
EMP: Max-P Regionalization with Enriched
Constraints

Yunfan Kanga, b
aDepartment of Computer Science and Engineering

bCenter for Geospatial Sciences

University of California, Riverside

ykang040@ucr.edu

Amr Magdya, b
aDepartment of Computer Science and Engineering

bCenter for Geospatial Sciences

University of California, Riverside

amr@cs.ucr.edu

Abstract—Spatial regionalization is the process of grouping a
set of spatial areas into spatially contiguous and homogeneous
regions. This paper introduces an enriched max-p-regions (EMP)
problem; a regionalization process that allows enriched user-
defined constraints based on SQL aggregate functions. In addi-
tion to enabling richer constraints, it enables users to employ
multiple constraints simultaneously to significantly push the
expressiveness and effectiveness of the existing regionalization
literature. The EMP problem is NP-hard and significantly
enriches the existing regionalization problems. Such a major
enrichment introduces several challenges in both feasibility and
scalability. To address these challenges, we propose the FaCT
algorithm, a three-phase greedy approach that finds a feasible set
of spatial regions that satisfy EMP constraints while supporting
large datasets compared to the existing literature. Our extensive
experimental evaluation has demonstrated the effectiveness and
scalability of our techniques on several real datasets.

Index Terms—spatial, regionalization, max-p, aggregate

I. INTRODUCTION

Regionalization is the process of clustering a set of areas

into spatially contiguous and homogeneous regions. Unlike

traditional clustering of multi-dimensional points, the basic

units in regionalization are spatial polygons that are grouped

based on both attribute values and adjacency in space. Re-

gionalization is widely used in numerous applications such as

epidemic analysis [7], service delivery systems [3], water qual-

ity assessment [13], weather temperature classification [18],

rainfall erosivity estimation [46], health data analysis [8], spa-

tial crowdsourcing [12], [48], and constituency allocation [44].

Identifying regions is a computational and conceptual chal-

lenge. One of the fundamental challenges is determining the

spatial scale of the studied phenomena. For example, snowing

is spatially correlated at the level of multiple states, e.g., the

USA midwest states, while temperature is spatially correlated

at a county level. Most regionalization routines require the

number of regions, p, as an input parameter, e.g., in the USA,

p = 50 is a state level and p = 3000 is a county level. This puts

the burden of determining the spatial scale on the data analysts,

forcing them to analyze multiple p values, which increases the

computational cost and limits the query expressiveness.

The latest regionalization formulation, called the max-p-

regions problem (or MP-regions), has addressed the scale

problem [15] and become popular in different applications,

including urban spatial structures [4], measuring intra-urban

poverty [17], population growth analysis [21], crime anal-

ysis [41], regional inequality analysis [43], spatial uncer-

tainty [49], and neighborhood delineation [50]. With the obser-

vation that researchers usually know a condition that a region

must satisfy to be suitable for the analysis, the MP-regions

automatically discovers the maximum number of regions that

satisfy a given user-defined constraint instead of forcing users

to input p. However, the MP-regions problem has several

limitations in both scalability and expressiveness. Currently,

the state-of-the-art algorithms take 3-60 mins to process a

dataset with ∼3k areas, depending on the threshold value. As

a result, existing real applications, listed above, use relatively

small data, ranging from tens of areas [11], [21], [43] to only

a few hundred [4], [17], [41], [49], [50]. It is explicitly stated

in [49] that to use the MP-regions algorithms “one must be

willing to reduce the number of geographic units of analy-

sis.” Such severe scalability limitations prevent the existing

MP-regions formulation from supporting a wide variety of

user-defined constraints that enable users to express flexible

regionalization queries for various applications.

Existing MP-regions formulation allows a single user-

defined threshold lower bound on one attribute, e.g., total

region population ≥ 100K. However, many analysis tasks can-

not be catered with a single constraint that involves a simple

threshold. In many real applications, it is common to have

multiple constraints with different aggregate functions. For

example, studies show that the COVID-19 virus transmission

pattern is closely related to prosperity and labor mobility [7].

In order to make region-specific recommendations for pre-

venting the virus spread, policymakers can issue a query to

identify reasonably populated regions with a total population

≥ 200000, an average monthly income between $3000 to

$5000, and public transportation passengers ≥ 10000. Another

example is studying the changes in population requires con-

sidering multiple factors that influence the phenomenon [21]

with different aggregation functions such as the minimum

population of each area, the maximum school drop-out rate,

the average age of the population, and total unemployment.

A third example is the patrol sector partition problem [11]

that aims to consider the number of calls and the workload

balance. These example applications significantly benefit from

1914

2022 IEEE 38th International Conference on Data Engineering (ICDE)

2375-026X/22/$31.00 ©2022 IEEE
DOI 10.1109/ICDE53745.2022.00189

20
22

 IE
EE

 3
8t

h
In

te
rn

at
io

na
l C

on
fe

re
nc

e
on

 D
at

a
En

gi
ne

er
in

g
(IC

DE
) |

 9
78

-1
-6

65
4-

08
83

-7
/2

2/
$3

1.
00

 ©
20

22
 IE

EE
 |

 D
O

I:
10

.1
10

9/
IC

DE
53

74
5.

20
22

.0
01

89

Authorized licensed use limited to: Univ of Calif Riverside. Downloaded on September 26,2022 at 16:41:09 UTC from IEEE Xplore. Restrictions apply.

enriching the expressiveness of MP-regions queries that will

enable exploring different scenarios and expanding analysis

capabilities. Currently, such advanced regionalization queries

cannot be expressed using the existing MP-regions formulation

due to its limited support for user-defined constraints, limiting

its full potential in many real applications.

This paper introduces an enriched MP-regions problem

(EMP) that addresses the existing MP-regions limitations.

EMP enables users to analyze one to two orders of magnitude

larger datasets than the currently supported ones. Further-

more, EMP enriches user-defined constraints with three novel

features: (1) EMP provides an enriched set of aggregates

that contains three families of aggregate functions, namely,

extrema aggregates, centrality aggregates, and counting ag-

gregates. The three families of aggregates are inspired by

the standard SQL aggregate functions from which we adopt

minimum and maximum as extrema aggregates, average as

a centrality aggregate, and summation and count as counting

aggregates. (2) EMP allows using a range comparison operator

that expresses all possible comparisons, less-than-or-equal (≤),

larger-than-or-equal (≥), and range comparison. This enables

users to set both lower and upper bounds for their constraints

instead of only lower bounds in existing formulations. (3) EMP

supports multiple constraints instead of a single constraint.

The EMP formulation addresses the limitation of the existing

MP-regions formulation and reveals the full potential for

regionalization queries in different applications.

The EMP problem is an NP-hard problem (see Section IV),

so finding an optimal solution is intractable. We formulated the

EMP as a mathematical optimization problem using mixed-

integer programming (MIP) problem [28] and solved it with

the world’s fastest MIP solver Gurobi [25]. The optimizer

takes 33.86s to find an optimal solution for 9 areas, 10 hours

for 16 areas, and is not able to return a feasible solution for

25 areas after 110 hours of execution [29]. This clearly shows

the infeasibility of finding an exact solution for hundreds or

thousands of areas in a reasonable runtime. However, even

finding an approximate solution faces two main challenges.

First, the newly introduced constraints are non-monotonic.

Therefore, adding or removing areas to and from a certain

region does not provide any guarantee of satisfying or violating

these constraints. This requires exhaustive exploration for the

whole search space to find the solution, which is intractable

with such an NP-hard problem. Second, while satisfying mul-

tiple non-monotonic constraints, a region can easily become

overlarge. Having oversized regions reduces the number of

regions p, which contradicts the objective of maximizing p.

To address these challenges, we introduce FaCT , a three-

phase algorithm to solve the EMP problem. The first phase

derives theoretical bounds to verify the feasibility of finding a

solution given the user-defined constraints. In addition, in the

case of infeasibility, it enables the user to potentially alter input

data to satisfy the constraints. This provides great flexibility

to tune either data or query parameters adaptively and enables

rich exploratory analysis capabilities for a wide variety of

datasets. The second phase constructs a feasible solution that

satisfies the input constraints while maximizing the number of

regions p. The phase is divided into three independent steps

with the following features: (a) Each step is carefully designed

to exploit the mathematical properties of one type of constraint

to maximize the p to its theoretical upper bound. (b) The input

and output of each step are designed exquisitely to reduce the

search space for the following steps and mitigate the conflicts

introduced by the different mathematical properties of different

constraints. (c) The steps are independent of each other,

enabling FaCT to construct feasible solutions progressively

and handle any arbitrary combinations of constraint types

effectively and efficiently. (d) The algorithm provides multiple

parameter tuning options so that the users can choose the best

aggregate strategy according to the use case and the char-

acteristic of the dataset. (e) The algorithm supports datasets

with multiple connected components, while the MP-regions

formulation supports only a single connected component. The

third phase of FaCT performs a local search adapting the

Tabu search [23] and swaps areas between regions to improve

the overall heterogeneity of the regions.

Our experimental evaluation demonstrates the effectiveness

of FaCT on real datasets. We evaluate the impact of dif-

ferent threshold ranges, different combinations of constraints,

and the scalability to process datasets. Our contributions are

summarized as follows:

• We define an enriched max-p regions problem (EMP) that

reveals the full potential of max-p regionalization.

• We prove the NP-hardness of the EMP problem.

• We propose FaCT ; a three-phase greedy algorithm that

provides approximate solutions for the EMP problem.

• We perform an extensive experimental evaluation that

shows the effectiveness of our techniques on real datasets.

