
AdaGNN: Graph Neural Networks with
Adaptive Frequency Response Filter

Yushun Dong

University of Virginia

Charlottesville, USA

yd6eb@virginia.edu

Kaize Ding

Arizona State University

Tempe, USA

kding9@asu.edu

Brian Jalaian

Army Research Laboratory

Adelphi, USA

brian.a.jalaian.civ@mail.mil

Shuiwang Ji

Texas A&M University

College Station, USA

sji@tamu.edu

Jundong Li

University of Virginia

Charlottesville, USA

jundong@virginia.edu

ABSTRACT
Graph Neural Networks have recently become a prevailing para-

digm for various high-impact graph analytical problems. Existing

efforts can be mainly categorized as spectral-based and spatial-

based methods. The major challenge for the former is to find an

appropriate graph filter to distill discriminative information from

input signals for learning. Recently, myriads of explorations are

made to achieve better graph filters, e.g., Graph Convolutional Net-

work (GCN), which leverages Chebyshev polynomial truncation to

seek an approximation of graph filters and bridge these two families

of methods. Nevertheless, it has been shown in recent studies that

GCN and its variants are essentially employing fixed low-pass filters

to perform information denoising. Thus their learning capability is

rather limited and may over-smooth node representations at deeper

layers. To tackle these problems, we develop a novel graph neural

network framework AdaGNN with a well-designed adaptive fre-

quency response filter. At its core, AdaGNN leverages a simple but

elegant trainable filter that spans across multiple layers to capture

the varying importance of different frequency components for node

representation learning. The inherent differences among different

feature channels are also well captured by the filter. As such, it em-

powers AdaGNN with stronger expressiveness and naturally allevi-

ates the over-smoothing problem. We empirically validate the effec-

tiveness of the proposed framework on various benchmark datasets.

Theoretical analysis is also provided to show the superiority of the

proposed AdaGNN. The open-source implementation of AdaGNN

can be found here: https://github.com/yushundong/AdaGNN.

CCS CONCEPTS
• Computing methodologies → Machine learning; • Theory
of computation → Theory and algorithms for application
domains.

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than ACM

must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,

to post on servers or to redistribute to lists, requires prior specific permission and/or a

fee. Request permissions from permissions@acm.org.

CIKM ’21, November 1–5, 2021, Virtual Event, QLD, Australia
© 2021 Association for Computing Machinery.

ACM ISBN 978-1-4503-8446-9/21/11. . . $15.00

https://doi.org/10.1145/3459637.3482226

KEYWORDS
Graph neural networks, frequency response, adaptive filter

ACM Reference Format:
Yushun Dong, Kaize Ding, Brian Jalaian, Shuiwang Ji, and Jundong Li. 2021.

AdaGNN: Graph Neural Networks with Adaptive Frequency Response Filter.

In Proceedings of the 30th ACM International Conference on Information and
Knowledge Management (CIKM ’21), November 1–5, 2021, Virtual Event, QLD,
Australia. ACM, New York, NY, USA, 10 pages. https://doi.org/10.1145/

3459637.3482226

1 INTRODUCTION
Graph Neural Networks (GNNs) have demonstrated remarkable

performance in a wide spectrum of graph learning tasks, e.g., node

classification [19, 24, 45], link prediction [25, 36, 55], and recommen-

dation [15, 15, 42]. The main intuition of GNNs is that they stack

multiple layers of neural network primitives to learn high-level

node feature representations, aiming at addressing various learning

tasks in an end-to-end manner [13]. GNNs are deeply influenced by

the architecture design of convolutional neural networks (CNNs)

for grid-like data such as images and texts [21, 22, 26, 49] and are

extended to handle non-Euclidean graph data. In essence, existing

GNNs are mainly divided into two main streams: spectral-based

and spatial-based methods [44]. With deep roots in Graph Signal

Processing (GSP) [39] and Spectral Graph Theory [10], spectral-

based methods [4, 11, 24, 27] define convolution operations in the

spectral domain based on graph Fourier transform and thus bear

a solid mathematical foundation. For spatial-based methods, the

convolution operations are defined in the spatial domain and act as

a message-passing process [1, 17, 34]. Specifically, for each node,

the convolution operations aggregate and transform information

from its neighborhoods when learning its feature representation.

The seminal work of Graph Convolutional Network (GCN) [24]

bridges the gap between these two families of algorithms. As a local-

ized first-order approximation of spectral graph convolution [11],

GCN can also be interpreted as a spatial-based method with a clear

meaning of node localization, thus inspiring a lot of follow-up im-

provements [1, 14, 17, 19, 27, 30, 41, 43, 45, 54], especially in the

spatial domain. However, the fundamental studies and improve-

ments of GCN from the spectral perspective is rather limited. Until

fairly recently, studies have shown that the frequency response of

the convolution operation corresponds to a fixed low-pass filter at

each layer [35], implying that more information is captured within

Full Paper Track CIKM ’21, November 1–5, 2021, Virtual Event, Australia

392

https://doi.org/10.1145/3459637.3482226
https://doi.org/10.1145/3459637.3482226
https://doi.org/10.1145/3459637.3482226

low frequencies and the effects of high-frequency components are

much more weakened [43]. Despite that, real-world graphs are

much more complex than we can imagine, and mixture of different

frequencies may either benefit or degrade the final performance.

Recent studies have shown that the lowest frequency does not

necessarily contain the most important information; while high-

frequency components may also encode useful information that

is beneficial for the performance under certain tasks [3, 9]. In this

regard, simply using a fixed low-pass filter cannot well capture

the varying importance of different frequency components, thus

limiting the expressiveness of learned representations and yielding

suboptimal learning performance. Additionally, we show in this

paper that in the limit, any filter satisfying certain conditions leads

to another fundamental limitation of GCN and its variants – the

over-smoothing problem [5, 7, 29, 32]. It refers to the phenome-

non that node feature representations converge to similar values at

deeper layers, thus nodes cannot be easily distinguished.

To tackle the aforementioned problems, we overcome the limita-

tions of GCN and its variants from the spectral perspective. Specif-

ically, we propose a novel framework AdaGNN with an adaptive

frequency response filter, which adaptively adjusts the importance

of different frequency components for spectral convolution when

multiple layers are stacked. It should be noted that a straightfor-

ward solution to control the varying effects of different frequency

components is allocating a learnable parameter for each frequency

component. However, this strategy requires expensive eigendecom-

position [4] and its large complexity makes the model prone to

overfitting especially when training data is limited. Instead, we

propose a simple but elegant solution to assign a single parameter

for each feature channel at each layer, based upon which we stack

multiple layers to learn a flexible and powerful filter. In a nutshell,

the main contributions of this paper can be summarized as follows:

• We systematically examine the fundamental limitations of

fixed low-pass filters of GCN and its variants from the per-

spective of spectral domain.

• We develop a novel graph neural network framework named

AdaGNN that can capture the varying importance of differ-

ent frequency components for node representation learning.

The core of this framework is a simple but elegant trainable

filter that spans across multiple layers with a single param-

eter for each feature channel at each layer. The developed

GNN framework does not involve expensive eigendecom-

position and its parameter complexity is comparable to the

lightweight GCN model such as SGC [43].

• We provide theoretical analysis for the proposed framework.

Firstly, we show that the filter of prevalent GCN models

(e.g., GCN and mean aggregator of GraphSage [19]) can

be considered as a special case of our proposed adaptive

filter at each layer. Secondly, we provide both spectral and

spatial interpretation of the proposed framework. Thirdly,

we also prove that any filter satisfying certain conditions will

inevitably encounter over-smoothness in deeper structure,

while the proposed filter can naturally alleviate this issue.

• We conduct comprehensive experiments on benchmark graph

datasets with different properties. The empirical evaluations

demonstrate that the proposed AdaGNN not only learns

more powerful node representations for the node classifi-

cation task but also greatly alleviates the over-smoothing

problems when the architecture goes deeper.

