Full Paper Track

CIKM 21, November 1-5, 2021, Virtual Event, Australia

AdaGNN: Graph Neural Networks with
Adaptive Frequency Response Filter

Yushun Dong
University of Virginia
Charlottesville, USA
ydéeb@virginia.edu

Shuiwang Ji
Texas A&M University
College Station, USA
sji@tamu.edu

ABSTRACT

Graph Neural Networks have recently become a prevailing para-
digm for various high-impact graph analytical problems. Existing
efforts can be mainly categorized as spectral-based and spatial-
based methods. The major challenge for the former is to find an
appropriate graph filter to distill discriminative information from
input signals for learning. Recently, myriads of explorations are
made to achieve better graph filters, e.g., Graph Convolutional Net-
work (GCN), which leverages Chebyshev polynomial truncation to
seek an approximation of graph filters and bridge these two families
of methods. Nevertheless, it has been shown in recent studies that
GCN and its variants are essentially employing fixed low-pass filters
to perform information denoising. Thus their learning capability is
rather limited and may over-smooth node representations at deeper
layers. To tackle these problems, we develop a novel graph neural
network framework AdaGNN with a well-designed adaptive fre-
quency response filter. At its core, AdaGNN leverages a simple but
elegant trainable filter that spans across multiple layers to capture
the varying importance of different frequency components for node
representation learning. The inherent differences among different
feature channels are also well captured by the filter. As such, it em-
powers AdaGNN with stronger expressiveness and naturally allevi-
ates the over-smoothing problem. We empirically validate the effec-
tiveness of the proposed framework on various benchmark datasets.
Theoretical analysis is also provided to show the superiority of the
proposed AdaGNN. The open-source implementation of AdaGNN
can be found here: https://github.com/yushundong/AdaGNN.

CCS CONCEPTS

« Computing methodologies — Machine learning; - Theory
of computation — Theory and algorithms for application
domains.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

CIKM °21, November 1-5, 2021, Virtual Event, QLD, Australia

© 2021 Association for Computing Machinery.

ACM ISBN 978-1-4503-8446-9/21/11...$15.00
https://doi.org/10.1145/3459637.3482226

Kaize Ding
Arizona State University
Tempe, USA
kding9@asu.edu

392

Brian Jalaian
Army Research Laboratory
Adelphi, USA
brian.a.jalaian.civ@mail.mil

Jundong Li
University of Virginia
Charlottesville, USA
jundong@virginia.edu

KEYWORDS

Graph neural networks, frequency response, adaptive filter

ACM Reference Format:

Yushun Dong, Kaize Ding, Brian Jalaian, Shuiwang Ji, and Jundong Li. 2021.
AdaGNN: Graph Neural Networks with Adaptive Frequency Response Filter.
In Proceedings of the 30th ACM International Conference on Information and
Knowledge Management (CIKM °21), November 1-5, 2021, Virtual Event, QLD,
Australia. ACM, New York, NY, USA, 10 pages. https://doi.org/10.1145/
3459637.3482226

1 INTRODUCTION

Graph Neural Networks (GNNs) have demonstrated remarkable
performance in a wide spectrum of graph learning tasks, e.g., node
classification [19, 24, 45], link prediction [25, 36, 55], and recommen-
dation [15, 15, 42]. The main intuition of GNNss is that they stack
multiple layers of neural network primitives to learn high-level
node feature representations, aiming at addressing various learning
tasks in an end-to-end manner [13]. GNNs are deeply influenced by
the architecture design of convolutional neural networks (CNNs)
for grid-like data such as images and texts [21, 22, 26, 49] and are
extended to handle non-Euclidean graph data. In essence, existing
GNNss are mainly divided into two main streams: spectral-based
and spatial-based methods [44]. With deep roots in Graph Signal
Processing (GSP) [39] and Spectral Graph Theory [10], spectral-
based methods [4, 11, 24, 27] define convolution operations in the
spectral domain based on graph Fourier transform and thus bear
a solid mathematical foundation. For spatial-based methods, the
convolution operations are defined in the spatial domain and act as
a message-passing process [1, 17, 34]. Specifically, for each node,
the convolution operations aggregate and transform information
from its neighborhoods when learning its feature representation.
The seminal work of Graph Convolutional Network (GCN) [24]
bridges the gap between these two families of algorithms. As a local-
ized first-order approximation of spectral graph convolution [11],
GCN can also be interpreted as a spatial-based method with a clear
meaning of node localization, thus inspiring a lot of follow-up im-
provements [1, 14, 17, 19, 27, 30, 41, 43, 45, 54], especially in the
spatial domain. However, the fundamental studies and improve-
ments of GCN from the spectral perspective is rather limited. Until
fairly recently, studies have shown that the frequency response of
the convolution operation corresponds to a fixed low-pass filter at
each layer [35], implying that more information is captured within


https://doi.org/10.1145/3459637.3482226
https://doi.org/10.1145/3459637.3482226
https://doi.org/10.1145/3459637.3482226

Full Paper Track

low frequencies and the effects of high-frequency components are
much more weakened [43]. Despite that, real-world graphs are
much more complex than we can imagine, and mixture of different
frequencies may either benefit or degrade the final performance.
Recent studies have shown that the lowest frequency does not
necessarily contain the most important information; while high-
frequency components may also encode useful information that
is beneficial for the performance under certain tasks [3, 9]. In this
regard, simply using a fixed low-pass filter cannot well capture
the varying importance of different frequency components, thus
limiting the expressiveness of learned representations and yielding
suboptimal learning performance. Additionally, we show in this
paper that in the limit, any filter satisfying certain conditions leads
to another fundamental limitation of GCN and its variants — the
over-smoothing problem [5, 7, 29, 32]. It refers to the phenome-
non that node feature representations converge to similar values at
deeper layers, thus nodes cannot be easily distinguished.

To tackle the aforementioned problems, we overcome the limita-
tions of GCN and its variants from the spectral perspective. Specif-
ically, we propose a novel framework AdaGNN with an adaptive
frequency response filter, which adaptively adjusts the importance
of different frequency components for spectral convolution when
multiple layers are stacked. It should be noted that a straightfor-
ward solution to control the varying effects of different frequency
components is allocating a learnable parameter for each frequency
component. However, this strategy requires expensive eigendecom-
position [4] and its large complexity makes the model prone to
overfitting especially when training data is limited. Instead, we
propose a simple but elegant solution to assign a single parameter
for each feature channel at each layer, based upon which we stack
multiple layers to learn a flexible and powerful filter. In a nutshell,
the main contributions of this paper can be summarized as follows:

e We systematically examine the fundamental limitations of
fixed low-pass filters of GCN and its variants from the per-
spective of spectral domain.

e We develop a novel graph neural network framework named
AdaGNN that can capture the varying importance of differ-
ent frequency components for node representation learning.
The core of this framework is a simple but elegant trainable
filter that spans across multiple layers with a single param-
eter for each feature channel at each layer. The developed
GNN framework does not involve expensive eigendecom-
position and its parameter complexity is comparable to the
lightweight GCN model such as SGC [43].

e We provide theoretical analysis for the proposed framework.
Firstly, we show that the filter of prevalent GCN models
(e.g., GCN and mean aggregator of GraphSage [19]) can
be considered as a special case of our proposed adaptive
filter at each layer. Secondly, we provide both spectral and
spatial interpretation of the proposed framework. Thirdly,
we also prove that any filter satisfying certain conditions will
inevitably encounter over-smoothness in deeper structure,
while the proposed filter can naturally alleviate this issue.

e We conduct comprehensive experiments on benchmark graph
datasets with different properties. The empirical evaluations
demonstrate that the proposed AdaGNN not only learns

393

CIKM 21, November 1-5, 2021, Virtual Event, Australia

more powerful node representations for the node classifi-
cation task but also greatly alleviates the over-smoothing
problems when the architecture goes deeper.