The rest of this paper is organized as follows. Section II

presents the related work. Section III defines the problem and

Section IV proves its NP-hardness. Our proposed solution is

detailed in Section V, and its time and space complexity are

analyzed in Section VI. Section VII shows the experimental

evaluations and Section VIII concludes the paper.

II. RELATED WORK

The regionalization problem originates from the demand

for aggregating homogeneous regions in the analytical tasks

performed by social scientists and statisticians [19]. Region-

alization is referred to by different names, including region

building [10], conditional clustering [33], clustering with rela-

tional constraints [19], contiguity-constrained clustering [36],

constrained classification [24], maximum split clustering under

connectivity constraints [26], and p-regions problem [16]

that is used in a variety of applications such as detecting

functional regions [30], [31], network-constrained urban man-

agement [54], and partitioning compact regions [32], [34],

[35]. The max-p-regions problem (MP-regions) [15] has been

introduced to eliminate the requirement for inputting the

number of regions in advance. It aggregates areas into a

maximum number of regions so that each region satisfies a

single user-defined constraint with a summation aggregate,

1915

Authorized licensed use limited to: Univ of Calif Riverside. Downloaded on September 26,2022 at 16:41:09 UTC from IEEE Xplore. Restrictions apply.

e.g., total population ≥ 20K. Existing variants [20], [21],

[47] use the road network-based connectivity as an additional

spatial constraint to aggregate regions or use multiple attributes

to impose the constraint. However, all existing variants still

support only a single constraint of one type as the MP-regions

problem.

Existing regionalization techniques that perform multi-

criteria districting [11], [14], [21], [51], [53] use multi-

objective optimization to partition the space based on multiple

attributes. These techniques still put the burden of determining

the spatial scale, i.e., the number of output regions, on the user.

They also allow the user to define a single constraint on one

of the attributes, limiting the query expressiveness. Our EMP

problem addresses these limitations. It enables users to define

multiple constraints on different attributes to provide flexible

and expressive queries. In addition, it inherits the automatic

discovery of the appropriate number of regions from the MP-

regions and eliminates the spatial scale problem.

We classify the popular approaches to tackle the NP-

hard rationalization problems into two main categories. The

first category is the clustering methods [38], [40] with two

phases. The first phase clusters the centroids of polygons

using a traditional clustering algorithm. The second phase

then imposes the spatial connectivity constraint to ensure

that each region is geographically connected. The second

category adopts a two-phase contiguity-constrained heuristic

optimization approach [5], [15], [22], [39], [47]. The set of

spatial areas is usually represented by a graph that encodes

the spatial contiguity relationships. With the spatial contiguity

constraint imposed explicitly, a feasible initial solution is

constructed in the first phase and then optimized using heuris-

tic or mixed-heuristic search methods in the second phase.

The construction methods include tree partition [5], [6] and

greedy aggregation [15], [20], [22], [39]. The heuristic search

phase optimizes the objective function to improve the region

homogeneity [5], [6], [22] or geographical compactness [22]

without violating the contiguity constraint.

Our work follows the second category of contiguity-

constrained heuristic optimization search. We consider mul-

tiple constraints with different aggregate functions that do not

exist in the literature, so none of the existing methods can

obtain a feasible solution that satisfies our enriched constraints.

III. PROBLEM DEFINITION

This section formally defines the enriched max-p regions

(EMP) problem. Let A = {a1, a2, ..., an} denote the set of

areas. Each area ai is defined by four attributes: ai=(i,bi,Si,di),

where i is the area identifier, bi is an arbitrary spatial polygon

that defines the area’s spatial boundaries, Si is a set of spatially

extensive attributes and di is a dissimilarity attribute. The

dissimilarity attribute di is used in computing output regions’

heterogeneity. The rest of the section presents basic definitions,

then defines the EMP problem formally.

Definition III.1 (User-defined Constraint). A user-defined

constraint c is a condition that is defined as “l ≤ f(s) ≤ u” or

“f(s) ∈ [l, u]”. c is identified with a 4-tuple: (f ,s,l,u), where

f is an aggregate function, s is a spatially extensive attribute,

l ∈ [−∞,∞) is a number that represents a lower bound, and

u ∈ (−∞,∞] is a number that represents an upper bound.

EMP allows f to be MIN, MAX, AVG, SUM, or COUNT

that compute minimum, maximum, average, summation, and

count aggregates, respectively, with the same semantic as the

SQL standards. The attribute s is a spatially extensive attribute

whose value is divided over the smaller areas when the area

is fragmented. For example, the population value of a state is

divided over its cities, so the population is a spatially extensive

attribute. This is the opposite to spatially intensive attributes,

such as temperature, that are not divided when the spatial area

is fragmented. Examples of s include the population, labor

force, and households in each area. When l = −∞, the range

has an open-ended lower bound and the constraint becomes

f(s) ≤ u. Similarly, when u = ∞, it becomes f(s) ≥ l.

Definition III.2 (Region). A region R is a set of g areas:

R = {a1, a2, ..., ag}, such that: (1) g ≥ 1, i.e., R contains at

least one area. (2) Areas in R are spatially contiguous, i.e., ∀
ai, aj ∈ R, ∃ a sequence of areas (ak,...,al) s.t. both (ai, ak)

and (al, aj) are spatial neighbors, and every two consecutive

areas in the sequence are spatial neighbors.

Definition III.3 (Heterogeneity). Heterogeneity H(P) of a set

of regions P is defined as:

H(P) =
∑

∀R∈P

∑

∀ai,aj∈R

|di − dj | (1)

This definition of H is popular in the MP-regions liter-

ature, so it is recognized by social sciences experts as a

primary measure for region heterogeneity. However, our work

can support alternative definitions, such as improving spatial

compactness or balancing multiple criteria. The reason is that

our second phase, which is based on Tabu search as discussed

in Section V, can deal with different optimization functions.

EMP Problem. The EMP problem is defined as follows:

Input: Given: (1) A set of n areas: A = {a1, a2, ..., an}.

(2) A set of user-defined constraints C = {c1, c2, ..., cm}.

Output: (1) A set of regions P = {R1, R2, ..., Rp}, where

1 ≤ p ≤ n and each region Ri satisfies the below EMP

constraints and objectives. (2) A set U0 = A−
⋃p

i=1
Ri, i.e., U0

contains all areas that are not assigned to any feasible region

Ri, ∀1 ≤ i ≤ p. Areas in U0 may not be spatially contiguous.

EMP Constraints:

• Ri ∩Rj = ∅, ∀Ri, Rj ∈ P ∧ i �= j

• Ri satisfies all constraints cj ∈ C,

. ∀ 1 ≤ i ≤ p, 1 ≤ j ≤ m

Objectives:

• Maximizing the number of regions p.

• Minimizing regions’ overall heterogeneity H(P).

EMP has two objectives. In case they contradict during

building the output regions, the first objective (maximizing

1916

Authorized licensed use limited to: Univ of Calif Riverside. Downloaded on September 26,2022 at 16:41:09 UTC from IEEE Xplore. Restrictions apply.

the number of regions) is favored over the second one (min-

imizing regions’ heterogeneity). This allows users to obtain

the maximum number of desirable regions without provid-

ing the number of regions as an input, as favored by the

domain experts [15], which addresses a major limitation in

the previous regionalization problems. The second objective

uses a dissimilarity attribute that is not necessarily a spatial

attribute. For example, social scientists produce regions that

are homogeneous in average income level.

Comparing the EMP problem with the original MP-regions

problem [15], there are two major differences that are in-

troduced by the enriched user-defined constraints. First, the

enriched constraints are not always monotonic. Assuming that

all spatially extensive attribute values are positive, adding an

area to a region or removing an area from a region in MP-

regions guarantees a monotone change towards satisfying the

constraint threshold. This is not the case for the EMP problem

due to allowing AVG, MIN, and MAX constraints. In addition,

the EMP problem allows upper-bounded threshold ranges,

so adding areas to a region without additional validation

leads to violating the SUM and COUNT constraints’ upper

bounds. Second, the EMP problem allows unassigned areas,

U0, to exist in the final area partition, contrary to the MP-

regions problem. This provides flexibility to satisfy multi-

ple constraints of different types, especially MIN and MAX

constraints that commonly cause invalid areas, as discussed

in the following sections. Allowing unassigned areas enables

constraints such as MIN and MAX to serve as filters to

filter out areas with undesired properties, which introduces

more tolerance and enables richer exploration capabilities to

regionalization queries.

IV. NP-HARDNESS OF EMP

This section proves the NP-hardness of the EMP problem.

The NP-hardness of the EMP problem follows the results that

the MP-regions problem is NP-hard [1], [2], [15]. The MP-

regions problem takes as input: (1) a set of spatially contiguous

areas A = {a1, a2, ..., an}. Each area ai is associated with an

identifier i, a spatial polygon bi, a spatially extensive attribute

si and a dissimilarity attribute di, (2) a threshold value t. For

the purpose of the proof, we solve both the MP-regions and

the EMP problem as decision problems with a fixed p = k.

Theorem 1. The EMP problem is NP-hard.

Proof. Let X = (A, t) be an instance of the MP-regions

problem. We construct an instance Y = (A′, C) of the EMP

problem as follows: (1) For each area ai ∈ X.A, add

to Y.A′ an area a′i = {i, bi, S
′
i, di}, S′

i = {si}. (2) Let

C = {(SUM,S′[0], t,∞)}. (3) Let the number of regions p

equal k. This reduction is of polynomial time of O(n) where

n is the number of areas in A. Therefore, an algorithm that

decides on the instance Y of the EMP problem decides on

the instance X of the MP-regions problem as well. As the

MP-regions problem is NP-hard, then the EMP problem is

NP-hard, and the proof is complete.