2 THE PROPOSED FRAMEWORK – ADAGNN
Here we firstly introduce the notations and other commonly used

preliminaries in this paper. Then we introduce details about howwe

develop the graph filter with adaptive frequency response filtering.

Finally, we present the overall architecture of AdaGNN.

2.1 Notations and Preliminaries
Notations.We define an undirected graph as 𝐺 = (V, E), where
V = {𝑣1, ..., 𝑣𝑁 } and E denote the set of nodes and edges, respec-

tively. Let A ∈ R𝑁×𝑁
be the adjacency matrix of the graph such

that A𝑖, 𝑗 = 1 if 𝑣 𝑗 ∈ N (𝑣𝑖), otherwise A𝑖, 𝑗 = 0. Here N(.) denotes
the one-hop neighbor set of a node. The Laplacian matrix of the

graph is defined as L = D − A, where D = diag(𝑑1, ..., 𝑑𝑁) is the
diagonal degree matrix (𝑑𝑖 =

∑
𝑗 A𝑖, 𝑗). Then the symmetric normal-

ized Laplacian matrix and the random-walk normalized Laplacian

matrix are defined as L𝑠𝑦𝑚 = D− 1

2 LD− 1

2 and L𝑟𝑤 = D−1L, respec-
tively. Besides, feature matrix X ∈ R𝑁×𝐹

is utilized to describe

properties of nodes, where x𝑗 (column of X) represents 𝑗-th feature

channel of X and 𝐹 denotes the number of feature channels.

Graph Filters. The main idea of spectral-based GNN methods

is to define graph filters based on Graph Signal Processing [39].

Specifically, symmetric normalized Laplacian can be factored as

L𝑠𝑦𝑚 = D− 1

2 LD− 1

2 = UΛU𝑇 . Here U ∈ R𝑁×𝑁 = [u1, ..., u𝑁],
where u𝑖 ∈ R𝑁 denotes the 𝑖-th eigenvector of L𝑠𝑦𝑚 and Λ =

diag(𝜆1, , ..., 𝜆𝑁) is the corresponding eigenvalue matrix. Let x ∈
R𝑁 be an one-channeled input signal of all nodes, then the Graph

Fourier transform and inverse Fourier transform can be defined as

x̂ = F (x) = U𝑇 x and x = F−1 (x̂) = Ux̂, respectively. Here x̂ is the
Fourier transformed graph signal. Graph convolution of the input

signal x with filter g = diag(𝜽) parameterized by 𝜽 ∈ R𝑁 is defined

as x ∗𝐺 g = Ug(Λ)U𝑇 x. A vast majority of existing works such

as GCN and SGC [24, 43] use a fixed low-pass filter for the graph

convolution operation while recent studies [35, 43] have shown

that if the input signal is repeatedly convolved with the fixed low-

pass filter, its high-frequency components will be greatly weakened

and the learning performance is dominated by the low-frequency

components, resulting in the well-known over-smoothing problem.

2.2 Adaptive Frequency Response Filtering
In image signal processing, the Laplacian kernel is widely used to

capture high-frequency edge information for various tasks such

as image sharpening and blurring [18, 20]. As its counterpart in

GSP, we can multiply the graph Laplacian matrix L with the input

graph signal x ∈ R𝑁 (i.e., h = Lx) to characterize its high-frequency
components – the frequencies that carry sharply varying signal

information across edges of graph. Meanwhile, as shown in re-

cent studies [43, 46], the essence of GCN and its variants are the

low-pass filter which smoothes the feature representations of the

current node and its neighbors to make them similar. As such, we

can highlight the low-frequency components of input signal x by

setting z = x − Lx, i.e., subtracting the term Lx which emphasizes

Full Paper Track CIKM ’21, November 1–5, 2021, Virtual Event, Australia

393

Conv

SpatialSpectral

! (1− ∅!,#&$')
%

#&!

! (1− ∅!,#&$')
%

#&'

! (1− ∅!,#&$')
%

#&'

! (1− ∅!,#&$')
%

#&'

!! ""# , ∅# 	=((1 − ∅$,&""#)
!

&'(
j ∈ {1,2, … , (}!(") = # ∈ ℝ$×&

!(") ∈ ℝ$×&

Figure 1: An illustration of the proposed AdaGNN from the spectral perspective. The convolution operation across 𝐾 layers is
equivalent to applying the filter

∏𝐾
𝑘=1

(1 −𝜙 𝑗,𝑘 ˜𝜆𝑖) to the 𝑗-th channel of input signal x𝑗 . Here we omit the weight matrix Θ and
ReLU function at the first layer for the ease of understanding.

more on high-frequency components from the input signal x. In
fact, this formulation is well aligned with the convolution operation

in GCN [24] if we replace L with the symmetric normalized Lapla-

cian matrix L̃𝑠𝑦𝑚 which is derived from the self-loop augmented

adjacency matrix Ã:
z = x − L̃𝑠𝑦𝑚x = (I − D̃− 1

2 (D̃ − Ã)D̃− 1

2)x = D̃− 1

2 ÃD̃− 1

2 x, (1)

where Ã = A + I is used to avoid numerical instability issues [24]

and D̃ is the degree matrix from Ã. Other than that, we can also

use the random-walk normalized Laplacian matrix L̃𝑟𝑤 from Ã.
Here, we use L̃ to denote the general formulation and it can be

instantiated as L̃𝑠𝑦𝑚 and L̃𝑟𝑤 .
It should be noted that the above operation corresponds to a

fixed low-pass filter in the spectral domain, where higher weights

are specified for low-frequency components. However, in prac-

tice, low-frequency components may not always be useful, and

high-frequency can also provide complementary insights for learn-

ing [3, 9], especially when the label information is not smooth

across edges. Additionally, at deeper layers [43], the high-frequency

components of the input graph signal are unavoidably too much

weakened compared with the lower ones with fixed filters, leading

to the well-known over-smoothing problem [29]. In this regard,

the fixed low-pass filters largely limit the fitting capability of GCN

and its variants for learning discriminative node representations.

As a consequence, it is vital to capture the varying importance of

frequencies in the filter to preserve more useful information and

alleviate over-smoothing in deeper layers.

As an alternative of the traditional fixed filter, we propose a novel

adaptive frequency response filter to tackle the aforementioned

problems. The developed filter should be learnable and able to adap-

tively adjust the varying importance of different frequencies for

convolution when multiple layers are stacked together. Toward this

goal, one straightforward solution is to assign a learnable parame-

ter for each frequency component at each layer to increase fitting

capability. Nonetheless, this solution requires explicit eigendecom-

position which is too expensive. Our solution to address these issues

is simple but elegant – we assign a single parameter per feature

dimension for the low-pass filter at each layer and a more powerful

filter can then be built when multiple layers are stacked together.

Specifically, the filter at each layer is formulated as z𝑗 = x𝑗 − 𝜙 L̃x𝑗
(1 ≤ 𝑗 ≤ 𝐹) for the 𝑗-th feature channel, where 𝜙 is a learnable

parameter. We can also generalize it to a multi-channeled input

signal X ∈ R𝑁×𝐹
that has 𝐹 different feature channels:

E = X − L̃XΦ, (2)

where Φ = diag(𝜙1, ..., 𝜙𝐹), and 𝜙 𝑗 denotes the learnable parameter

for the 𝑗-th feature channel. E denotes the node representation

matrix after the filtering operation. Intuitively, this channel-specific

learnable parameter helps to achieve how much high-frequency

component should be weakened. Theoretical analysis on how such a

simple operation enables to learn a more flexible filter and naturally

helps alleviate over-smoothing is presented in Section 3.

2.3 Overall Architecture of AdaGNN
In this subsection, we mainly introduce the overall architecture of

our proposed AdaGNN, which is mainly composed of two different

components: node representation learning and label prediction.