2 THE PROPOSED FRAMEWORK - ADAGNN

Here we firstly introduce the notations and other commonly used
preliminaries in this paper. Then we introduce details about how we
develop the graph filter with adaptive frequency response filtering.
Finally, we present the overall architecture of AdaGNN.

2.1 Notations and Preliminaries

Notations. We define an undirected graph as G = (V, &), where
YV = {v1,...,on} and & denote the set of nodes and edges, respec-
tively. Let A € RN*N be the adjacency matrix of the graph such
that A; ; = 1ifvj € N(v;), otherwise A; j = 0. Here N'(.) denotes
the one-hop neighbor set of a node. The Laplacian matrix of the
graph is defined as L = D — A, where D = diag(dy, ..., dn) is the
diagonal degree matrix (d; = . ; A j). Then the symmetric normal-
ized Laplacian matrix and the random-walk normalized Laplacian
matrix are defined as Lsym = D :LD"? and Ly =D7IL, respec-
tively. Besides, feature matrix X € RN*F is utilized to describe
properties of nodes, where x; (column of X) represents j-th feature
channel of X and F denotes the number of feature channels.
Graph Filters. The main idea of spectral-based GNN methods
is to define graph filters based on Graph Signal Processing [39].
Specifically, symmetric normalized Laplacian can be factored as
Lyym = D2LD"Z = UAUT. Here U € RN*N = [uy,..,up],
where u; € RN denotes the i-th eigenvector of Lsym and A =
diag(A1,, .., AN) is the corresponding eigenvalue matrix. Let x €
RN be an one-channeled input signal of all nodes, then the Graph
Fourier transform and inverse Fourier transform can be defined as
%= .7(x) = UTxand x = # 1 (%) = Ug, respectively. Here % is the
Fourier transformed graph signal. Graph convolution of the input
signal x with filter g = diag(6) parameterized by 6 € RV is defined
as x g g = Ug(A)UTx. A vast majority of existing works such
as GCN and SGC [24, 43] use a fixed low-pass filter for the graph
convolution operation while recent studies [35, 43] have shown
that if the input signal is repeatedly convolved with the fixed low-
pass filter, its high-frequency components will be greatly weakened
and the learning performance is dominated by the low-frequency
components, resulting in the well-known over-smoothing problem.

2.2 Adaptive Frequency Response Filtering

In image signal processing, the Laplacian kernel is widely used to
capture high-frequency edge information for various tasks such
as image sharpening and blurring [18, 20]. As its counterpart in
GSP, we can multiply the graph Laplacian matrix L with the input
graph signal x € RN (i.e., h = Lx) to characterize its high-frequency
components — the frequencies that carry sharply varying signal
information across edges of graph. Meanwhile, as shown in re-
cent studies [43, 46], the essence of GCN and its variants are the
low-pass filter which smoothes the feature representations of the
current node and its neighbors to make them similar. As such, we
can highlight the low-frequency components of input signal x by
setting z = x — Lx, i.e., subtracting the term Lx which emphasizes



Full Paper Track

Conv

E—

je{1.2,..,F}

o~ K ~
fi (A, 05) = Hk 1(1 =@ hi)

« R
] a-ewd
k=1 !

p r

[ a-eud
k=1 ;

« L

1_[ (1 =034 1
k=1 j

k N
L[] a-ewd:
k=1 i

CIKM 21, November 1-5, 2021, Virtual Event, Australia

Spectral Spatial

Figure 1: An illustration of the proposed AdaGNN from the spectral perspective. The convolution operation across K layers is
equivalent to applying the filter Hlk(:l (1-¢;x4i) to the j-th channel of input signal x;. Here we omit the weight matrix © and
ReLU function at the first layer for the ease of understanding.

more on high-frequency components from the input signal x. In
fact, this formulation is well aligned with the convolution operation
in GCN [24] if we replace L with the symmetric normalized Lapla-
cian matrix I:sym which is derived from the self-loop augmented
adjacency matrix A:

z:x—isymx: (I—ﬁ_%(f)—[&)f)_%)x:]3_%[\]3_%)(, (1)

where A = A +1 is used to avoid numerical instability issues [24]
and D is the degree matrix from A. Other than that, we can also
use the random-walk normalized Laplacian matrix Ly from A.
Here, we use L to denote the general formulation and it can be
instantiated as ]:sym and Ly+,.

It should be noted that the above operation corresponds to a
fixed low-pass filter in the spectral domain, where higher weights
are specified for low-frequency components. However, in prac-
tice, low-frequency components may not always be useful, and
high-frequency can also provide complementary insights for learn-
ing [3, 9], especially when the label information is not smooth
across edges. Additionally, at deeper layers [43], the high-frequency
components of the input graph signal are unavoidably too much
weakened compared with the lower ones with fixed filters, leading
to the well-known over-smoothing problem [29]. In this regard,
the fixed low-pass filters largely limit the fitting capability of GCN
and its variants for learning discriminative node representations.
As a consequence, it is vital to capture the varying importance of
frequencies in the filter to preserve more useful information and
alleviate over-smoothing in deeper layers.

As an alternative of the traditional fixed filter, we propose a novel
adaptive frequency response filter to tackle the aforementioned
problems. The developed filter should be learnable and able to adap-
tively adjust the varying importance of different frequencies for
convolution when multiple layers are stacked together. Toward this
goal, one straightforward solution is to assign a learnable parame-
ter for each frequency component at each layer to increase fitting
capability. Nonetheless, this solution requires explicit eigendecom-
position which is too expensive. Our solution to address these issues
is simple but elegant — we assign a single parameter per feature
dimension for the low-pass filter at each layer and a more powerful
filter can then be built when multiple layers are stacked together.

394

Specifically, the filter at each layer is formulated as z; = x; — PpLx ¢
(1 £ j £ F) for the j-th feature channel, where ¢ is a learnable
parameter. We can also generalize it to a multi-channeled input
signal X € RN*F that has F different feature channels:

E=X-LX®, (2

where ® = diag(é1, ..., F), and ¢; denotes the learnable parameter
for the j-th feature channel. E denotes the node representation
matrix after the filtering operation. Intuitively, this channel-specific
learnable parameter helps to achieve how much high-frequency
component should be weakened. Theoretical analysis on how such a
simple operation enables to learn a more flexible filter and naturally
helps alleviate over-smoothing is presented in Section 3.

2.3 Overall Architecture of AdaGNN

In this subsection, we mainly introduce the overall architecture of
our proposed AdaGNN, which is mainly composed of two different
components: node representation learning and label prediction.
Node Representation Learning. Based on the above discus-
sion, we can stack K layers of convolution operations as Eq. (2) for
a more powerful filter. Traditionally, each layer takes the output of
the previous layer as input and is transformed with a weight matrix
followed by a nonlinear activation function. Inspired by [43], we can
remove the noncritical nonlinear activation functions and weight
matrices at intermediate layers and only keep those at the first layer.
The reason is two-fold: (1) nonlinear feature transformation that
may benefit learning is still preserved; (2) the number of model
parameters greatly decreases by reducing the input feature chan-
nels for the second and later layers. Specifically, suppose HO =X,
then we have H() = ReLU(E®) = ReLU((H(” — LH(V ®,)0)
as the output of the first layer, where ®; (diagonal matrix) and
0 € RF¥L are the learnable parameters for the filter and the weight
matrix at the first layer, respectively. As mentioned before, we of-
ten set L < F. For the intermediate layer 2 < k < K, we have
H®) = gk-1) _ k-1 @, where @y is the learnable parameters
for the k-th layer. The output representation after K layers are
HEK) ¢ RNXL A learning illustration from the spectral perspective
is shown in Fig. 1. According to the theoretical analysis in Section 3,



Full Paper Track

each feature channel has its own filter, whose frequency response
function can be adaptively learned to capture the useful information
in different frequency components. Due to the filters for different
feature channels are decoupled from each other, appropriate lev-
els of smoothness can be individually achieved for each feature
channel, which provides strengthened fitting ability.