V. PROPOSED SOLUTION

This section presents FaCT , a three-phase algorithm that

finds a feasible solution for an instance of the EMP problem

with low overall heterogeneity. The first phase is a feasibility

phase that verifies the existence of any feasible solution

given the user-defined constraints. The second phase is a

construction phase that constructs a feasible initial solution

with the maximum number of regions p while satisfying

all user-defined constraints. This phase represents the major

contribution of this algorithm. It balances two challenging

objectives: satisfying multiple non-monotonic user-defined

constraints and producing a maximum number of spatially

contiguous regions. The third phase is a local search phase

that improves the initial solution of the construction phase in

terms of the heterogeneity score. The following sections detail

each phase.

A. Feasibility Phase

The EMP problem deals with arbitrary combinations of con-

straints on different attributes. The goal of the feasibility phase

is to signal the user at an early stage for: (1) the infeasibility

of finding a solution for the given set of constraints on the

given dataset, and (2) the possibility of removing some areas

to satisfy the given constraints.
The fact that our algorithm can detect and filter out invalid

areas for all constraints, including non-monotonic constraints,

gives it major practical advantages when employing multiple

constraints. The algorithm is not only able to give users a

heads-up on the infeasibility of their constraints, but also users

can choose to remove input areas that cause such infeasibility

automatically. This gives data analysts great flexibility to

analyze a wide variety of datasets and constraints.
Given a set of user-defined constraints C =

{(MIN, smin, lmin, umin), (MAX, smax, lmax, umax),
(AV G, savg, lavg, uavg), (SUM, ssum, lsum, usum),
(COUNT, scount, lcount, ucount)}, we check the feasibility

of applying each type of constraint as follows:
(1) For AVG constraints, we compute the average value

AVG(savg) of attribute savg over all areas. If AV G(savg) <
lavg or AV G(savg) > uavg , we infer that there exists no

partition where all regions satisfy the AVG constraint without

removing any area. This is justified by Theorem 3 below.

Theorem 2. If ∃P = {R1, R2, ..., Rp} so that every region

Ri ∈ P satisfies c = (AV G, savg, lavg, uavg) and P contains

all areas in a set A, then the average value AV G(savg) of savg
over all areas of A satisfies c, i.e., lavg ≤ AV G(savg) ≤ uavg.

Proof. If p = 1, i.e., P = {A}, the proposition is trivially

true. If p > 1, as all regions in P satisfy c, we have:

lavg ≤ Ri.AV G(savg) ≤ uavg, ∀i, 1 ≤ i ≤ p (2)

where Ri.AV G(savg) represents the average value of attribute

savg over areas in region Ri. Let |Ri| denote the number of

areas in region Ri. As P contains all areas, we have:
p∑

i=1

|Ri|= n (3)

1917

Authorized licensed use limited to: Univ of Calif Riverside. Downloaded on September 26,2022 at 16:41:09 UTC from IEEE Xplore. Restrictions apply.

Also, by definition:

AV G(savg)× n =

p∑

i=1

(|Ri|×Ri.AV G) (4)

AV G(savg) =

∑p

i=1
(|Ri|×Ri.AV G)

n

≤

∑p

i=1
|Ri|uavg

n
= uavg

(5)

AV G(savg) =

∑p

i=1
(|Ri|×Ri.AV G)

n

≥

∑p

i=1
|Ri|lavg
n

= lavg

(6)

Equations 5 and 6 =⇒ lavg ≤ AV G(savg) ≤ uavg .

Hence, the Theorem 2 is true, and the proof is complete.

Theorem 3. For an area set A and an AVG constraint c =
(AV G, savg, lavg, uavg), if the average value of savg over A,

AV G(savg), does not satisfy c, i.e., AV G(savg) < lavg or

AV G(savg) > uavg , then ∄P = {R1, R2, ..., Rp} such that P

partitions all areas in A and Ri ∈ P satisfies c, ∀1 ≤ i ≤ p.

Theorem 3 is proved by proving its contrapositive Theorem 2.

(2) For MIN constraints, we compute the minimum

and maximum values over all areas for attribute smin,

MIN(smin) and MAX(smin), respectively. Two different

cases could cause infeasibility: (a) If MAX(smin) < lmin

or MIN(smin) > umin, then there is no area that satisfies

the MIN constraint and no valid regions can be constructed,

so there is no feasible solution. (b) If MIN(smin) < lmin <

MAX(smin), all areas with smin < lmin are invalid areas that

cannot be part of any valid region, so they must be filtered out

to build a feasible solution. Therefore, there is room to find a

feasible solution after removing invalid areas.

(3) Similarly for MAX constraints, there are two cases of

infeasibility: (a) If MIN(smax) > umax or MAX(smax) <
lmax, there is no area that satisfies the MAX constraint, and

there is no feasible solution. (b) Areas with smax > umax are

invalid areas that must be filtered out to find a solution.

(4) For SUM constraints, we compute the minimum

and summation of all areas for ssum, MIN(ssum) and

SUM(ssum), respectively. There are three cases of infeasi-

bility: (a) If MIN(ssum) > usum, no region can have ssum
within the range. (b) If SUM(ssum) < lsum, even the trivial

region containing all areas cannot have ssum within the range.

(c) Areas with ssum > usum are invalid and must be removed.

(5) For COUNT constraints, if the number of areas n <

lcount, there is no feasible solution as a region containing all

areas cannot meet the lower bound lcount.

The feasibility phase iterates through the area set and

computes the needed attribute aggregates for all constraints

in a single pass. This pass is enough to filter out invalid areas,

that have smin < lmin, smax > umax, or ssum > usum,

to eliminate potential invalid regions. However, the feasibility

pass is not enough to filter out invalid areas for the AVG

constraint. This is performed during the following construction

phase while imposing AVG constraints. All invalid areas are

filtered out from A, added to the set U0, and they are not

considered in any further processing. The remaining areas in

set A are passed to the following phases.

B. Construction Phase

The construction phase greedily constructs a feasible solu-

tion that: (a) satisfies all user-defined constraints, (b) maxi-

mizes the number of regions p, and (c) minimizes the num-

ber of unassigned areas. This phase faces the challenges of

simultaneously satisfying multiple non-monotonic constraints

while preventing building oversized regions that contradict

maximizing p. To address these challenges, the construction

phase satisfies each family of user-defined constraints in a

separate step, and each step handles different constraints in

isolation. By this, we gain several benefits towards address-

ing the challenges. First, each step focuses on one type of

optimization, making it an easier problem to solve. Second,

dividing the logic into consecutive steps provides flexibility to

handle queries with any arbitrary subset of different constraints

(as discussed in Section V-D). Third, the order of steps makes

use of the mathematical properties of different aggregate

functions to increase the probability of producing a feasible

solution. MIN, MAX, and SUM constraints are used as filters

to oust invalid areas and provide seed areas for the following

steps. Then, AVG constraint, which is the most challenging

to satisfy, takes the seed areas and grows as many regions as

possible. The last step performs only necessary modifications

to satisfy any violated SUM and COUNT constraints, which

are easier to satisfy due to the monotonicity of SUM and

COUNT aggregate functions. Fourth, separated steps facilitate

maximizing the value of p, as detailed later, without violating

the constraints that have been satisfied previously. Conse-

quently, our construction phase produces an initial partitioning

for the space with a near-optimal p value that is fed to the fol-

lowing phase to minimize the regions’ heterogeneity. Although

reducing the overall heterogeneity score is an objective for the

final solution, this phase is not primarily designed to minimize

heterogeneity, which is optimized in the following phase.

The construction phase executes multiple iterations. Each

iteration produces a feasible partition, and we maintain the

partition with the highest p value. Each iteration is divided into

three steps. The first step satisfies extrema constraints (MIN

and MAX constraints), the second step satisfies centrality con-

straints (AVG constraints), and the third step satisfies counting

constraints (SUM and COUNT constraints). We detail each

step below. The area set in Figure 1a is used as a running

example to illustrate different steps of the construction. For

simplicity and without loss of generality, we assume that all

constraints are imposed on the same attribute s.

Step 1: Filtering and Seeding. The first step satisfies

extrema constraints, i.e., MIN and MAX constraints. These

two constraints have two functionalities: (a) filtering out the

invalid areas, and (b) specifying the set of seed areas.

Invalid areas are excluded during the feasibility phase (Sec-

tion V-A). We select seed areas as the areas that meet lower

1918

Authorized licensed use limited to: Univ of Calif Riverside. Downloaded on September 26,2022 at 16:41:09 UTC from IEEE Xplore. Restrictions apply.

a2
s2=2

d2=12

a1
s1=1

d2=11

a5
s5=5

d5=15

a6
s6=6

d6=16

a3
s3=3

d3=13

a7
s7=7

d7=17

a8

s8=8

d8=18

a9

s9=9

d9=19

a4
s4=4

d4=14

(a) Example area set

Min Seed

Max Seed
a2
s2=2

d2=12

a5
s5=5

d5=15

a6
s6=6

d6=16

a4
s4=4

d4=14

a3
s3=3

d3=13

a7
s7=7

d7=17

(b) Area filtration and seed area
selection

Fig. 1: Step 1: Filtering and Seeding

and upper bound values of one of MIN or MAX constraints.

For instance, for two constraints c1 = (MIN, s1, l1, u1) and

c2 = (MAX, s2, l2, u2), any area with l1 ≤ s1 ≤ u1 or

l2 ≤ s2 ≤ u2 is a valid seed area. This rule is generalizable

to any number of MIN and MAX constraints.

