2022 IEEE 38th International Conference on Data Engineering (ICDE) | 978-1-6654-0883-7/22/$31.00 ©2022 IEEE | DOI: 10.1109/ICDE53745.2022.00189

2022 IEEE 38th International Conference on Data Engineering (ICDE)

EMP: Max-P Regionalization with Enriched
Constraints

Yunfan Kang®?
®Department of Computer Science and Engineering
bCenter for Geospatial Sciences
University of California, Riverside
ykang040@ucr.edu

Abstract—Spatial regionalization is the process of grouping a
set of spatial areas into spatially contiguous and homogeneous
regions. This paper introduces an enriched max-p-regions (EMP)
problem; a regionalization process that allows enriched user-
defined constraints based on SQL aggregate functions. In addi-
tion to enabling richer constraints, it enables users to employ
multiple constraints simultaneously to significantly push the
expressiveness and effectiveness of the existing regionalization
literature. The EMP problem is NP-hard and significantly
enriches the existing regionalization problems. Such a major
enrichment introduces several challenges in both feasibility and
scalability. To address these challenges, we propose the FaCT
algorithm, a three-phase greedy approach that finds a feasible set
of spatial regions that satisfy EMP constraints while supporting
large datasets compared to the existing literature. Our extensive
experimental evaluation has demonstrated the effectiveness and
scalability of our techniques on several real datasets.

Index Terms—spatial, regionalization, max-p, aggregate

I. INTRODUCTION

Regionalization is the process of clustering a set of areas
into spatially contiguous and homogeneous regions. Unlike
traditional clustering of multi-dimensional points, the basic
units in regionalization are spatial polygons that are grouped
based on both attribute values and adjacency in space. Re-
gionalization is widely used in numerous applications such as
epidemic analysis [7], service delivery systems [3], water qual-
ity assessment [13], weather temperature classification [18],
rainfall erosivity estimation [46], health data analysis [8], spa-
tial crowdsourcing [12], [48], and constituency allocation [44].
Identifying regions is a computational and conceptual chal-
lenge. One of the fundamental challenges is determining the
spatial scale of the studied phenomena. For example, snowing
is spatially correlated at the level of multiple states, e.g., the
USA midwest states, while temperature is spatially correlated
at a county level. Most regionalization routines require the
number of regions, p, as an input parameter, e.g., in the USA,
p = 50 is a state level and p = 3000 is a county level. This puts
the burden of determining the spatial scale on the data analysts,
forcing them to analyze multiple p values, which increases the
computational cost and limits the query expressiveness.

The latest regionalization formulation, called the max-p-
regions problem (or MP-regions), has addressed the scale
problem [15] and become popular in different applications,

Amr Magdy®®
“Department of Computer Science and Engineering
bCenter for Geospatial Sciences
University of California, Riverside
amr@cs.ucr.edu

including urban spatial structures [4], measuring intra-urban
poverty [17], population growth analysis [21], crime anal-
ysis [41], regional inequality analysis [43], spatial uncer-
tainty [49], and neighborhood delineation [50]. With the obser-
vation that researchers usually know a condition that a region
must satisfy to be suitable for the analysis, the MP-regions
automatically discovers the maximum number of regions that
satisfy a given user-defined constraint instead of forcing users
to input p. However, the MP-regions problem has several
limitations in both scalability and expressiveness. Currently,
the state-of-the-art algorithms take 3-60 mins to process a
dataset with ~3k areas, depending on the threshold value. As
a result, existing real applications, listed above, use relatively
small data, ranging from tens of areas [11], [21], [43] to only
a few hundred [4], [17], [41], [49], [50]. It is explicitly stated
in [49] that to use the MP-regions algorithms “one must be
willing to reduce the number of geographic units of analy-
sis.” Such severe scalability limitations prevent the existing
MP-regions formulation from supporting a wide variety of
user-defined constraints that enable users to express flexible
regionalization queries for various applications.

Existing MP-regions formulation allows a single user-
defined threshold lower bound on one attribute, e.g., total
region population > 100K. However, many analysis tasks can-
not be catered with a single constraint that involves a simple
threshold. In many real applications, it is common to have
multiple constraints with different aggregate functions. For
example, studies show that the COVID-19 virus transmission
pattern is closely related to prosperity and labor mobility [7].
In order to make region-specific recommendations for pre-
venting the virus spread, policymakers can issue a query to
identify reasonably populated regions with a total population
> 200000, an average monthly income between $3000 to
$5000, and public transportation passengers > 10000. Another
example is studying the changes in population requires con-
sidering multiple factors that influence the phenomenon [21]
with different aggregation functions such as the minimum
population of each area, the maximum school drop-out rate,
the average age of the population, and tofal unemployment.
A third example is the patrol sector partition problem [11]
that aims to consider the number of calls and the workload
balance. These example applications significantly benefit from

2375-026X/22/$31.00 ©2022 IEEE
DOI 10.1109/ICDE53745.2022.00189

1914

Authorized licensed use limited to: Univ of Calif Riverside. Downloaded on September 26,2022 at 16:41:09 UTC from IEEE Xplore. Restrictions apply.

enriching the expressiveness of MP-regions queries that will
enable exploring different scenarios and expanding analysis
capabilities. Currently, such advanced regionalization queries
cannot be expressed using the existing MP-regions formulation
due to its limited support for user-defined constraints, limiting
its full potential in many real applications.

This paper introduces an enriched MP-regions problem
(EMP) that addresses the existing MP-regions limitations.
EMP enables users to analyze one to two orders of magnitude
larger datasets than the currently supported ones. Further-
more, EMP enriches user-defined constraints with three novel
features: (1) EMP provides an enriched set of aggregates
that contains three families of aggregate functions, namely,
extrema aggregates, centrality aggregates, and counting ag-
gregates. The three families of aggregates are inspired by
the standard SQL aggregate functions from which we adopt
minimum and maximum as extrema aggregates, average as
a centrality aggregate, and summation and count as counting
aggregates. (2) EMP allows using a range comparison operator
that expresses all possible comparisons, less-than-or-equal (<),
larger-than-or-equal (>), and range comparison. This enables
users to set both lower and upper bounds for their constraints
instead of only lower bounds in existing formulations. (3) EMP
supports multiple constraints instead of a single constraint.
The EMP formulation addresses the limitation of the existing
MP-regions formulation and reveals the full potential for
regionalization queries in different applications.

The EMP problem is an NP-hard problem (see Section IV),
so finding an optimal solution is intractable. We formulated the
EMP as a mathematical optimization problem using mixed-
integer programming (MIP) problem [28] and solved it with
the world’s fastest MIP solver Gurobi [25]. The optimizer
takes 33.86s to find an optimal solution for 9 areas, 10 hours
for 16 areas, and is not able to return a feasible solution for
25 areas after 110 hours of execution [29]. This clearly shows
the infeasibility of finding an exact solution for hundreds or
thousands of areas in a reasonable runtime. However, even
finding an approximate solution faces two main challenges.
First, the newly introduced constraints are non-monotonic.
Therefore, adding or removing areas to and from a certain
region does not provide any guarantee of satisfying or violating
these constraints. This requires exhaustive exploration for the
whole search space to find the solution, which is intractable
with such an NP-hard problem. Second, while satisfying mul-
tiple non-monotonic constraints, a region can easily become
overlarge. Having oversized regions reduces the number of
regions p, which contradicts the objective of maximizing p.

To address these challenges, we introduce F'aCT, a three-
phase algorithm to solve the EMP problem. The first phase
derives theoretical bounds to verify the feasibility of finding a
solution given the user-defined constraints. In addition, in the
case of infeasibility, it enables the user to potentially alter input
data to satisfy the constraints. This provides great flexibility
to tune either data or query parameters adaptively and enables
rich exploratory analysis capabilities for a wide variety of
datasets. The second phase constructs a feasible solution that

1915

satisfies the input constraints while maximizing the number of
regions p. The phase is divided into three independent steps
with the following features: (a) Each step is carefully designed
to exploit the mathematical properties of one type of constraint
to maximize the p to its theoretical upper bound. (b) The input
and output of each step are designed exquisitely to reduce the
search space for the following steps and mitigate the conflicts
introduced by the different mathematical properties of different
constraints. (c) The steps are independent of each other,
enabling FaCT to construct feasible solutions progressively
and handle any arbitrary combinations of constraint types
effectively and efficiently. (d) The algorithm provides multiple
parameter tuning options so that the users can choose the best
aggregate strategy according to the use case and the char-
acteristic of the dataset. (e) The algorithm supports datasets
with multiple connected components, while the MP-regions
formulation supports only a single connected component. The
third phase of FaCT performs a local search adapting the
Tabu search [23] and swaps areas between regions to improve
the overall heterogeneity of the regions.

Our experimental evaluation demonstrates the effectiveness
of FaCT on real datasets. We evaluate the impact of dif-
ferent threshold ranges, different combinations of constraints,
and the scalability to process datasets. Our contributions are
summarized as follows:

We define an enriched max-p regions problem (EMP) that
reveals the full potential of max-p regionalization.

We prove the NP-hardness of the EMP problem.

We propose F'aCT); a three-phase greedy algorithm that
provides approximate solutions for the EMP problem.
We perform an extensive experimental evaluation that
shows the effectiveness of our techniques on real datasets.

