑖 .𝑒𝑥𝑡 ≤ 𝑐𝑐 𝑗 .𝑒𝑥𝑡 ,

where𝐶 is the number of connected components, 𝑐𝑐𝑖 is the 𝑖
𝑡ℎ

com-

ponent, and 𝑐𝑐𝑖 .𝑒𝑥𝑡 is 𝑐𝑐𝑖 ’s extensive attribute. Starting from 𝑐𝑐1, for

each component 𝑐𝑐𝑖 , we put a number of seed areas proportional

to the ratio of 𝑐𝑐𝑖 .𝑒𝑥𝑡 divided by the total extensive attribute of the
whole input, where at least one seed area is placed in each com-

ponent 𝑐𝑐𝑖 . In each connected component, we perform a number

of iterations that are proportional to its number of seed areas to

scatter seed areas in space as described above.

The Seed Identification phase aims to find spatially scattered

seed areas. There are several metrics that can be used to quantify

seed quality, i.e., scatteredness of the seed, e.g., sum of pairwise

distance or minimum pairwise distance between seed areas. We

choose minimum pairwise distance between seed areas as it guar-

antees that no pair of seed areas are close to each other. Other

metrics may result in nearby seed areas that restrict region growth.

Figure 4 shows that as the seed quality monotonically increases,

the heterogeneity of the partition improves and converges to an

optimal value.

Complexity analysis. Seed identification performs𝑚 iterations

to improve the seed quality. The number of seed areas is 𝑝 , each

iteration takes 𝑂 (𝑝2) time, which gives a total time of 𝑂 (𝑚𝑝2).

Remark 5.1. Time complexity of Seed Identification is 𝑂 (𝑚𝑝2).

494

(a) Before Region Growth (b) After Region Growth

Figure 2: Region Growth

5.1.2 Region Growth. After the Seed Identification step, the seed
areas become the initial 𝑝 regions that will subsequently grow. A

growing step of a region, say 𝑟 , adds one of the unassigned areas

from neighbor areas, i.e., 𝑟 .𝑁𝐵𝑅𝐴 to 𝑟 . A region 𝑟 stops growing

when: (1) 𝑟 satisfies the user-defined constraint, i.e., becomes a

complete region, or (2) all the neighbor areas of 𝑟 are assigned to

other regions. If the user-defined constraint is not met for a region,

the region is marked incomplete. The region with the least extensive
attribute is chosen for each growing step in order to achieve a

balanced distribution on the extensive attribute over each region.

Havingmany articulation areas in regions restricts themovement

of areas across regions. This hinders the ability to find a feasible
partition or the refinement of the partition in Local Optimization. So,

amain objective of this step isminimizing the number of articulation
areas in the partition. We define the robustness of a region, say 𝑟 , to
be the number of areas in its margin, i.e., 𝑟 .𝑚𝑎𝑟𝑔𝑖𝑛 divided by the

number of articulation areas in 𝑟 .𝑚𝑎𝑟𝑔𝑖𝑛. The greater the robustness
of a region, the less likely 𝑟 becomes disconnected while attempting

to move an area to the neighbor region.

Region Growth algorithm grows regions while attempting to

increase their robustness. A basic approach would be to iterate over

all the unassigned areas of 𝑟 .𝑁𝐵𝑅𝐴 and choose the area that gives

the greatest increase in the robustness of 𝑟 . However, identifying
the articulation areas for every growing step is rather expensive.

To this end, we adopt an approximate approach to find areas to be

added to regions that improves the robustness of regions. We define

the connectivity between a region 𝑟 and an area 𝑎 as the number

of neighbor areas of 𝑎 that belong to 𝑟 .

𝑐𝑜𝑛𝑛(𝑎, 𝑟) = |{𝑎𝑖 |𝑎𝑖 .𝑟 = 𝑟 .𝑖𝑑 ∧ 𝑎𝑖 ∈ 𝑎.𝑁𝐵𝑅𝐴}|

Region Growth algorithm grows a region, say 𝑟 , by choosing

the neighbor area, say 𝑎, that has the greatest connectivity, i.e.,

𝑐𝑜𝑛𝑛(𝑎, 𝑟). We call this area 𝑎𝑟𝑏𝑒𝑠𝑡 . Ties are broken arbitrarily.

Region Growth phase aims at building robust regions that pro-

vide reassignment flexibility rather than focusing only on hetero-

geneity. Region robustness is achieved by reducing the number of

articulation areas. So, the region sustains its spatial connectivity

even after moving areas to another region. This allows flexibility in

area reassignments across regions in subsequent phases of GSLO,

and leads to improved effectiveness and heterogeneity.

Figure 2 illustrates the Region Growth. Figure 2(a) illustrates the

initial seed from the Seed Identification step. Figure 2(b) shows the

regions after Region Growth. There are no articulation areas in any

region. Hence, all regions have great robustness.
Complexity analysis. The Region Growth phase incremen-

tally grows the regions from the seed areas. Assume 𝑐 (𝑟) denotes
the number of areas in region 𝑟 , and 𝑟 𝑖 denotes the region that

is selected to grow in the 𝑖𝑡ℎ iteration. In each iteration, retriev-

ing the region with the minimum 𝑟 .𝑒𝑥𝑡 takes 𝑂 (𝑝). For a growing
region 𝑟 , we need to evaluate all its unassigned neighbor areas.

Spatial neighborhood relations of areas are represented with a pla-

nar graph where nodes are areas and an edge exists between any

pair of neighbor areas. Since the average degree of the vertices in a

planar graph is strictly less than six [50], this implies: (i) the size

of 𝑟 .𝑁𝐵𝑅𝐴 is 𝑂 (6𝑐 (𝑟)) = 𝑂 (𝑐 (𝑟)), and (ii) computing 𝑐𝑜𝑛𝑛(𝑎, 𝑟),
for 𝑎 ∈ 𝑟 .𝑁𝐵𝑅𝐴 , is 𝑂 (1). Meanwhile, computing the heterogeneity

increase of 𝑎 to 𝑟 requires time 𝑂 (𝑐 (𝑟)) because we need to com-

pute the heterogeneity between 𝑎 and all areas in 𝑟 . Consequently,

in each iteration, growing a region 𝑟 takes time 𝑂 (𝑐 (𝑟)) + 𝑂 (𝑝).
Region Growth phase performs in total 𝑂 (𝑛) iterations, each adds

an area to a region. Then, the total runtime of Region Growth

phase is (∑𝑛
𝑖=1𝑂 (𝑐 (𝑟 𝑖)) + 𝑂 (𝑝)), where 1 < 𝑐 (𝑟 𝑖) < 𝑛, which is

𝑂 (𝑛2) +𝑂 (𝑛𝑝) = 𝑂 (𝑛2).

Remark 5.2. Time complexity of Region Growth phase is 𝑂 (𝑛2).

5.1.3 Enclaves Assignment. After the Region Growth step, some

areas may remain unassigned. The reason is that Region Growth

of a region terminates when it satisfies the user-defined constraint.

This can prevent some areas from being assigned to regions. We

name the remaining unassigned areas enclaves. In Enclaves Assign-

ment, all enclaves are identified and processed one by one. The

intuition of Enclaves Assignment is rather straightforward. An

enclave area is assigned to a region that minimizes heterogeneity

increase to keep the overall heterogeneity score at its minimum

level before the Local Optimization phase. If an enclave, say 𝑎, is

surrounded by only enclaves, it can not be assigned to any neighbor

region at this moment. The assignment of 𝑎 is delayed until some

or all surrounding enclaves have been assigned to regions. If 𝑎 is

surrounded by one or more complete regions, we assign this enclave

to the region with the minimum heterogeneity increase [14].

Complexity analysis. In Enlaves Assignment, there are 𝑣 en-

claves, 𝑣 < 𝑛. Retrieving the next enclave to process takes 𝑂 (𝑣).
Processing each enclave is 𝑂 (𝑛), in the worst case, to compute het-

erogeneity increase to all neighboring regions. This gives time

complexity 𝑂 (𝑣 + 𝑛) for processing a single enclave, which is

𝑂 (𝑣 ∗ (𝑣 + 𝑛)) = 𝑂 (𝑣2 + 𝑣𝑛) for 𝑣 enclaves. As 𝑣 < 𝑛, i.e., 𝑣 = 𝑂 (𝑛),
the phase complexity is bounded by 𝑂 (𝑛2) in its worst case.

Remark 5.3. Time complexity of Enclaves Assignment is 𝑂 (𝑛2).