This step provides three levels of optimizations through

choosing a seed area that satisfies the bounds of only one con-

straint. First, it finds seed areas for any arbitrary combination

of MIN/MAX constraints. For constraints that are imposed on

different attributes or have disjoint upper and lower bounds,

there is no single area that satisfies all of them. So, considering

each constraint in isolation from others provides flexibility to

find seeds for any query. Second, the number of seed areas is

an upper bound for the number of regions p as each feasible

region must contain at least one seed area for each constraint.

So, using a maximum number of seed areas and growing

the regions based on them contributes to the objective of

maximizing p. Third, it enables piggybacking the seed areas

selection on the invalid areas filtration during the feasibility

phase. While checking the validity of an area, the algorithm

checks the seeding conditions and mark seed areas.

Example: Figure 1b illustrates the result of Step 1 for the

example area set in Figure 1a. The extrema constraints are

set as {(MIN, s, 2, 4), (MAX, s, 6, 7)}. Areas a1, a8, and a9
are moved to set U0 because their attribute values are below

2 or above 7. The remaining areas after filtering are shown in

Figure 1b. Area a2, a3, and a4 are selected as seed areas for

the MIN constraint and area a6 and a7 are selected as seed

areas for the MAX constraint, as shown in Figure 1b.

Complexity analysis. All operations of the feasibility phase

and Step 1 of the construction phase are performed in one pass

over the n areas. Each area is validated against all MIN, MAX,

and SUM constraints to be classified as either invalid, valid,

or seed area. The time complexity is O(m × n), where m is

the number of constraints and typically m << n.

Remark 1. The time complexity of the feasibility phase and

the Filtering and Seeding is O(m× n).

Step 2: Region Growing. The second step grows regions

that satisfy the AVG constraint c = (AV G, s, l, u), without

violating the MIN/MAX constraints. This step is divided into

three substeps. The first substep initializes a set of regions. The

second substep assigns the unassigned areas to the regions. The

third substep combines regions to ensure each region satisfies

all constraints. We detail each substep below.

Substep 2.1 utilizes the set of seed areas, called seeds,

from Step 1 to initialize a set of initial regions. Areas in

seeds already satisfy at least one of the MIN/MAX con-

straints, so they must be included in any valid region. The

algorithm iterates over seeds and classifies all seed areas

into three subsets based on their AVG attribute value s:

unassigned avg, unassigned low, and unassigned high.

unassigned avg contains areas that satisfy the condition

l ≤ s ≤ u. unassigned low contains seed areas that satisfy

s < l, i.e., s value is lower than c’s lower bound. Similarly,

unassigned high contains seed areas with s > u. Only areas

in unassigned avg satisfy c and are used in region initializa-

tion directly. As we want to maximize the number of output

regions p, we make each area in unassigned avg a separate

region, and all new regions are added to a region list P . Then,

we merge areas in unassigned low and unassigned high

with their spatial neighbors to compose regions that satisfy c.

Algorithm 1 gives the merging procedure.

Algorithm 1 initiates each unassigned area as a temporary

region R (Lines 4 to 6). While R does not satisfy the constraint

c’s bounds, the algorithm tries to add a neighbor area an that

moves R’s overall average of attribute s towards c’s range

(Lines 16 to 21). Once R satisfies c, it is added to the region

list P (Lines 10 to 12). If R’s neighbors are exhausted and

cannot form a valid region, the whole procedure is reverted,

and areas of R remain unassigned.

Substep 2.2 tries to assign all remaining unassigned areas,

either seed areas or regular areas. Similar to classifying seeds

areas in Substep 2.1, all areas that are not in seeds set are

added to either unassigned avg set, unassigned low set,

or unassigned high set, depending on their s value. There

are two rounds for assigning the remaining unassigned areas.

In the first round, we try to add the unassigned areas to their

neighbor regions. All areas in unassigned avg can be safely

added to any of its neighbor regions as it is guaranteed not to

introduce a violation of c. For each area in unassigned low

and unassigned high, we must check if adding it to the

neighbor region violates c. The second round tries to assign the

areas in unassigned high and unassigned low by merging

the regions. Given an unassigned area a, the algorithm tries

to merge one of a’s neighbor regions R and R’s neighbor

region with a and checks if c is satisfied for the newly merged

region. The merging process terminates when all a’s neighbors

cannot absorb it or a merge limit, i.e., the number of allowed

merge trials, is reached. The merge limit is set to prevent the

formation of oversized regions and control the runtime.

Substep 2.3 combines neighbor regions to ensure that all

regions satisfy all MIN and MAX constraints. Because areas

that form seeds are selected by a single MIN or MAX

constraint, regions that are aggregated based on a single seed

area are guaranteed to satisfy only one of those constraints.

To ensure each region satisfies all constraints, the algorithm

iterates over the region list P and merges the region that does

not satisfy every constraint with one of its neighbor regions

1919

Authorized licensed use limited to: Univ of Calif Riverside. Downloaded on September 26,2022 at 16:41:09 UTC from IEEE Xplore. Restrictions apply.

Algorithm 1: Region Growing - Merging Areas

Input: c = (AV G, s, l, u), unassigned low,
unassigned high, P

Output: unassigned low, unassigned high, P
1 removed areas ← ∅
2 u areas ← unassigned low ∪ unassigned high
3 foreach area a ∈ u areas do
4 Create a tempory region R with R.id = -1;
5 R.addArea(a);
6 updated = true;
7 neighbor areas = R.getNeighbors();
8 while updated do
9 updated = false;

10 if l ≤ R.getAverage() ≤ u then
11 R.updateId(P .size() + 1);
12 P .add(R);
13 removed areas.addAll(R.areas);
14 end
15 else
16 foreach area an in neighbor areas do
17 if an is not assigned to any region then
18 if (R.getAverage() < l AND an.s > u)

OR ((R.getAverage() > u AND an.s <
l)) then

19 R.addArea(an);
20 updated = true;
21 break;
22 end
23 end
24 end
25 end
26 end
27 end
28 unassigned low.removeAll(removed areas);
29 unassigned high.removeAll(removed areas);
30 return unassigned low, unassigned high, P ;

a2
s2=2

d2=12

a5
s5=5

d5=15

a6
s6=6

d6=16

a4
s4=4

d4=14

a3
s3=3

d3=13

a7
s7=7

d7=17

(a) Substep 2.1: Region Initial-
ization

a2
s2=2

d2=12

a5
s5=5

d5=15

a6
s6=6

d6=16

a4
s4=4

d4=14

a3
s3=3

d3=13

a7
s7=7

d7=17

(b) Substep 2.2: Area Assign-
ment

Fig. 2: Step 2: Region Growing - Substep 2.1 & 2.2-Round 1

that satisfy other constraints. The iteration stops when all

regions in the P satisfy MIN and MAX constraints, i.e., each

region contains at least one seed area for each MIN/MAX

constraint. This substep does not affect satisfying the AVG

constraint c because merging two regions that already satisfy

c produces a region that still satisfies it. Thus, after Step 2

concludes, all regions in the region list P satisfy all the MIN,

MAX, and AVG constraints.

Example: Figure 2 shows an example of Substep 2.1 and

Substep 2.2. Given c = (AV G, s, 4, 5), in Substep 2.1,

only seed area a4 is added to unassigned avg and ini-

tialized as a new region Rred (Figure 2a). a2 and a3 are

a2
s2=2

d2=12

a3
s3=3

d3=13

a6
s6=6

d6=16

a5
s5=5

d5=15

a4
s4=4

d4=14

(a) Unassigned area a2.

a2
s2=2

d2=12

a3
s3=3

d3=13

a6
s6=6

d6=16

a5
s5=5

d5=15

a4
s4=4

d4=14

(b) Region merging and
Assigning a2.

Fig. 3: Step 2: Region Growing - Substep 2.2 - Round 2

a2
s2=2

d2=12

a5
s5=5

d5=15

a6
s6=6

d6=16

a4
s4=4

d4=14

a3
s3=3

d3=13

a7
s7=7

d7=17

(a) Case 1

a2
s2=2

d2=12

a5
s5=5

d5=15

a6
s6=6

d6=16

a4
s4=4

d4=14

a3
s3=3

d3=13

a7
s7=7

d7=17

(b) Case 2

Fig. 4: Step 2: Region Growing - Substep 2.3

added to unassigned low and a6 and a7 are added to

unassigned high. The average of a2.s2 and a6.s6 is 4, and

they are combined to form the region Rblue. Similarly, a3
and a7 form the region Rgreen with average value 5. So,

Substep 2.2 initializes three regions as depicted in Figure 2a.

Then, in Substep 2.2, the remaining unassigned area a5 is

assigned to its neighbor region Rblue as depicted in Figure 2b.

Example: Figure 3 provides an example for Round 2 of

Substep 2.2. In contrast to the example in Figure 2, the

unassigned area a2 cannot be added to its neighbor region

Rblue = {a3, a6} directly. Adding a2 to Rblue generates a re-

gion with an average s value equals 3.67, which is smaller than

4 and violates the constraint c = (AV G, s, 4, 5). Instead, the

algorithm forms a temporary region Rred = {a3, a4, a5, a6}
by merging Rblue and its neighbor region Rgreen = {a4, a5},

as shown in Figure 3b. Rred accepts a2 and the average value

is 4.4, which satisfies the constraint c.

Example: Figure 4 gives an example of Substep 2.3 for

the example region partition in Figure 2b. Rred = {a4}
contains only the MIN seed area; hence it does not sat-

isfy the MAX constraint. Because both neighbor regions

Rblue = {a2, a5, a6} and Rgreen = {a3, a7} satisfy the MAX

constraint, Rred can be combined with either region to form

a region satisfying all constraints. The results are depicted in

Figure 4a and Figure 4b, respectively.