The rest of this paper is organized as follows. Section II
presents the related work. Section III defines the problem and
Section IV proves its NP-hardness. Our proposed solution is
detailed in Section V, and its time and space complexity are
analyzed in Section VI. Section VII shows the experimental
evaluations and Section VIII concludes the paper.

II. RELATED WORK

The regionalization problem originates from the demand
for aggregating homogeneous regions in the analytical tasks
performed by social scientists and statisticians [19]. Region-
alization is referred to by different names, including region
building [10], conditional clustering [33], clustering with rela-
tional constraints [19], contiguity-constrained clustering [36],
constrained classification [24], maximum split clustering under
connectivity constraints [26], and p-regions problem [16]
that is used in a variety of applications such as detecting
functional regions [30], [31], network-constrained urban man-
agement [54], and partitioning compact regions [32], [34],
[35]. The max-p-regions problem (MP-regions) [15] has been
introduced to eliminate the requirement for inputting the
number of regions in advance. It aggregates areas into a
maximum number of regions so that each region satisfies a
single user-defined constraint with a summation aggregate,

Authorized licensed use limited to: Univ of Calif Riverside. Downloaded on September 26,2022 at 16:41:09 UTC from IEEE Xplore. Restrictions apply.

e.g., total population > 20K. Existing variants [20], [21],
[47] use the road network-based connectivity as an additional
spatial constraint to aggregate regions or use multiple attributes
to impose the constraint. However, all existing variants still
support only a single constraint of one type as the MP-regions
problem.

Existing regionalization techniques that perform multi-
criteria districting [11], [14], [21], [51], [53] use multi-
objective optimization to partition the space based on multiple
attributes. These techniques still put the burden of determining
the spatial scale, i.e., the number of output regions, on the user.
They also allow the user to define a single constraint on one
of the attributes, limiting the query expressiveness. Our EMP
problem addresses these limitations. It enables users to define
multiple constraints on different attributes to provide flexible
and expressive queries. In addition, it inherits the automatic
discovery of the appropriate number of regions from the MP-
regions and eliminates the spatial scale problem.

We classify the popular approaches to tackle the NP-
hard rationalization problems into two main categories. The
first category is the clustering methods [38], [40] with two
phases. The first phase clusters the centroids of polygons
using a traditional clustering algorithm. The second phase
then imposes the spatial connectivity constraint to ensure
that each region is geographically connected. The second
category adopts a two-phase contiguity-constrained heuristic
optimization approach [5], [15], [22], [39], [47]. The set of
spatial areas is usually represented by a graph that encodes
the spatial contiguity relationships. With the spatial contiguity
constraint imposed explicitly, a feasible initial solution is
constructed in the first phase and then optimized using heuris-
tic or mixed-heuristic search methods in the second phase.
The construction methods include tree partition [5], [6] and
greedy aggregation [15], [20], [22], [39]. The heuristic search
phase optimizes the objective function to improve the region
homogeneity [5], [6], [22] or geographical compactness [22]
without violating the contiguity constraint.

Our work follows the second category of contiguity-
constrained heuristic optimization search. We consider mul-
tiple constraints with different aggregate functions that do not
exist in the literature, so none of the existing methods can
obtain a feasible solution that satisfies our enriched constraints.

III. PROBLEM DEFINITION

This section formally defines the enriched max-p regions
(EMP) problem. Let A = {ay,as,...,a,} denote the set of
areas. Each area a; is defined by four attributes: a;=(i,b;,S;,d;),
where ¢ is the area identifier, b; is an arbitrary spatial polygon
that defines the area’s spatial boundaries, .5; is a set of spatially
extensive attributes and d; is a dissimilarity attribute. The
dissimilarity attribute d; is used in computing output regions’
heterogeneity. The rest of the section presents basic definitions,
then defines the EMP problem formally.

Definition III.1 (User-defined Constraint). A user-defined
constraint ¢ is a condition that is defined as “l < f(s) < u” or

1916

“f(s) € [l,u]”. ¢ is identified with a 4-tuple: (f,s,l,u), where
f is an aggregate function, s is a spatially extensive attribute,
l € [—00,00) is a number that represents a lower bound, and
u € (—00,00] is a number that represents an upper bound.

EMP allows f to be MIN, MAX, AVG, SUM, or COUNT
that compute minimum, maximum, average, summation, and
count aggregates, respectively, with the same semantic as the
SQL standards. The attribute s is a spatially extensive attribute
whose value is divided over the smaller areas when the area
is fragmented. For example, the population value of a state is
divided over its cities, so the population is a spatially extensive
attribute. This is the opposite to spatially intensive attributes,
such as temperature, that are not divided when the spatial area
is fragmented. Examples of s include the population, labor
force, and households in each area. When [= —oo, the range
has an open-ended lower bound and the constraint becomes
f(s) < w. Similarly, when u = oo, it becomes f(s) > I.

Definition ITI.2 (Region). A region R is a set of g areas:
R ={a1,as,...,a4}, such that: (1) g > 1, i.e., R contains at
least one area. (2) Areas in R are spatially contiguous, i.e., V
a;,a; € R, 3 a sequence of areas (ay,...,a;) s.t. both (a;, ax)
and (a;, a;) are spatial neighbors, and every two consecutive
areas in the sequence are spatial neighbors.

Definition II1.3 (Heterogeneity). Heterogeneity H (P) of a set
of regions P is defined as:

HP)= Y > |di-d

VREP Va;,a; ER

(M

This definition of H is popular in the MP-regions liter-
ature, so it is recognized by social sciences experts as a
primary measure for region heterogeneity. However, our work
can support alternative definitions, such as improving spatial
compactness or balancing multiple criteria. The reason is that
our second phase, which is based on Tabu search as discussed
in Section V, can deal with different optimization functions.
EMP Problem. The EMP problem is defined as follows:

Input: Given: (1) A set of n areas: A = {a1,as,...,an}.
(2) A set of user-defined constraints C' = {c1, ¢, ..., ¢m }.

Output: (1) A set of regions P = {R1, Ro, ..., R, }, where
1 < p < n and each region R; satisfies the below EMP
constraints and objectives. (2) A set Uy = A—Uf=1 R;,ie., Uy
contains all areas that are not assigned to any feasible region
R;, V1 <4 < p. Areas in Uy may not be spatially contiguous.

EMP Constraints:

oRiﬂRj:(Z), VRZ,RJGP/\Z#‘]

o R; satisfies all constraints ¢; € C,

Vi<i<pl<j<m

Objectives:

e Maximizing the number of regions p.

o Minimizing regions’ overall heterogeneity H(P).

EMP has two objectives. In case they contradict during
building the output regions, the first objective (maximizing

Authorized licensed use limited to: Univ of Calif Riverside. Downloaded on September 26,2022 at 16:41:09 UTC from IEEE Xplore. Restrictions apply.

the number of regions) is favored over the second one (min-
imizing regions’ heterogeneity). This allows users to obtain
the maximum number of desirable regions without provid-
ing the number of regions as an input, as favored by the
domain experts [15], which addresses a major limitation in
the previous regionalization problems. The second objective
uses a dissimilarity attribute that is not necessarily a spatial
attribute. For example, social scientists produce regions that
are homogeneous in average income level.

Comparing the EMP problem with the original MP-regions
problem [15], there are two major differences that are in-
troduced by the enriched user-defined constraints. First, the
enriched constraints are not always monotonic. Assuming that
all spatially extensive attribute values are positive, adding an
area to a region or removing an area from a region in MP-
regions guarantees a monotone change towards satisfying the
constraint threshold. This is not the case for the EMP problem
due to allowing AVG, MIN, and MAX constraints. In addition,
the EMP problem allows upper-bounded threshold ranges,
so adding areas to a region without additional validation
leads to violating the SUM and COUNT constraints’ upper
bounds. Second, the EMP problem allows unassigned areas,
Uy, to exist in the final area partition, contrary to the MP-
regions problem. This provides flexibility to satisfy multi-
ple constraints of different types, especially MIN and MAX
constraints that commonly cause invalid areas, as discussed
in the following sections. Allowing unassigned areas enables
constraints such as MIN and MAX to serve as filters to
filter out areas with undesired properties, which introduces
more tolerance and enables richer exploration capabilities to
regionalization queries.

IV. NP-HARDNESS OF EMP

This section proves the NP-hardness of the EMP problem.
The NP-hardness of the EMP problem follows the results that
the MP-regions problem is NP-hard [1], [2], [15]. The MP-
regions problem takes as input: (1) a set of spatially contiguous
areas A = {a1,as, ..., a, }. Each area a; is associated with an
identifier 4, a spatial polygon b;, a spatially extensive attribute
s; and a dissimilarity attribute d;, (2) a threshold value ¢. For
the purpose of the proof, we solve both the MP-regions and
the EMP problem as decision problems with a fixed p = k.

Theorem 1. The EMP problem is NP-hard.