5.1.4 Inter-region Update. After the Enclaves Assignment step,

all areas are assigned to regions. However, incomplete regions, i.e.,
regions that fail to satisfy the user-defined constraint, might still

exist. This step attempts to render all regions complete by moving

some areas from complete regions to neighbor incomplete regions.
First, incomplete regions are identified and added to a queue. Then,

for every incomplete region 𝑟𝑖 , all its complete neighbor regions are
identified. The Inter-region Update algorithm attempts to make 𝑟𝑖
complete by moving an area 𝑎 from one of 𝑟 ′

𝑖
𝑠 complete neighbor

region to 𝑟𝑖 . The region that donates an area is called 𝑟𝑑𝑜𝑛𝑜𝑟 and the

495

region that receives that area is called 𝑟𝑟𝑒𝑐𝑒𝑖𝑣𝑒𝑟 . A move is defined

as a triple (𝑎 , 𝑟𝑑𝑜𝑛𝑜𝑟 , 𝑟𝑟𝑒𝑐𝑒𝑖𝑣𝑒𝑟).

For a given 𝑟𝑑𝑜𝑛𝑜𝑟 and a given 𝑟𝑟𝑒𝑐𝑒𝑖𝑣𝑒𝑟 , Area 𝑎 from 𝑟𝑑𝑜𝑛𝑜𝑟 is

movable if it satisfies all the following properties:

• 𝑎 is not an articulation area for 𝑟𝑑𝑜𝑛𝑜𝑟 , i.e. 𝑎 ∉ 𝑟𝑑𝑜𝑛𝑜𝑟 .𝑎𝑟𝑡 .

• 𝑎 is a neighbor area of 𝑟𝑟𝑒𝑐𝑒𝑖𝑣𝑒𝑟 , i.e., 𝑎 ∈ 𝑟𝑟𝑒𝑐𝑒𝑖𝑣𝑒𝑟 .𝑁𝐵𝑅𝐴 .

The articulation areas of a region are identified using Tarjan al-

gorithm [45] to speedup excluding invalid moves that cause spatial

disconnection. The above conditions do not prevent moves that

switch complete regions to incomplete regions, which is an incorrect

switch. However, this gives more flexibility and higher scalability

to this step to fill incomplete regions. In case this incorrect switch

happens for some regions, they are switched back to complete re-
gions in the following step that indirectly flow extra areas from

complete regions to all other incomplete regions.
Algorithm 1 describes the Inter-region Update step. In each iter-

ation, we dequeue an incomplete region and consider it as 𝑟𝑟𝑒𝑐𝑒𝑖𝑣𝑒𝑟 .

If 𝑟𝑟𝑒𝑐𝑒𝑖𝑣𝑒𝑟 does not have a complete neighbor region, then we add

the 𝑟𝑟𝑒𝑐𝑒𝑖𝑣𝑒𝑟 back to the queue to be processed later. Otherwise,

the 𝑟𝑟𝑒𝑐𝑒𝑖𝑣𝑒𝑟 ’s complete neighbor regions are sorted based on the

extensive attribute in descending order. Suppose the sorted com-
plete neighbor regions are {𝑟𝑎, 𝑟𝑏 , 𝑟𝑐 , ...}, we attempt to consider

neighbor region with largest extensive attribute 𝑟𝑎 as the 𝑟𝑑𝑜𝑛𝑜𝑟 and

try to find the movable area from 𝑟𝑑𝑜𝑛𝑜𝑟 to 𝑟𝑟𝑒𝑐𝑒𝑖𝑣𝑒𝑟 that has the

largest extensive attribute. If the list of movable areas is empty, then

we turn to the region with the second-largest extensive attribute 𝑟𝑏 ,
and so on. If no movable area is found among all the complete neigh-
bor regions, then we put the current 𝑟𝑟𝑒𝑐𝑒𝑖𝑣𝑒𝑟 back to the queue

to be processed later and start the next iteration. If 𝑟𝑟𝑒𝑐𝑒𝑖𝑣𝑒𝑟 is still

incomplete after the move, then we add 𝑟𝑟𝑒𝑐𝑒𝑖𝑣𝑒𝑟 back to the queue.

If 𝑟𝑑𝑜𝑛𝑜𝑟 becomes incomplete after the move, then we add 𝑟𝑑𝑜𝑛𝑜𝑟
to the queue as well. This procedure is repeated until a feasible
partition is found or the maximum of 𝑛 iterations allowed has been

exhausted without finding a feasible partition.
Complexity analysis. In each iteration, for an incomplete region

𝑟 , retrieving neighbor regions is 𝑂 (𝑐 (𝑟)) = 𝑂 (𝑛) and sorting them

is𝑂 (𝑝𝑙𝑜𝑔𝑝). Applying Tarjan algorithm takes𝑂 (𝑐 (𝑟) +𝑒 (𝑟)), where
𝑒 (𝑟) denotes the number of edges within a spatial neighborhood

graph 𝐺 for region 𝑟 ’s areas. As region 𝑟 is also a planar graph, it

has 𝑒 (𝑟) ≤ 3𝑐 (𝑟) − 6 [50], so 𝑒 (𝑟) = 𝑂 (𝑐 (𝑟)), and applying Tarjan

algorithm is𝑂 (𝑐 (𝑟)) = 𝑂 (𝑛). Moving an area 𝑎 from a donor region

𝑟 ′ to a receiver region 𝑟 takes𝑂 (𝑐 (𝑟) + 𝑐 (𝑟 ′)) = 𝑂 (𝑛) time to locate

𝑎 and compute heterogeneity changes of 𝑟 and 𝑟 ′. The same applies

if multiple donor regions are explored. Then, the runtime of a single

iteration is𝑂 (𝑝𝑙𝑜𝑔𝑝 + 𝑛). For 𝑛 iterations, the overall complexity is

𝑂 (𝑛2 + 𝑛𝑝𝑙𝑜𝑔𝑝).

Remark 5.4. Time complexity of Inter-region Update is 𝑂 (𝑛2 +
𝑛𝑝𝑙𝑜𝑔𝑝).

5.1.5 Indirect Flow Push. If there are remaining incomplete re-
gions after Inter-region Update, then Indirect Flow Push is adopted

to attempt transforming these regions into complete. In Inter-region

Update, after an incomplete region 𝑟𝑖 is converted to a complete
region, it might serve as a donor region for some other incomplete
neighbor region since it has now become complete. However, mov-

ing an 𝑎𝑟𝑒𝑎 from 𝑟𝑖 to its neighbor incomplete regions would likely

Algorithm 1: Inter-region Update

Input: 𝑅 : regions
𝑚𝑎𝑥𝑖𝑡𝑒𝑟 : the maximum number of attempts

Output: a feasible partition or FAILURE

incomplete-rs = new queue()
for i = 0 to 𝑝 do

if R[i] is incomplete then
incomplete-rs.enqueue(R[i])

for i = 0 to maxiter do
if incomplete-rs is empty then

return R
𝑟𝑟𝑒𝑐𝑒𝑖𝑣𝑒𝑟 = incomplete-rs.dequeue()
if 𝑟𝑟𝑒𝑐𝑒𝑖𝑣𝑒𝑟 does not have complete neighbor region then

incomplete-rs.enqueue(𝑟𝑟𝑒𝑐𝑒𝑖𝑣𝑒𝑟)
else

donors = all 𝑟𝑟𝑒𝑐𝑒𝑖𝑣𝑒𝑟 ’s neighbor complete regions
while donors is not empty do

𝑟𝑑𝑜𝑛𝑜𝑟 = 𝑟 with max 𝑟 .𝑒𝑥𝑡 from donors
a = movable area from 𝑟𝑑𝑜𝑛𝑜𝑟 that has the largest
extensive attribute

if a is not null then
move a from 𝑟𝑑𝑜𝑛𝑜𝑟 to 𝑟𝑟𝑒𝑐𝑒𝑖𝑣𝑒𝑟
if 𝑟𝑑𝑜𝑛𝑜𝑟 is incomplete then

incomplete-rs.enqueue(𝑟𝑑𝑜𝑛𝑜𝑟)
break

else
donors.remove(𝑟𝑑𝑜𝑛𝑜𝑟)

if 𝑟𝑟𝑒𝑐𝑒𝑖𝑣𝑒𝑟 is incomplete then
incomplete-rs.enqueue(𝑟𝑟𝑒𝑐𝑒𝑖𝑣𝑒𝑟)

return FAILURE

to make 𝑟𝑖 incomplete again because the extensive attribute of 𝑟𝑖
is just above the threshold. In this case 𝑟𝑖 is converted back to in-
complete again. Those incomplete regions could frequently change

status between complete and incomplete. This makes it hard for all

the incomplete regions to become complete regions. We call this

phenomena the chained-flipping problem.

We propose Indirect Flow Push to solve the chained-flipping
problem. This phase is entered only if Inter-region Update does not

find a feasible partition. The chained-flipping problem is caused

by starting from incomplete regions and borrowing areas from

neighbor complete regions. In Indirect Flow Push, instead of starting

from incomplete regions and borrowing areas from the neighbor

complete regions, we start with the complete regions with the largest
extensive attribute and push its margin areas to neighbor regions

that need them.