Node Representation Learning. Based on the above discus-

sion, we can stack 𝐾 layers of convolution operations as Eq. (2) for

a more powerful filter. Traditionally, each layer takes the output of

the previous layer as input and is transformed with a weight matrix

followed by a nonlinear activation function. Inspired by [43], we can

remove the noncritical nonlinear activation functions and weight

matrices at intermediate layers and only keep those at the first layer.

The reason is two-fold: (1) nonlinear feature transformation that

may benefit learning is still preserved; (2) the number of model

parameters greatly decreases by reducing the input feature chan-

nels for the second and later layers. Specifically, suppose H(0) = X,
then we have H(1) = ReLU(EΘ) = ReLU((H(0) − L̃H(0)Φ1)Θ)
as the output of the first layer, where Φ1 (diagonal matrix) and

Θ ∈ R𝐹×𝐿 are the learnable parameters for the filter and the weight

matrix at the first layer, respectively. As mentioned before, we of-

ten set 𝐿 < 𝐹 . For the intermediate layer 2 ≤ 𝑘 ≤ 𝐾 , we have

H(𝑘) = H(𝑘−1) − L̃H(𝑘−1)Φ𝑘 , where Φ𝑘 is the learnable parameters

for the 𝑘-th layer. The output representation after 𝐾 layers are

H(𝐾) ∈ R𝑁×𝐿
. A learning illustration from the spectral perspective

is shown in Fig. 1. According to the theoretical analysis in Section 3,

Full Paper Track CIKM ’21, November 1–5, 2021, Virtual Event, Australia

394

each feature channel has its own filter, whose frequency response

function can be adaptively learned to capture the useful information

in different frequency components. Due to the filters for different

feature channels are decoupled from each other, appropriate lev-

els of smoothness can be individually achieved for each feature

channel, which provides strengthened fitting ability.

Label Prediction. At the final layer (i.e., the 𝐾-th layer) of

AdaGNN, the output H(𝐾)
is further fed into a softmax classifier

to obtain the probability of nodes in 𝐶 different classes. In particu-

lar, we have Ŷ = softmax(H(𝐾)W), where W ∈ R𝐿×𝐶 is a weight

matrix to transform node representations to the label space. A

straightforward choice for the loss function of classification task is

cross-entropy loss. Besides, regularizations are also considered for

the proposed AdaGNN to avoid over-fitting. Then the loss function

of the proposed AdaGNN framework is formulated as follows:

L = −
∑
𝑖∈Y𝐿

𝐶∑
𝑗=1

Y𝑖 𝑗 lnŶ𝑖 𝑗 + 𝛼
𝐾∑
𝑘=1

∥Φ𝑘 ∥1

+ 𝛽 (
𝐾∑
𝑘=1

∥Φ𝑘 ∥2𝐹 + ∥Θ∥2𝐹 + ∥W∥2𝐹), (3)

where Y𝐿 is the set of labeled nodes indices, and Y ∈ R |Y𝐿 |×𝐶

denotes the ground truth labels. 𝛼 and 𝛽 here are hyper-parameters.

The first term is the cross-entropy loss between predictions and

ground truth on labeled nodes. The second term is the ℓ1-norm

regularization of Φ𝑘 for sparsity. The third term is the ℓ2-norm

regularization for all trainable parameters to prevent overfitting.

The effect of the two regularization terms in Eq. (3) are controlled

by tuning 𝛼 and 𝛽 , respectively.

3 THEORETICAL ANALYSIS
In this section, we firstly introduce the connections of AdaGNN to

GCN and GraphSAGE to gain a deeper understanding of the essence

of our proposed framework. Then we carry out spectral analysis for

AdaGNN to demonstrate its frequency response function. Besides,

spatial analysis of AdaGNN is presented to illustrate our proposed

graph filter from the spatial perspective. Finally, theoretical analysis

on over-smoothing demonstrate how our proposed framework

naturally helps to alleviate over-smoothing.

3.1 Connections to GCN and GraphSAGE
Observation 1. The aggregation operation of GCN reduces to the
operation of AdaGNN defined in Eq. (2) when L̃ = L̃𝑠𝑦𝑚 and Φ = I;
GraphSAGE aggregation operation with mean aggregator and sam-
pling rate being 1 is also a special case when L̃ = L̃𝑟𝑤 and Φ = I.

Proof. The information aggregation of AdaGNNwith L̃𝑠𝑦𝑚 and

L̃𝑟𝑤 at layer 𝑘 can be respectively formulated as follows:

E(𝑘)
𝑣,𝑗

= H(𝑘)
𝑣,𝑗

− 𝜙 𝑗,𝑘
∑

𝑢∈N(𝑣)
(L̃𝑠𝑦𝑚)𝑣,𝑢H(𝑘)

𝑢,𝑗
, and (4)

E(𝑘)
𝑣,𝑗

= H(𝑘)
𝑣,𝑗

− 𝜙 𝑗,𝑘
∑

𝑢∈N(𝑣)
(L̃𝑟𝑤)𝑣,𝑢H(𝑘)

𝑢,𝑗
, (5)

Considering that

(L̃𝑠𝑦𝑚)𝑣,𝑢 =


− 1√

|N (𝑣) |+1
√
|𝑁 (𝑢) |+1

, if 𝑢 ∈ N (𝑣),
|N (𝑣) |

|N (𝑣) |+1 , if 𝑢 = 𝑣,

0, otherwise,

and

(L̃𝑟𝑤)𝑣,𝑢 =


− 1

|N (𝑣) |+1 , if 𝑢 ∈ N (𝑣),
|N (𝑣) |

|N (𝑣) |+1 , if 𝑢 = 𝑣,

0, otherwise,

we have the following two formulations:

E(𝑘)
𝑣,𝑗

= (1 − (1 − 1

|N (𝑣) | + 1

)𝜙 𝑗,𝑘)H
(𝑘)
𝑣,𝑗

+ 𝜙 𝑗,𝑘
∑

𝑢∈N(𝑣)

H(𝑘)
𝑢,𝑗√

|N (𝑣) | + 1

√
|N (𝑢) | + 1

, and (6)

E(𝑘)
𝑣,𝑗

= (1 − (1 − 1

|N (𝑣) | + 1

)𝜙 𝑗,𝑘)H
(𝑘)
𝑣,𝑗

+ 𝜙 𝑗,𝑘
∑

𝑢∈N(𝑣)

H(𝑘)
𝑢,𝑗

|N (𝑣) | + 1

.

(7)

Then if we replace all 𝜙 𝑗,𝑘 by 1, and Eq. (6) and Eq. (7) can be

respectively reformulated as

E(𝑘)
𝑣,𝑗

=
1

|N (𝑣) | + 1

H(𝑘)
𝑣,𝑗

+
∑

𝑢∈N(𝑣)

H(𝑘)
𝑢,𝑗√

|N (𝑣) | + 1

√
|N (𝑢) | + 1

, and

(8)

E(𝑘)
𝑣,𝑗

=
1

|N (𝑣) | + 1

H(𝑘)
𝑣,𝑗

+
∑

𝑢∈N(𝑣)

H(𝑘)
𝑢,𝑗

|N (𝑣) | + 1

. (9)

Therefore, the convolution operation of AdaGNN with L̃𝑠𝑦𝑚 and

Φ = I equals to that of GCN. Also, the convolution operation of

AdaGNN with L̃𝑟𝑤 and Φ = I equals to that of GraphSAGE with

mean aggregator and sampling rate being 1. □

Observation 1 reveals the inherent connections betweenAdaGNN

and prevalent GNNs such as GCN [24] and GraphSAGE [19]. As the

aggregation operations of GCN and GraphSAGE are fundamental

building blocks of modern GNN architectures [16, 47], it shows the

broad generalization of our proposed framework.

3.2 Spectral Analysis of AdaGNN
Here we provide a formal spectral analysis of the frequency re-

sponse of AdaGNN framework with 𝐾 layers. Spectral analysis is

based on L̃𝑠𝑦𝑚 and here we omit the weight matrix and activation

function in the first layer for ease of analysis [43].