Proof. Let X = (A,t) be an instance of the MP-regions
problem. We construct an instance Y = (A’,C) of the EMP
problem as follows: (1) For each area a; € X.A, add
to Y.A' an area o) = {i,b;,5},d;}, S = {si}. (2) Let
C = {(SUM, S'[0],t,00)}. (3) Let the number of regions p
equal k. This reduction is of polynomial time of O(n) where
n is the number of areas in A. Therefore, an algorithm that
decides on the instance Y of the EMP problem decides on
the instance X of the MP-regions problem as well. As the
MP-regions problem is NP-hard, then the EMP problem is
NP-hard, and the proof is complete. O

V. PROPOSED SOLUTION

This section presents F'aCT, a three-phase algorithm that
finds a feasible solution for an instance of the EMP problem
with low overall heterogeneity. The first phase is a feasibility
phase that verifies the existence of any feasible solution
given the user-defined constraints. The second phase is a
construction phase that constructs a feasible initial solution
with the maximum number of regions p while satisfying
all user-defined constraints. This phase represents the major
contribution of this algorithm. It balances two challenging
objectives: satisfying multiple non-monotonic user-defined
constraints and producing a maximum number of spatially
contiguous regions. The third phase is a local search phase
that improves the initial solution of the construction phase in
terms of the heterogeneity score. The following sections detail
each phase.

A. Feasibility Phase

The EMP problem deals with arbitrary combinations of con-
straints on different attributes. The goal of the feasibility phase
is to signal the user at an early stage for: (1) the infeasibility
of finding a solution for the given set of constraints on the
given dataset, and (2) the possibility of removing some areas
to satisfy the given constraints.

The fact that our algorithm can detect and filter out invalid
areas for all constraints, including non-monotonic constraints,
gives it major practical advantages when employing multiple
constraints. The algorithm is not only able to give users a
heads-up on the infeasibility of their constraints, but also users
can choose to remove input areas that cause such infeasibility
automatically. This gives data analysts great flexibility to
analyze a wide variety of datasets and constraints.

Given a set of user-defined constraints C =
{(MIN, Smin, lminv um’in)v (MAX, Smazx s lmaaﬁ» umam)a
(AVG7 Savgv lavg7 uavg)7 (SU]\/L Ssum lsum7 usum)»
(COUNT, Scounts leount, Ueount) }» We check the feasibility
of applying each type of constraint as follows:

(1) For AVG constraints, we compute the average value
AVG(s4,,4) Of attribute sq,, over all areas. If AVG(sq04) <
lavg or AVG(Sqvg) > Uqug, We infer that there exists no
partition where all regions satisfy the AVG constraint without
removing any area. This is justified by Theorem 3 below.

Theorem 2. If 3P = {R1, R, ..., R,} so that every region
R; € P satisfies ¢ = (AV G, 540, lavg, Uavg) and P contains
all areas in a set A, then the average value AV G(Saug) 0f Savg
over all areas of A satisfies ¢, i.e., lavg < AVG(Savg) < Uavg-

Proof. If p = 1,i.e., P = {A}, the proposition is trivially
true. If p > 1, as all regions in P satisfy c, we have:
lavg < Ri AV G (Saug) < Uqug, V1,1 <1 <p 2)

where R;. AV G(sq.4) represents the average value of attribute
Squg Over areas in region R;. Let |R;| denote the number of
areas in region R;. As P contains all areas, we have:

P

> |Ril=n 3)

i=1

1917

Authorized licensed use limited to: Univ of Calif Riverside. Downloaded on September 26,2022 at 16:41:09 UTC from IEEE Xplore. Restrictions apply.

Also, by definition:

p
AVG(savg) x =Y (|Ri|xR;.AVG) (4)
i=1

P (|R;|xR;.AVG

AVG(SaUg) _ Zz:l(| |><)

P K)
< Y izt | Biltang _
== avg

P (|R;|xR;.AVG

AVG(Savg) = 1:1(| |><)
n

P | Rillany ©

> i= 1 |tav _ lav
Equations 5 and 6 = I,y < AVG(Savg) < Uang-
Hence, the Theorem 2 is true, and the proof is complete. [

Theorem 3. For an area set A and an AVG constraint ¢ =
(AV G, sqvgs lavg: Uavg), if the average value of Sq,q over A,
AV G(Savg), does not satisfy ¢, i.e., AVG(Saqug) < lavg Or
AV G (Savg) > Uaug, then P = {R1, Ra, ..., Ry} such that P
partitions all areas in A and R; € P satisfies ¢, V1 <i < p.

Theorem 3 is proved by proving its contrapositive Theorem 2.

(2) For MIN constraints, we compute the minimum
and maximum values over all areas for attribute S,,in,
MIN (8ymin) and M AX (Spin), respectively. Two different
cases could cause infeasibility: (a) If MAX (Smin) < lmin
or MIN (Smin) > Umin, then there is no area that satisfies
the MIN constraint and no valid regions can be constructed,
so there is no feasible solution. (b) If MIN (Smin) < lmin <
M AX (Smin), all areas with $p,ipn, < lpnin are invalid areas that
cannot be part of any valid region, so they must be filtered out
to build a feasible solution. Therefore, there is room to find a
feasible solution after removing invalid areas.

(3) Similarly for MAX constraints, there are two cases of
infeasibility: (a) If MIN (Spmaz) > Umaz Of MAX (Simaz) <
lmaz, there is no area that satisfies the MAX constraint, and
there is no feasible solution. (b) Areas with $,,42 > Umas are
invalid areas that must be filtered out to find a solution.

(4) For SUM constraints, we compute the minimum
and summation of all areas for Ssum, MIN(Ssum) and
SUM (Ssym), respectively. There are three cases of infeasi-
bility: (a) If MIN (Ssym) > Usum, NO region can have Sgum
within the range. (b) If SUM (Ssum) < lsum, even the trivial
region containing all areas cannot have s, within the range.
(c) Areas with Sy, > Usym are invalid and must be removed.

(5) For COUNT constraints, if the number of areas n <
lecount, there is no feasible solution as a region containing all
areas cannot meet the lower bound I.,yn:.

The feasibility phase iterates through the area set and
computes the needed attribute aggregates for all constraints
in a single pass. This pass is enough to filter out invalid areas,
that have Smin < lwu'n’ Smaz > Umaz> OF Ssum > Usums.
to eliminate potential invalid regions. However, the feasibility
pass is not enough to filter out invalid areas for the AVG
constraint. This is performed during the following construction

1918

phase while imposing AVG constraints. All invalid areas are
filtered out from A, added to the set Uy, and they are not
considered in any further processing. The remaining areas in
set A are passed to the following phases.

B. Construction Phase

The construction phase greedily constructs a feasible solu-
tion that: (a) satisfies all user-defined constraints, (b) maxi-
mizes the number of regions p, and (c) minimizes the num-
ber of unassigned areas. This phase faces the challenges of
simultaneously satisfying multiple non-monotonic constraints
while preventing building oversized regions that contradict
maximizing p. To address these challenges, the construction
phase satisfies each family of user-defined constraints in a
separate step, and each step handles different constraints in
isolation. By this, we gain several benefits towards address-
ing the challenges. First, each step focuses on one type of
optimization, making it an easier problem to solve. Second,
dividing the logic into consecutive steps provides flexibility to
handle queries with any arbitrary subset of different constraints
(as discussed in Section V-D). Third, the order of steps makes
use of the mathematical properties of different aggregate
functions to increase the probability of producing a feasible
solution. MIN, MAX, and SUM constraints are used as filters
to oust invalid areas and provide seed areas for the following
steps. Then, AVG constraint, which is the most challenging
to satisfy, takes the seed areas and grows as many regions as
possible. The last step performs only necessary modifications
to satisfy any violated SUM and COUNT constraints, which
are easier to satisfy due to the monotonicity of SUM and
COUNT aggregate functions. Fourth, separated steps facilitate
maximizing the value of p, as detailed later, without violating
the constraints that have been satisfied previously. Conse-
quently, our construction phase produces an initial partitioning
for the space with a near-optimal p value that is fed to the fol-
lowing phase to minimize the regions’ heterogeneity. Although
reducing the overall heterogeneity score is an objective for the
final solution, this phase is not primarily designed to minimize
heterogeneity, which is optimized in the following phase.

The construction phase executes multiple iterations. Each
iteration produces a feasible partition, and we maintain the
partition with the highest p value. Each iteration is divided into
three steps. The first step satisfies extrema constraints (MIN
and MAX constraints), the second step satisfies centrality con-
straints (AVG constraints), and the third step satisfies counting
constraints (SUM and COUNT constraints). We detail each
step below. The area set in Figure la is used as a running
example to illustrate different steps of the construction. For
simplicity and without loss of generality, we assume that all
constraints are imposed on the same attribute s.

Step 1: Filtering and Seeding. The first step satisfies
extrema constraints, i.e., MIN and MAX constraints. These
two constraints have two functionalities: (a) filtering out the
invalid areas, and (b) specifying the set of seed areas.
Invalid areas are excluded during the feasibility phase (Sec-
tion V-A). We select seed arecas as the areas that meet lower

Authorized licensed use limited to: Univ of Calif Riverside. Downloaded on September 26,2022 at 16:41:09 UTC from IEEE Xplore. Restrictions apply.

a as as [[]Min Seed
=5 Sg= . s5=5 DM Seed
do=15 | 9s=18 a, . °| ds=15 ax See
2y L S2% a
d2=12 ag as dy=12) s:=6
2 S¢=6 So= L. de=16
dg=16 dy=19 -
. ag. .
s to. .g";g | a
= =14. . 7
d:=14 a, , s e s;=7
a; s;= “aze d,=17
s,=1 o dy=17 . §;=3 . 7
d,=11 s3=3 , ds=13.
do=13

(b) Area filtration and seed area

(a) Example area set selection

Fig. 1: Step 1: Filtering and Seeding

and upper bound values of one of MIN or MAX constraints.
For instance, for two constraints ¢; = (MIN,sq,11,u1) and
ca (MAX,s9,la,us), any area with I3 < s; < wuy or
lo < s9 < ug is a valid seed area. This rule is generalizable
to any number of MIN and MAX constraints.