The partition of regions is considered as a flow network where

regions are considered as nodes and extensive attribute is consid-
ered as flow. We push the flow through the network to ensure that

there is a balanced distribution of extensive attribute over the re-
gions. Each region in the flow network is assigned a state from the

following:

• Unprocessed (UP): This is the initial state of a region. This

region has at least two neighbor regions that it could donate

areas to or receive areas from.

496

• Exhausted-incomplete (EI): This is an incomplete region hav-

ing only one neighbor region that it can donate areas to or

receive areas from.

• Exhausted-complete (EC): This is a complete region having

only one neighbor region that it can donate areas to or

receive areas from.

• Processed (P): This is the final state of a region. This region

cannot donate or receive other areas.

Algorithm 2: Indirect Flow Push

Input: 𝑅 : set of regions
Output: a feasible partition or FAILURE

while exists incomplete region do
if exists UP region then

𝑟𝑠𝑒𝑙𝑒𝑐𝑡 = UP region with max r.ext
else

𝑟𝑠𝑒𝑙𝑒𝑐𝑡 = EC region with max r.ext
if 𝑟𝑠𝑒𝑙𝑒𝑐𝑡 is null then

return FAILURE
𝑅𝑆𝐸𝐶 = EC regions among 𝑟𝑠𝑒𝑙𝑒𝑐𝑡 .𝑁𝐵𝑅𝑅
while 𝑅𝑆𝐸𝐶 is not empty do

𝑟𝑔 = 𝑟 with max 𝑟 .𝑒𝑥𝑡 from 𝑅𝑆𝐸𝐶
𝑎𝑏𝑒𝑠𝑡 = best area from𝑀𝐵𝐷𝑅𝑌 (𝑟𝑔, 𝑟𝑠𝑒𝑙𝑒𝑐𝑡)
if 𝑎𝑏𝑒𝑠𝑡 is null then

𝑟𝑔 .𝑠𝑡𝑎𝑡𝑢𝑠 = P
else

move 𝑎𝑏𝑒𝑠𝑡 from 𝑟𝑔 to 𝑟𝑠𝑒𝑙𝑒𝑐𝑡
𝑅𝑆𝐸𝐼 = EI regions among 𝑟𝑠𝑒𝑙𝑒𝑐𝑡 .𝑁𝐵𝑅𝑅
while 𝑅𝑆𝐸𝐼 is not empty do

𝑟𝑠 = 𝑟 with min 𝑟 .𝑒𝑥𝑡 from 𝑅𝑆𝐸𝐼
𝑎𝑏𝑒𝑠𝑡 = best area from𝑀𝐵𝐷𝑅𝑌 (𝑟𝑠𝑒𝑙𝑒𝑐𝑡 , 𝑟𝑠)
if 𝑎𝑏𝑒𝑠𝑡 is null then

return FAILURE
else

move 𝑎𝑏𝑒𝑠𝑡 from 𝑟𝑠𝑒𝑙𝑒𝑐𝑡 to 𝑟𝑠
if 𝑟𝑠 is complete then

𝑟𝑠 .𝑠𝑡𝑎𝑡𝑢𝑠 = P
𝑅𝑆𝑈𝑃 = UP regions among 𝑟𝑠𝑒𝑙𝑒𝑐𝑡 .𝑁𝐵𝑅𝑅
while 𝑅𝑆𝑈𝑃 is not empty do

𝑟𝑠 = 𝑟 with min 𝑟 .𝑒𝑥𝑡 from 𝑅𝑆𝑈𝑃

𝑎𝑏𝑒𝑠𝑡= best area from𝑀𝐵𝐷𝑅𝑌 (𝑟𝑠𝑒𝑙𝑒𝑐𝑡 , 𝑟𝑠)
if 𝑎𝑏𝑒𝑠𝑡 is null then

𝑅𝑆𝑈𝑃 .remove(𝑟𝑠)
else

move 𝑎𝑏𝑒𝑠𝑡 from 𝑟𝑠𝑒𝑙𝑒𝑐𝑡 to 𝑟𝑠
𝑟𝑠𝑒𝑙𝑒𝑐𝑡 .𝑠𝑡𝑎𝑡𝑢𝑠 = P

return R

Initially, all the regions are labeled as UP. Notice that regions
with only one neighbor region are labeled as EC or EI according to

their satisfaction of the user-defined constraint. The Indirect Flow

Push step keeps track of all incomplete regions. At any stage, if the

partition no longer contains incomplete region, this step terminates.

We define themovable boundary between 𝑟1 and 𝑟2 MBDRY(𝑟1,𝑟2)
to be the set of areas 𝐴 where each area 𝑎 in 𝐴 needs to satisfy the

following properties:

• 𝑎 belongs to 𝑟1 , i.e., 𝑎.𝑟 = 𝑟1 .𝑖𝑑 , and neighbor to 𝑟2, i.e.,

𝑎 ∈ 𝑟2 .𝑁𝐵𝑅𝐴 .

Figure 3: The states of regions in Indirect Flow Push

• Removing 𝑎 from 𝑟1 would not make 𝑟1 incomplete, i.e.,
𝑟1 .𝑒𝑥𝑡 − 𝑎.𝑒𝑥𝑡 > 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 .

• 𝑎 is not an articulation area for 𝑟1, i.e., 𝑎 ∉ 𝑟1 .𝑎𝑟𝑡 .

In this phase, for a given 𝑀𝐵𝐷𝑅𝑌 (𝑟1, 𝑟2), the best area in

𝑀𝐵𝐷𝑅𝑌 (𝑟1, 𝑟2) to move from 𝑟1 to 𝑟2 is defined as the area 𝑎𝑏𝑒𝑠𝑡
that maximizes 𝑐𝑜𝑛𝑛(𝑎𝑏𝑒𝑠𝑡 , 𝑟2) − 𝑐𝑜𝑛𝑛(𝑎𝑏𝑒𝑠𝑡 , 𝑟1). Ties are broken
arbitrarily. The area chosen to be moved from 𝑟1 to 𝑟2 has the most

connections to areas in 𝑟2 compared to 𝑟1. Notice that this move

may not result in the best heterogeneity improvement because the

objective here is to ensure high robustness of regions. This allows

areas to move without disconnecting regions.

Then, in each iteration, if there are UP regions, we select the

UP region with the largest extensive attribute to be processed and

name it as 𝑟𝑠𝑒𝑙𝑒𝑐𝑡 . If there are no UP regions but EC regions, then

we choose the EC region with the largest extensive attribute. If there
are no UP or EC regions while having incomplete regions, then
GSLO fails to identify a feasible partition of the input areas.

Algorithm 2 describes Indirect Flow Push and proceeds as fol-

lows: In each iteration, if 𝑟𝑠𝑒𝑙𝑒𝑐𝑡 has EC neighbor regions, we select

the EC neighbor region with the largest extensive attribute, say
𝑟𝑔 and we compute 𝑀𝐵𝐷𝑅𝑌 (𝑟𝑔, 𝑟𝑠𝑒𝑙𝑒𝑐𝑡). If 𝑀𝐵𝐷𝑅𝑌 (𝑟𝑔, 𝑟𝑠𝑒𝑙𝑒𝑐𝑡) is
empty, then 𝑟𝑔 is transformed to P. The reason is that 𝑟𝑔 is complete
and cannot afford to donate any other area. Otherwise, we move

𝑎𝑏𝑒𝑠𝑡 from 𝑟𝑔 to 𝑟𝑠𝑒𝑙𝑒𝑐𝑡 . If 𝑟𝑠𝑒𝑙𝑒𝑐𝑡 has EI neighbor regions, we take
the EI neighbor region with the least extensive attribute, say 𝑟𝑠 and
we compute 𝑀𝐵𝐷𝑅𝑌 (𝑟𝑠𝑒𝑙𝑒𝑐𝑡 , 𝑟𝑠). If 𝑀𝐵𝐷𝑅𝑌 (𝑟𝑠𝑒𝑙𝑒𝑐𝑡 , 𝑟𝑠) is empty,

and 𝑟𝑠 is still incomplete, then the last chance of making 𝑟𝑠 com-
plete has been exhausted. In this case, Indirect Flow Push step fails.