Complexity analysis. The Substep 2.1 and the first round

of the Substep 2.2 iterate through all seed areas and each

takes O(n) time. The second round of the Substep 2.2 iterates

through the unassigned area set for multiple iterations. In each

iteration, at least one area is removed from the unassigned

area set or otherwise no update is made and the loop breaks.

The number of unassigned areas is ≤ n, hence the worst-

case total number of operations is
∑n

i=1
i = O(n2). The

merge operations are bounded by a constant number and each

1920

Authorized licensed use limited to: Univ of Calif Riverside. Downloaded on September 26,2022 at 16:41:09 UTC from IEEE Xplore. Restrictions apply.

operation takes constant time to update the attribute values and

append the area list. Substep 2.3 iterates through all regions

once, thus taking maximum of O(n) time. Thus, Step 2 time

complexity is O(n) +O(n) +O(n2) +O(n) = O(n2).

Remark 2. The time complexity of Region Growing is O(n2).

Step 3: Monotonic Adjustments. Step 3 satisfies SUM

and COUNT constraints while maintaining the constraints that

have been satisfied in the previous steps. The SUM constraint

is used in the MP-regions problem, hence we build this step

based on the MP-regions construction algorithms [52]. How-

ever, because regions are initialized for the MIN, MAX, and

AVG constraints, adjustments are needed on both area level

and region level to satisfy the counting constraints. Because

SUM and COUNT constraints are monotonic, areas are added

to regions that fall under the lower bound or removed from

regions that go above the upper bound to make every region

valid. We iterate over constructed regions. For each region that

violates one of the SUM or COUNT constraints, the algorithm

first tries to swap areas with neighbor regions without violating

the other constraints. The spatial contiguity of the region is

validated by ensuring that the donor region still forms a single

connected component after swapping. After no updates can

be made by swapping areas, the algorithm tries to merge

regions below the lower bounds or remove areas from regions

above the upper bounds. When no changes can be made, the

infeasible regions are removed, and the partition is considered

finalized for the construction phase.

Example: With the input shown in Figure 4a and the

example constraints c4 = (SUM, s, 12,∞) and c5 =
(COUNT, s,−∞, 4), the region Rgreen = {a3, a7} does

not satisfy c4. The boundary area with the neighbor region

Rblue = {a1, a4, a5, a6} is a4. Area a4 is swapped from

Rblue to Rgreen after ensuring that both regions still satisfy

all the other constraints, and Rblue is spatially continuous

and still above the lower bound of c4. The result is de-

picted in Figure 4b. After swapping, the receiver region

Rgreen = {a4, a5, a7} satisfies all the constraints, so the

swapping attempts are terminated.

Complexity analysis. Each area is swapped at most once

because the region that becomes feasible after the swap keeps

the area to remain valid. Each swap updates and validates

all attributes of both the donor and receiver regions, which

takes O(2m) operations. Checking donor region connectivity

is O(n) in the worst case. As a result, the time complexity of

swapping is O((2m+ n)× n) = O(n2). The area removal of

regions that exceed the upper bounds and removing infeasible

regions take one O(n) pass each. Thus, the overall time

complexity is O(n2) +O(n) +O(n) = O(n2).

Remark 3. The time complexity of Monotonic Adjustments is

O(n2).

C. Local Search Phase

The partition with the largest number of regions p is for-

warded from the construction phase to the local search phase to

optimize the overall regions’ heterogeneity. The local search

phase uses the Tabu search algorithm [23], a meta-heuristic

search algorithm, to minimize the overall heterogeneity.

In brief, the Tabu search algorithm keeps moving areas

among neighbor regions without violating the user-defined

constraints in any region. Starting from the feasible partition

constructed in the construction phase, the Tabu search algo-

rithm moves to the best neighboring partition. Moving to a

solution that has worse total heterogeneity is allowed to escape

from the local optimal solution. The made moves are stored in

a tabu list, with a fixed tabu tenure, and the reverse moves are

forbidden to prevent cycles. When a move leads to a partition

better than the best partition so far, the algorithm chooses this

move even if the tabu list prohibits it. The algorithm stops

when no better move can be made in a specified number of

steps, and the best partition found is returned as the final result.

This phase does not change the number of regions p. Instead,

it still produces p regions but with better overall heterogeneity.

Complexity analysis. The Tabu search is an incomplete

algorithm, so we derive a complexity approximation based on

the parameters and the problem-specific neighborhood compu-

tation. Tabu search performs n iterations without heterogeneity

improvement and the counter resets on improvement, so the

total number of iterations is O(αn) in the worst case, where

α is the number of moves that beat the existing optimal

heterogeneity score. In each iteration, we update the valid

moves using a region connectivity check for each boundary

area in the region updated by the previous move, which takes

O(n×n) time in the worst case. A move attempt takes O(n)
to compute the pair-wise dissimilarity in the worst case. So,

the overall time complexity is O(αn× (n2 + n)) = O(αn3).
Experimentally, the moves that improve heterogeneity happen

at an early stage of the local search, causing the total number

of iterations much smaller than 2n.

Remark 4. The time complexity of the Local Search phase is

O(αn3), where α is the number of valid moves that improve

the heterogeneity over the existing optimum.

D. Handling Arbitrary Sets of Constraints

Our discussion so far assumes the incoming query contains

all types of constraints. However, it is common to have a subset

of these constraints. For example, a query could have only

one AVG constraint, or one MIN constraint and one COUNT

constraint. This section discusses how the FaCT algorithm

handles queries with an arbitrary subset of constraints.

The FaCT algorithm handles absent constraints as they

exist with an infinite range (−∞,∞), which affects both the

feasibility and the construction phases. If a MIN/MAX con-

straint type is absent, the feasibility phase does not remove any

invalid areas under MIN/MAX, and Step 1 of the construction

phase selects all areas as the seed areas. If the AVG constraint

is missing, the Region Growing step adds all areas in seeds to

unassigned avg and then initializes single-area regions. Areas

not in seeds are then added to unassigned avg and merged to

neighbor regions iteratively. If SUM/COUNT constraints are

1921

Authorized licensed use limited to: Univ of Calif Riverside. Downloaded on September 26,2022 at 16:41:09 UTC from IEEE Xplore. Restrictions apply.

absent, Step 3 of the construction phase is omitted. Therefore,

designing the FaCT algorithm with independent steps enables

it to effectively handle queries with any subset of constraints.

VI. COMPLEXITY ANALYSIS

This section analyzes the time and space complexity of

the FaCT algorithm. According to Remarks 1, 2, and 3 in

Section V-B, the time complexity of the feasibility and the

three steps of the construction phases are O(n), O(n2), and

O(n2), respectively. Thus, the total time complexity of both

phases is O(n2). According to Remark 4 in Section V-C, the

time complexity of the Local Search phase is O(αn3). This

gives the overall worst-case time complexity of FaCT as

O(αn3), where α is the total number of moves that improves

the existing optimal heterogeneity in the local search process.

For space complexity, the area set takes O(m×n) space to

store the n areas, each associated with m attributes assuming

there are m constraints. The space complexity for the seed area

selection is O(n). The Region Growing step stores temporary

regions with O(n) areas. After the region initialization, each

region is stored with m attributes and an area set. The regions

are disjoint, so the space taken by the region list is bounded

by O(m×n). The Monotonic Adjustments step and the Local

Search phase update the region list in place and does not

require additional space. Thus, the overall space complexity

is O(m× n).

VII. EXPERIMENT EVALUATION

This section presents an extensive experimental evaluation

of our proposed work to address the EMP problem. The

code and data for reproducing the results presented in this

section are publicly available [27]. The rest of the section

introduces the experimental setup (Section VII-A), studies

the impact of different constraints types and threshold ranges

on the performance (Section VII-B), shows the scalability of

the FaCT algorithm (Section VII-C), and summarizes the

experimental results (Section VII-D).

A. Experimental Setup

EMP is a novel problem in the literature, so there is no direct

competitor to compare our techniques against. In addition, due

to the major enrichment EMP introduces to the MP-regions

problem, existing techniques that address MP-regions problem

cannot be trivially extended and adopted as baselines to

solve the EMP problem. Therefore, our experiments focus on

evaluating the performance and effectiveness of our proposed

work. We also study the impact of different combinations of

enriched constraints.

Evaluation datasets. We use nine real datasets that repre-

sent the census tracts of the USA, outlined as follows: (1) the

Los Angeles City (denoted as 1k) that includes 1012 areas,

(2) the Los Angeles County (denoted as 2k) that includes

2344 areas, (3) Southern California (denoted as 4k) as iden-

tified by the Southern California Association of Governments

(SCAG) [45] that includes 3947 areas, (4) the State of Cali-

fornia (denoted as 8k) that includes 8049 areas, and (5) Five

multi-state datasets with ∼10k to ∼50k areas, as detailed in

Name No. of areas States

10k 10255 CA, NV, AZ

20k 20570
10k + OR, WA, ID, UT, MT, WY,

CO, NM, OK, NE, SD, ND
30k 29887 20k +TX, LA, AR, MO, IA
40k 40214 30k + MN, MS, AL, TN, KY, IL, WI
50k 49943 40k + GA, IN, MI, OH, WV

TABLE I: Description of the multi-state datasets
Constraint Type Aggregate Attribute Range

Extrema MIN POP16UP (−∞, 3000]
Centrality AVG EMPLOYED [1500,3500]
Counting SUM TOTALPOP [20000,∞)

TABLE II: Default attribute and ranges for different con-

straints.

Table I. Our default dataset is 2k. Typical evaluation datasets in

the existing literature have between 300-3000 areas [15], [52],

so our default dataset size is comparable to the largest datasets

in the literature. All datasets are joined with real attributes

from 2010 US census data about facts in each census tract.