This step provides three levels of optimizations through
choosing a seed area that satisfies the bounds of only one con-
straint. First, it finds seed areas for any arbitrary combination
of MIN/MAX constraints. For constraints that are imposed on
different attributes or have disjoint upper and lower bounds,
there is no single area that satisfies all of them. So, considering
each constraint in isolation from others provides flexibility to
find seeds for any query. Second, the number of seed areas is
an upper bound for the number of regions p as each feasible
region must contain at least one seed area for each constraint.
So, using a maximum number of seed areas and growing
the regions based on them contributes to the objective of
maximizing p. Third, it enables piggybacking the seed areas
selection on the invalid areas filtration during the feasibility
phase. While checking the validity of an area, the algorithm
checks the seeding conditions and mark seed areas.

Example: Figure 1b illustrates the result of Step 1 for the
example area set in Figure la. The extrema constraints are
setas {(MIN,s,2,4),(MAX,s,6,7)}. Areas aq, ag, and ag
are moved to set Uy because their attribute values are below
2 or above 7. The remaining areas after filtering are shown in
Figure 1b. Area a3, a3, and a4 are selected as seed areas for
the MIN constraint and area ag and a; are selected as seed
areas for the MAX constraint, as shown in Figure 1b.

Complexity analysis. All operations of the feasibility phase
and Step 1 of the construction phase are performed in one pass
over the n areas. Each area is validated against all MIN, MAX,
and SUM constraints to be classified as either invalid, valid,
or seed area. The time complexity is O(m x n), where m is
the number of constraints and typically m << n.

Remark 1. The time complexity of the feasibility phase and
the Filtering and Seeding is O(m x n).

Step 2: Region Growing. The second step grows regions
that satisfy the AVG constraint ¢ = (AV G, s,l,u), without
violating the MIN/MAX constraints. This step is divided into
three substeps. The first substep initializes a set of regions. The
second substep assigns the unassigned areas to the regions. The

1919

third substep combines regions to ensure each region satisfies
all constraints. We detail each substep below.

Substep 2.1 utilizes the set of seed areas, called seeds,
from Step 1 to initialize a set of initial regions. Areas in
seeds already satisfy at least one of the MIN/MAX con-
straints, so they must be included in any valid region. The
algorithm iterates over seeds and classifies all seed areas
into three subsets based on their AVG attribute value s:
unassigned_avg, unassigned_low, and unassigned_high.
unassigned_avg contains areas that satisfy the condition
I < s < u. unassigned_low contains seed areas that satisfy
s < I, i.e., s value is lower than ¢’s lower bound. Similarly,
unassigned_high contains seed areas with s > . Only areas
in unassigned_avg satisfy ¢ and are used in region initializa-
tion directly. As we want to maximize the number of output
regions p, we make each area in unassigned_avg a separate
region, and all new regions are added to a region list P. Then,
we merge areas in unassigned_low and unassigned_high
with their spatial neighbors to compose regions that satisfy c.
Algorithm 1 gives the merging procedure.

Algorithm 1 initiates each unassigned area as a temporary
region R (Lines 4 to 6). While R does not satisfy the constraint
¢’s bounds, the algorithm tries to add a neighbor area a,, that
moves R’s overall average of attribute s towards c’s range
(Lines 16 to 21). Once R satisfies c, it is added to the region
list P (Lines 10 to 12). If R’s neighbors are exhausted and
cannot form a valid region, the whole procedure is reverted,
and areas of R remain unassigned.

Substep 2.2 tries to assign all remaining unassigned areas,
either seed areas or regular areas. Similar to classifying seeds
areas in Substep 2.1, all areas that are not in seeds set are
added to either unassigned_avg set, unassigned_low set,
or unassigned_high set, depending on their s value. There
are two rounds for assigning the remaining unassigned areas.
In the first round, we try to add the unassigned areas to their
neighbor regions. All areas in unassigned_avg can be safely
added to any of its neighbor regions as it is guaranteed not to
introduce a violation of c. For each area in unassigned_low
and unassigned_high, we must check if adding it to the
neighbor region violates c. The second round tries to assign the
areas in unassigned_high and unassigned_low by merging
the regions. Given an unassigned area a, the algorithm tries
to merge one of a’s neighbor regions R and R’s neighbor
region with a and checks if c is satisfied for the newly merged
region. The merging process terminates when all a’s neighbors
cannot absorb it or a merge limit, i.e., the number of allowed
merge trials, is reached. The merge limit is set to prevent the
formation of oversized regions and control the runtime.

Substep 2.3 combines neighbor regions to ensure that all
regions satisfy all MIN and MAX constraints. Because areas
that form seeds are selected by a single MIN or MAX
constraint, regions that are aggregated based on a single seed
area are guaranteed to satisfy only one of those constraints.
To ensure each region satisfies all constraints, the algorithm
iterates over the region list P and merges the region that does
not satisfy every constraint with one of its neighbor regions

Authorized licensed use limited to: Univ of Calif Riverside. Downloaded on September 26,2022 at 16:41:09 UTC from IEEE Xplore. Restrictions apply.

Algorithm 1: Region Growing - Merging Areas

Input: ¢ = (AVG, s,1,u), unassigned_low,
unassigned_high, P
Output: unassigned_low, unassigned_high, P
1 removed_areas + ()
2 u_areas < unassigned_low U unassigned_high
3 foreach area a € u_areas do

4 Create a tempory region R with R.id = -1;

5 R.addArea(a);

6 updated = true;

7 netghbor_areas = R.getNeighbors();

8 while updated do

9 updated = false;

10 if | < R.getAverage() < u then

1 R.updateld(P.size() + 1);

12 P.add(R);

13 removed_areas.addAll(R.areas);

14 end

15 else

16 foreach area a,, in neighbor_areas do

17 if a,, is not assigned to any region then

18 if (R.getAverage() < | AND an.s > u)
OR ((R.getAverage() > u AND a,.s <
1)) then

19 R.addArea(an);

20 updated = true;

21 break;

22 end

23 end

24 end

25 end

26 end

27 end

28 unassigned_low.removeAll(removed_areas);
29 unassigned_high.removeAll(removed_areas);
30 return unassigned_low, unassigned_high, P;

" | as EE
. . " ‘| ss=5 .. s5=5
a, ° +| ds=15 a,. .|ds=15

(a) Substep 2.1: Region Initial- (b) Substep 2.2: Area Assign-
ization ment

Fig. 2: Step 2: Region Growing - Substep 2.1 & 2.2-Round 1

that satisfy other constraints. The iteration stops when all
regions in the P satisfy MIN and MAX constraints, i.e., each
region contains at least one seed area for each MIN/MAX
constraint. This substep does not affect satisfying the AVG
constraint ¢ because merging two regions that already satisfy
c produces a region that still satisfies it. Thus, after Step 2
concludes, all regions in the region list P satisfy all the MIN,
MAX, and AVG constraints.

Example: Figure 2 shows an example of Substep 2.1 and
Substep 2.2. Given ¢ = (AVG,s,4,5), in Substep 2.1,
only seed area a4 is added to unassigned_avg and ini-
tialized as a new region R,.q (Figure 2a). as and agz are

a,
::=4 a ::::4
a_ d,=14 iy
[[
da=12 2 d§=15 2= ::=6 ds=15
:::gs de=16

(b) Region merging and

(a) Unassigned area as. Assigning aa.

Fig. 3: Step 2: Region Growing - Substep 2.2 - Round 2

“la .]a
(. s:=5 o a s:=5
a, . {ds=15 a, .| ds=15
S,= S5=2

d;:-12 /EE).:@?

B

sa=4 7 L. .. ::;4 3 77
]y, | LB
:ga'=3. : /d/=/1/ 53_,3 //7&/1/7/

di=13 |~~~ Sd=as- |
(a) Case 1 (b) Case 2

Fig. 4: Step 2: Region Growing - Substep 2.3

added to wnassigned_low and ag and a7 are added to
unassigned_high. The average of as.so and ag.sg is 4, and
they are combined to form the region Rpjye. Similarly, as
and a; form the region Rgrc.n, with average value 5. So,
Substep 2.2 initializes three regions as depicted in Figure 2a.
Then, in Substep 2.2, the remaining unassigned area as is
assigned to its neighbor region Ry, as depicted in Figure 2b.

Example: Figure 3 provides an example for Round 2 of
Substep 2.2. In contrast to the example in Figure 2, the
unassigned area as cannot be added to its neighbor region
Ryprye = {as, ag} directly. Adding as to Rpyye generates a re-
gion with an average s value equals 3.67, which is smaller than
4 and violates the constraint ¢ = (AV G, s,4,5). Instead, the
algorithm forms a temporary region R,..q = {as,aq,as,ag}
by merging Rpye and its neighbor region Ryycen = {a4,as},
as shown in Figure 3b. R,.q accepts ao and the average value
is 4.4, which satisfies the constraint c.