Otherwise, we move 𝑎𝑏𝑒𝑠𝑡 from 𝑟𝑠𝑒𝑙𝑒𝑐𝑡 to 𝑟𝑠 . If 𝑟𝑠 becomes complete
after this move, then 𝑟𝑠 is transformed into P. Notice that when the

EI neighbor region receives an area from 𝑟𝑠𝑒𝑙𝑒𝑐𝑡 , one or more new

NON-P neighbor regions of this EI region might be introduced. If

this is the case, this EI region converts to UP as it now has two

or more NON-P neighbor regions. If 𝑟𝑠𝑒𝑙𝑒𝑐𝑡 does not have any EC
or EI neighbor regions, then we choose the UP neighbor region

with the least extensive attribute, say 𝑟 ′𝑠 , where𝑀𝐵𝐷𝑅𝑌 (𝑟𝑠𝑒𝑙𝑒𝑐𝑡 , 𝑟 ′𝑠)
is not empty. If no movable area is found after all the neighbor UP

497

regions are exhausted, 𝑟𝑠𝑒𝑙𝑒𝑐𝑡 converts to P. If𝑀𝐵𝐷𝑅𝑌 (𝑟𝑠𝑒𝑙𝑒𝑐𝑡 , 𝑟 ′𝑠)
is not empty, we move 𝑎𝑏𝑒𝑠𝑡 from 𝑟𝑠𝑒𝑙𝑒𝑐𝑡 to 𝑟

′
𝑠 .

For a given 𝑟𝑠𝑒𝑙𝑒𝑐𝑡 , we give priority to EC and EI neighbor regions.
This is the only opportunity for these regions to exchange an area

with 𝑟𝑠𝑒𝑙𝑒𝑐𝑡 . For a neighbor EC region, we move the EC region’s

margin areas to 𝑟𝑠𝑒𝑙𝑒𝑐𝑡 until any further move would disconnect

the EC region or make the EC region incomplete. This is because we
want the total extensive attribute of this region to be just above the

threshold. After the processing of 𝑟𝑠𝑒𝑙𝑒𝑐𝑡 , all the redundant extensive
attribute in this EC neighbor region would become stagnant, as this

EC neighbor region will convert to P. For an EI neighbor region,
𝑟𝑠𝑒𝑙𝑒𝑐𝑡 is the last opportunity to make it complete. Once 𝑟𝑠𝑒𝑙𝑒𝑐𝑡
finishes processing, the EI neighbor region will not have a chance

to exchange an areawith its neighbor regions. EI region is converted
to P once it becomes complete. We can think of areas within regions

as flow that is being pushed from regions that have high extensive
attribute to regions that have low extensive attribute. The state

diagram of the Indirect Flow Push step is shown in Figure 3.

Complexity analysis. It takes 𝑂 (𝑝) to find the neighbor re-

gion 𝑟 that has either the minimum or the maximum extensive
attribute. Then, computing𝑀𝐵𝐷𝑅𝑌 (𝑟, 𝑟), using Tarjan algorithm,

takes𝑂 (𝑐 (𝑟)). Filtering out all the areas in 𝑟 that make 𝑟 incomplete
when removed or not in 𝑟 .𝑁𝐵𝑅𝐴 also takes𝑂 (𝑐 (𝑟)). Last of all, eval-
uating 𝑐𝑜𝑛𝑛(𝑎, 𝑟) and 𝑐𝑜𝑛𝑛(𝑎, 𝑟) for the remaining areas that takes

𝑂 (𝑐 (𝑟)), since there are (𝑐 (𝑟)) areas in the boundary and comput-

ing 𝑐𝑜𝑛𝑛(.) is𝑂 (1) due to the average constant degree of a node in a
spatial neighborhood graph, which is a planar graph. Also, comput-

ing the heterogeneity variation on 𝑟 and 𝑟 takes time𝑂 (𝑐 (𝑟) +𝑐 (𝑟)).
Therefore, each move takes 𝑂 (𝑐 (𝑟) + 𝑐 (𝑟)) + 𝑂 (𝑝) = 𝑂 (𝑛). Each
area could be moved at most 𝑂 (𝑝) times because an area never

has a chance to be moved back to the same region where it comes

from and there are in total 𝑛 areas. Consequently, the overall time

complexity of Indirect Flow Push is 𝑂 (𝑛)𝑂 (𝑛𝑝) = 𝑂 (𝑛2𝑝).

Remark 5.5. Time complexity of Indirect Flow Push is 𝑂 (𝑛2𝑝).

5.2 Local Optimization
If a feasible partition is found in the Global Search phase, Local

Optimization is applied to further improve the heterogeneity over

the partition. Most regionalization algorithms [8, 9, 14, 34, 35, 53]

include an optimization phase that improves the objective function

by changing themembership of the border areas of the regions using

heuristic searching strategies. Some regionalization algorithms [8, 9,

14] perform an extremely expensive exhaustive search of all possible

reassignments of border areas just to pick only one reassignment

step. This makes it hard to use on large datasets.

The Local Search in [53] has superior performance for the fol-

lowing reasons: (1) Local Search identifies movable areas instead of

all the possible moves, (2) Local Search does not recalculate a new

set of movable areas until the previous list has been exhausted. This

makes Local Search efficient in improving the overall heterogeneity

of the partition without performing extremely expensive computa-

tions that do not scale up for large data. An area 𝑎 within region 𝑟

is movable if: (i) 𝑎 is on the margin of 𝑟 , (ii) 𝑎 is not an articulation
area of 𝑟 , (iii) 𝑟 remains complete after the area 𝑎 is removed. In each

iteration, all the movable areas are put into a list. A random area

is chosen to be moved to the neighbor region with the minimum

heterogeneity. If the move decreases the heterogeneity over the cur-

rent partition, then the move is accepted. Otherwise, the acceptance

of the move is determined by the Boltzmann probability [31]. After

a move is performed, all the areas belonging to the donor region

and the receiver region are removed from the list. The heuristic

does not identify the movable areas again unless the list of movable

areas has been exhausted.

We further extend this heuristic to speed up the searching pro-

cess and improve the optimization goal. First, for each selected

movable unit, we reassign it to the neighboring region that results

in the minimum heterogeneity increase instead of the neighboring

region that has the minimum heterogeneity. Second, we parallelize

Local Search by searching for movable areas of regions concurrently.

Third, we adopt Tarjan algorithm [45] to find all the articulation
areas that are not allowed to move. These improvements lead to

100x faster search in Local Optimization.

Complexity analysis. In Local Optimization, parallelly locating

all the movable areas using Tarjan algorithm from each region takes∑𝑝

𝑖=1
𝑂 (𝑐 (𝑟𝑖)

𝑇
) = 𝑂 (𝑛

𝑇
) where T is the number of threads available

in the parallel environment. After each move, areas from donor and

receiver regions are removed from the list. So, on average,
𝑝
2
moves

are performed. For each move, computing the heterogeneity change

and selecting receiver region for reassigning area 𝑎 in 𝑎.𝑁𝐵𝑅𝑅 takes

time

∑ |𝑎.𝑁𝐵𝑅𝑟 |
𝑖=1

𝑐 (𝑟𝑖) = 𝑂 (𝑛). Consequently, each move attempt

takes time 𝑂 (𝑛) + 𝑂 (𝑛
𝑇
)/𝑝

2
= 𝑂 (𝑛). So, the overall runtime of

Local Optimization is 𝛼𝑂 (𝑛), where 𝛼 is the number of total move

attempts and 𝑂 (𝑛) is the cost for each move attempt.

Remark 5.6. Time complexity of Local Optimization is 𝑂 (𝛼𝑛).

6 COMPLEXITY ANALYSIS
This section gives time and space complexity of GSLO. According

to Remark 5.1, Remark 5.2, Remark 5.3, Remark 5.4, Remark 5.5,

and Remark 5.6, the overall time complexity of GSLO is 𝑂 (𝑛2𝑝 +
𝑚𝑝2 + 𝛼𝑛), where 𝛼 is the actual number of move attempts in the

Local Optimization and𝑚 is the maximum number of iterations

during Seed Identification. The value of 𝛼 is mainly affected by the

number of iterations in Local Optimization (𝐼𝐿𝑂), i.e., the maximum

number of non-improving moves allowed. Empirically, the value of

𝛼 is 1-2 orders of magnitude of 𝐼𝐿𝑂 parameter value (Table 3).

The space complexity of GSLO is𝑂 (𝑛). The input stores each area
and its corresponding attributes, i.e., extensive attributes, similarity
attributes, marginal coordinates and etc, which takes 𝑂 (𝑛) storage.
GSLO stores the neighbor areas of each input area. Since the spatial

neighborhood is a planar graph, the number of neighbors is strictly

less than six [50]. Consequently, storing the neighbors takes 6 ∗
𝑂 (𝑛) = 𝑂 (𝑛) space. On the region level, for each region 𝑟 , we

need to store 𝑟 .𝑚𝑎𝑟𝑔𝑖𝑛 and 𝑟 .𝑁𝐵𝑅𝐴 . Note that

∑𝑝

𝑖=1
𝑟𝑖 .𝑚𝑎𝑟𝑔𝑖𝑛 =

𝑂 (𝑛) and ∑𝑝

𝑖=1
𝑟𝑖 .𝑁𝐵𝑅𝐴 = 𝑂 (𝑛). Consequently, the overall space

complexity of GSLO is 𝑂 (𝑛).