Label Prediction. At the final layer (i.e., the K-th layer) of
AdaGNN, the output HX) is further fed into a softmax classifier
to obtain the probability of nodes in C different classes. In particu-
lar, we have Y = softmaX(H(K)W), where W € REXC jg weight
matrix to transform node representations to the label space. A
straightforward choice for the loss function of classification task is
cross-entropy loss. Besides, regularizations are also considered for
the proposed AdaGNN to avoid over-fitting. Then the loss function
of the proposed AdaGNN framework is formulated as follows:

Z ZYljlnYl] +az 1P ll1

ieY j=1

+ ﬁ(Z @gll3 + IOIZ + [WIZ),  (3)

k=1

where Y is the set of labeled nodes indices, and Y € RIYLIxC
denotes the ground truth labels. & and f here are hyper-parameters.
The first term is the cross-entropy loss between predictions and
ground truth on labeled nodes. The second term is the ¢;-norm
regularization of ®; for sparsity. The third term is the f,-norm
regularization for all trainable parameters to prevent overfitting.
The effect of the two regularization terms in Eq. (3) are controlled
by tuning « and S, respectively.

3 THEORETICAL ANALYSIS

In this section, we firstly introduce the connections of AdaGNN to
GCN and GraphSAGE to gain a deeper understanding of the essence
of our proposed framework. Then we carry out spectral analysis for
AdaGNN to demonstrate its frequency response function. Besides,
spatial analysis of AdaGNN is presented to illustrate our proposed
graph filter from the spatial perspective. Finally, theoretical analysis
on over-smoothing demonstrate how our proposed framework
naturally helps to alleviate over-smoothing.

3.1 Connections to GCN and GraphSAGE
Observation 1. The aggregation operation of GCN reduces to the
operation of AdaGNN defined in Eq. (2) when L = Lsym and ® =1;
GraphSAGE aggregation operation with mean aggregator and sam-
pling rate being 1 is also a special case whenL =L, and ® = L.

Proor. The information aggregation of AdaGNN with I:Sym and
Ly at layer k can be respectively formulated as follows:

k k . k
EI(J,j) = HZ(J,j) - ¢j,k Z (Lsym)v,qu(l’}, and (4)
ueN(v)
k k ~ k
Eg,j) = Hz() j) = Pjk Z (Lrw)v,qu(l’ J) , (5)
ueN(v)

395

CIKM 21, November 1-5, 2021, Virtual Event, Australia

Considering that

I S
) VNN e eNe:
(Lsym)v,u = IN(v)\ll’ if u=o, and
0, otherwise,
_ IN(zl?|+1’ if ue N(v),
(Lrw)v,u = |/|\/A((v;)|)-i‘—l’ if u=o,
0, otherwise,
we have the following two formulations:
(k) _ (1 _ H®
Ev,j _(1 ( |N( )l )¢jk) 0,j
(k)
H ™
+jk - ,and  (6)
! ;‘() VING)+ 1YIN@+1
gk
(k) u,j
E" =(1-(1- _—.
0, j ( ( |N( )|+1)¢]k) +¢]k Z |N(U)|+1

ueN(v)
7)

Then if we replace all ¢;; by 1, and Eq. (6) and Eq. (7) can be
respectively reformulated as

g®

(k) _ 1 (k) Hyj
E/=—H "'+
o IN@IE1T ;U VIN@T+1YIN@I+1
(8)
(k)
b oL gk > My 9)
o] T IN(o)+1 IN(@)| +1°

ueN(v)

Therefore, the convolution operation of AdaGNN with I:sym and
® = I equals to that of GCN. Also, the convolution operation of
AdaGNN with Ly, and ® = I equals to that of GraphSAGE with
mean aggregator and sampling rate being 1. O

Observation 1 reveals the inherent connections between AdaGNN
and prevalent GNNs such as GCN [24] and GraphSAGE [19]. As the
aggregation operations of GCN and GraphSAGE are fundamental
building blocks of modern GNN architectures [16, 47], it shows the
broad generalization of our proposed framework.

3.2 Spectral Analysis of AdaGNN

Here we provide a formal spectral analysis of the frequency re-
sponse of AdaGNN framework with K layers. Spectral analysis is
based on L ym and here we omit the weight matrix and activation
function in the first layer for ease of analysis [43].

Theorem 1. For a K-layer AdaGNN framework, its frequency
response function of the j-th input feature channel is formulated
as fc (Ai §5) = TIR_, 9k (his $j0) = TR, (1 = ki), where ¢
denotes the learnable parameter of j-th feature channel at layer k.

PrROOF. As mentioned in Section 3.2, we replace L with isym and
omit the weight matrix and activation function for the frequency
response function proof. Consider the j-th feature channel x; € RN



Full Paper Track

CIKM 21, November 1-5, 2021, Virtual Event, Australia

GCN AdaGNN with ¢’B = ¢Y * {0, 0}
Layer1 & Layer 2 Layer1 W Layer 2

AdaGNN with @y = {0, o}

AdaGNN with @5 = {0, o}

Layer 1

—

Layer 2

—

C O
Liﬂl O L%I2
o O

Figure 2: An illustrative example to show how the learnable parameters of AdaGNN controlling the smoothness of different

feature channels benefits the model fitting ability.

of the input signal at the k-th layer, then we have
Xj— ¢j,kl~‘symxj =Xj— ¢j,kl~J1~\I~Jij
= (00T - ¢, , UAUT )x;
=U(1- ¢, A0 x;.
As a consequence, the frequer}cy response of AdaGNN can be
derived as gi(Ai) = 1 — ¢;rdi. If we stack K layers together,

then the overall frequency response function can be derived as
ficQi$7) = TIR_, 9k (A $4) = TR, (1 = ki) a]

Compared with the K-layered GCN whose frequency response
function is fK()Ii) =(1- ii)K for any feature channel!, the ad-
vantages of AdaGNN are three-fold: (1) the parameter ¢; ; adjusts
the relative importance of high-frequency and low-frequency com-
ponents at each layer k; (2) when multiple layers are stacked, the
importance of different frequency components can be better cap-
tured as a set of trainable parameters {¢; 1, ..., ¢ k }, yielding a more
complex frequency response function; (3) the frequency response
function of each feature channel is decoupled from each other,
providing them with more flexibility to achieve different levels of
smoothness and to learn more discriminative node representations.

3.3 Spatial Analysis of AdaGNN

Corollary 1. AdaGNN adaptively adjusts the smoothness of each
feature channel via learnable parameter ® in the information aggre-
gation process in the spatial domain.

Based on Obervation 1, we learn that the weights in ® can be
regarded as a smoothness controller in the information aggrega-
tion process at each layer. When the corresponding weights in ¢
is large for a certain feature channel, then more information will
be aggregated to the central node in this channel; however, when
when the corresponding weights in ¢ is small for a certain feature
channel, less information will flow into a node from its neigh-
bors. In this regard, the proof of Corollary 1 is straightforward, i.e.,

Here we also omit the weight matrix and nonlinear transformation function at each
layer for fair comparison.