Example: Figure 4 gives an example of Substep 2.3 for
the example region partition in Figure 2b. R,..q = {a4}
contains only the MIN seed area; hence it does not sat-
isfy the MAX constraint. Because both neighbor regions
Ryjue = {a2, a5,a6} and Rgreen, = {as, a7} satisfy the MAX
constraint, R,.4 can be combined with either region to form
a region satisfying all constraints. The results are depicted in
Figure 4a and Figure 4b, respectively.

Complexity analysis. The Substep 2.1 and the first round
of the Substep 2.2 iterate through all seed areas and each
takes O(n) time. The second round of the Substep 2.2 iterates
through the unassigned area set for multiple iterations. In each
iteration, at least one area is removed from the unassigned
area set or otherwise no update is made and the loop breaks.
The number of unassigned areas is < n, hence the worst-
case total number of operations is > ., i = O(n?). The
merge operations are bounded by a constant number and each

1920

Authorized licensed use limited to: Univ of Calif Riverside. Downloaded on September 26,2022 at 16:41:09 UTC from IEEE Xplore. Restrictions apply.

operation takes constant time to update the attribute values and
append the area list. Substep 2.3 iterates through all regions
once, thus taking maximum of O(n) time. Thus, Step 2 time
complexity is O(n) + O(n) + O(n?) + O(n) = O(n?).

Remark 2. The time complexity of Region Growing is O(n?).

Step 3: Monotonic Adjustments. Step 3 satisfies SUM
and COUNT constraints while maintaining the constraints that
have been satisfied in the previous steps. The SUM constraint
is used in the MP-regions problem, hence we build this step
based on the MP-regions construction algorithms [52]. How-
ever, because regions are initialized for the MIN, MAX, and
AVG constraints, adjustments are needed on both area level
and region level to satisfy the counting constraints. Because
SUM and COUNT constraints are monotonic, areas are added
to regions that fall under the lower bound or removed from
regions that go above the upper bound to make every region
valid. We iterate over constructed regions. For each region that
violates one of the SUM or COUNT constraints, the algorithm
first tries to swap areas with neighbor regions without violating
the other constraints. The spatial contiguity of the region is
validated by ensuring that the donor region still forms a single
connected component after swapping. After no updates can
be made by swapping areas, the algorithm tries to merge
regions below the lower bounds or remove areas from regions
above the upper bounds. When no changes can be made, the
infeasible regions are removed, and the partition is considered
finalized for the construction phase.

Example: With the input shown in Figure 4a and the
example constraints ¢4 (SUM,s,12,00) and c;
(COUNT, s, —00,4), the region Rgreern, = {as,ar} does
not satisfy c4. The boundary area with the neighbor region
Rypue = {a1,a4,as5,a6} is ag. Area ay is swapped from
Rpiue t0 Rgreen after ensuring that both regions still satisfy
all the other constraints, and Ry, is spatially continuous
and still above the lower bound of c4. The result is de-
picted in Figure 4b. After swapping, the receiver region
Ryreen = {aa,as,ar} satisfies all the constraints, so the
swapping attempts are terminated.

Complexity analysis. Each area is swapped at most once
because the region that becomes feasible after the swap keeps
the area to remain valid. Each swap updates and validates
all attributes of both the donor and receiver regions, which
takes O(2m) operations. Checking donor region connectivity
is O(n) in the worst case. As a result, the time complexity of
swapping is O((2m + n) x n) = O(n?). The area removal of
regions that exceed the upper bounds and removing infeasible
regions take one O(n) pass each. Thus, the overall time
complexity is O(n?) + O(n) + O(n) = O(n?).

Remark 3. The time complexity of Monotonic Adjustments is
O(n?).

C. Local Search Phase

The partition with the largest number of regions p is for-
warded from the construction phase to the local search phase to

1921

optimize the overall regions’ heterogeneity. The local search
phase uses the Tabu search algorithm [23], a meta-heuristic
search algorithm, to minimize the overall heterogeneity.

In brief, the Tabu search algorithm keeps moving areas
among neighbor regions without violating the user-defined
constraints in any region. Starting from the feasible partition
constructed in the construction phase, the Tabu search algo-
rithm moves to the best neighboring partition. Moving to a
solution that has worse total heterogeneity is allowed to escape
from the local optimal solution. The made moves are stored in
a tabu list, with a fixed tabu tenure, and the reverse moves are
forbidden to prevent cycles. When a move leads to a partition
better than the best partition so far, the algorithm chooses this
move even if the tabu list prohibits it. The algorithm stops
when no better move can be made in a specified number of
steps, and the best partition found is returned as the final result.
This phase does not change the number of regions p. Instead,
it still produces p regions but with better overall heterogeneity.

Complexity analysis. The Tabu search is an incomplete
algorithm, so we derive a complexity approximation based on
the parameters and the problem-specific neighborhood compu-
tation. Tabu search performs n iterations without heterogeneity
improvement and the counter resets on improvement, so the
total number of iterations is O(an) in the worst case, where
« is the number of moves that beat the existing optimal
heterogeneity score. In each iteration, we update the valid
moves using a region connectivity check for each boundary
area in the region updated by the previous move, which takes
O(n x n) time in the worst case. A move attempt takes O(n)
to compute the pair-wise dissimilarity in the worst case. So,
the overall time complexity is O(an x (n? +n)) = O(an®).
Experimentally, the moves that improve heterogeneity happen
at an early stage of the local search, causing the total number
of iterations much smaller than 2n.

Remark 4. The time complexity of the Local Search phase is
O(an®), where « is the number of valid moves that improve
the heterogeneity over the existing optimum.

D. Handling Arbitrary Sets of Constraints

Our discussion so far assumes the incoming query contains
all types of constraints. However, it is common to have a subset
of these constraints. For example, a query could have only
one AVG constraint, or one MIN constraint and one COUNT
constraint. This section discusses how the FaCT algorithm
handles queries with an arbitrary subset of constraints.

The FaCT algorithm handles absent constraints as they
exist with an infinite range (—o0, 00), which affects both the
feasibility and the construction phases. If a MIN/MAX con-
straint type is absent, the feasibility phase does not remove any
invalid areas under MIN/MAX, and Step 1 of the construction
phase selects all areas as the seed areas. If the AVG constraint
is missing, the Region Growing step adds all areas in seeds to
unassigned_avg and then initializes single-area regions. Areas
not in seeds are then added to unassigned_avg and merged to
neighbor regions iteratively. If SUM/COUNT constraints are

Authorized licensed use limited to: Univ of Calif Riverside. Downloaded on September 26,2022 at 16:41:09 UTC from IEEE Xplore. Restrictions apply.

absent, Step 3 of the construction phase is omitted. Therefore,
designing the F'aCT algorithm with independent steps enables
it to effectively handle queries with any subset of constraints.

VI. COMPLEXITY ANALYSIS

This section analyzes the time and space complexity of
the FlaCT algorithm. According to Remarks 1, 2, and 3 in
Section V-B, the time complexity of the feasibility and the
three steps of the construction phases are O(n), O(n?), and
O(n?), respectively. Thus, the total time complexity of both
phases is O(n?). According to Remark 4 in Section V-C, the
time complexity of the Local Search phase is O(an®). This
gives the overall worst-case time complexity of FaCT as
O(an?®), where « is the total number of moves that improves
the existing optimal heterogeneity in the local search process.

For space complexity, the area set takes O(m x n) space to
store the n areas, each associated with m attributes assuming
there are m constraints. The space complexity for the seed area
selection is O(n). The Region Growing step stores temporary
regions with O(n) areas. After the region initialization, each
region is stored with m attributes and an area set. The regions
are disjoint, so the space taken by the region list is bounded
by O(m x n). The Monotonic Adjustments step and the Local
Search phase update the region list in place and does not
require additional space. Thus, the overall space complexity
is O(m x n).

VII. EXPERIMENT EVALUATION

This section presents an extensive experimental evaluation
of our proposed work to address the EMP problem. The
code and data for reproducing the results presented in this
section are publicly available [27]. The rest of the section
introduces the experimental setup (Section VII-A), studies
the impact of different constraints types and threshold ranges
on the performance (Section VII-B), shows the scalability of
the FaCT algorithm (Section VII-C), and summarizes the
experimental results (Section VII-D).

A. Experimental Setup

EMP is a novel problem in the literature, so there is no direct
competitor to compare our techniques against. In addition, due
to the major enrichment EMP introduces to the MP-regions
problem, existing techniques that address MP-regions problem
cannot be trivially extended and adopted as baselines to
solve the EMP problem. Therefore, our experiments focus on
evaluating the performance and effectiveness of our proposed
work. We also study the impact of different combinations of
enriched constraints.

Evaluation datasets. We use nine real datasets that repre-
sent the census tracts of the USA, outlined as follows: (1) the
Los Angeles City (denoted as 1k) that includes 1012 areas,
(2) the Los Angeles County (denoted as 2k) that includes
2344 areas, (3) Southern California (denoted as 4k) as iden-
tified by the Southern California Association of Governments
(SCAG) [45] that includes 3947 areas, (4) the State of Cali-
fornia (denoted as 8k) that includes 8049 areas, and (5) Five
multi-state datasets with ~10k to ~50k areas, as detailed in

1922

Name | No. of areas States
10k 10255 CA, NV, AZ
10k + OR, WA, ID, UT, MT, WY,
20k 20570 CO, NM, OK, NE, SD, ND
30k 29887 20k +TX, LA, AR, MO, 1A
40k 40214 30k + MN, MS, AL, TN, KY, IL, WI
50k 49943 40k + GA, IN, MI, OH, WV

TABLE I: Description of the multi-state datasets

Constraint Type | Aggregate| Attribute Range
Extrema MIN POPI6UP | (—o0, 3000]
Centrality AVG |EMPLOYED | [1500,3500]
Counting SUM TOTALPOP | [20000, co)

TABLE II: Default attribute and ranges for different con-
straints.