7 EXPERIMENTAL EVALUATION
In this section, we present extensive experimental evaluation to

demonstrate the efficiency of GSLO. We use the following datasets:

(1) TIGER shapefile dataset [10], and (2) Health, Income and Diver-

sity dataset [19]. The TIGER dataset is a real dataset of the census

498

tracts of individual states within the United States [10]. Each item in

the TIGER dataset is a spatial polygon of census tract with multiple

numerical attributes. The size of the dataset used in the experi-

ments ranges from 2k to 40k spatial polygons, which is an order of

magnitude larger than any dataset used in evaluating regionaliza-

tion to the best of our knowledge. In our experiments, we consider

the ALAND, which represents the current land area of a census

tract, as the extensive attribute. Also, we consider AWATER, which
represents the current water area of a census tract, as the similarity
attribute.

The Health, Income and Diversity dataset [19] has 3k elements.

Each item in this dataset is a county within the United States

that is associated with multiple numerical attributes. We consider

cz_pop2000 as the extensive attribute and it represents the popula-

tion of U.S. counties.We consider ratio as the similarity attribute and
it represents each county’s median income divided by the state’s

median income. For both datasets, all the island areas are removed.

All experiments are based on Java 14 implementation using an Intel

Xeon(R) server with CPU E5-2637 v4 (3.50 GHz) and 128GB RAM

running Ubuntu 16.04. Table 3 summarizes the parameters used

throughout the experimental evaluation. The bold values indicate

the default setting for each parameter.

Our evaluation metrics are: (1) heterogeneity, (2) runtime, and
(3) effectiveness, i.e., the probability of finding a feasible partition.
The heterogeneity is calculated as the mean value from feasible
partitions. If no feasible partition is generated among all the runs,

then the heterogeneity is represented as 𝑖𝑛𝑓 . The number of runs

in all experiments is 100 except for that the number of runs in the

scalability test is 10 to avoid extremely long experimentation time.

We compare GSLO against four alternatives: (1) SKATER [3],

(2) SKATERCON [4], (3) GS, and (4) Greedy. SKATER and SKATER-

CON are the state-of-the-art algorithms for the 𝑝-regions problem.

GS is GSLO without Local Optimization. Greedy is a greedy base-

line algorithm that proceeds as follows: (i) randomly select 𝑝 seed

areas, (ii) select the region with the least extensive attribute to grow
by adding a neighboring area that results in the minimum hetero-

geneity increase, (iii) regions stop growing once the user-defined

constraint has been satisfied or there are no neighboring areas,

(iv) enclaves are assigned similar to GSLO.

Notice that SKATER and SKATERCON cannot directly solve

PRUC because they do not consider user-defined constrains as de-

scribed in Section 2. We modify SKATER and SKATERCON into

SKATER* and SKATERCON*, respectively, to allow them to solve

PRUC. SKATER* changes the tree-partitioning phase in SKATER

as follows: The edge selection in SKATER* adopts the edge selection

from SKATER. However, SKATER* enforces that the edge chosen

to be split must be feasible, i.e., the subtrees produced by the split

must exceed the threshold of the extensive attribute. SKATER* splits
the tree in each iteration by choosing the edge cut that brings

the greatest heterogeneity reduction among all feasible edge cuts.

SKATERCON is modified to SKATERCON* by using SKATER*

instead of SKATER and parallelizing the generation of spanning

trees. The execution of SKATER* is also parallelized. Additionally,

the subgraph with the largest extensive attribute is given the high-

est priority for partitioning in the last step of SKATERCON*. The

runtime complexity for SKATER* is 𝑂 (𝑛3𝑝) and the runtime com-

plexity for SKATERCON* is 𝑂 (𝛽𝑛3𝑝) where 𝑛 is the total number

of spatial areas in the input, 𝑝 is the predefined number of regions,

and 𝛽 is the number of random spanning trees in SKATERCON*.

7.1 GSLO Parameter Tuning
In this section, we experimentally identify the optimal values for

the parameters of GSLO.

Number of Iterations in Seed Identification Figure 4 shows

the heterogeneity and the runtime of GSLO under different num-

ber of iterations in Seed Identification (ISI) on the TIGER dataset.

This figure shows that increasing the number of iterations results

in improvement in the seed quality and the overall heterogeneity.

Note that the seed quality is defined as the minimum area-area pair

distance, which is discussed in Section 5.1.1 and only applicable

for Seed Identification in GSLO. However, increasing the number

of iterations increases the runtime of GSLO. We set the number of

iterations to 1𝐷𝑆 as it results in a balance between heterogeneity

and overall runtime. Also, we compare our seeding strategy with

random seeding and k-means++ [2] seeding, denoted as GSLO-

random and GSLO-kmeans++, respectively. k-means++ seeding is

reported as the lowest error seeding for k-means clustering [43].

Figure 4(c) shows that around 1𝐷𝑆 , GSLO seeding, random seeding,

and k-means++ seeding achieve nearly the same runtime. Regarding

heterogeneity, GSLO seeding slightly outperforms random seeding

and k-means++ seeding. Figure 4(b) shows that the best heterogene-

ity GSLO obtained around 1𝐷𝑆 , i.e., the optimal setting as discussed

above, achieves 11.1% better heterogeneity compared to random

seeding and 4% better heterogeneity compared to k-means++ seed-

ing, which demonstrates the superiority of our Seed Identification.

Iterations in Local Optimization Iterations in Local Optimiza-

tion (ILO) refer to the maximum number of non-improving moves

allowed in Local Optimization that is describe in 5.2. Figure 5 shows

the heterogeneity and runtime under different ILO using the TIGER

dataset. We see that the heterogeneity improves as the number of

iterations in Local Optimization increases. However, the overall

runtime also increases as ILO increases. We set the number of iter-

ations in Local Optimization to 1DS, i.e., the size of the dataset, as
it achieves a good balance between runtime and heterogeneity in

Local Optimization.

7.2 Performance Evaluation
This section analyzes the performance of GSLO under different

parameter settings.

7.2.1 Time Breakdown Analysis. Figure 6 provides time break-

down analysis of GSLO under the TIGER dataset that shows the

average runtime of each phase under different 𝑝 . The figure shows

that the runtime of Local Optimization dominates the runtime of

GSLO and it decreases as 𝑝 increases since larger 𝑝 means less

flexibility to reassign the border areas without violating the user-

defined constraint. Seed Identification runtime increases slightly as

𝑝 increases because more seed areas are involved. Region Growth

runtime increases as 𝑝 increases because there are more regions

to grow. Enclaves Assignment runtime decreases as 𝑝 increases

because there are fewer enclaves to assign. Also, the runtime of

Inter-region Update and Indirect Flow increases as 𝑝 increases

because a larger 𝑝 results in a higher probability of generating

incomplete regions and thus a higher probability of invoking both

499

Table 3: Parameters and values

Parameter Values

TIGER dataset size (DS) 2k, 3k(with island), 5k, 10k, 30k, 40k

HID dataset size (DS) 3k
p 5, 10, 15, 20, 25, 30, 35, 40, 45, 50

Threshold (% of extensive attribute) 1%, 2%, 3% , 4%, 5%, 6%, 7%, 8%, 9%, 10%

Num of iterations in Local Optimization (ILO) 0.001DS, 0.01DS, 0.1DS, 1DS, 10DS, 100DS
Num of iterations in Seed Identification (ISI) 0.001DS, 0.01DS, 0.1DS, 1DS, 10DS, 100DS, 1000DS

0

5

10

15

20

25

30

35

0.
00
1D
S

0.
01
DS

0.
1D
S DS

10
DS

10
0D
S

10
00
DS

q
(
s
)
/
1
0
3

ISI

GSLO

(a) Seed quality q(s)

6

7

8

9

0.
00
1D
S

0.
01
DS

0.
1D
S DS

10
DS

10
0D
S

10
00
DS

H
e
t
e
r
o
g
e
n
e
i
t
y
/
1
0
9

ISI

GSLO
GSLO−random

GSLO−kmeans++

(b) Heterogeneity

 0

 5

 10

 15

 20

0.
00
1D
S

0.
01
DS

0.
1D
S DS

10
DS

10
0D
S

10
00
DS

R
u
n
t
i
m
e
(
s
)

ISI

GSLO
GSLO−random

GSLO−kmeans++

(c) Runtime

Figure 4: The effect of the number of iterations in Seed Identification under
the TIGER dataset