396

AdaGNN adaptively adjusts the smoothness of eachfeature channel
via controlling how much information can flow into a node from
its neighbors. To better illustrate how this process helps achieve
better information propagation and learn more discriminative node
representations in the spatial domain, we provide a toy example
with different exemplary operators, which is introduced as follows.

An illustrative Example. In Fig. 2, we provide an illustrative
example to show how different feature channels learn different lev-
els of smoothness, which is essential to alleviate the over-smoothing
problem. Here we have five nodes and two feature channels (blue
and yellow). At the very beginning, the upper left node is associ-
ated with the blue channel and the middle node is with the yellow
channel. For GCN, features propagate with the same mechanism
and the node representations become the same after two layers.
For AdaGNN, suppose the learnable parameters for these two chan-
nels across two layers are ®g = {¢p 1, ¢p2} and Py = {¢y 1, Py 2}
When the parameters for these two channels are the same, AdaGNN
still suffers from the over-smoothing problem (upper right subfig-
ure). By adaptively learning the optimal parameters, we can easily
control the smoothness of each feature channel, which naturally
alleviates the over-smoothing problem (the lower two subfigures).

3.4 Over-smoothing Analysis

Here we show why over-smoothing is inevitable in GCN and its
variants with fixed low-pass filters, and why our proposed AdaGNN
can naturally alleviate the over-smoothing problem.

Theorem 2. For any fixed low-pass filters defined over isym,
we assume Ay is the smallest eigenvalue. Given a graph signal x,
suppose we convolve x with the filter across K layers (assume the
filter is gi. () at layer k). If the total frequency response satisfies that
Kli_r)noo HIk(:l gk(ii) =0 (Vii # il), then over-smoothing issue is
inevitable (i.e., feature values of different nodes become the same),
and vice versa.

Proor. Consider a graph signal x € RN as input. Here we as-
sume that the value of at least one dimension in x is different from
other dimensions, i.e., x is not an over-smoothed signal and N > 2.



Full Paper Track

Fact 1. For any I:sym = UAUT € RN*N of an undirected graph,
columns in U are orthogonal to each other, and eigenvector iy cor-
responding to the smallest eigenvalue 1y is collinear with the vector
[1,1,1,...,1] of length N.

As such, we can regard isymx = UAUTx as a process of project-
ing x onto N eigenvectors, then re-weighting the length of each
component vector and summing them together. Assume weight of
each frequency component (i.e., each Xi» 1 < i < N) of the filter
defined over I:Sym at filtering time k (1 < k < K) being g (ii), then
Xk, i.e., x being filtered K times, will be

ﬂmw

++ﬂmm>

W[bmo (10)

||2

Fact 2. If all entries of an N-dimensional nonzero vector are the
same, then this vector is collinear with the vector [1,1,1,...,1] of
length N (N > 2).

Based on Fact 2, we learn that xg is collinear with u; when
K — oo (i.e., over-smoothing issue being inevitble when K gets
larger) iff lim TTK | gc(4i) =0 (VA; # Ay). o

K—o0

As the filter of conventional GCN and its variants are mainly
defined over isym and satisfy the above condition at extremely deep
layers, thus they often suffer from the over-smoothing problem.
Meanwhile, we have the following corollary for AdaGNN.

Corollary 2. Our AdaGNN model can naturally alleviate the over-
smoothing problem at deeper layers.

The proof of Corollary 2 is very straightforward. In Theorem
1, we have shown that for any feature channel j, its frequency
response function over K layers is HIk(:l (1- ¢j,kj-i)’ where 0 <
Li < 2 [43]. The trainable parameter ¢; ;. can help adjust the value
of frequency response to ensure it does not satisfy the condition
in Theorem 2 (i.e., preventing the total frequency response from
approaching 0), naturally alleviating the over-smoothing problem.

4 EXPERIMENTAL EVALUATIONS

In this section, we perform experiments on several real-world
datasets to validate the effectiveness of AdaGNN. In particular, we
aim to answer the following research questions — RQ1: How does
AdaGNN perform compared with other state-of-the-art spectral
GNNs and corresponding variants? RQ2: How well can AdaGNN
alleviate the over-smoothing problems at deeper layers? RQ3: In
which way will different frequency components contribute to learn-
ing? RQ4: How much the adaptive frequency response filter of the
proposed AdaGNN contributes to the over-smoothing alleviation?

4.1 Experimental Settings

Datasets. To comprehensively explore the performance of AdaGNN,
we use six real-world attributed networks, including two social net-

works BlogCatalog and Flickr [28], one co-author network ACM [40],

and three citation networks Cora, Citeseer, and Pubmed [24]. It
should be noted that the average node degree of two social networks
BlogCatalog and Flickr are much higher than others.

397

CIKM 21, November 1-5, 2021, Virtual Event, Australia

Baselines and evaluation protocols. We design two different
versions of AdaGNN by instantiating L as Ly and Lsym, and we
name these two implementations as AdaGNN-R and AdaGNN-S.
These two methods are compared with the following state-of-the-
art GNNs: (1) GCN [24]; (2) GraphSAGE [19]; (3) SGC [43]. Also, we
compare our framework with the recently developed methods that
tackle over-smoothing: (4) DropEdge [38] — which relieves over-
smoothing issue by edge masking; (5) PairNorm [51] — which tackles
over-smoothing with a normalization layer and its two different
corresponding implementations are PairNorm-SI and PairNorm-
SCS. We use the mean aggregator and assign the sampling rate of
1 for GraphSAGE. Meanwhile, GCN layers are used as the back-
bone of DropEdge, PairNorm-SI, and PairNorm-SCS. All methods
are compared on the semi-supervised node classification task. For
BlogCatalog, Flickr and ACM datasets, we randomly sample 10%
nodes for training, 20% for validation, and the rest 70% for test. For
Cora, Citeseer, and Pubmed, we use the same split as [24, 46]. Aver-
age classification accuracy on test dataset is presented in Table 2
and 3, where all the results are averaged over 10 different runs.

Implementation details. The proposed framework AdaGNN
is implemented in Pytorch [37] with Adam optimizer [23], and the
embedding dimensions are set to be 128 across all layers except the
first layer and the last layer. ReLU and Softmax activation functions
are used for the first and the last layer, and the rest layers do not
use any activation functions. For the baseline methods, we use
their released implementations, and the hidden unit number is also
specified as 128 for a fair comparison. For BlogCatalog, Flickr, Cora,
Citeseer and Pubmed, we vary the number of layers in {2, 4, 8,
16} for all methods; for ACM, we vary it in {2, 8, 32, 128} for all
methods to have a better observation of the over-smoothing issue.
Early stopping is used for model training. To train models with 2
layers, the maximum number of epochs is 300, learning rate is 0.01,
dropout rate is 0.5, & of £;-norm (only for AdaGNN) is le-6, f§ of £5-
norm (for all methods) is 9e-4. For models with deeper layers, these
hyper-parameters (e.g., learning rate, dropout rate) are selected
according to the best performance on the validation set.

4.2 Experimental Results

In this subsection, we show the detailed experimental results w.r.t.
the research questions proposed above.