All datasets share the same three spatial extensive attributes as

shown in Table II, one per constraint type, and the dissimilarity

attribute is HOUSEHOLDS. POP16UP attribute represents the

population with age sixteen or above. EMPLOYED attribute

refers to the employed population. TOTALPOP is the total

population. HOUSEHOLDS is the number of households in

each area, and it is used to measure region heterogeneity.

The evaluation attributes are selected based on factors that

influence the population growth rate [21], which makes the

partitions obtained through the experiments useful for studying

population growth. The shapefiles of the census tracts and the

attribute tables are provided by the US Census Bureau [9] and

SCAG [37] and joined using the QGIS software [42].

All experiments are based on Java 14 implementations using

an Intel Xeon W-2123(3.60 GHz) and 20GB RAM allocated

under Windows 10. We use three performance measures: the

runtime for both construction and local search phases, the

answer set size p, and improvement in regions’ heterogeneity,

defined as the ratio of the absolute difference between the

heterogeneity score before and after the local search phase to

the heterogeneity score before the local search. Our parameters

include threshold range and dataset size. Unless mentioned

otherwise, the default dataset is 2k, area pickup criteria are

random, the AVG merge limit is three, the length of the tabu

list equals ten, and the maximum number of moves without

improvement for Tabu search equals the dataset size. The

default threshold ranges and attributes are shown in Table II

for each constraint type. For space limitation and similarity of

results on aggregates of the same type, we present results for

one aggregate function in each constraint type.

B. Impact of Constraints Types

This section studies the impact of different sets of con-

straints on regionalization performance. Sets of constraints

vary in terms of: (1) set size, i.e., number of constraints,

(2) types of constraints, and (3) threshold ranges. Sec-

tions VII-B1, VII-B2 and VII-B3 evaluate sets that include

MIN, AVG, and SUM constraints, respectively. MIN con-

1922

Authorized licensed use limited to: Univ of Calif Riverside. Downloaded on September 26,2022 at 16:41:09 UTC from IEEE Xplore. Restrictions apply.

 1

 2

 4

 8

 16

-∞-2
-∞-3.5

-∞-5

T
i
m
e
(
s
)

Range(x1000)

Tabu
M
MA
MS
MAS

Fig. 5: Runtime for MIN with

l = ∞

 0.125

 0.25

 0.5

 1

 2

 4

 8

2-∞
3.5-∞

5-∞

T
i
m
e
(
s
)

Range(x1000)

Tabu
M
MS
MA
MAS

Fig. 6: Runtime for MIN with

u = ∞

 0.5

 1

 2

 4

 8

 16

3±0.5

3±1
3±1.5

3±2

T
i
m
e
(
s
)

Range(x1000)

Tabu
M

MS
MA
MAS

(a) Varying range lengths

 0.5

 1

 2

 4

 8

10±10

20±10

30±10

40±10

T
i
m
e
(
s
)

Range(x1000)

Tabu
M
MS
MA
MAS

(b) Varying range midpoints

Fig. 7: Runtime for MIN with bounded l and u

straints are denoted as M, combinations of MIN and AVG

constraints are denoted as MA, combinations of MIN and SUM

constraints are denoted as MS, combinations of MIN, AVG,

and SUM constraints are denoted as MAS. Time of local search

is denoted as Tabu.

1) MIN Constraint: This section evaluates regionalization

queries with MIN constraints, c = (MIN, s, l, u), in combi-

nation with other constraint types. MIN and MAX constraints

perform two roles: filtering invalid areas and selecting seed

areas, and both depend on the range threshold [l, u]. Hence,

we explore three cases: (a) ranges with l = −∞, which show

the impact of u values on seed area selection, (b) ranges with

u = ∞, which show the impact of l values on invalid area

filtration, and (c) ranges with bounded values of l and u that

show their simultaneous impact.

Ranges with l = −∞. Figure 5 shows the runtime of

the construction phase and Tabu search. The runtime highly

depends on the types of constraints. Table III gives the number

of regions p for different constraints combinations. In all

cases, the single MIN constraint, M, produces the maximum

of regions p that is bounded by the number of seed areas.

The p value increases with the increase of the upper bound

u. As u increases, the number of seed areas increases and it

takes fewer iterations to partition the areas into regions, so the

runtime decreases in Figure 5. When the other constraints are

added, the regions in the final result contain more than one

seed area, so p decreases. With more seed areas, the initialized

region becomes smaller and the SUM constraint takes more

operations to satisfy. This causes the runtime of MS and MAS

to increase by a small amount although the time for MIN and

AVG actually decreases. Increasing u leads to increasing the

heterogeneity improvement from 6.96% at u = 2k to 40.2%

at u = 5k due to higher p.

Ranges with u = ∞. Table III shows the p values and

Figure 6 gives the construction time and local search time

for different constraint combinations. As we increase the

lower bound l, more invalid areas are filtered out, while

typically the remaining areas are scattered. As a result, the

p value decreases, and hence runtime decreases significantly

due to the lower number of regions. The heterogeneity score

improvement reduces as l increases with up to 17.6% due to

decreasing p that narrows the search space of the local search.

Ranges with bounded l and u. We explore bounded ranges

that vary the range length while fixing the range midpoint.

Table III gives the p values and Figure 7a shows the runtime.

When the range length increases, the p value increases because

fewer areas are filtered out and more regions are initialized.

As a result, both total and construction time increase due to

larger search space. However, there is no clear trend for the

Tabu search time.

For a range with a fixed length and shifted midpoint to

a higher value, both construction time and local search time

decrease, as shown in Figure 7b. For larger values, the area set

is chopped into small connected components but the number

of seed areas is relatively stable. As a result, Steps 2 and 3

of the construction phase terminate faster and reduce runtime.

The p value depends on the correlation between attributes of

MIN and AVG constraints. If they are not correlated, then the

p value strictly decreases for larger midpoint values. When

they are correlated, p might increase or decrease, depending

on the correlation. In all cases, the heterogeneity improvement

increases when p increases, by up to 11.3% in this case.

2) AVG Constraint: The average aggregate function is non-

monotonic. Satisfying the constraint can be computationally

heavy with certain ranges. To illustrate this, we explore two

cases: (a) ranges with fixed length and changing midpoints,

and (b) ranges with a fixed midpoint but varying lengths.

Ranges with fixed range length. In this experiment, the

length of the AVG range is fixed to be 2k and the midpoint

shifts from 1k to 4.5k, with the step size = 0.5k. We focus on

the performance of the AVG constraint to exclude the impact

of other constraints. Figure 8 shows the distribution of the

AVG attribute value of the areas in the default dataset, which

is a positively skewed distribution. The AVG attribute values

of most of the areas are below 4k, but there are several outliers

with values up to 6149. Figure 9a shows the p value and

the number of unassigned areas (UA) for each range while

Figure 9b gives the runtime. When the midpoint is set to be

1k to 2.5k, about half of the areas lie within the given range

and it is also relatively easy to combine areas whose value is

outside the range. As a result, the number of unassigned areas

is reduced to 0 when the midpoint increases to 2k and 2.5k
but the runtime is below 3.2s. The ranges are also flexible for

the Tabu search phase, with the heterogeneity score improved

by up to 30.1%. When the range is set to be 3k ± 1k, more

than half of the areas lie below l but it is possible to combine

them with one of the outliers whose attribute value is well

above the upper bound. In addition, as an area is assigned, the

newly formed region may lead to the possibility of assigning

the neighbor areas. Hence the enclave assignment process

continues for multiple iterations until no further update can

1923

Authorized licensed use limited to: Univ of Calif Riverside. Downloaded on September 26,2022 at 16:41:09 UTC from IEEE Xplore. Restrictions apply.

Ranges with l = -∞ Ranges with u = ∞ Ranges with bounded u and l

(-∞,2k] (-∞,3.5k] (-∞,5k] [2k,∞) [3.5k,∞) [5k,∞) [2.5k,3.5k] [2k,4k] [1.5k,4.5k] [1k,5k] [1k,2k] [2k,3k] [3k,4k] [4k,5k]

M 270 1447 2172 2074 898 173 834 1501 1895 2109 207 789 712 401

MS 184 354 365 342 142 12 281 334 356 362 159 307 215 78

MA 208 1037 1483 1593 812 97 776 1206 1398 1496 175 654 704 386

MAS 170 335 341 337 145 7 275 328 339 344 152 304 215 74

TABLE III: p values for different threshold ranges for MIN constraint combinations.

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

 200

 0 1000

 2000

 3000

 4000

 5000

 6000

F
r
e
q
u
e
n
c
y

AVG Attribute value

Fig. 8: Distribution of

AVG attribute value

 0

 500

1000

1500

2000

2500

1±1
1.5±1

2±1
2.5±1

3±1
3.5±1

4±1
4.5±1

Range(x1000)

p

UA

(a) p and UA

 1

 4

 16

 64

 256

 1024

1±1
1.5±1

2±1
2.5±1

3±1
3.5±1

4±1
4.5±1

T
i
m
e
(
s
)

Range (x1000)

Tabu
A

(b) Runtime

Fig. 9: Impact different AVG range midpoints

 0

 500

 1000

 1500

 2000

 2500

3±0.5

3±1
3±1.5

3±2

p

Range(x1000)

A
MA
AS

MAS

(a) p

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

3±0.5

3±1
3±1.5

3±2

u
n
a
s
s
i
g
n
e
d

a
r
e
a
s

Range(x1000)

A
MA
AS

MAS

(b) Unassigned areas

Fig. 10: Impact different AVG range lengths

be made. As a result, it takes a much longer time, but the

percentage of unassigned areas is reduced significantly to 9%.