0

10

20

30

40

0.
00
1D
S

0.
01
DS

0.
1D
S

1D
S
10
DS

10
0D
S

H
e
t
e
r
o
g
e
n
e
i
t
y
/
1
0
9

ILO

GSLO

(a) Heterogeneity

 0.01

 0.1

 1

 10

0.
00
1D
S

0.
01
DS

0.
1D
S

1D
S
10
DS

10
0D
S

R
u
n
t
i
m
e
(
s
)

ILO

GSLO

(b) Runtime

Figure 5: The effect of the number of iterations
in Local Optimization under the TIGER dataset

0

10
−1

10
0

10
1

10
2

10
3

10
4

5 10 15 20 25 30 35 40 45 50

R
u
n
t
i
m
e
(
m
s
)

p

SI
RG

EA
IU

IFP
LO

Figure 6: GSLO time breakdown (phase names abbreviated)

0

0.2

0.4

0.6

0.8

1

5 10 15 20 25 30 35 40 45 50

E
f
f
e
c
t
i
v
e
n
e
s
s

p

GSLO
Greedy

(a) Effectiveness

10
9

10
10

10
11

10
12

inf

5 10 15 20 25 30 35 40 45 50

H
e
t
e
r
o
g
e
n
e
i
t
y

p

GSLO
Greedy

(b) Heterogeneity

Figure 7: Support of islands

steps. Note that in this experiment the average runtime is computed

from solved cases only. When 𝑝 = 50, no feasible partition is found.

7.2.2 Exploring Island Dataset. In this section, we experimen-

tally explore the efficiency of GSLO over a dataset containing is-

lands. We use a dataset that consists of two connected components

of size 3k, and 0.2k, respectively. SKATER* and SKATERCON* do

not support islands because the input for both must be a connected

spatial neighborhood graph. Thus, we compare GSLO with Greedy.

Figure 7 shows that GSLO consistently achieves better heterogene-

ity and effectiveness than Greedy in all cases. Notice that when

𝑝 > 10, Greedy does not find a feasible partition at all, whereas

GSLO finds the feasible partition with high probability in all solv-

able cases. GSLO’s high effectiveness results from all phases of

GSLO that take the extensive attribute into consideration.

7.2.3 The effect of the number of regions p. Figure 8a, Fig-
ure 8b, and Figure 8c show the performance of all alternatives under

different 𝑝 using the TIGER dataset. Note that the effectiveness of

SKATER* is either 0 or 1 because SKATER* is deterministic. The

result shows that GSLO consistently achieves the best heterogene-

ity and effectiveness. For the TIGER dataset, GSLO achieves up

to 5.22× improvement in heterogeneity compared to GS, which

demonstrates the efficiency of Local Optimization to further opti-

mize the heterogeneity. GSLO achieves up to 9× improvement in

heterogeneity compared to Greedy. Although the runtime in Greedy

is the smallest among all, the worst effectiveness and heterogeneity

make it impractical to use. Greedy has bad effectiveness because

it does not balance the extensive attribute across different regions,
and has bad heterogeneity because it makes local greedy decisions

when growing regions, which leads to suboptimal solutions. GSLO

achieves up to 4.3× improvement in heterogeneity compared to

SKATER* and up to 8.8× improvement compared to SKATERCON*.

Moreover, GSLO is up to 90.6× faster than SKATER* and up to

229.7× faster than SKATERCON*. Figure 8d, Figure 8e, and Fig-

ure 8f show that using the HID dataset, GSLO achieves up to 2.24×
better heterogeneity compared to GS, and up to 31.6% improvement

in heterogeneity compared to Greedy. GSLO achieves up to 21.5%

improvement in heterogeneity compared to SKATER* and up to

52.3% improvement compared to SKATERCON*. With respect to

500

10
9

10
10

10
11

10
12

inf

5 10 15 20 25 30 35 40 45 50

H
e
t
e
r
o
g
e
n
e
i
t
y

p

GSLO
GS

SKATER*
SKATERCON*

Greedy

(a) Heterogeneity - TIGER

10
−3

10
−2

10
−1

10
0

10
1

10
2

5 10 15 20 25 30 35 40 45 50

R
u
n
t
i
m
e
(
s
)

p

GSLO
GS

SKATER*
SKATERCON*

Greedy

(b) Runtime - TIGER

0

0.2

0.4

0.6

0.8

1

5 10 15 20 25 30 35 40 45 50

E
f
f
e
c
t
i
v
e
n
e
s
s

p

GSLO
GS

SKATER*
SKATERCON*

Greedy

(c) Effectiveness - TIGER

0

1

2

3

4

inf

5 10 15 20 25 30 35 40 45 50

H
e
t
e
r
o
g
e
n
e
i
t
y
/
1
0
5

p

GSLO
GS

SKATER*
SKATERCON*

Greedy

(d) Heterogeneity - HID

10
−2

10
−1

10
0

10
1

10
2

10
3

5 10 15 20 25 30 35 40 45 50

R
u
n
t
i
m
e
(
s
)

p

GSLO
GS

SKATER*
SKATERCON*

Greedy

(e) Runtime - HID

0

0.2

0.4

0.6

0.8

1

5 10 15 20 25 30 35 40 45 50

E
f
f
e
c
t
i
v
e
n
e
s
s

p

GSLO
GS

SKATER*
SKATERCON*

Greedy

(f) Effectiveness - HID

Figure 8: The effect of p under the TIGER and HID datasets

runtime, GSLO is up to 97.1× faster than SKATER* and up to 244.7×
faster than SKATERCON*. The percentage of heterogeneity reduc-

tion in the TIGER dataset of GSLO compared to the other baseline

algorithms is much greater than in the HID dataset. This is because

the similarity attribute in the TIGER dataset has a greater range

and variance, thus different partitions constructed from the TIGER

dataset have greater difference regarding heterogeneity compared

to the HID dataset where the similarity attribute has closer values.
Due to the fact that Greedy is inefficient and GS is part of GSLO,

in the following experiments we will only compare GSLO with

SKATER* and SKATERCON*.

Notice that the runtime of SKATER* and SKATERCON* increases

as 𝑝 increases. Furthermore, SKATERCON* has a higher runtime

than SKATER* as SKATER* is a phase of SKATERCON*. However,

GSLO requires less runtime as 𝑝 increases. The reason is that, as 𝑝

increases, the number of areas that can move between regions in

Local Optimization is smaller. Hence, the number of possible moves

is also smaller. This results in less runtime. Notice that GSLO is

able to early detect that there is no feasible solution to the input

problem up to 302.6× faster than SKATER* and SKATERCON*. The

reason is that GSLO is able to make an early decision about the

feasibility of the input problem in the Global Search phase.

With respect to runtime, GSLO outperforms SKATER* and

SKATERCON*, because GSLO is a seeding-based algorithm that

incrementally grows regions around seed areas. However, SKATER*

and SKATERCON* require finding successive expensive edge cuts

on the input graph. From a theoretical perspective, the time com-

plexity of SKATER* and SKATERCON* is cubic in 𝑛 while the time

complexity of GSLO is quadratic in 𝑛. This gives GSLO a consistent

edge over SKATER* and SKATERCON*. GSLO achieves superior

heterogeneity due to the Local Optimization step that reassigns

areas to regions to improve the overall heterogeneity, whereas

in SKATER* and SKATERCON*, once a partition is generated, no

adjustment is made to further optimize the heterogeneity. GSLO

has higher effectiveness due to Inter-region Update and Indirect

Flow Push phases that produce complete regions. SKATER* and
SKATERCON* do not have these abilities.

7.2.4 The effect of varying the threshold. Figure 9 shows the
heterogeneity, runtime, and effectiveness of GSLO, SKATER*, and

SKATERCON* under different threshold values in the TIGER and

HID datasets. Figure 9a, Figure 9b, and Figure 9c show that, under

the TIGER dataset, GSLO achieves up to 6.1× better heterogeneity

than SKATER* and up to 8.6× better heterogeneity than SKATER-

CON*. Additionally, GSLO is up to 26× faster than SKATER* and

up to 74.5× faster than SKATERCON*. Figure 9d, Figure 9e, and

Figure 9f show that, under the HID dataset, GSLO achieves up to

12.8% better heterogeneity than SKATER* and up to 48.1% better

heterogeneity than SKATERCON*. GSLO is up to 37.5× faster than

SKATER* and up to 95.9× faster than SKATERCON* under the HID

dataset. GSLO achieves the best effectiveness in both datasets. The

reason behind the good performance is similar to the one explained

in Section 7.2.3.