Table 1. Our default dataset is 2k. Typical evaluation datasets in
the existing literature have between 300-3000 areas [15], [52],
so our default dataset size is comparable to the largest datasets
in the literature. All datasets are joined with real attributes
from 2010 US census data about facts in each census tract.
All datasets share the same three spatial extensive attributes as
shown in Table II, one per constraint type, and the dissimilarity
attribute is HOUSEHOLDS. POP16UP attribute represents the
population with age sixteen or above. EMPLOYED attribute
refers to the employed population. TOTALPOP is the total
population. HOUSEHOLDS is the number of households in
each area, and it is used to measure region heterogeneity.

The evaluation attributes are selected based on factors that
influence the population growth rate [21], which makes the
partitions obtained through the experiments useful for studying
population growth. The shapefiles of the census tracts and the
attribute tables are provided by the US Census Bureau [9] and
SCAG [37] and joined using the QGIS software [42].

All experiments are based on Java 14 implementations using
an Intel Xeon W-2123(3.60 GHz) and 20GB RAM allocated
under Windows 10. We use three performance measures: the
runtime for both construction and local search phases, the
answer set size p, and improvement in regions’ heterogeneity,
defined as the ratio of the absolute difference between the
heterogeneity score before and after the local search phase to
the heterogeneity score before the local search. Our parameters
include threshold range and dataset size. Unless mentioned
otherwise, the default dataset is 2k, area pickup criteria are
random, the AVG merge limit is three, the length of the tabu
list equals ten, and the maximum number of moves without
improvement for Tabu search equals the dataset size. The
default threshold ranges and attributes are shown in Table II
for each constraint type. For space limitation and similarity of
results on aggregates of the same type, we present results for
one aggregate function in each constraint type.

B. Impact of Constraints Types

This section studies the impact of different sets of con-
straints on regionalization performance. Sets of constraints
vary in terms of: (1) set size, i.e., number of constraints,
(2) types of constraints, and (3) threshold ranges. Sec-
tions VII-B1, VII-B2 and VII-B3 evaluate sets that include
MIN, AVG, and SUM constraints, respectively. MIN con-

Authorized licensed use limited to: Univ of Calif Riverside. Downloaded on September 26,2022 at 16:41:09 UTC from IEEE Xplore. Restrictions apply.

MA
MS
MAS 3

Time (s)
Time (s)

Range (x1000)

Fig. 5: Runtime for MIN with Fig. 6: Runtime for MIN with
=0

Range (x1000)

u = oo

Time (s)
Time (s)

N
\
N
v
N
v
N
N7

N R

3

Range (x1000)

Range (x1000)

(a) Varying range lengths
Fig. 7: Runtime for MIN with bounded [and u

(b) Varying range midpoints

straints are denoted as M, combinations of MIN and AVG
constraints are denoted as MA, combinations of MIN and SUM
constraints are denoted as MS, combinations of MIN, AVG,
and SUM constraints are denoted as MAS. Time of local search
is denoted as Tabu.

1) MIN Constraint: This section evaluates regionalization
queries with MIN constraints, ¢ = (MIN, s,l,u), in combi-
nation with other constraint types. MIN and MAX constraints
perform two roles: filtering invalid areas and selecting seed
areas, and both depend on the range threshold [I, u]. Hence,
we explore three cases: (a) ranges with [= —oo, which show
the impact of u values on seed area selection, (b) ranges with
u = oo, which show the impact of [values on invalid area
filtration, and (c) ranges with bounded values of / and w that
show their simultaneous impact.

Ranges with [= —oo. Figure 5 shows the runtime of
the construction phase and Tabu search. The runtime highly
depends on the types of constraints. Table III gives the number
of regions p for different constraints combinations. In all
cases, the single MIN constraint, M, produces the maximum
of regions p that is bounded by the number of seed areas.
The p value increases with the increase of the upper bound
u. As u increases, the number of seed areas increases and it
takes fewer iterations to partition the areas into regions, so the
runtime decreases in Figure 5. When the other constraints are
added, the regions in the final result contain more than one
seed area, so p decreases. With more seed areas, the initialized
region becomes smaller and the SUM constraint takes more
operations to satisfy. This causes the runtime of MS and MAS
to increase by a small amount although the time for MIN and
AVG actually decreases. Increasing w leads to increasing the
heterogeneity improvement from 6.96% at u = 2k to 40.2%
at u = 5k due to higher p.

Ranges with © = oco. Table III shows the p values and
Figure 6 gives the construction time and local search time

1923

for different constraint combinations. As we increase the
lower bound [, more invalid areas are filtered out, while
typically the remaining areas are scattered. As a result, the
p value decreases, and hence runtime decreases significantly
due to the lower number of regions. The heterogeneity score
improvement reduces as [increases with up to 17.6% due to
decreasing p that narrows the search space of the local search.

Ranges with bounded / and u. We explore bounded ranges
that vary the range length while fixing the range midpoint.
Table III gives the p values and Figure 7a shows the runtime.
When the range length increases, the p value increases because
fewer areas are filtered out and more regions are initialized.
As a result, both total and construction time increase due to
larger search space. However, there is no clear trend for the
Tabu search time.

For a range with a fixed length and shifted midpoint to
a higher value, both construction time and local search time
decrease, as shown in Figure 7b. For larger values, the area set
is chopped into small connected components but the number
of seed areas is relatively stable. As a result, Steps 2 and 3
of the construction phase terminate faster and reduce runtime.
The p value depends on the correlation between attributes of
MIN and AVG constraints. If they are not correlated, then the
p value strictly decreases for larger midpoint values. When
they are correlated, p might increase or decrease, depending
on the correlation. In all cases, the heterogeneity improvement
increases when p increases, by up to 11.3% in this case.

2) AVG Constraint: The average aggregate function is non-
monotonic. Satisfying the constraint can be computationally
heavy with certain ranges. To illustrate this, we explore two
cases: (a) ranges with fixed length and changing midpoints,
and (b) ranges with a fixed midpoint but varying lengths.

Ranges with fixed range length. In this experiment, the
length of the AVG range is fixed to be 2k and the midpoint
shifts from 1k to 4.5k, with the step size = 0.5k. We focus on
the performance of the AVG constraint to exclude the impact
of other constraints. Figure 8 shows the distribution of the
AVG attribute value of the areas in the default dataset, which
is a positively skewed distribution. The AVG attribute values
of most of the areas are below 4k, but there are several outliers
with values up to 6149. Figure 9a shows the p value and
the number of unassigned areas (UA) for each range while
Figure 9b gives the runtime. When the midpoint is set to be
1k to 2.5k, about half of the areas lie within the given range
and it is also relatively easy to combine areas whose value is
outside the range. As a result, the number of unassigned areas
is reduced to 0 when the midpoint increases to 2k and 2.5k
but the runtime is below 3.2s. The ranges are also flexible for
the Tabu search phase, with the heterogeneity score improved
by up to 30.1%. When the range is set to be 3k + 1k, more
than half of the areas lie below [but it is possible to combine
them with one of the outliers whose attribute value is well
above the upper bound. In addition, as an area is assigned, the
newly formed region may lead to the possibility of assigning
the neighbor areas. Hence the enclave assignment process
continues for multiple iterations until no further update can

Authorized licensed use limited to: Univ of Calif Riverside. Downloaded on September 26,2022 at 16:41:09 UTC from IEEE Xplore. Restrictions apply.

Ranges with | = -co Ranges with u = co Ranges with bounded w and [
(-00,2k] [(-00,3.5k] | (-00,5k] || [2k,00) | [3.5k,00) | [5k,00) || [2.5k,3.5k] | [2k,4K] | [1.5k,4.5k] | [1k,5k] || [1k,2k] | [2k,3Kk] | [3k,4k] | [4k,5K]
M 270 1447 2172 2074|898 173 834 1501 | 1895 2109 207 789 712 401
MS |184 354 365 342 142 12 281 334 356 362 159 307 215 78
MA [208 1037 1483 1593|812 97 776 1206|1398 1496 175 654 704 386
MAS [170 335 341 337 145 7 275 328 339 344 152 304 215 74

TABLE III: p values for different threshold ranges for MIN constraint combinations.

2500
2000
1500
1000

Tabu

-
A

Frequency
Time (s)

500

g 4, o2, 2,

v
0 2 7808 TR T s
200,200,700,790,%00,%00, % %

Range (x1000)

(a) p and UA

AVG Attribute value

Fig. 8: Distribution of
AVG attribute value

be made. As a result, it takes a much longer time, but the
percentage of unassigned areas is reduced significantly to 9%.
When the midpoint is further increased to above 3.5k, it is too
hard for the algorithm to form feasible regions as almost all
areas fall below the lower bound of the range. As a result, most
areas remain unassigned and the construction time becomes
much shorter as the algorithm quickly finds that no further
changes can be made. When the midpoint is above 3k, there
are limited feasible moves for the Tabu search because the
AVG constraint is too tight. As a result, the Tabu search time
is negligible and the heterogeneity improvements are below
0.4%.