When the midpoint is further increased to above 3.5k, it is too

hard for the algorithm to form feasible regions as almost all

areas fall below the lower bound of the range. As a result, most

areas remain unassigned and the construction time becomes

much shorter as the algorithm quickly finds that no further

changes can be made. When the midpoint is above 3k, there

are limited feasible moves for the Tabu search because the

AVG constraint is too tight. As a result, the Tabu search time

is negligible and the heterogeneity improvements are below

0.4%.

Ranges with fixed midpoint. Based on the observation

from the previous experiment, we set the midpoint to be 3k,

which is the most challenging setting for the algorithm, and

alter the length of the range. Combinations with the other

constraints are also included to demonstrate how the AVG

constraint can bottleneck the performance in special cases.

The p values for different constraint combinations are given in

Figure 10a and the runtime is shown in Figure 11. The figures

show increasing p values with longer ranges, but the runtime

depends on the range length. Different range lengths affect the

runtime significantly, while different constraint combinations

with the same range have much less impact on the construction

time. This is because the runtime of the AVG step dominates

the total runtime of the construction phase. When the range is

3k ± 0.5k, the range is so tight that the algorithm quickly finds

no possible enclaves assignment, so the AVG step terminates

early. However, 60% of the areas remain unassigned, as

shown in Figure 10b. Similar to the previous experiment, the

range 3k ± 1k is the most challenging case and the runtime

dominates the other constraints. However, the reduction in the

number of unassigned areas is also significant for all constraint

combinations. When the range is further enlarged, most of the

areas lie within the range and it is much easier to assign the

enclaves without merging. Thus, the time is much shorter, and

all areas are assigned as well. The final heterogeneity score

also reduces when the range is enlarged due to the reduction

in region sizes. The heterogeneity improvement increases to

up to 21.8% because when the range is enlarged, it becomes

Ranges with u = ∞ Ranges with different lengths

[1k,∞) [10k,∞) [20k,∞) [30k,∞) [40k,∞) [15k, 25k] [10k,30k] [5k,35k]

MP 2298 717 373 245 185 N/A N/A N/A

S 2298 720 371 245 186 489 714 1358

MS 1056 581 342 237 179 408 567 785

AS 1545 642 345 233 177 445 640 1095

MAS 758 518 323 226 172 370 497 631

TABLE IV: p values for different threshold ranges for SUM

constraint combinations.

 2

 4

 8

 16

 32

 64

 128

 256

 512

 1024

3±0.5

3±1
3±1.5

3±2

T
i
m
e
(
s
)

Range(x1000)

Tabu
A

MA
AS
MAS

Fig. 11: Runtime for AVG

with different range lengths

 1

 2

 4

 8

 16

 32

10-∞

20-∞

30-∞

40-∞

T
i
m
e
(
s
)

Range(x1000)

Tabu
MP
S
MS
AS
MAS

Fig. 12: Runtime for SUM

with u = ∞

easier to find a valid move for the local search.

3) SUM Constraint: SUM constraints are the only type of

constraints that are used in existing state-of-the-art solutions

for the max-p regions (MP-regions) problem. We compare

with them, denoted as MP, using a single SUM constraint

with an open upper bound, i.e.,[l,∞). Table IV shows the p

values and Figures 12 and 13 give the runtime for different

constraint combinations with SUM aggregate. At u = ∞,

the p value decreases with increasing lower bound l while

runtime does not increase as much for both MP-regions and

FaCT . According to Table IV, our FaCT algorithm gives

comparable p value to MP-regions when the constraints are set

to be the same. The construction time is slightly higher due to

the overhead introduced by steps that validate the feasibility

of the query and handle the other constraints. However, due

to shorter tabu search time, the overall runtime of EMP is less

than half of the runtime for the MP-regions when u = 30k or

40k. In addition, the FaCT algorithm handles generic types

of constraints, which are not supported by the competitor. The

heterogeneity score increases when l increases, by up to 72.6%

for both MP-regions and the single constraint S, 13.8% for MS,

and less than 1% for AS and MAS due to the effect of AVG

1924

Authorized licensed use limited to: Univ of Calif Riverside. Downloaded on September 26,2022 at 16:41:09 UTC from IEEE Xplore. Restrictions apply.

 2

 4

 8

 16

20±5
20±10

20±15

T
i
m
e
(
s
)

Range(x1000)

Tabu
S
MS
AS
MAS

Fig. 13: Runtime for SUM

with a changing range length

 0.5

 1

 2

 4

 8

 16

 32

 64

 128

 256

1k 2k 4k 8k

T
i
m
e
(
s
)

Dataset

Tabu
M
A
S

MA
MS
AS
MAS

Fig. 14: Runtime varying

datasets 1k to 4k

 0.25

 1

 4

 16

 64

 256

 1024

 4096

10k
20k

30k
40k

50k

T
i
m
e
(
s
)

Dataset

Tabu
M
A
S

MA
MS
AS
MAS

Fig. 15: Runtime varying

datasets for 10k-50k

 16

 64

 256

 1024

 4096

 16384

1k 2k 4k 8k

T
i
m
e
(
s
)

Dataset

Tabu
A
MA
AS
MAS

Fig. 16: Runtime varying

datasets for AVG constraint

with range 3k ± 1k

constraint. Increasing the region’s size provides local search

with more potential moves, hence it better improves overall

heterogeneity. For bounded threshold ranges, in Table IV and

Figure 13, both p values and construction runtime decrease

when the lower bound l increases and the trend is similar to

u = ∞. The heterogeneity score increases by up to 30.4%

for S, 6.9% for MS, 3.76% for AS, and 2.49% for MAS,

with increasing range length due to the larger region size.

However, the unassigned areas could reach up to 25.1% when

u is bounded for MS, AS, and MAS. This is because areas

are removed so that each region does not exceed u. FaCT

algorithm reports output statistics to users so they are equipped

with information about the impact of different threshold ranges

on the given dataset, and are able to tune query parameters

insightfully.

C. FaCT Scalability

This section discusses the scalability of the FaCT algo-

rithm. We run the algorithm for different constraint com-

binations with the default threshold values on the nine

evaluation datasets. The dataset size of the 50k dataset is

17 times the largest dataset used in the existing literature of

regionalization [15], [52]. As the AVG constraint is identified

as a clear performance bottleneck when the range is set to

be 3k ± 1k , our discussion contains two parts. The first part

shows the results for the constraint combinations with the AVG

set to be default range (Figure 14 and Figure 15) to show the

scalability of FaCT in normal cases, while in the second

part we focus on constraint combinations including AVG with

range 3k ± 1k (Figure 16) to see how the computation of the

AVG constraint scales in extreme cases.

Figure 14 and 15 show that when the AVG constraint is not

the bottleneck, the runtime increases linearly with the input

size for M and quadratically for the other constraints. For

all datasets, FaCT provides a very acceptable runtime for

regionalization applications.

Figure 16 shows that when the range of the AVG is set to

be 3k±1k, AVG constraints increase the construction time to

a large extent. For other datasets, the runtime increases with

increasing input size at a much higher rate than the previous

experiment, which implies less scalability advantage for AVG

constraint. The construction runtime does not strictly increase

with increasing the input size. The construction time for the

4k dataset is shorter than that for the 2k dataset, except for AS

and MAS. This difference is caused by the merging procedure

in the AVG constraint. Generally, more areas are easier to

aggregate in regions that satisfy the AVG constraint. In all

cases, the construction time scales much better than the Tabu

time, and it still provides a solution with almost the same

quality.

D. Summary Of Results

All experiments show that the FaCT algorithm can effi-

ciently produce feasible solutions of high quality in a few

seconds for the vast majority of the cases. In addition, the

FaCT algorithm supports relatively large datasets that serve

all existing applications. When more areas are filtered or fewer

seed areas are identified by the extrema constraints, both p and

the runtime tend to decrease. The behavior of the centrality

constraint depends on the range specified and the distribution

of the attributes. However, it shows reasonable performance

in the vast majority of the cases. The counting constraints can

formulate the MP-regions problem as a sub-problem of EMP

and gives comparable scalability and result quality.

VIII. CONCLUSION

This paper introduces an enriched max-p (EMP) region-

alization problem that extends the existing regionalization

problems with SQL-inspired user-defined constraints. The

EMP problem clusters a set of spatial areas into homogeneous

regions that satisfy the user-defined constraints. The EMP

problem enables enriched types of constraints that support

SQL-inspired aggregate functions, MIN, MAX, AVG, SUM,

and COUNT, with range operators. We prove the NP-hardness

of the EMP problem. To tackle this problem, we propose

FaCT ; a three-phase algorithm that finds an approximate

solution with a maximum number of regions and minimum

overall heterogeneity. The first phase checks the feasibility of

finding a solution given the input constraints. It also provides

users with insightful information to tune their input and enable

flexible exploration for various datasets. The second phase

constructs an initial solution, and the third phase further

optimizes it to provide a final solution. We have empirically

demonstrated the capability of FaCT to provide efficient and

effective performance on various real datasets.

For future work, we explore multi-objective optimization

methods and further improve the algorithm performance

through parallelization.

1925

Authorized licensed use limited to: Univ of Calif Riverside. Downloaded on September 26,2022 at 16:41:09 UTC from IEEE Xplore. Restrictions apply.

REFERENCES

[1] NP-hardness of MP-regions. https://cs.ucr.edu/∼amr/MP
Regionalization NPHardness.pdf, 2021.

[2] K. Andreev and H. Racke. Balanced graph partitioning. Theory of

Computing Systems, 39(6):929–939, 2006.
[3] M. P. Armstrong, G. Rushton, R. Honey, B. T. Dalziel, P. Lolonis, S. De,

and P. J. Densham. Decision Support for Regionalization: A Spatial
Decision Support System for Regionalizing Service Delivery Systems.
CEUS, 15:37–53, 1991.