7.2.5 Using GSLO to Solve the 𝑝-regions problem. When the

threshold value is set to 0, PRUC resembles the basic 𝑝-regions

problem [15]. In this experiment, we compare GSLO to SKATER

and SKATERCON when solving the 𝑝-regions problem. Figure 10

illustrates that GSLO achieves better results than both SKATER

and SKATERCON for both heterogeneity and runtime. Under the

TIGER dataset, GSLO achieves up to 4.1× better heterogeneity

than SKATER and 8.7× better heterogeneity than SKATERCON. In

addition, GSLO is up to 31.2× faster than SKATER and up to 73.2×
faster than SKATERCON. Under the HID dataset, GSLO achieves

up to 22% better heterogeneity than SKATER and up to 23.3% better

heterogeneity than SKATERCON. Moreover, GSLO is up to 180.9×
faster than SKATER and up to 425× faster than SKATERCON.

501

10
9

10
10

10
11

inf

1% 2% 3% 4% 5% 6% 7% 8% 9%10%

H
e
t
e
r
o
g
e
n
e
i
t
y

Threshold

GSLO
SKATER*

SKATERCON*

(a) Heterogeneity - TIGER

10
−1

10
0

10
1

10
2

1% 2% 3% 4% 5% 6% 7% 8% 9%10%

R
u
n
t
i
m
e
(
s
)

Threshold

GSLO
SKATER*

SKATERCON*

(b) Runtime - TIGER

0

0.2

0.4

0.6

0.8

1

1% 2% 3% 4% 5% 6% 7% 8% 9%10%

E
f
f
e
c
t
i
v
e
n
e
s
s

Threshold

GSLO
SKATER*

SKATERCON*

(c) Effectiveness - TIGER

1.5

2.0

2.5

inf

1% 2% 3% 4% 5% 6% 7% 8% 9%10%

H
e
t
e
r
o
g
e
n
e
i
t
y
/
1
0
5

Threshold

GSLO
SKATER*

SKATERCON*

(d) Heterogeneity - HID

1

10
1

10
2

10
3

1% 2% 3% 4% 5% 6% 7% 8% 9% 10%

R
u
n
t
i
m
e
(
s
)

Threshold

GSLO
SKATER*

SKATERCON*

(e) Runtime - HID

0

0.2

0.4

0.6

0.8

1

1% 2% 3% 4% 5% 6% 7% 8% 9%10%

E
f
f
e
c
t
i
v
e
n
e
s
s

Threshold

GSLO
SKATER*

SKATERCON*

(f) Effectiveness - HID

Figure 9: The effect of threshold under the TIGER and HID datasets

10
8

10
9

10
10

10
11

10
12

5 10 15 20 25 30 35 40 45 50

H
e
t
e
r
o
g
e
n
e
i
t
y

p

GSLO
SKATER

SKATERCON

(a) Heterogeneity - TIGER

10
−1

10
0

10
1

10
2

5 10 15 20 25 30 35 40 45 50

R
u
n
t
i
m
e
(
s
)

p

GSLO
SKATER

SKATERCON

(b) Runtime - TIGER

0

1

2

3

4

5 10 15 20 25 30 35 40 45 50

H
e
t
e
r
o
g
e
n
e
i
t
y
/
1
0
5

p

GSLO
SKATER

SKATERCON

(c) Heterogeneity - HID

10
−1

10
0

10
1

10
2

10
3

5 10 15 20 25 30 35 40 45 50

R
u
n
t
i
m
e
(
s
)

p

GSLO
SKATER

SKATERCON

(d) Runtime - HID

Figure 10: Solving 𝑝-regions problem under the TIGER and HID datasets

7.2.6 The scalability of GSLO. Figure 11 demonstrates the scal-

ability of GSLO compared to SKATER* and SKATERCON* on the

TIGER dataset of different sizes. Within a predefined time limit,

i.e., 4 hours, GSLO can handle up to 40k dataset while SKATER*

and SKATERCON* can only handle up to 10k. Furthermore,GSLO

achieves up to 5× better heterogeneity than SKATER* and SKATER-

CON*. This experiment shows that GSLO can handle up to 4× larger

datasets than SKATER* and SKATERCON*.

10
9

10
10

10
11

10
12

10
13

10
14

inf

2
k

5
k

1
0
k

H
e
t
e
r
o
g
e
n
e
i
t
y

Dataset

GSLO
SKATER*

SKATERCON*

(a) Heterogeneity

10
1

10
2

10
3

>4h

2
k

5
k

1
0
k

2
0
k

3
0
k

4
0
k

R
u
n
t
i
m
e
(
s
)

Dataset

GSLO
SKATER*

SKATERCON*

(b) Runtime(s)

Figure 11: Scalability test under the TIGER dataset

8 CONCLUSION
In this paper, we introduce PRUC, a generalized version of the

𝑝-regions problem that accounts for user-defined constraints. We

develop an efficient parallel stochastic solution to PRUC which is

divided into Global Search and Local Optimization. Experimental

results show that GSLO is up to more than 100× faster and achieves

up to 6× better heterogeneity than the state-of-the-art algorithms.

In addition, GSLO solves the original 𝑝-regions problem with up

to 4× better heterogeneity than existing algorithms. With respect

to future work, we plan to use GSLO to solve other spatial region-

alization problems, e.g., 𝑝-compact region problem [35], school

redistricting problem [8, 9], Node-attributed Spatial Graph Parti-

tioning [6], and MAX-P regions problem [14]. Also, we plan to

investigate the support of incremental changes to the properties of

input areas and multiple user-defined constraints.

ACKNOWLEDGMENTS
This work is partially supported by the National Science Foundation,

USA, under grants IIS-1849971, SES-1831615, and CNS-2031418.

502

REFERENCES
[1] J. Aldstadt. Spatial Clustering. In Handbook of applied spatial analysis, pages

279–300. Springer, 2010.

[2] D. Arthur and S. Vassilvitskii. k-means++: The Advantages of Careful Seeding.

Technical report, Stanford, 2006.

[3] R. M. Assunção, M. C. Neves, G. Câmara, and C. Da Costa Freitas. Efficient

Regionalization Techniques for Socio-economic Geographical Units Using Mini-

mum Spanning Trees. International Journal of Geographical Information Science,
IJGIS, 20(7):797–811, 2006.

[4] O. Aydin, M. V. Janikas, R. Assunção, and T.-H. Lee. SKATER-CON: Unsupervised

Regionalization via Stochastic Tree Partitioning Within a Consensus Framework

Using Random Spanning Trees. In Proceedings of the ACM SIGSPATIAL Interna-
tional Workshop on AI for Geographic Knowledge Discovery, ACM GeoAI, pages
33–42, 2018.

[5] O. Aydin,M. V. Janikas, R.M. Assunção, and T. H. Lee. AQuantitative Comparison

of Regionalization Methods. International Journal of Geographical Information
Science, IJGIS, 35(11):2287–2315, 2021.

[6] D. Bereznyi, A. Qutbuddin, Y. Her, and K. Yang. Node-attributed Spatial Graph

Partitioning. In Proceedings of the ACM SIGSPATIAL International Conference on
Advances in Geographic Information Systems, ACM GIS, pages 58–67, 2020.

[7] L. Bertolini and W. Salet. Planning Concepts for Cities in Transition: Region-

alization of Urbanity in the Amsterdam Structure Plan. Planning Theory and
Practice, 4(2):131–146, 2003.

[8] S. Biswas, F. Chen, Z. Chen, C. T. Lu, and N. Ramakrishnan. Incorporating

Domain Knowledge into Memetic Algorithms for Solving Spatial Optimization

Problems. In Proceedings of the ACM SIGSPATIAL International Conference on
Advances in Geographic Information Systems, ACM GIS, pages 25–35, 2020.

[9] S. Biswas, F. Chen, Z. Chen, A. Sistrunk, N. Self, C. T. Lu, and N. Ramakrishnan.

REGAL: A Regionalization Framework for School Boundaries. In Proceedings
of the ACM SIGSPATIAL International Conference on Advances in Geographic
Information Systems, ACM GIS, pages 544–547, 2019.

[10] U. C. Bureau. TIGER/Line Shapefile, 2016, Series Information for the Current

Census Tract State-based Shapefile, 2021. https://catalog.data.gov/dataset/tiger-

line-shapefile-2016-series-information-for-the-current-census-tract-state-

based-shapefile.

[11] P. S. Cowpertwait. A Regionalization Method Based on a Cluster Probability

Model. Water Resources Research, 47(11), 2011.
[12] I. I. Cplex. V12. 1: User’s Manual for CPLEX. International Business Machines

Corporation, 46(53):157, 2009.
[13] F. Csillag, S. Kabos, and T. K. Remmel. A Spatial Clustering Perspective on

Autocorrelation and Regionalization. Environmental and ecological statistics,
15(4):385–401, 2008.

[14] J. C. Duque, L. Anselin, and S. J. Rey. The Max-P-Regions Problem. Journal of
Regional Science, JRS, 52(3):397–419, 2012.