Ranges with fixed midpoint. Based on the observation
from the previous experiment, we set the midpoint to be 3k,
which is the most challenging setting for the algorithm, and
alter the length of the range. Combinations with the other
constraints are also included to demonstrate how the AVG
constraint can bottleneck the performance in special cases.
The p values for different constraint combinations are given in
Figure 10a and the runtime is shown in Figure 11. The figures
show increasing p values with longer ranges, but the runtime
depends on the range length. Different range lengths affect the
runtime significantly, while different constraint combinations
with the same range have much less impact on the construction
time. This is because the runtime of the AVG step dominates
the total runtime of the construction phase. When the range is
3k + 0.5k, the range is so tight that the algorithm quickly finds
no possible enclaves assignment, so the AVG step terminates
early. However, 60% of the areas remain unassigned, as
shown in Figure 10b. Similar to the previous experiment, the
range 3k &+ 1k is the most challenging case and the runtime
dominates the other constraints. However, the reduction in the
number of unassigned areas is also significant for all constraint
combinations. When the range is further enlarged, most of the
areas lie within the range and it is much easier to assign the
enclaves without merging. Thus, the time is much shorter, and
all areas are assigned as well. The final heterogeneity score
also reduces when the range is enlarged due to the reduction
in region sizes. The heterogeneity improvement increases to
up to 21.8% because when the range is enlarged, it becomes

274 5322
R

3

B
S32 7 op 3 g
TG %

Range (x1000)

(b) Runtime

Fig. 9: Impact different AVG range midpoints

2500

2000
1500
“1000

A BR
MA I
AS &Y

A BB
MA 3
AS &Y

500

%, 9, s T

Range (x1000) Range (x1000

@p
Fig. 10: Impact different AVG range lengths

(b) Unassigned areas

Ranges with u = co Ranges with different lengths
[1K,00) [[10k,00) | [20k,00) | [30k,00) | [40K,00) || 15k, 25K] | [10K,30K] | [5K,35K]
MP |2298 |717 373 245 185 N/A N/A N/A
S 2298 [720 371 245 186 439 714 1358
MS [1056 |581 342 237 179 408 567 785
AS |1545 |642 345 233 177 445 640 1095
MAS|758 |518 323 226 172 370 497 631
TABLE IV: p values for different threshold ranges for SUM
constraint combinations.
Tabu ER
MP R

S &2
MS &Y
As N

MAs O3

Time (s)

Range (x1000)

Fig. 11: Runtime for AVG Fig. 12: Runtime for SUM

Range (x1000)

with different range lengths ~ with v = oo

easier to find a valid move for the local search.

3) SUM Constraint: SUM constraints are the only type of
constraints that are used in existing state-of-the-art solutions
for the max-p regions (MP-regions) problem. We compare
with them, denoted as MP, using a single SUM constraint
with an open upper bound, i.e.,[l,o0). Table IV shows the p
values and Figures 12 and 13 give the runtime for different
constraint combinations with SUM aggregate. At u = oo,
the p value decreases with increasing lower bound [while
runtime does not increase as much for both MP-regions and
FaCT. According to Table IV, our FaCT algorithm gives
comparable p value to MP-regions when the constraints are set
to be the same. The construction time is slightly higher due to
the overhead introduced by steps that validate the feasibility
of the query and handle the other constraints. However, due
to shorter tabu search time, the overall runtime of EMP is less
than half of the runtime for the MP-regions when u = 30k or
40k. In addition, the FaCT algorithm handles generic types
of constraints, which are not supported by the competitor. The
heterogeneity score increases when [increases, by up to 72.6%
for both MP-regions and the single constraint S, 13.8% for MS,
and less than 1% for AS and MAS due to the effect of AVG

1924

Authorized licensed use limited to: Univ of Calif Riverside. Downloaded on September 26,2022 at 16:41:09 UTC from IEEE Xplore. Restrictions apply.

Time (s)

20g,

Range (x1000)

Fig. 13: Runtime for SUM Fig. 14: Runtime
with a changing range length datasets 1k to 4k

Time (s)

%

%

30(_
Dataset

70 Dataset

Fig. 16: Runtime varying
datasets for AVG constraint
with range 3k + 1k

Fig. 15: Runtime varying
datasets for 10k-50k

constraint. Increasing the region’s size provides local search
with more potential moves, hence it better improves overall
heterogeneity. For bounded threshold ranges, in Table IV and
Figure 13, both p values and construction runtime decrease
when the lower bound [increases and the trend is similar to
u = o0o. The heterogeneity score increases by up to 30.4%
for S, 6.9% for MS, 3.76% for AS, and 2.49% for MAS,
with increasing range length due to the larger region size.
However, the unassigned areas could reach up to 25.1% when
u is bounded for MS, AS, and MAS. This is because areas
are removed so that each region does not exceed u. FaCT
algorithm reports output statistics to users so they are equipped
with information about the impact of different threshold ranges
on the given dataset, and are able to tune query parameters
insightfully.

C. FaCT Scalability

This section discusses the scalability of the FaCT algo-
rithm. We run the algorithm for different constraint com-
binations with the default threshold values on the nine
evaluation datasets. The dataset size of the 50k dataset is
17 times the largest dataset used in the existing literature of
regionalization [15], [52]. As the AVG constraint is identified
as a clear performance bottleneck when the range is set to
be 3k 4+ 1k , our discussion contains two parts. The first part
shows the results for the constraint combinations with the AVG
set to be default range (Figure 14 and Figure 15) to show the
scalability of F'aCT in normal cases, while in the second
part we focus on constraint combinations including AVG with
range 3k + 1k (Figure 16) to see how the computation of the
AVG constraint scales in extreme cases.

Figure 14 and 15 show that when the AVG constraint is not
the bottleneck, the runtime increases linearly with the input
size for M and quadratically for the other constraints. For

1925

all datasets, F'aC'T provides a very acceptable runtime for
regionalization applications.

Figure 16 shows that when the range of the AVG is set to
be 3k + 1k, AVG constraints increase the construction time to
a large extent. For other datasets, the runtime increases with
increasing input size at a much higher rate than the previous
experiment, which implies less scalability advantage for AVG
constraint. The construction runtime does not strictly increase
with increasing the input size. The construction time for the
4k dataset is shorter than that for the 2k dataset, except for AS
and MAS. This difference is caused by the merging procedure
in the AVG constraint. Generally, more areas are easier to
aggregate in regions that satisfy the AVG constraint. In all
cases, the construction time scales much better than the Tabu
time, and it still provides a solution with almost the same
quality.

D. Summary Of Results

All experiments show that the FaCT algorithm can effi-
ciently produce feasible solutions of high quality in a few
seconds for the vast majority of the cases. In addition, the
FaCT algorithm supports relatively large datasets that serve
all existing applications. When more areas are filtered or fewer
seed areas are identified by the extrema constraints, both p and
the runtime tend to decrease. The behavior of the centrality
constraint depends on the range specified and the distribution
of the attributes. However, it shows reasonable performance
in the vast majority of the cases. The counting constraints can
formulate the MP-regions problem as a sub-problem of EMP
and gives comparable scalability and result quality.

VIII. CONCLUSION

This paper introduces an enriched max-p (EMP) region-
alization problem that extends the existing regionalization
problems with SQL-inspired user-defined constraints. The
EMP problem clusters a set of spatial areas into homogeneous
regions that satisfy the user-defined constraints. The EMP
problem enables enriched types of constraints that support
SQL-inspired aggregate functions, MIN, MAX, AVG, SUM,
and COUNT, with range operators. We prove the NP-hardness
of the EMP problem. To tackle this problem, we propose
FaCT; a three-phase algorithm that finds an approximate
solution with a maximum number of regions and minimum
overall heterogeneity. The first phase checks the feasibility of
finding a solution given the input constraints. It also provides
users with insightful information to tune their input and enable
flexible exploration for various datasets. The second phase
constructs an initial solution, and the third phase further
optimizes it to provide a final solution. We have empirically
demonstrated the capability of F'aCT to provide efficient and
effective performance on various real datasets.

For future work, we explore multi-objective optimization
methods and further improve the algorithm performance
through parallelization.

Authorized licensed use limited to: Univ of Calif Riverside. Downloaded on September 26,2022 at 16:41:09 UTC from IEEE Xplore. Restrictions apply.

(1]
(2]
(3]

(6]

(71

(8]

(91

[10]

(11]

[12]

[13]

[14]

[15]
[16]

[17]

(18]

[19]

[20]

[21]

[22]

[23]
[24]

[25]
[26]

REFERENCES

NP-hardness of MP-regions.
Regionalization_NPHardness.pdf, 2021.
K. Andreev and H. Racke. Balanced graph partitioning. Theory of
Computing Systems, 39(6):929-939, 2006.

M. P. Armstrong, G. Rushton, R. Honey, B. T. Dalziel, P. Lolonis, S. De,
and P. J. Densham. Decision Support for Regionalization: A Spatial
Decision Support System for Regionalizing Service Delivery Systems.
CEUS, 15:37-53, 1991.

D. Arribas-Bel and C. R. Schmidt. Self-Organizing Maps and the US
Urban Spatial Structure. EPB, 40:362-371, 2013.

R. M. Assun¢do, M. C. Neves, G. Camara, and C. da Costa Freitas. Ef-
ficient regionalization techniques for socio-economic geographical units
using minimum spanning trees. International Journal of Geographical
Information Science, 20(7):797-811, 2006.