Model Expressiveness (RQ1) To validate the expressiveness
of the proposed AdaGNN, we compare AdaGNN-R and AdaGNN-S
with different baselines on semi-supervised node classification. We
vary the model layer K from 2 to 128 for ACM and 2 to 16 for other
datasets, and present the performance of all models w.r.t. layer num-
ber in Table 2 and Table 3, respectively. Here we adopt different
layer settings for different datasets in order to get better observa-
tion of over-smoothing for different GNNs, and make comparison
with other state-of-the-art baselines tackling over-smoothing issue.
Based on the experimental performance, we make the following
observations: (1) The proposed AdaGNN-R and AdaGNN-S outper-
form baseline methods in most cases, which demonstrates that the
designed adaptive frequency response filter can indeed increase
the fitting capability of the model by learning more discriminative
embeddings. (2) The performance improvements of AdaGNN-R and
AdaGNN-S are more obvious on BlogCatalog and Flickr compared



Full Paper Track

CIKM 21, November 1-5, 2021, Virtual Event, Australia

Table 1: Detailed statistics of the datasets in our experiments.

BlogCatalog | Flickr | ACM | Cora | Citeseer | Pubmed
# Nodes 5,196 7,575 | 16,484 | 2,708 3,327 19,717
# Edges 173,468 242,146 | 71,980 | 5,429 4,732 44,338
# Features 8,189 12,047 | 8,337 | 1,433 3,703 500
# Average Degree 66.8 63.9 8.7 4.0 2.8 4.5
# Classes 6 9 9 7 6 3

Table 2: Average accuracy with standard deviation on ACM (the performance of AdaGNN-R and AdaGNN-S is marked in bold).
Result of GraphSAGE with 128 layers is omitted due to gradient instability in our hyper-parameter search space.

Dataset Model 2 Layer 8 Layer 32 Layer 128 Layer

GCN 7555+ 0.2% 7354+ 03% 53.74+19% 3597 £0.7%

GraphSAGE 75.29 £ 0.2%  73.12+0.6%  52.21 £ 1.5% -
SGC 73.83 +04% 7514+ 0.1% 73.80 £ 0.3% 64.01 = 0.4%
ACM DropEdge-GCN 73.05+0.6% 7244 +0.8% 7143 +£2.2% 67.37 £1.9%
Pairnorm-GCN-SI 7487 £ 0.3%  74.05+0.1% 73.63 £0.2%  68.35 £ 2.0%
Pairnorm-GCN-SCS | 75.44 +0.1%  73.01 £+0.3% 7333+ 0.1%  70.84 + 1.4%
AdaGNN-R 75.14 £ 0.3% 75.27 £0.1% 75.15+0.0% 74.55+ 0.1%
AdaGNN-S$ 75.65 £ 0.2% 75.83 +£0.4% 75.64+0.0% 74.95+0.1%

with other datasets. The reason could be attributed to their high
average node degree of social network (as indicated in Table 1)
- nodes are influenced by more neighbors during neighborhood
aggregation, which is consistent with the observations in previous
literature [6]. For such dataset with high average node degree, the
adaptive frequency response provided by AdaGNN can help achieve
more appropriate feature smoothness. This provide us larger per-
formance improvement compared with other GNNs.

Over-smoothing (RQ2) Now we answer RQ2 by investigating
how models perform when the layer number increases. We have the
following observations based on Table 2 and Table 3: (1) The best
performance is achieved at shallow layers for all baselines; however
the performance of conventional GNNs (e.g., GCN, GraphSAGE,
and SGC) drops sharply when layer goes deeper, revealing that they
suffer from the over-smoothing issue at deeper layers. (2) DropEdge
and PairNorms (including PairNorm-SI and -SCS) are recently pro-
posed state-of-the-art methods to relieve over-smoothness, whose
performance does not drop as fast as conventional GNNs. In partic-
ular, the performance of DropEdge is comparable to its backbone
GCN while PairNorms is inferior to its backbone in many scenarios,
which is consistent with the observations in the original papers [51].
(3) The performances of the proposed AdaGNN-R and AdaGNN-S
are further improved with more powerful representations at deeper
layers in our proposed framework, demonstrating the effectiveness
of the proposed filter in tackling over-smoothing and extracting
more information from deeper layers.

Filter Analysis (RQ3) To answer RQ3, in Fig. 3a, we provide
a detailed visualized comparison between the fixed filter of SGC
and the learned filters of AdaGNN-S for different feature chan-
nels. It should be noted that the frequency response of the two
models can be compared following the order of eigenvalues due
to both AdaGNN and SGC are graph Laplacian matrix based fil-
ters [10]. Frequency response from 0 (the lowest frequency for

398

undirected graph based on Laplacian spectrum) to 2 (the highest
frequency for undirected graph based on Laplacian spectrum [10])
is presented without cut-off for generalization purpose. As can be
shown, firstly, the frequency response of AdaGNN is naturally en-
forced with different characteristics for different feature channel
after the optimization. This demonstrate the effectiveness of the
learnable filter in our proposed AdaGNN. Secondly, the learned
frequency response function of AdaGNN-S varies across feature
channels while the function of SGC treats these channels equally.
Compared with the band-stop frequency response function of SGC,
AdaGNN-S preserves more middle-frequency components, which
could help to learn more discriminative representations. Finally, the
response of AdaGNN-S is highly selective across high-frequency
components, revealing that some of them are complementary to
low/middle frequencies to improve performance while some can
be taken as noise.

Ablation Study (RQ4) Now we perform ablation study to an-
swer RQ4. It shold be noted that AdaGNN-S reduces to GCN when
we remove the parameter matrix ® and incorporate the weight ma-
trix and activation function in the intermedia layer. Consequently,
in order to individually explore the contribution of the two com-
ponents to the final performance, we compare the performance
of three variants of AdaGNN for ablation study, i.e., AdaGNN-S,
AdaGNN-S-w/o-®, and GCN in Fig. 3b. We make the discussion
as follows. Firstly, it can be clearly observed from Fig. 3b that the
learning performance is greatly reduced when ® is removed at
each layer. This demonstrates the indispensable contribution of the
learnable filter to the shown performance improvement on node
classification. At the same time, compared with original AdaGNN-S,
AdaGNN-S-w/o-® shows the tendency of over-smoothing in deeper
layers, which can also be observed on GCN. This indicates that the
learnable diagonal matrix ® in AdaGNN-S also contributes to the
over-smoothing relief when more layers are stacked together.



Full Paper Track

Table 3: Average accuracy with standard deviation on BlogCatalog, Flickr, Cora, Citeseer and Pubmed (the performance of

AdaGNN-R and AdaGNN-S is marked in bold).