Theorem 1. For a K-layer AdaGNN framework, its frequency
response function of the 𝑗-th input feature channel is formulated
as 𝑓𝐾 (˜𝜆𝑖 , 𝜙 𝑗) =

∏𝐾
𝑘=1

𝑔𝑘 (˜𝜆𝑖 , 𝜙 𝑗,𝑘) =
∏𝐾
𝑘=1

(1 − 𝜙 𝑗,𝑘 ˜𝜆𝑖), where 𝜙 𝑗,𝑘
denotes the learnable parameter of 𝑗-th feature channel at layer 𝑘 .

Proof. As mentioned in Section 3.2, we replace L̃with L̃𝑠𝑦𝑚 and

omit the weight matrix and activation function for the frequency

response function proof. Consider the 𝑗-th feature channel x𝑗 ∈ R𝑁

Full Paper Track CIKM ’21, November 1–5, 2021, Virtual Event, Australia

395

AdaGNN with Φ! = 0

GCN

Layer 1 Layer 2

Layer 1 Layer 2

Layer 1 Layer 2

Layer 1 Layer 2

AdaGNN with Φ! = Φ" ≠ 0

AdaGNN with Φ! = 0AdaGNN with Φ! = 0

GCN

Layer 1 Layer 2

Layer 1 Layer 2

Layer 1 Layer 2

Layer 1 Layer 2

AdaGNN with Φ! = Φ" ≠ 0

AdaGNN with Φ! = 0

{0, 0}

{0, 0} {0, 0}

Figure 2: An illustrative example to show how the learnable parameters of AdaGNN controlling the smoothness of different
feature channels benefits the model fitting ability.

of the input signal at the 𝑘-th layer, then we have

x𝑗 − 𝜙 𝑗,𝑘 L̃𝑠𝑦𝑚x𝑗 = x𝑗 − 𝜙 𝑗,𝑘 ŨΛ̃Ũ𝑇 x𝑗
= (ŨŨ𝑇 − 𝜙 𝑗,𝑘 ŨΛ̃Ũ𝑇)x𝑗
= Ũ(I − 𝜙 𝑗,𝑘 Λ̃)Ũ𝑇 x𝑗 .

As a consequence, the frequency response of AdaGNN can be

derived as 𝑔𝑘 (˜𝜆𝑖) = 1 − 𝜙 𝑗,𝑘
˜𝜆𝑖 . If we stack 𝐾 layers together,

then the overall frequency response function can be derived as

𝑓𝐾 (˜𝜆𝑖 , 𝜙 𝑗) =
∏𝐾
𝑘=1

𝑔𝑘 (˜𝜆𝑖 , 𝜙 𝑗,𝑘) =
∏𝐾
𝑘=1

(1 − 𝜙 𝑗,𝑘 ˜𝜆𝑖). □

Compared with the 𝐾-layered GCN whose frequency response

function is 𝑓𝐾 (˜𝜆𝑖) = (1 − ˜𝜆𝑖)𝐾 for any feature channel
1
, the ad-

vantages of AdaGNN are three-fold: (1) the parameter 𝜙 𝑗,𝑘 adjusts

the relative importance of high-frequency and low-frequency com-

ponents at each layer 𝑘 ; (2) when multiple layers are stacked, the

importance of different frequency components can be better cap-

tured as a set of trainable parameters {𝜙 𝑗,1, ..., 𝜙 𝑗,𝐾 }, yielding amore

complex frequency response function; (3) the frequency response

function of each feature channel is decoupled from each other,

providing them with more flexibility to achieve different levels of

smoothness and to learn more discriminative node representations.

3.3 Spatial Analysis of AdaGNN
Corollary 1. AdaGNN adaptively adjusts the smoothness of each
feature channel via learnable parameter 𝚽 in the information aggre-
gation process in the spatial domain.

Based on Obervation 1, we learn that the weights in 𝚽 can be

regarded as a smoothness controller in the information aggrega-

tion process at each layer. When the corresponding weights in 𝜙

is large for a certain feature channel, then more information will

be aggregated to the central node in this channel; however, when

when the corresponding weights in 𝜙 is small for a certain feature

channel, less information will flow into a node from its neigh-

bors. In this regard, the proof of Corollary 1 is straightforward, i.e.,

1
Here we also omit the weight matrix and nonlinear transformation function at each

layer for fair comparison.

AdaGNN adaptively adjusts the smoothness of eachfeature channel

via controlling how much information can flow into a node from

its neighbors. To better illustrate how this process helps achieve

better information propagation and learn more discriminative node

representations in the spatial domain, we provide a toy example

with different exemplary operators, which is introduced as follows.

An illustrative Example. In Fig. 2, we provide an illustrative

example to show how different feature channels learn different lev-

els of smoothness, which is essential to alleviate the over-smoothing

problem. Here we have five nodes and two feature channels (blue

and yellow). At the very beginning, the upper left node is associ-

ated with the blue channel and the middle node is with the yellow

channel. For GCN, features propagate with the same mechanism

and the node representations become the same after two layers.

For AdaGNN, suppose the learnable parameters for these two chan-

nels across two layers are Φ𝐵 = {𝜙𝐵,1, 𝜙𝐵,2} and Φ𝑌 = {𝜙𝑌,1, 𝜙𝑌,2}.
When the parameters for these two channels are the same, AdaGNN

still suffers from the over-smoothing problem (upper right subfig-

ure). By adaptively learning the optimal parameters, we can easily

control the smoothness of each feature channel, which naturally

alleviates the over-smoothing problem (the lower two subfigures).

3.4 Over-smoothing Analysis
Here we show why over-smoothing is inevitable in GCN and its

variants with fixed low-pass filters, and why our proposed AdaGNN

can naturally alleviate the over-smoothing problem.

Theorem 2. For any fixed low-pass filters defined over L̃𝑠𝑦𝑚 ,
we assume ˜𝜆1 is the smallest eigenvalue. Given a graph signal x,
suppose we convolve x with the filter across 𝐾 layers (assume the
filter is 𝑔𝑘 (.) at layer 𝑘). If the total frequency response satisfies that
lim

𝐾→∞
∏𝐾
𝑘=1

𝑔𝑘 (˜𝜆𝑖) = 0 (∀ ˜𝜆𝑖 ≠ ˜𝜆1), then over-smoothing issue is

inevitable (i.e., feature values of different nodes become the same),
and vice versa.

Proof. Consider a graph signal x ∈ R𝑁 as input. Here we as-

sume that the value of at least one dimension in x is different from

other dimensions, i.e., x is not an over-smoothed signal and 𝑁 ≥ 2.

Full Paper Track CIKM ’21, November 1–5, 2021, Virtual Event, Australia

396

Fact 1. For any L̃𝑠𝑦𝑚 = ŨΛ̃Ũ𝑇 ∈ R𝑁×𝑁 of an undirected graph,
columns in Ũ are orthogonal to each other, and eigenvector ũ1 cor-
responding to the smallest eigenvalue ˜𝜆1 is collinear with the vector
[1, 1, 1, ..., 1] of length 𝑁 .

As such, we can regard L̃𝑠𝑦𝑚x = ŨΛ̃Ũ𝑇 x as a process of project-

ing x onto 𝑁 eigenvectors, then re-weighting the length of each

component vector and summing them together. Assume weight of

each frequency component (i.e., each
˜𝜆𝑖 , 1 ≤ 𝑖 ≤ 𝑁) of the filter

defined over L̃𝑠𝑦𝑚 at filtering time 𝑘 (1 ≤ 𝑘 ≤ 𝐾) being 𝑔𝑘 (˜𝜆𝑖), then
x𝐾 , i.e., x being filtered 𝐾 times, will be

x𝐾 =

𝐾∏
𝑘=1

𝑔𝑘 (˜𝜆1)
u1 · x
|u1 |2

u1 +
𝐾∏
𝑘=1

𝑔𝑘 (˜𝜆2)
u2 · x
|u2 |2

u2 (10)

+ ... +
𝐾∏
𝑘=1

𝑔𝑘 (˜𝜆𝑁)
u𝑁 · x
|u𝑁 |2

u𝑁 .