O. Aydin, M. V. Janikas, R. Assun¢do, and T.-H. Lee. Skater-con:
Unsupervised regionalization via stochastic tree partitioning within a
consensus framework using random spanning trees. In Proceedings of
the 2nd ACM SIGSPATIAL International Workshop on Al for Geographic
Knowledge Discovery, pages 33—42, 2018.

R. Benedetti, F. Piersimoni, G. Pignataro, and F. Vidoli. The Identi-
fication of Spatially Constrained Homogeneous Clusters of Covid-19
Transmission in Italy. RSPP, 12:1169-1187, 2020.

N. Bullen, G. Moon, and K. Jones. Defining localities for health
planning: a gis approach. Social Science & Medicine, 42(6):801-816,
1996.

U. C. Bureau. Explore census data. https://data.census.gov/cedsci/.

J. Byfuglien and A. Nordgard. Region-building—a comparison of
methods. Norwegian Journal of Geography, 1973.

M. Camacho-Collados, F. Liberatore, and J. M. Angulo. A multi-criteria
police districting problem for the efficient and effective design of patrol
sector. European journal of operational research, 246(2):674—684, 2015.
Z. Chen, P. Cheng, L. Chen, X. Lin, and C. Shahabi. Fair task assignment
in spatial crowdsourcing. Proceedings of the VLDB Endowment,
13(12):2479-2492, 2020.

K. S. Cheruvelil, P. A. Soranno, M. T. Bremigan, T. Wagner, and S. L.
Martin. Grouping Lakes for Water Quality Assessment and Monitoring:
The Roles of Regionalization and Spatial Scale. JEM, 41:425-440, 2008.
J. H. Danumah, S. N. Odai, B. M. Saley, J. Szarzynski, M. Thiel,
A. Kwaku, F. K. Kouame, and L. Y. Akpa. Flood risk assessment and
mapping in abidjan district using multi-criteria analysis (ahp) model and
geoinformation techniques,(cote d’ivoire). Geoenvironmental Disasters,
3(1):1-13, 2016.

J. C. Duque, L. Anselin, and S. J. Rey. The max-p-regions problem.
Journal of Regional Science, 52(3):397-419, 2012.

J. C. Duque, R. L. Church, and R. S. Middleton. The p-regions problem.
Geographical Analysis, 43(1):104-126, 2011.

J. C. Duque, J. E. Patino, L. A. Ruiz, and J. E. Pardo-Pascual. Measuring
Intra-urban Poverty Using Land Cover and Texture Metrics Derived from
Remote Sensing Data. LUP, 135:11-21, 2015.

A. El Kenawy, J. I. Lépez-Moreno, and S. M. Vicente-Serrano. Summer
Temperature Extremes in Northeastern Spain: Spatial Regionalization
and Links to Atmospheric Circulation (1960-2006). TAC, 113:387-405,
2013.

A. Ferligoj and V. Batagelj. Clustering with relational constraint.
Psychometrika, 47(4):413-426, 1982.

D. C. Folch and S. E. Spielman. Identifying regions based on flexible
user-defined constraints. International Journal of Geographical Infor-
mation Science, 28(1):164—184, 2014.

R. Fragoso, C. Rego, and V. Bushenkov. Clustering of territorial areas:
A multi-criteria districting problem. Journal of Quantitative Economics,
14(2):179-198, 2016.

R. S. Garfinkel and G. L. Nemhauser. Optimal political districting by
implicit enumeration techniques. Management Science, 16(8):B—495,
1970.

F. Glover and M. Laguna. Tabu search. In Handbook of combinatorial
optimization, pages 2093-2229. Springer, 1998.

A. Gordon. A survey of constrained classification.
Statistics & Data Analysis, 21(1):17-29, 1996.

L. Gurobi Optimization. Gurobi optimizer reference manual, 2018.

P. Hansen, B. Jaumard, C. Meyer, B. Simeone, and V. Doring. Maximum
split clustering under connectivity constraints. Journal of Classification,
20(2):143-180, 2003.

https://cs.ucr.edu/~amr/MP_

Computational

[27]
[28]

[29

[30]

[31]

[32

33
[34

[35]

[36

[37]
[38]

[39

[40]

[41]

[42
[43]

[44]

[45

[46

[47]

[48]

[49]

[50]

[51

[52

[53

[54

Y. Kang. Fact. https://github.com/YunfanKang/FaCT, 2021.

Y. Kang. Modeling the enriched Max-P region problem asa Mixed-
integer programming problem. https://github.com/YunfanKang/FaCT/
blob/main/EMP-MIP/EMP_MIP_Formulation.pdf, 2022.

Y. Kang. Solving the MIP formulation of EMP with Gurobi solver.
https://github.com/YunfanKang/FaCT/blob/main/EMP-MIP/, 2022.

H. Kim, Y. Chun, and K. Kim. Delimitation of Functional Regions
Using a P-Regions Problem Approach. IRSR, 38:235-263, 2015.

K. Kim, Y. Chun, and H. Kim. p-Functional Clusters Location Problem
for Detecting Spatial Clusters with Covering Approach. Geographical
Analysis, 49:101-121, 2017.

J. Laura, W. Li, S. J. Rey, and L. Anselin. Parallelization of a
Regionalization Heuristic in Distributed Computing Platforms—a Case
Study of Parallel-P-Compact-Regions Problem. IJGIS, 29:536-555,
2015.

L. P. Lefkovitch. Conditional clustering. Biometrics, pages 43-58, 1980.
W. Li, R. L. Church, and M. F. Goodchild. An Extendable Heuristic
Framework to Solve the P-Compact-Regions Problem for Urban Eco-
nomic Modeling. CEUS, 43:1-13, 2014.

W. Li, R. L. Church, and M. FE. Goodchild. The p-Compact-Regions
Problem. Geographical Analysis, 46:250-273, 2014.

F. Murtagh. A survey of algorithms for contiguity-constrained clustering
and related problems. The computer journal, 28(1):82-88, 1985.

S. C. A. of Governments. Scag open data portal. https://gisdata-scag.
opendata.arcgis.com/.

S. Openshaw. A regionalisation program for large data sets. Computer
Applications, 3(4):136-147, 1973.

S. Openshaw. A geographical solution to scale and aggregation problems
in region-building, partitioning and spatial modelling. Transactions of
the institute of british geographers, pages 459-472, 1977.

S. Openshaw. Classifying and regionalizing census data. Census users’
handbook, pages 239-270, 1995.

J. E. Patino, J. C. Duque, J. E. Pardo-Pascual, and L. A. Ruiz. Using
Remote Sensing to Assess the Relationship Between Crime and the
Urban Layout. Applied Geography, 55:48-60, 2014.

Welcome to the QGIS project! https://www.qgis.org/, 2020. May 2020.
S.J. Rey and M. L. Sastré-Gutiérrez. Interregional Inequality Dynamics
in Mexico. SEA, 5:277-298, 2010.

D. J. Rossiter and R. J. Johnston. Program group: the identification of all
possible solutions to a constituency-delimitation problem. Environment
and Planning A, 13(2):231-238, 1981.

Southern California Association of Governments - SCAG. https://scag.
ca.gov/, 2020. May 2020.

S. Schonbrodt-Stitt, A. Bosch, T. Behrens, H. Hartmann, X. Shi, and
T. Scholten. Approximation and Spatial Regionalization of Rainfall
Erosivity Based on Sparse Data in a Mountainous Catchment of the
Yangtze River in Central China. JESPR, 20:6917-6933, 2013.

B. She, J. C. Duque, and X. Ye. The network-max-p-regions model.
1JGIS, 31:962-981, 2017.

T. Song, Y. Tong, L. Wang, J. She, B. Yao, L. Chen, and K. Xu.
Trichromatic online matching in real-time spatial crowdsourcing. In
2017 IEEE 33rd International Conference on Data Engineering (ICDE),
pages 1009-1020. IEEE, 2017.

S. E. Spielman and D. C. Folch. Reducing Uncertainty in the American
Community Survey through Data-driven Regionalization. PloS ONE,
10:¢0115626, 2015.

D. A. Stow, C. D. Lippitt, and J. R. Weeks. Geographic Object-
based Delineation of Neighborhoods of Accra, Ghana using QuickBird
Satellite Imagery. PE&RS, 76:907-914, 2010.

T. Vilutiene and E. K. Zavadskas. The application of multi-criteria
analysis to decision support for the facility management of a residential
district. Journal of Civil Engineering and Management, 9(4):241-252,
2003.

R. Wei, S. Rey, and E. Knaap. Efficient Regionalization for Spatially
Explicit Neighborhood Delineation. IJGIS, 35:1-17, 2020.

S. Yanik, J. Kalcsics, S. Nickel, and B. Bozkaya. A multi-period
multi-criteria districting problem applied to primary care scheme with
gradual assignment. International Transactions in Operational Research,
26(5):1676-1697, 2019.

X. Ye, B. She, and S. Benya. Exploring Regionalization in the Network
Urban Space. JGSA, 2:4, 2018.

Authorized licensed use limited to: Univ of Calif Riverside. Downloaded on September 26,2022 at 16:41:09 UTC from IEEE Xplore. Restrictions apply.