[4] D. Arribas-Bel and C. R. Schmidt. Self-Organizing Maps and the US
Urban Spatial Structure. EPB, 40:362–371, 2013.

[5] R. M. Assunção, M. C. Neves, G. Câmara, and C. da Costa Freitas. Ef-
ficient regionalization techniques for socio-economic geographical units
using minimum spanning trees. International Journal of Geographical

Information Science, 20(7):797–811, 2006.
[6] O. Aydin, M. V. Janikas, R. Assunção, and T.-H. Lee. Skater-con:

Unsupervised regionalization via stochastic tree partitioning within a
consensus framework using random spanning trees. In Proceedings of

the 2nd ACM SIGSPATIAL International Workshop on AI for Geographic

Knowledge Discovery, pages 33–42, 2018.
[7] R. Benedetti, F. Piersimoni, G. Pignataro, and F. Vidoli. The Identi-

fication of Spatially Constrained Homogeneous Clusters of Covid-19
Transmission in Italy. RSPP, 12:1169–1187, 2020.

[8] N. Bullen, G. Moon, and K. Jones. Defining localities for health
planning: a gis approach. Social Science & Medicine, 42(6):801–816,
1996.

[9] U. C. Bureau. Explore census data. https://data.census.gov/cedsci/.
[10] J. Byfuglien and A. Nordgård. Region-building—a comparison of

methods. Norwegian Journal of Geography, 1973.
[11] M. Camacho-Collados, F. Liberatore, and J. M. Angulo. A multi-criteria

police districting problem for the efficient and effective design of patrol
sector. European journal of operational research, 246(2):674–684, 2015.

[12] Z. Chen, P. Cheng, L. Chen, X. Lin, and C. Shahabi. Fair task assignment
in spatial crowdsourcing. Proceedings of the VLDB Endowment,
13(12):2479–2492, 2020.

[13] K. S. Cheruvelil, P. A. Soranno, M. T. Bremigan, T. Wagner, and S. L.
Martin. Grouping Lakes for Water Quality Assessment and Monitoring:
The Roles of Regionalization and Spatial Scale. JEM, 41:425–440, 2008.

[14] J. H. Danumah, S. N. Odai, B. M. Saley, J. Szarzynski, M. Thiel,
A. Kwaku, F. K. Kouame, and L. Y. Akpa. Flood risk assessment and
mapping in abidjan district using multi-criteria analysis (ahp) model and
geoinformation techniques,(cote d’ivoire). Geoenvironmental Disasters,
3(1):1–13, 2016.

[15] J. C. Duque, L. Anselin, and S. J. Rey. The max-p-regions problem.
Journal of Regional Science, 52(3):397–419, 2012.

[16] J. C. Duque, R. L. Church, and R. S. Middleton. The p-regions problem.
Geographical Analysis, 43(1):104–126, 2011.

[17] J. C. Duque, J. E. Patino, L. A. Ruiz, and J. E. Pardo-Pascual. Measuring
Intra-urban Poverty Using Land Cover and Texture Metrics Derived from
Remote Sensing Data. LUP, 135:11–21, 2015.

[18] A. El Kenawy, J. I. López-Moreno, and S. M. Vicente-Serrano. Summer
Temperature Extremes in Northeastern Spain: Spatial Regionalization
and Links to Atmospheric Circulation (1960–2006). TAC, 113:387–405,
2013.

[19] A. Ferligoj and V. Batagelj. Clustering with relational constraint.
Psychometrika, 47(4):413–426, 1982.

[20] D. C. Folch and S. E. Spielman. Identifying regions based on flexible
user-defined constraints. International Journal of Geographical Infor-

mation Science, 28(1):164–184, 2014.
[21] R. Fragoso, C. Rego, and V. Bushenkov. Clustering of territorial areas:

A multi-criteria districting problem. Journal of Quantitative Economics,
14(2):179–198, 2016.

[22] R. S. Garfinkel and G. L. Nemhauser. Optimal political districting by
implicit enumeration techniques. Management Science, 16(8):B–495,
1970.

[23] F. Glover and M. Laguna. Tabu search. In Handbook of combinatorial

optimization, pages 2093–2229. Springer, 1998.
[24] A. Gordon. A survey of constrained classification. Computational

Statistics & Data Analysis, 21(1):17–29, 1996.
[25] L. Gurobi Optimization. Gurobi optimizer reference manual, 2018.
[26] P. Hansen, B. Jaumard, C. Meyer, B. Simeone, and V. Doring. Maximum

split clustering under connectivity constraints. Journal of Classification,
20(2):143–180, 2003.

[27] Y. Kang. Fact. https://github.com/YunfanKang/FaCT, 2021.
[28] Y. Kang. Modeling the enriched Max-P region problem asa Mixed-

integer programming problem. https://github.com/YunfanKang/FaCT/
blob/main/EMP-MIP/EMP MIP Formulation.pdf, 2022.

[29] Y. Kang. Solving the MIP formulation of EMP with Gurobi solver.
https://github.com/YunfanKang/FaCT/blob/main/EMP-MIP/, 2022.

[30] H. Kim, Y. Chun, and K. Kim. Delimitation of Functional Regions
Using a P-Regions Problem Approach. IRSR, 38:235–263, 2015.

[31] K. Kim, Y. Chun, and H. Kim. p-Functional Clusters Location Problem
for Detecting Spatial Clusters with Covering Approach. Geographical

Analysis, 49:101–121, 2017.
[32] J. Laura, W. Li, S. J. Rey, and L. Anselin. Parallelization of a

Regionalization Heuristic in Distributed Computing Platforms–a Case
Study of Parallel-P-Compact-Regions Problem. IJGIS, 29:536–555,
2015.

[33] L. P. Lefkovitch. Conditional clustering. Biometrics, pages 43–58, 1980.
[34] W. Li, R. L. Church, and M. F. Goodchild. An Extendable Heuristic

Framework to Solve the P-Compact-Regions Problem for Urban Eco-
nomic Modeling. CEUS, 43:1–13, 2014.

[35] W. Li, R. L. Church, and M. F. Goodchild. The p-Compact-Regions
Problem. Geographical Analysis, 46:250–273, 2014.

[36] F. Murtagh. A survey of algorithms for contiguity-constrained clustering
and related problems. The computer journal, 28(1):82–88, 1985.

[37] S. C. A. of Governments. Scag open data portal. https://gisdata-scag.
opendata.arcgis.com/.

[38] S. Openshaw. A regionalisation program for large data sets. Computer

Applications, 3(4):136–147, 1973.
[39] S. Openshaw. A geographical solution to scale and aggregation problems

in region-building, partitioning and spatial modelling. Transactions of

the institute of british geographers, pages 459–472, 1977.
[40] S. Openshaw. Classifying and regionalizing census data. Census users’

handbook, pages 239–270, 1995.
[41] J. E. Patino, J. C. Duque, J. E. Pardo-Pascual, and L. A. Ruiz. Using

Remote Sensing to Assess the Relationship Between Crime and the
Urban Layout. Applied Geography, 55:48–60, 2014.

[42] Welcome to the QGIS project! https://www.qgis.org/, 2020. May 2020.
[43] S. J. Rey and M. L. Sastré-Gutiérrez. Interregional Inequality Dynamics

in Mexico. SEA, 5:277–298, 2010.
[44] D. J. Rossiter and R. J. Johnston. Program group: the identification of all

possible solutions to a constituency-delimitation problem. Environment

and Planning A, 13(2):231–238, 1981.
[45] Southern California Association of Governments - SCAG. https://scag.

ca.gov/, 2020. May 2020.
[46] S. Schönbrodt-Stitt, A. Bosch, T. Behrens, H. Hartmann, X. Shi, and

T. Scholten. Approximation and Spatial Regionalization of Rainfall
Erosivity Based on Sparse Data in a Mountainous Catchment of the
Yangtze River in Central China. JESPR, 20:6917–6933, 2013.

[47] B. She, J. C. Duque, and X. Ye. The network-max-p-regions model.
IJGIS, 31:962–981, 2017.

[48] T. Song, Y. Tong, L. Wang, J. She, B. Yao, L. Chen, and K. Xu.
Trichromatic online matching in real-time spatial crowdsourcing. In
2017 IEEE 33rd International Conference on Data Engineering (ICDE),
pages 1009–1020. IEEE, 2017.

[49] S. E. Spielman and D. C. Folch. Reducing Uncertainty in the American
Community Survey through Data-driven Regionalization. PloS ONE,
10:e0115626, 2015.

[50] D. A. Stow, C. D. Lippitt, and J. R. Weeks. Geographic Object-
based Delineation of Neighborhoods of Accra, Ghana using QuickBird
Satellite Imagery. PE&RS, 76:907–914, 2010.

[51] T. Vilutienė and E. K. Zavadskas. The application of multi-criteria
analysis to decision support for the facility management of a residential
district. Journal of Civil Engineering and Management, 9(4):241–252,
2003.

[52] R. Wei, S. Rey, and E. Knaap. Efficient Regionalization for Spatially
Explicit Neighborhood Delineation. IJGIS, 35:1–17, 2020.

[53] S. Yanık, J. Kalcsics, S. Nickel, and B. Bozkaya. A multi-period
multi-criteria districting problem applied to primary care scheme with
gradual assignment. International Transactions in Operational Research,
26(5):1676–1697, 2019.

[54] X. Ye, B. She, and S. Benya. Exploring Regionalization in the Network
Urban Space. JGSA, 2:4, 2018.

1926

Authorized licensed use limited to: Univ of Calif Riverside. Downloaded on September 26,2022 at 16:41:09 UTC from IEEE Xplore. Restrictions apply.