[15] J. C. Duque, R. L. Church, and R. S. Middleton. The p-Regions Problem. Geo-
graphical Analysis, 43(1):104–126, 2011.

[16] J. C. Duque, R. Ramos, and J. Suriñach. Supervised Regionalization Methods: A

Survey. International Regional Science Review, IRSR, 30(3):195–220, 2007.
[17] J. C. Duque, M. C. Vélez-Gallego, and L. C. Echeverri. On the Performance of

the Subtour Elimination Constraints Approach for the p-Regions Problem: A

Computational Study. Geographical Analysis, 50(1):32–52, 2018.
[18] M. M. Fischer. Regional Taxonomy: A Comparison of Some Hierarchic and

Non-hierarchic Strategies. Regional Science and Urban Economics, 10(4):503–537,
1980.

[19] 2000 Health, Income and Diversity Shapefile, 2021. https://geodacenter.github.io.

[20] F. Glover. Heuristics for Integer Programming Using Surrogate Constraints.

Decision Science, 8(1):156–166, 1977.
[21] D. Guo. Regionalization with Dynamically Constrained Agglomerative Cluster-

ing and Partitioning (REDCAP). International Journal of Geographical Information
Science, IJGIS, 22(7):801–823, 2008.

[22] J. Harff and J. C. Davis. Regionalization in Geology by Multivariate Classification.

Mathematical Geology, 22(5):573–588, 1990.
[23] X. He and B. Wei. A Hybrid Heuristic Algorithm for School District Division. The

International Archives of Photogrammetry, Remote Sensing and Spatial Information
Sciences, 42:1113–1120, 2020.

[24] J. Hurley. Regionalization and the Allocation of Healthcare Resources to Meet

Population Health Needs. HealthcarePapers, 5:34–39, 2004.
[25] A. K. Jain and R. C. Dubes. Algorithms for Clustering Data. Prentice-Hall, Inc.,

1988.

[26] G. Karypis and V. Kumar. A Fast andHighQualityMultilevel Scheme for Partition-

ing Irregular Graphs. SIAM Journal of Scientific Computing, SISC, 20(1):359–392,
1998.

[27] H. Kim, Y. Chun, and K. Kim. Delimitation of Functional Regions Using a p-

Regions ProblemApproach. International Regional Science Review, IRSR, 38(3):235–
263, 2015.

[28] K. Kim, Y. Chun, and H. Kim. p-Functional Clusters Location Problem for

Detecting Spatial Clusters with Covering Approach. Geographical Analysis,

49(1):101–121, 2017.

[29] K. Kim, Y. Chun, and H. Kim. A Robust Heuristic Approach for Regionalization

Problems. In GeoComputational Analysis and Modeling of Regional Systems, pages
305–324. Springer, 2018.

[30] K. Kim, D. J. Dean, H. Kim, and Y. Chun. Spatial Optimization for Regionalization

Problems with Spatial Interaction: a Heuristic Approach. International Journal
of Geographical Information Science, IJGIS, 30(3):451–473, 2016.

[31] G. Kirkpatrick and M. Vechi. Optimization by Simulated Annealing. Science,
220(4598):671–680, 1983.

[32] P. M. Lankford. Regionalization: Theory and Alternative Algorithms. Geograph-
ical Analysis, 1(2):196–212, 1969.

[33] J. Laura, W. Li, S. J. Rey, and L. Anselin. Parallelization of a Regionalization

Heuristic in Distributed Computing Platforms – a Case Study of Parallel-p-

compact-regions Problem. International Journal of Geographical Information
Science, IJGIS, 29(4):536–555, 2015.

[34] W. Li, R. L. Church, and M. F. Goodchild. An Extendable Heuristic Framework to

Solve the p-compact-regions Problem for Urban Economic Modeling. Computers,
Environment and Urban Systems, 43:1–13, 2014.

[35] W. Li, R. L. Church, and M. F. Goodchild. The p-compact-regions Problem.

Geographical Analysis, 46(3):250–273, 2014.
[36] A. Ligmann-Zielinska. Spatial Optimization. International Encyclopedia of Geogra-

phy: People, the Earth, Environment and Technology: People, the Earth, Environment
and Technology, pages 1–6, 2016.

[37] J. MacQueen et al. Some Methods for Classification and Analysis of Multivariate

Observations. In Proceedings of the fifth Berkeley symposium on mathematical
statistics and probability, volume 1, pages 281–297, 1967.

[38] R. T. Marler and J. S. Arora. Survey of Multi-objective Optimization Methods for

Engineering. Structural and multidisciplinary optimization, 26(6):369–395, 2004.
[39] L. Miranda, J. Viterbo Filho, and F. C. Bernardini. Regk-means: A Clustering

Algorithm Using Spatial Contiguity Constraints For Regionalization Problems.

In Brazilian Conference on Intelligent Systems (BRACIS), pages 31–36, 2017.
[40] A. T. Murray and T. K. Shyy. Integrating Attribute and Space Characteristics in

Choropleth Display and Spatial Data Mining. International Journal of Geographi-
cal Information Science, IJGIS, 14(7):649–667, 2000.

[41] J. Niesterowicz, T. Stepinski, and J. Jasiewicz. Unsupervised Regionalization

of the United States into Landscape Pattern Types. International Journal of
Geographical Information Science, IJGIS, 30(7):1450–1468, 2016.

[42] S. Openshaw. A Geographical Solution to Scale and Aggregation Problems in

Region-Building, Partitioning and Spatial Modelling. Transactions of the Institute
of British Geographers, pages 459–472, 1977.

[43] J. Ortiz-Bejar, E. S. Tellez, M. Graff, J. Ortiz-Bejar, J. C. Jacobo, and A. Zamora-

Mendez. Performance Analysis of k-means Seeding Algorithms. In 2019 IEEE
International Autumn Meeting on Power, Electronics and Computing (ROPEC),
pages 1–6, 2019.

[44] M. M. Rahman. Regionalization of Urbanization and Spatial Development: Plan-

ning Regions in Bangladesh. The Journal of Geo-Environment, 4:31–46, 2004.
[45] T. Robert. Depth-first Search and Linear Graph Algorithms. SIAM Journal on

Computing, SICOMP, 1(2):146–160, 1972.
[46] B. She, J. C. Duque, and X. Ye. The Network-max-P-regions Model. International

Journal of Geographical Information Science, IJGIS, 31(5):962–981, 2017.
[47] A. Sheshasaayee and D. Sridevi. A Combined System for Regionalization in

Spatial Data Mining Based on Fuzzy C-Means Algorithm with Gravitational

Search Algorithm. In Proceedings of the 5th International Conference on Frontiers
in Intelligent Computing: Theory and Applications, pages 517–524, 2017.

[48] V. Sindhu. Exploring Parallel Efficiency and Synergy for Max-P Region Problem

Using Python. Master’s thesis, Georgia State University, 2018.

[49] D. Tong and A. T. Murray. Spatial Optimization in Geography. Annals of the
Association of American Geographers, 102(6):1290–1309, 2012.

[50] R. J. Trudeau. Introduction to graph theory. Courier Corporation, 2013.
[51] R. Webster and P. A. Burrough. Computer-Based Soil Mapping of Small Areas

From Sample Data: Ii. Classification Smoothing. European Journal of Soil Science,
EJSS, 23(2):222–234, 1972.

[52] R. Wei, S. Rey, and T. H. Grubesic. A Probabilistic Approach to Address Data

Uncertainty in Regionalization. Geographical Analysis, 0:1–22, 2021.
[53] R. Wei, S. Rey, and E. Knaap. Efficient Regionalization for Spatially Explicit

Neighborhood Delineation. International Journal of Geographical Information
Science, IJGIS, 35(1):135–151, 2021.

[54] D. White, M. Richman, and B. Yarnal. Climate Regionalization and Rotation of

Principal Components. International Journal of Climatology, 11(1):1–25, 1991.
[55] X. Yang, J. Magnusson, and C.-Y. Xu. Transferability of Regionalization Methods

under Changing Climate. Journal of Hydrology, 568(March 2018):67–81, 2019.

[56] X. Ye, B. She, and S. Benya. Exploring Regionalization in the Network Urban

Space. Journal of Geovisualization and Spatial Analysis, JGSA, 2(1):1–11, 2018.
[57] B. Zhang, M. Hsu, and U. Dayal. K-Harmonic Means - A Spatial Clustering

Algorithm with Boosting. In International Workshop on Temporal, Spatial, and
Spatio-Temporal Data Mining, pages 31–45, 2000.

[58] Y. Zhou, H. Cheng, and J. X. Yu. Graph Clustering Based on Structural/Attribute

Similarities. Proceedings of the VLDB Endowment, PVLDB, 2(1):718–729, 2009.

503