CIKM 21, November 1-5, 2021, Virtual Event, Australia

Dataset Model 2 Layer 4 Layer 8 Layer 16 Layer
GCN 73.98 + 0.6%  69.71 £ 0.4% 37.61 £2.2%  20.61 £ 1.9%
GraphSAGE 70.41 £ 0.5% 67.03 £0.5% 39.15+1.6% 18.34 +3.9%
SGC 7397 £0.6% 6894 +£0.8% 47.94+0.9% 29.02+ 1.7%
BlogCatalog DropEdge-GCN 7417 £0.7% 7096 £ 1.3%  60.51 £ 2.4% 51.88 + 0.8%
Pairnorm-GCN-SI 6732+ 0.7% 63.61+£09% 65.04 £0.6% 67.51 £0.4%
Pairnorm-GCN-SCS | 71.67 £ 0.3%  67.01 +£0.2% 6930 £ 0.7%  69.75 + 1.2%
AdaGNN-R 86.80 + 0.3% 87.04 +0.2% 86.68 +0.1% 86.44 + 0.5%
AdaGNN-S§ 88.50 = 0.2% 88.79 +0.2% 88.81+0.1% 88.19 +£0.2%
GCN 59.82+0.7% 3221 +09% 12.20 £ 1.0% 13.29 £ 0.1%
GraphSAGE 5454 +0.7% 3472+ 0.6% 1130 +£0.1% 11.20 £ 0.2%
SGC 60.74 £ 0.8%  41.11 £ 1.5% 16.64 +2.2%  14.40 + 1.3%
Flickr DropEdge-GCN 58.24 +3.1% 47.68 £0.8% 36.16 £ 0.3%  27.30 £ 1.6%
Pairnorm-GCN-SI 4643 £0.2% 3943 +£13% 39.12+08% 38.24 + 0.2%
Pairnorm-GCN-SCS | 48.93 £0.4% 3944 +1.2% 3479 +£0.3% 38.17 + 0.2%
AdaGNN-R 68.41 £ 0.5% 68.29 +£0.5% 65.92+0.1% 66.42 + 0.2%
AdaGNN-S§ 71.68 £ 0.3% 72.03 £0.3% 72.93+0.1% 73.03 +0.4%
GCN 81.30 £ 0.3% 7748 £0.4% 6538 £0.2% 24.28 +4.5%
GraphSAGE 80.75+0.1% 7852+ 15%  70.26 £2.1%  26.00 £5.7%
SGC 79.86 £ 0.5% 7850 £0.4% 7150 +1.8%  65.60 + 4.1%
Cora DropEdge-GCN 81.20 + 0.4% 7870 £ 0.4% 7537 £1.6% 68.38 +£ 1.6%
Pairnorm-GCN-SI 79.90 £ 0.5%  79.76 £ 0.5% 7849 £ 0.5%  74.39 + 0.2%
Pairnorm-GCN-SCS | 81.90 £ 0.9% 78.69 +1.1% 7818 +1.3%  73.00 + 0.5%
AdaGNN-R 81.73 £+ 0.3% 81.83 +0.1% 82.30 +0.4% 82.18 +£0.2%
AdaGNN-S$ 81.60 + 0.1% 81.80 +0.2% 82.60 +£0.2% 82.39 + 0.3%
GCN 7130 £ 0.3%  63.16 + 1.5%  34.20 £ 3.0%  33.28 £5.2%
GraphSAGE 7085+ 0.5% 6658 +1.4% 47.00 £ 44%  30.37 +3.7%
SGC 69.13 +0.2% 69.03+£0.3% 6753 +£0.1% 66.22 + 0.9%
Citeseer DropEdge-GCN 71.20 +£ 0.4%  66.10 £ 1.1% 5238 £ 1.7%  49.22 + 0.9%
Pairnorm-GCN-SI 67.71 £04%  66.21 £0.7% 64.88 +£0.7%  60.55 + 1.6%
Pairnorm-GCN-SCS | 68.08 + 1.4%  64.56 + 1.6%  60.90 + 1.8%  56.33 + 1.6%
AdaGNN-R 70.30 £ 0.2% 70.70 £ 0.2% 71.54+0.4% 70.40 +0.1%
AdaGNN-S$ 71.46 £ 0.2% 7195+ 0.1% 72.03 +0.1% 71.34 +£0.3%
GCN 7858 + 0.6%  72.02 +0.5% 61.80 £6.7%  54.10 + 8.4%
GraphSAGE 7822 £0.2%  72.05+2.0% 7023 +£48% 56.03 +5.7%
SGC 77.60 £ 0.4% 7527 £0.9% 71.20 £ 0.3%  60.00 + 2.3%
Pubmed DropEdge-GCN 7833+ 0.3% 7770 £ 1.0% 7480 £0.8% 71.97 £ 1.2%
Pairnorm-GCN-SI 76.80 £04% 7737 +0.2% 7811+ 0.6% 77.51+0.9%
Pairnorm-GCN-SCS | 78.46 +0.1%  75.65+0.9% 77.74 +1.2%  71.37 + 0.8%
AdaGNN-R 78.90 £ 0.1% 78.40 £ 0.1% 78.50 = 0.2% 78.00 + 0.2%
AdaGNN-S$ 78.60 £ 0.2% 78.40 + 0.2% 78.70 £ 0.2% 78.60 = 0.1%

5 RELATEX WORK

Spectral-based Graph Neural Networks. Existing graph neural
network models are often categorized as spectral-based and spatial-
based methods depending on the operation domain [44, 48]. Graph
Signal Processing lays a solid mathematical foundation for spectral-
based methods by enabling them to define graph filter in the spectral
domain. Bruna et al. [4] first proposed to generalize the convolution
operations in CNN to graphs and define graph filter with the spec-
trum of the graph Laplacian matrix. Later on, Defferrard et al. [11]
proposed a fast localized convolutional filter ChebNet based on

399

Chebyshev polynomial which avoids expensive eigendecomposi-
tion operation and is considered as a special case of CayleyNet that
applies Cayley polynomials [27]. The seminal work of GCN [24]
utilizes a spectral filter by truncating Chebyshev polynomial to
only first order and the filter can be regarded as neighborhood
aggregation in the spatial domain. SGC [43] further simplifies GCN
by collapsing weight matrix in consecutive layers and showed that
there are redundant computations in GCN. Additionally, recent
efforts attempt to improve the spectral filter from different perspec-
tives, such as learning hidden structural relations [30], emphasizing
both low and high frequencies [3] and capturing both local and



Full Paper Track

»
o
o
o
5]
7
>
Q
==
3
o
= 00 05 1.0 1.5 2.0
Frequency

(a) Frequency response.

CIKM 21, November 1-5, 2021, Virtual Event, Australia

BN AdaGNN-S B AdaGNN-S-w/o -® GCN

N B N X
S O o O

Accuracy (%)

o

Layer
(b) Model ablation study.

Figure 3: (a) Frequency response function of 4-layered AdaGNN-S and SGC on Flickr. The black dashed curve denotes the
response of SGC while other solid curves denote the responses of AdaGNN-S across feature channels. (b) Model ablation study
of AdaGNN-S on BlogCatalog, where layer number varies from {2, 4, 8, 16}.

global information [54]. Despite their empirical effectiveness, these
attempts cannot well characterize the varying importance of fre-
quencies for learning. Different from all previous works, in this
paper, we achieve a learnable filter individually for each feature
dimension. In this way, AdaGNN achieves natural over-smoothing
alleviation with more discriminatove representations, which also
contributes to the performance.

Spatial-based Graph Neural Networks. Spatial-based meth-
ods perform convolution in the spatial domain by aggregating and
transforming the information of neighboring nodes. Different meth-
ods in this family mainly differ in the way how the aggregation func-
tion is designed. One of the earliest attempts NN4G [33] sums up
the information from a central node’s neighbors. DCNN [1] regards
graph convolutions as a diffusion process w.r.t. specific probabili-
ties to attain equilibrium after several rounds. To better distinguish
the importance of different neighbors for information aggregation,
attention mechanism is also utilized in GAT [41]. MPNN [17] gener-
alizes different spatial-based methods as a unified message-passing
framework. GraphSAGE [19] aggregates neighborhood information
via mean/max/LSTM pooling. GIN [45] allocates a learnable param-
eter for the center node when performing information aggregation,
which empowers the model stronger capability to differentiate
different graph structures. More recently, a myriad of more sophis-
ticated aggregation strategies compared with previous works are
developed and a more detailed review can be referred to [44, 50].