Fact 2. If all entries of an 𝑁 -dimensional nonzero vector are the
same, then this vector is collinear with the vector [1, 1, 1, ..., 1] of
length 𝑁 (N ≥ 2).

Based on Fact 2, we learn that x𝐾 is collinear with u1 when

𝐾 → ∞ (i.e., over-smoothing issue being inevitble when 𝐾 gets

larger) iff lim

𝐾→∞
∏𝐾
𝑘=1

𝑔𝑘 (˜𝜆𝑖) = 0 (∀ ˜𝜆𝑖 ≠ ˜𝜆1). □

As the filter of conventional GCN and its variants are mainly

defined over L̃𝑠𝑦𝑚 and satisfy the above condition at extremely deep

layers, thus they often suffer from the over-smoothing problem.

Meanwhile, we have the following corollary for AdaGNN.

Corollary 2. Our AdaGNNmodel can naturally alleviate the over-
smoothing problem at deeper layers.

The proof of Corollary 2 is very straightforward. In Theorem

1, we have shown that for any feature channel 𝑗 , its frequency

response function over 𝐾 layers is

∏𝐾
𝑘=1

(1 − 𝜙 𝑗,𝑘 ˜𝜆𝑖), where 0 ≤
˜𝜆𝑖 < 2 [43]. The trainable parameter 𝜙 𝑗,𝑘 can help adjust the value

of frequency response to ensure it does not satisfy the condition

in Theorem 2 (i.e., preventing the total frequency response from

approaching 0), naturally alleviating the over-smoothing problem.

4 EXPERIMENTAL EVALUATIONS
In this section, we perform experiments on several real-world

datasets to validate the effectiveness of AdaGNN. In particular, we

aim to answer the following research questions – RQ1: How does

AdaGNN perform compared with other state-of-the-art spectral

GNNs and corresponding variants? RQ2: How well can AdaGNN

alleviate the over-smoothing problems at deeper layers? RQ3: In
which way will different frequency components contribute to learn-

ing? RQ4: How much the adaptive frequency response filter of the

proposed AdaGNN contributes to the over-smoothing alleviation?

4.1 Experimental Settings
Datasets.To comprehensively explore the performance of AdaGNN,

we use six real-world attributed networks, including two social net-

works BlogCatalog and Flickr [28], one co-author networkACM [40],

and three citation networks Cora, Citeseer, and Pubmed [24]. It

should be noted that the average node degree of two social networks

BlogCatalog and Flickr are much higher than others.

Baselines and evaluation protocols.We design two different

versions of AdaGNN by instantiating L̃ as L̃𝑟𝑤 and L̃𝑠𝑦𝑚 , and we

name these two implementations as AdaGNN-R and AdaGNN-S.

These two methods are compared with the following state-of-the-

art GNNs: (1) GCN [24]; (2) GraphSAGE [19]; (3) SGC [43]. Also, we

compare our framework with the recently developed methods that

tackle over-smoothing: (4) DropEdge [38] – which relieves over-

smoothing issue by edgemasking; (5) PairNorm [51] – which tackles

over-smoothing with a normalization layer and its two different

corresponding implementations are PairNorm-SI and PairNorm-
SCS. We use the mean aggregator and assign the sampling rate of

1 for GraphSAGE. Meanwhile, GCN layers are used as the back-

bone of DropEdge, PairNorm-SI, and PairNorm-SCS. All methods

are compared on the semi-supervised node classification task. For

BlogCatalog, Flickr and ACM datasets, we randomly sample 10%

nodes for training, 20% for validation, and the rest 70% for test. For

Cora, Citeseer, and Pubmed, we use the same split as [24, 46]. Aver-

age classification accuracy on test dataset is presented in Table 2

and 3, where all the results are averaged over 10 different runs.

Implementation details. The proposed framework AdaGNN

is implemented in Pytorch [37] with Adam optimizer [23], and the

embedding dimensions are set to be 128 across all layers except the

first layer and the last layer. ReLU and Softmax activation functions

are used for the first and the last layer, and the rest layers do not

use any activation functions. For the baseline methods, we use

their released implementations, and the hidden unit number is also

specified as 128 for a fair comparison. For BlogCatalog, Flickr, Cora,

Citeseer and Pubmed, we vary the number of layers in {2, 4, 8,

16} for all methods; for ACM, we vary it in {2, 8, 32, 128} for all

methods to have a better observation of the over-smoothing issue.

Early stopping is used for model training. To train models with 2

layers, the maximum number of epochs is 300, learning rate is 0.01,

dropout rate is 0.5, 𝛼 of ℓ1-norm (only for AdaGNN) is 1e-6, 𝛽 of ℓ2-

norm (for all methods) is 9e-4. For models with deeper layers, these

hyper-parameters (e.g., learning rate, dropout rate) are selected

according to the best performance on the validation set.

4.2 Experimental Results
In this subsection, we show the detailed experimental results w.r.t.

the research questions proposed above.

Model Expressiveness (RQ1) To validate the expressiveness

of the proposed AdaGNN, we compare AdaGNN-R and AdaGNN-S

with different baselines on semi-supervised node classification. We

vary the model layer 𝐾 from 2 to 128 for ACM and 2 to 16 for other

datasets, and present the performance of all models w.r.t. layer num-

ber in Table 2 and Table 3, respectively. Here we adopt different

layer settings for different datasets in order to get better observa-

tion of over-smoothing for different GNNs, and make comparison

with other state-of-the-art baselines tackling over-smoothing issue.

Based on the experimental performance, we make the following

observations: (1) The proposed AdaGNN-R and AdaGNN-S outper-

form baseline methods in most cases, which demonstrates that the

designed adaptive frequency response filter can indeed increase

the fitting capability of the model by learning more discriminative

embeddings. (2) The performance improvements of AdaGNN-R and

AdaGNN-S are more obvious on BlogCatalog and Flickr compared

Full Paper Track CIKM ’21, November 1–5, 2021, Virtual Event, Australia

397

Table 1: Detailed statistics of the datasets in our experiments.

BlogCatalog Flickr ACM Cora Citeseer Pubmed
Nodes 5,196 7,575 16,484 2,708 3,327 19,717

Edges 173,468 242,146 71,980 5,429 4,732 44,338

Features 8,189 12,047 8,337 1,433 3,703 500

Average Degree 66.8 63.9 8.7 4.0 2.8 4.5

Classes 6 9 9 7 6 3

Table 2: Average accuracy with standard deviation on ACM (the performance of AdaGNN-R and AdaGNN-S is marked in bold).
Result of GraphSAGE with 128 layers is omitted due to gradient instability in our hyper-parameter search space.

Dataset Model 2 Layer 8 Layer 32 Layer 128 Layer

ACM

GCN 75.55 ± 0.2% 73.54 ± 0.3% 53.74 ± 1.9% 35.97 ± 0.7%

GraphSAGE 75.29 ± 0.2% 73.12 ± 0.6% 52.21 ± 1.5% —

SGC 73.83 ± 0.4% 75.14 ± 0.1% 73.80 ± 0.3% 64.01 ± 0.4%

DropEdge-GCN 73.05 ± 0.6% 72.44 ± 0.8% 71.43 ± 2.2% 67.37 ± 1.9%

Pairnorm-GCN-SI 74.87 ± 0.3% 74.05 ± 0.1% 73.63 ± 0.2% 68.35 ± 2.0%

Pairnorm-GCN-SCS 75.44 ± 0.1% 73.01 ± 0.3% 73.33 ± 0.1% 70.84 ± 1.4%

AdaGNN-R 75.14 ± 0.3% 75.27 ± 0.1% 75.15 ± 0.0% 74.55 ± 0.1%
AdaGNN-S 75.65 ± 0.2% 75.83 ± 0.4% 75.64 ± 0.0% 74.95 ± 0.1%

with other datasets. The reason could be attributed to their high

average node degree of social network (as indicated in Table 1)

– nodes are influenced by more neighbors during neighborhood

aggregation, which is consistent with the observations in previous

literature [6]. For such dataset with high average node degree, the

adaptive frequency response provided by AdaGNN can help achieve

more appropriate feature smoothness. This provide us larger per-

formance improvement compared with other GNNs.