Over-smoothing of Graph Neural Networks. Information
aggregation from node neighbors is a critical step of GNNs, which
smoothes node feature representations over the whole graph [2, 52,
53]. In the spectral domain, this can be interpreted as weakening the
high-frequency components of input signals. For example, studies
have shown that the convolution operation in GCN corresponds
to a single fixed low-pass filter [35]. When multiple convolution
layers are stacked and the model goes deeper, the over-smoothing
issue is inevitable, which means node representations converge to
similar values. Li et al. [29] proved that GCN is actually a kind of
Laplacian smoothing process, and proposed the challenge of over-
smoothing for the first time. After that, some studies demonstrate
that certain level of smoothness benefits node representation learn-
ing while over-smoothing broadly exists in deeper GNNs [6, 12].
More recently, some researches attempt to relieve this problem via

400

residual-like connections [8, 31, 32]. Nevertheless, such methods are
unable to avoid the situation where a node is overwhelmed in the
information of its neighbors in the information aggregation process.
There are also works directly relieve over-smoothing in this process
via using either edge masking [38] or re-normalization [51]; how-
ever performance still obviously reduces when models go deeper.
Consequently, it remains a challenging problem to directly relieve
over-smoothing in the information propagating process. To the
best of our knowledge, we are the first to provide an understanding
of this problem from the perspective of the spectral filter, and our
experiments also demonstrate its superiority over other prevalent
solutions such as DropEdge [38] and PairNorm [51].

6 CONCLUSION

Existing spectral GNNs mainly apply fixed filters for the convolu-
tion operation, where such non-learnable filter leads to two prob-
lems. Firstly, due to that the graph filter is fixed, their expressiveness
is limited in the learning process; secondly, it could be hard for such
GNN:ss to achieve an appropriate level of feature smoothness, and
over-smoothing happens unavoidbly in deeper layers. To tackle
the above mentioned problems, in this paper, we propose a novel
framework AdaGNN with an adaptive frequency response filter.
By learning to individually control information flow for different
feature channels, the proposed filter is able to adaptively adjust
the importance of different frequency components of each input
feature channel, which leads to a learnable filter when multiple
layers are stacked together. AdaGNN also learns more discrimina-
tive representations via achieving different levels of smoothness
for different feature channels. We provide theoretical analysis for
the proposed AdaGNN from different aspects, and empirical experi-
mental evaluations also demonstrate its superiority on performance
over state-of-the-art GNNs and over-smoothing alleviation over
other state-of-the-art baselines. We will leave the fairness issues of
the proposed AdaGNN framework as our future research directions.

7 ACKNOWLEDGEMENTS

This material is, in part, supported by the National Science Founda-
tion (NSF) under grant number 2006844 and 2006861. We would like
to thank the anonymous reviewers for their constructive feedback.



Full Paper Track

REFERENCES

(1]

[2

—

(3]

[9

=

[10]

—
—

[12]

I
&

[24]

[25

[26]

[27]

[28]

[29]

James Atwood and Don Towsley. 2016. Diffusion-convolutional neural networks.
In Advances in Neural Information Processing Systems. 1993-2001.

Mikhail Belkin, Partha Niyogi, and Vikas Sindhwani. 2006. Manifold regulariza-
tion: A geometric framework for learning from labeled and unlabeled examples.
Journal of Machine Learning Research 7, Nov (2006), 2399-2434.

Deyu Bo, Xiao Wang, Chuan Shi, and Huawei Shen. 2021. Beyond Low-frequency
Information in Graph Convolutional Networks. arXiv preprint arXiv:2101.00797
(2021).

J. Bruna, W. Zaremba, A. Szlam, and Y. LeCun. 2013. Spectral networks and
locally connected networks on graphs. arXiv preprint arXiv:1312.6203 (2013).
Chen Cai and Yusu Wang. 2020. A note on over-smoothing for graph neural
networks. arXiv preprint arXiv:2006.13318 (2020).

Deli Chen, Yankai Lin, Wei Li, Peng Li, Jie Zhou, and Xu Sun. 2019. Measuring
and Relieving the Over-smoothing Problem for Graph Neural Networks from
the Topological View. arXiv preprint arXiv:1909.03211 (2019).

Deli Chen, Yankai Lin, Wei Li, Peng Li, Jie Zhou, and Xu Sun. 2020. Measuring
and relieving the over-smoothing problem for graph neural networks from the
topological view. In Proceedings of the AAAI Conference on Artificial Intelligence,
Vol. 34. 3438-3445.

Ming Chen, Zhewei Wei, Zengfeng Huang, Bolin Ding, and Yaliang Li. 2020.
Simple and deep graph convolutional networks. In International Conference on
Machine Learning. PMLR, 1725-1735.

Yunpeng Chen, Haoqi Fan, Bing Xu, Zhicheng Yan, Yannis Kalantidis, Marcus
Rohrbach, Shuicheng Yan, and Jiashi Feng. 2019. Drop an octave: Reducing
spatial redundancy in convolutional neural networks with octave convolution. In
Proceedings of 2019 IEEE International Conference on Computer Vision. 3435-3444.
Fan RK Chung and Fan Chung Graham. 1997. Spectral graph theory. Number 92.
American Mathematical Soc.

Michaél Defferrard, Xavier Bresson, and Pierre Vandergheynst. 2016. Convolu-
tional neural networks on graphs with fast localized spectral filtering. In Advances
in Neural Information Processing Systems. 3844-3852.

Zhijie Deng, Yinpeng Dong, and Jun Zhu. 2019. Batch virtual adversarial training
for graph convolutional networks. arXiv preprint arXiv:1902.09192 (2019).
Yushun Dong, Jian Kang, Hanghang Tong, and Jundong Li. 2021. Individual
Fairness for Graph Neural Networks: A Ranking based Approach. In Proceedings
of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining.
300-310.

Yushun Dong, Ninghao Liu, Brian Jalaian, and Jundong Li. 2021. EDITS: Mod-
eling and Mitigating Data Bias for Graph Neural Networks. arXiv preprint
arXiv:2108.05233 (2021).

Wenqi Fan, Yao Ma, Qing Li, Yuan He, Eric Zhao, Jiliang Tang, and Dawei Yin.
2019. Graph neural networks for social recommendation. In Proceedings of the
2019 World Wide Web Conference. 417-426.

Hongyang Gao and Shuiwang Ji. 2019. Graph u-nets.
arXiv:1905.05178 (2019).

Justin Gilmer, Samuel S Schoenholz, Patrick F Riley, Oriol Vinyals, and George E
Dahl. 2017. Neural message passing for quantum chemistry. In Proceedings of the
34th International Conference on Machine Learning. JMLR. org, 1263-1272.
Rafael C Gonzales and Richard E Woods. 2002. Digital image processing.

Will Hamilton, Zhitao Ying, and Jure Leskovec. 2017. Inductive representation
learning on large graphs. In Advances in Neural Information Processing Systems.
1024-1034.

Kaiming He, Jian Sun, and Xiaoou Tang. 2010. Guided image filtering. In Pro-
ceedings of 2010 European Conference on Computer Vision. 1-14.

Kaiming He, Xiangyu Zhang, Shaoging Ren, and Jian Sun. 2016. Deep Resid-
ual Learning for Image Recognition. In Proceedings of 2016 IEEE Conference on
Computer Vision and Pattern Recognition. 770-778.

Yoon Kim. 2014. Convolutional Neural Networks for Sentence Classification.
arXiv preprint arXiv:1408.5882 (2014).

Diederik P Kingma and Jimmy Ba. 2014. Adam: A method for stochastic opti-
mization. arXiv preprint arXiv:1412.6980 (2014).

Thomas N Kipf and Max Welling. 2016. Semi-supervised classification with graph
convolutional networks. arXiv preprint arXiv:1609.02907 (2016).

Thomas N Kipf and Max Welling. 2016. Variational graph auto-encoders. arXiv
preprint arXiv:1611.07308 (2016).

Yann LeCun, Léon Bottou, Yoshua Bengio, Patrick Haffner, et al. 1998. Gradient-
based Learning Applied to Document Recognition. Proc. IEEE 86, 11 (1998),
2278-2324.

Ron Levie, Federico Monti, Xavier Bresson, and Michael M Bronstein. 2018.
Cayleynets: Graph convolutional neural networks with complex rational spectral
filters. IEEE Transactions on Signal Processing 67, 1 (2018), 97-109.

Jundong Li, Xia Hu, Jiliang Tang, and Huan Liu. 2015. Unsupervised streaming
feature selection in social media. In Proceedings of the 24th ACM International on
Conference on Information and Knowledge Management. 1041-1050.

Qimai Li, Zhichao Han, and Xiao-Ming Wu. 2018. Deeper insights into graph
convolutional networks for semi-supervised learning. In Proceedings of the 32nd

arXiv preprint

CIKM 21, November 1-5, 2021, Virtual Event, Australia

AAAI Conference on Artificial Intelligence.

Ruoyu Li, Sheng Wang, Feiyun Zhu, and Junzhou Huang. 2018. Adaptive graph
convolutional neural networks. In Proceedings of the 32nd AAAI conference on
Artificial Intelligence.

Wei Li, Shuheng Li, Shuming Ma, Yancheng He, Deli Chen, and Xu Sun. 2019.
Recursive Graphical Neural Networks for Text Classification. arXiv preprint
arXiv:1909.08166 (2019).

Meng Liu, Hongyang Gao, and Shuiwang Ji. 2020. Towards deeper graph neural
networks. In Proceedings of the 26th ACM SIGKDD International Conference on
Knowledge Discovery & Data Mining. 338-348.

Alessio Micheli. 2009. Neural network for graphs: A contextual constructive
approach. IEEE Transactions on Neural Networks 20, 3 (2009), 498-511.

Mathias Niepert, Mohamed Ahmed, and Konstantin Kutzkov. 2016. Learning
convolutional neural networks for graphs. In Proceedings of 2016 International
Conference on Machine Learning. 2014-2023.

Hoang NT and Takanori Maehara. 2019. Revisiting Graph Neural Networks: All
We Have is Low-Pass Filters. arXiv preprint arXiv:1905.09550 (2019).

Shirui Pan, Ruigi Hu, Guodong Long, Jing Jiang, Lina Yao, and Chengqi Zhang.
2018. Adversarially regularized graph autoencoder for graph embedding. arXiv
preprint arXiv:1802.04407 (2018).

Adam Paszke, Sam Gross, Soumith Chintala, Gregory Chanan, Edward Yang,
Zachary DeVito, Zeming Lin, Alban Desmaison, Luca Antiga, and Adam Lerer.
2017. Automatic differentiation in pytorch. (2017).

Yu Rong, Wenbing Huang, Tingyang Xu, and Junzhou Huang. 2019. DropE-
dge: Towards Deep Graph Convolutional Networks on Node Classification. In
Proceedings of 2019 International Conference on Learning Representations.

David I Shuman, Sunil K Narang, Pascal Frossard, Antonio Ortega, and Pierre
Vandergheynst. 2013. The emerging field of signal processing on graphs: Ex-
tending high-dimensional data analysis to networks and other irregular domains.
IEEE Signal Processing Magazine 30, 3 (2013), 83-98.

Jie Tang, Jing Zhang, Limin Yao, Juanzi Li, Li Zhang, and Zhong Su. 2008. Arnet-
miner: extraction and mining of academic social networks. In Proceedings of the
14th ACM SIGKDD International Conference on Knowledge Discovery and Data
Mining. 990-998.

Petar Velickovié, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro
Lio, and Yoshua Bengio. 2017. Graph attention networks. arXiv preprint
arXiv:1710.10903 (2017).

Xiang Wang, Xiangnan He, Meng Wang, Fuli Feng, and Tat-Seng Chua. 2019.
Neural graph collaborative filtering. In Proceedings of the 42nd international ACM
SIGIR conference on Research and development in Information Retrieval. 165-174.
Felix Wu, Tianyi Zhang, Amauri Holanda de Souza Jr, Christopher Fifty, Tao Yu,
and Kilian Q Weinberger. 2019. Simplifying graph convolutional networks. arXiv
preprint arXiv:1902.07153 (2019).

Zonghan Wu, Shirui Pan, Fengwen Chen, Guodong Long, Chenggqi Zhang, and
S Yu Philip. 2020. A comprehensive survey on graph neural networks. IEEE
Transactions on Neural Networks and Learning Systems (2020).

Keyulu Xu, Weihua Hu, Jure Leskovec, and Stefanie Jegelka. 2018. How powerful
are graph neural networks? arXiv preprint arXiv:1810.00826 (2018).

Zhilin Yang, William W Cohen, and Ruslan Salakhutdinov. 2016. Revisiting semi-
supervised learning with graph embeddings. arXiv preprint arXiv:1603.08861
(2016).

Zhitao Ying, Jiaxuan You, Christopher Morris, Xiang Ren, Will Hamilton, and Jure
Leskovec. 2018. Hierarchical graph representation learning with differentiable
pooling. In Advances in Neural Information Processing Systems. 4800-4810.

Si Zhang, Hanghang Tong, Jiejun Xu, and Ross Maciejewski. 2019. Graph convo-
lutional networks: a comprehensive review. Computational Social Networks 6, 1
(2019), 11.

Xiang Zhang, Junbo Zhao, and Yann LeCun. 2015. Character-level Convolutional
Networks for Text Classification. In Advances in Neural Information Processing
Systems. 649-657.

Ziwei Zhang, Peng Cui, and Wenwu Zhu. 2020. Deep learning on graphs: A
survey. IEEE Transactions on Knowledge and Data Engineering (2020).

Lingxiao Zhao and Leman Akoglu. 2019. PairNorm: Tackling Oversmoothing in
GNNs. arXiv preprint arXiv:1909.12223 (2019).

Dengyong Zhou, Olivier Bousquet, Thomas N Lal, Jason Weston, and Bernhard
Scholkopf. 2004. Learning with local and global consistency. In Advances in
Neural Information Processing Systems. 321-328.

Xiaojin Zhu, Zoubin Ghahramani, and John D Lafferty. 2003. Semi-supervised
learning using gaussian fields and harmonic functions. In Proceedings of the 20th
International Conference on Machine Learning. 912-919.

Chenyi Zhuang and Qiang Ma. 2018. Dual graph convolutional networks for
graph-based semi-supervised classification. In Proceedings of the 2018 World Wide
Web Conference. 499-508.

Dongmian Zou and Gilad Lerman. 2019. Encoding robust representation for
graph generation. In Proceedings of 2019 International Joint Conference on Neural
Networks. IEEE, 1-9.



	Abstract
	1 Introduction
	2 The Proposed Framework – AdaGNN
	2.1 Notations and Preliminaries
	2.2 Adaptive Frequency Response Filtering
	2.3 Overall Architecture of AdaGNN

	3 Theoretical Analysis
	3.1 Connections to GCN and GraphSAGE
	3.2 Spectral Analysis of AdaGNN
	3.3 Spatial Analysis of AdaGNN
	3.4 Over-smoothing Analysis

	4 Experimental Evaluations
	4.1 Experimental Settings
	4.2 Experimental Results

	5 Relatex Work
	6 Conclusion
	7 Acknowledgements
	References