Over-smoothing (RQ2) Now we answer RQ2 by investigating

howmodels perform when the layer number increases. We have the

following observations based on Table 2 and Table 3: (1) The best

performance is achieved at shallow layers for all baselines; however

the performance of conventional GNNs (e.g., GCN, GraphSAGE,

and SGC) drops sharply when layer goes deeper, revealing that they

suffer from the over-smoothing issue at deeper layers. (2) DropEdge

and PairNorms (including PairNorm-SI and -SCS) are recently pro-

posed state-of-the-art methods to relieve over-smoothness, whose

performance does not drop as fast as conventional GNNs. In partic-

ular, the performance of DropEdge is comparable to its backbone

GCN while PairNorms is inferior to its backbone in many scenarios,

which is consistent with the observations in the original papers [51].

(3) The performances of the proposed AdaGNN-R and AdaGNN-S

are further improved with more powerful representations at deeper

layers in our proposed framework, demonstrating the effectiveness

of the proposed filter in tackling over-smoothing and extracting

more information from deeper layers.

Filter Analysis (RQ3) To answer RQ3, in Fig. 3a, we provide

a detailed visualized comparison between the fixed filter of SGC

and the learned filters of AdaGNN-S for different feature chan-

nels. It should be noted that the frequency response of the two

models can be compared following the order of eigenvalues due

to both AdaGNN and SGC are graph Laplacian matrix based fil-

ters [10]. Frequency response from 0 (the lowest frequency for

undirected graph based on Laplacian spectrum) to 2 (the highest

frequency for undirected graph based on Laplacian spectrum [10])

is presented without cut-off for generalization purpose. As can be

shown, firstly, the frequency response of AdaGNN is naturally en-

forced with different characteristics for different feature channel

after the optimization. This demonstrate the effectiveness of the

learnable filter in our proposed AdaGNN. Secondly, the learned

frequency response function of AdaGNN-S varies across feature

channels while the function of SGC treats these channels equally.

Compared with the band-stop frequency response function of SGC,

AdaGNN-S preserves more middle-frequency components, which

could help to learn more discriminative representations. Finally, the

response of AdaGNN-S is highly selective across high-frequency

components, revealing that some of them are complementary to

low/middle frequencies to improve performance while some can

be taken as noise.

Ablation Study (RQ4) Now we perform ablation study to an-

swer RQ4. It shold be noted that AdaGNN-S reduces to GCN when

we remove the parameter matrix Φ and incorporate the weight ma-

trix and activation function in the intermedia layer. Consequently,

in order to individually explore the contribution of the two com-

ponents to the final performance, we compare the performance

of three variants of AdaGNN for ablation study, i.e., AdaGNN-S,

AdaGNN-S-w/o-Φ, and GCN in Fig. 3b. We make the discussion

as follows. Firstly, it can be clearly observed from Fig. 3b that the

learning performance is greatly reduced when Φ is removed at

each layer. This demonstrates the indispensable contribution of the

learnable filter to the shown performance improvement on node

classification. At the same time, compared with original AdaGNN-S,

AdaGNN-S-w/o-Φ shows the tendency of over-smoothing in deeper

layers, which can also be observed on GCN. This indicates that the

learnable diagonal matrix Φ in AdaGNN-S also contributes to the

over-smoothing relief when more layers are stacked together.

Full Paper Track CIKM ’21, November 1–5, 2021, Virtual Event, Australia

398

Table 3: Average accuracy with standard deviation on BlogCatalog, Flickr, Cora, Citeseer and Pubmed (the performance of
AdaGNN-R and AdaGNN-S is marked in bold).

Dataset Model 2 Layer 4 Layer 8 Layer 16 Layer

BlogCatalog

GCN 73.98 ± 0.6% 69.71 ± 0.4% 37.61 ± 2.2% 20.61 ± 1.9%

GraphSAGE 70.41 ± 0.5% 67.03 ± 0.5% 39.15 ± 1.6% 18.34 ± 3.9%

SGC 73.97 ± 0.6% 68.94 ± 0.8% 47.94 ± 0.9% 29.02 ± 1.7%

DropEdge-GCN 74.17 ± 0.7% 70.96 ± 1.3% 60.51 ± 2.4% 51.88 ± 0.8%

Pairnorm-GCN-SI 67.32 ± 0.7% 63.61 ± 0.9% 65.04 ± 0.6% 67.51 ± 0.4%

Pairnorm-GCN-SCS 71.67 ± 0.3% 67.01 ± 0.2% 69.30 ± 0.7% 69.75 ± 1.2%

AdaGNN-R 86.80 ± 0.3% 87.04 ± 0.2% 86.68 ± 0.1% 86.44 ± 0.5%
AdaGNN-S 88.50 ± 0.2% 88.79 ± 0.2% 88.81 ± 0.1% 88.19 ± 0.2%

Flickr

GCN 59.82 ± 0.7% 32.21 ± 0.9% 12.20 ± 1.0% 13.29 ± 0.1%

GraphSAGE 54.54 ± 0.7% 34.72 ± 0.6% 11.30 ± 0.1% 11.20 ± 0.2%

SGC 60.74 ± 0.8% 41.11 ± 1.5% 16.64 ± 2.2% 14.40 ± 1.3%

DropEdge-GCN 58.24 ± 3.1% 47.68 ± 0.8% 36.16 ± 0.3% 27.30 ± 1.6%

Pairnorm-GCN-SI 46.43 ± 0.2% 39.43 ± 1.3% 39.12 ± 0.8% 38.24 ± 0.2%

Pairnorm-GCN-SCS 48.93 ± 0.4% 39.44 ± 1.2% 34.79 ± 0.3% 38.17 ± 0.2%

AdaGNN-R 68.41 ± 0.5% 68.29 ± 0.5% 65.92 ± 0.1% 66.42 ± 0.2%
AdaGNN-S 71.68 ± 0.3% 72.03 ± 0.3% 72.93 ± 0.1% 73.03 ± 0.4%

Cora

GCN 81.30 ± 0.3% 77.48 ± 0.4% 65.38 ± 0.2% 24.28 ± 4.5%

GraphSAGE 80.75 ± 0.1% 78.52 ± 1.5% 70.26 ± 2.1% 26.00 ± 5.7%

SGC 79.86 ± 0.5% 78.50 ± 0.4% 71.50 ± 1.8% 65.60 ± 4.1%

DropEdge-GCN 81.20 ± 0.4% 78.70 ± 0.4% 75.37 ± 1.6% 68.38 ± 1.6%

Pairnorm-GCN-SI 79.90 ± 0.5% 79.76 ± 0.5% 78.49 ± 0.5% 74.39 ± 0.2%

Pairnorm-GCN-SCS 81.90 ± 0.9% 78.69 ± 1.1% 78.18 ± 1.3% 73.00 ± 0.5%

AdaGNN-R 81.73 ± 0.3% 81.83 ± 0.1% 82.30 ± 0.4% 82.18 ± 0.2%
AdaGNN-S 81.60 ± 0.1% 81.80 ± 0.2% 82.60 ± 0.2% 82.39 ± 0.3%

Citeseer

GCN 71.30 ± 0.3% 63.16 ± 1.5% 34.20 ± 3.0% 33.28 ± 5.2%

GraphSAGE 70.85 ± 0.5% 66.58 ± 1.4% 47.00 ± 4.4% 30.37 ± 3.7%

SGC 69.13 ± 0.2% 69.03 ± 0.3% 67.53 ± 0.1% 66.22 ± 0.9%

DropEdge-GCN 71.20 ± 0.4% 66.10 ± 1.1% 52.38 ± 1.7% 49.22 ± 0.9%

Pairnorm-GCN-SI 67.71 ± 0.4% 66.21 ± 0.7% 64.88 ± 0.7% 60.55 ± 1.6%

Pairnorm-GCN-SCS 68.08 ± 1.4% 64.56 ± 1.6% 60.90 ± 1.8% 56.33 ± 1.6%

AdaGNN-R 70.30 ± 0.2% 70.70 ± 0.2% 71.54 ± 0.4% 70.40 ± 0.1%
AdaGNN-S 71.46 ± 0.2% 71.95 ± 0.1% 72.03 ± 0.1% 71.34 ± 0.3%

Pubmed

GCN 78.58 ± 0.6% 72.02 ± 0.5% 61.80 ± 6.7% 54.10 ± 8.4%

GraphSAGE 78.22 ± 0.2% 72.05 ± 2.0% 70.23 ± 4.8% 56.03 ± 5.7%

SGC 77.60 ± 0.4% 75.27 ± 0.9% 71.20 ± 0.3% 60.00 ± 2.3%

DropEdge-GCN 78.33 ± 0.3% 77.70 ± 1.0% 74.80 ± 0.8% 71.97 ± 1.2%

Pairnorm-GCN-SI 76.80 ± 0.4% 77.37 ± 0.2% 78.11 ± 0.6% 77.51 ± 0.9%

Pairnorm-GCN-SCS 78.46 ± 0.1% 75.65 ± 0.9% 77.74 ± 1.2% 71.37 ± 0.8%

AdaGNN-R 78.90 ± 0.1% 78.40 ± 0.1% 78.50 ± 0.2% 78.00 ± 0.2%
AdaGNN-S 78.60 ± 0.2% 78.40 ± 0.2% 78.70 ± 0.2% 78.60 ± 0.1%

5 RELATEX WORK
Spectral-based Graph Neural Networks. Existing graph neural

network models are often categorized as spectral-based and spatial-

based methods depending on the operation domain [44, 48]. Graph

Signal Processing lays a solid mathematical foundation for spectral-

basedmethods by enabling them to define graph filter in the spectral

domain. Bruna et al. [4] first proposed to generalize the convolution

operations in CNN to graphs and define graph filter with the spec-

trum of the graph Laplacian matrix. Later on, Defferrard et al. [11]

proposed a fast localized convolutional filter ChebNet based on

Chebyshev polynomial which avoids expensive eigendecomposi-

tion operation and is considered as a special case of CayleyNet that

applies Cayley polynomials [27]. The seminal work of GCN [24]

utilizes a spectral filter by truncating Chebyshev polynomial to

only first order and the filter can be regarded as neighborhood

aggregation in the spatial domain. SGC [43] further simplifies GCN

by collapsing weight matrix in consecutive layers and showed that

there are redundant computations in GCN. Additionally, recent

efforts attempt to improve the spectral filter from different perspec-

tives, such as learning hidden structural relations [30], emphasizing

both low and high frequencies [3] and capturing both local and

Full Paper Track CIKM ’21, November 1–5, 2021, Virtual Event, Australia

399

(a) Frequency response. (b) Model ablation study.

Figure 3: (a) Frequency response function of 4-layered AdaGNN-S and SGC on Flickr. The black dashed curve denotes the
response of SGC while other solid curves denote the responses of AdaGNN-S across feature channels. (b) Model ablation study
of AdaGNN-S on BlogCatalog, where layer number varies from {2, 4, 8, 16}.

global information [54]. Despite their empirical effectiveness, these

attempts cannot well characterize the varying importance of fre-

quencies for learning. Different from all previous works, in this

paper, we achieve a learnable filter individually for each feature

dimension. In this way, AdaGNN achieves natural over-smoothing

alleviation with more discriminatove representations, which also

contributes to the performance.

Spatial-based Graph Neural Networks. Spatial-based meth-

ods perform convolution in the spatial domain by aggregating and

transforming the information of neighboring nodes. Different meth-

ods in this family mainly differ in the way how the aggregation func-

tion is designed. One of the earliest attempts NN4G [33] sums up

the information from a central node’s neighbors. DCNN [1] regards

graph convolutions as a diffusion process w.r.t. specific probabili-

ties to attain equilibrium after several rounds. To better distinguish

the importance of different neighbors for information aggregation,

attention mechanism is also utilized in GAT [41]. MPNN [17] gener-

alizes different spatial-based methods as a unified message-passing

framework. GraphSAGE [19] aggregates neighborhood information

via mean/max/LSTM pooling. GIN [45] allocates a learnable param-

eter for the center node when performing information aggregation,

which empowers the model stronger capability to differentiate

different graph structures. More recently, a myriad of more sophis-

ticated aggregation strategies compared with previous works are

developed and a more detailed review can be referred to [44, 50].

Over-smoothing of Graph Neural Networks. Information

aggregation from node neighbors is a critical step of GNNs, which

smoothes node feature representations over the whole graph [2, 52,

53]. In the spectral domain, this can be interpreted as weakening the

high-frequency components of input signals. For example, studies

have shown that the convolution operation in GCN corresponds

to a single fixed low-pass filter [35]. When multiple convolution

layers are stacked and the model goes deeper, the over-smoothing

issue is inevitable, which means node representations converge to

similar values. Li et al. [29] proved that GCN is actually a kind of

Laplacian smoothing process, and proposed the challenge of over-

smoothing for the first time. After that, some studies demonstrate

that certain level of smoothness benefits node representation learn-

ing while over-smoothing broadly exists in deeper GNNs [6, 12].

More recently, some researches attempt to relieve this problem via

residual-like connections [8, 31, 32]. Nevertheless, suchmethods are

unable to avoid the situation where a node is overwhelmed in the

information of its neighbors in the information aggregation process.

There are also works directly relieve over-smoothing in this process

via using either edge masking [38] or re-normalization [51]; how-

ever performance still obviously reduces when models go deeper.

Consequently, it remains a challenging problem to directly relieve

over-smoothing in the information propagating process. To the

best of our knowledge, we are the first to provide an understanding

of this problem from the perspective of the spectral filter, and our

experiments also demonstrate its superiority over other prevalent

solutions such as DropEdge [38] and PairNorm [51].

6 CONCLUSION
Existing spectral GNNs mainly apply fixed filters for the convolu-

tion operation, where such non-learnable filter leads to two prob-

lems. Firstly, due to that the graph filter is fixed, their expressiveness

is limited in the learning process; secondly, it could be hard for such

GNNs to achieve an appropriate level of feature smoothness, and

over-smoothing happens unavoidbly in deeper layers. To tackle

the above mentioned problems, in this paper, we propose a novel

framework AdaGNN with an adaptive frequency response filter.

By learning to individually control information flow for different

feature channels, the proposed filter is able to adaptively adjust

the importance of different frequency components of each input

feature channel, which leads to a learnable filter when multiple

layers are stacked together. AdaGNN also learns more discrimina-

tive representations via achieving different levels of smoothness

for different feature channels. We provide theoretical analysis for

the proposed AdaGNN from different aspects, and empirical experi-

mental evaluations also demonstrate its superiority on performance

over state-of-the-art GNNs and over-smoothing alleviation over

other state-of-the-art baselines. We will leave the fairness issues of

the proposed AdaGNN framework as our future research directions.

7 ACKNOWLEDGEMENTS
This material is, in part, supported by the National Science Founda-

tion (NSF) under grant number 2006844 and 2006861. We would like

to thank the anonymous reviewers for their constructive feedback.

Full Paper Track CIKM ’21, November 1–5, 2021, Virtual Event, Australia

400

REFERENCES
[1] James Atwood and Don Towsley. 2016. Diffusion-convolutional neural networks.

In Advances in Neural Information Processing Systems. 1993–2001.
[2] Mikhail Belkin, Partha Niyogi, and Vikas Sindhwani. 2006. Manifold regulariza-

tion: A geometric framework for learning from labeled and unlabeled examples.

Journal of Machine Learning Research 7, Nov (2006), 2399–2434.

[3] Deyu Bo, Xiao Wang, Chuan Shi, and Huawei Shen. 2021. Beyond Low-frequency

Information in Graph Convolutional Networks. arXiv preprint arXiv:2101.00797
(2021).

[4] J. Bruna, W. Zaremba, A. Szlam, and Y. LeCun. 2013. Spectral networks and

locally connected networks on graphs. arXiv preprint arXiv:1312.6203 (2013).
[5] Chen Cai and Yusu Wang. 2020. A note on over-smoothing for graph neural

networks. arXiv preprint arXiv:2006.13318 (2020).
[6] Deli Chen, Yankai Lin, Wei Li, Peng Li, Jie Zhou, and Xu Sun. 2019. Measuring

and Relieving the Over-smoothing Problem for Graph Neural Networks from

the Topological View. arXiv preprint arXiv:1909.03211 (2019).
[7] Deli Chen, Yankai Lin, Wei Li, Peng Li, Jie Zhou, and Xu Sun. 2020. Measuring

and relieving the over-smoothing problem for graph neural networks from the

topological view. In Proceedings of the AAAI Conference on Artificial Intelligence,
Vol. 34. 3438–3445.

[8] Ming Chen, Zhewei Wei, Zengfeng Huang, Bolin Ding, and Yaliang Li. 2020.

Simple and deep graph convolutional networks. In International Conference on
Machine Learning. PMLR, 1725–1735.

[9] Yunpeng Chen, Haoqi Fan, Bing Xu, Zhicheng Yan, Yannis Kalantidis, Marcus

Rohrbach, Shuicheng Yan, and Jiashi Feng. 2019. Drop an octave: Reducing

spatial redundancy in convolutional neural networks with octave convolution. In

Proceedings of 2019 IEEE International Conference on Computer Vision. 3435–3444.
[10] Fan RK Chung and Fan Chung Graham. 1997. Spectral graph theory. Number 92.

American Mathematical Soc.

[11] Michaël Defferrard, Xavier Bresson, and Pierre Vandergheynst. 2016. Convolu-

tional neural networks on graphs with fast localized spectral filtering. InAdvances
in Neural Information Processing Systems. 3844–3852.

[12] Zhijie Deng, Yinpeng Dong, and Jun Zhu. 2019. Batch virtual adversarial training

for graph convolutional networks. arXiv preprint arXiv:1902.09192 (2019).
[13] Yushun Dong, Jian Kang, Hanghang Tong, and Jundong Li. 2021. Individual

Fairness for Graph Neural Networks: A Ranking based Approach. In Proceedings
of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining.
300–310.

[14] Yushun Dong, Ninghao Liu, Brian Jalaian, and Jundong Li. 2021. EDITS: Mod-

eling and Mitigating Data Bias for Graph Neural Networks. arXiv preprint
arXiv:2108.05233 (2021).

[15] Wenqi Fan, Yao Ma, Qing Li, Yuan He, Eric Zhao, Jiliang Tang, and Dawei Yin.

2019. Graph neural networks for social recommendation. In Proceedings of the
2019 World Wide Web Conference. 417–426.

[16] Hongyang Gao and Shuiwang Ji. 2019. Graph u-nets. arXiv preprint
arXiv:1905.05178 (2019).

[17] Justin Gilmer, Samuel S Schoenholz, Patrick F Riley, Oriol Vinyals, and George E

Dahl. 2017. Neural message passing for quantum chemistry. In Proceedings of the
34th International Conference on Machine Learning. JMLR. org, 1263–1272.

[18] Rafael C Gonzales and Richard E Woods. 2002. Digital image processing.

[19] Will Hamilton, Zhitao Ying, and Jure Leskovec. 2017. Inductive representation

learning on large graphs. In Advances in Neural Information Processing Systems.
1024–1034.

[20] Kaiming He, Jian Sun, and Xiaoou Tang. 2010. Guided image filtering. In Pro-
ceedings of 2010 European Conference on Computer Vision. 1–14.

[21] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. 2016. Deep Resid-

ual Learning for Image Recognition. In Proceedings of 2016 IEEE Conference on
Computer Vision and Pattern Recognition. 770–778.

[22] Yoon Kim. 2014. Convolutional Neural Networks for Sentence Classification.

arXiv preprint arXiv:1408.5882 (2014).
[23] Diederik P Kingma and Jimmy Ba. 2014. Adam: A method for stochastic opti-

mization. arXiv preprint arXiv:1412.6980 (2014).
[24] Thomas N Kipf and MaxWelling. 2016. Semi-supervised classification with graph

convolutional networks. arXiv preprint arXiv:1609.02907 (2016).

[25] Thomas N Kipf and Max Welling. 2016. Variational graph auto-encoders. arXiv
preprint arXiv:1611.07308 (2016).

[26] Yann LeCun, Léon Bottou, Yoshua Bengio, Patrick Haffner, et al. 1998. Gradient-

based Learning Applied to Document Recognition. Proc. IEEE 86, 11 (1998),

2278–2324.

[27] Ron Levie, Federico Monti, Xavier Bresson, and Michael M Bronstein. 2018.

Cayleynets: Graph convolutional neural networks with complex rational spectral

filters. IEEE Transactions on Signal Processing 67, 1 (2018), 97–109.

[28] Jundong Li, Xia Hu, Jiliang Tang, and Huan Liu. 2015. Unsupervised streaming

feature selection in social media. In Proceedings of the 24th ACM International on
Conference on Information and Knowledge Management. 1041–1050.

[29] Qimai Li, Zhichao Han, and Xiao-Ming Wu. 2018. Deeper insights into graph

convolutional networks for semi-supervised learning. In Proceedings of the 32nd

AAAI Conference on Artificial Intelligence.
[30] Ruoyu Li, Sheng Wang, Feiyun Zhu, and Junzhou Huang. 2018. Adaptive graph

convolutional neural networks. In Proceedings of the 32nd AAAI conference on
Artificial Intelligence.

[31] Wei Li, Shuheng Li, Shuming Ma, Yancheng He, Deli Chen, and Xu Sun. 2019.

Recursive Graphical Neural Networks for Text Classification. arXiv preprint
arXiv:1909.08166 (2019).

[32] Meng Liu, Hongyang Gao, and Shuiwang Ji. 2020. Towards deeper graph neural

networks. In Proceedings of the 26th ACM SIGKDD International Conference on
Knowledge Discovery & Data Mining. 338–348.

[33] Alessio Micheli. 2009. Neural network for graphs: A contextual constructive

approach. IEEE Transactions on Neural Networks 20, 3 (2009), 498–511.
[34] Mathias Niepert, Mohamed Ahmed, and Konstantin Kutzkov. 2016. Learning

convolutional neural networks for graphs. In Proceedings of 2016 International
Conference on Machine Learning. 2014–2023.

[35] Hoang NT and Takanori Maehara. 2019. Revisiting Graph Neural Networks: All

We Have is Low-Pass Filters. arXiv preprint arXiv:1905.09550 (2019).
[36] Shirui Pan, Ruiqi Hu, Guodong Long, Jing Jiang, Lina Yao, and Chengqi Zhang.

2018. Adversarially regularized graph autoencoder for graph embedding. arXiv
preprint arXiv:1802.04407 (2018).

[37] Adam Paszke, Sam Gross, Soumith Chintala, Gregory Chanan, Edward Yang,

Zachary DeVito, Zeming Lin, Alban Desmaison, Luca Antiga, and Adam Lerer.

2017. Automatic differentiation in pytorch. (2017).

[38] Yu Rong, Wenbing Huang, Tingyang Xu, and Junzhou Huang. 2019. DropE-

dge: Towards Deep Graph Convolutional Networks on Node Classification. In

Proceedings of 2019 International Conference on Learning Representations.
[39] David I Shuman, Sunil K Narang, Pascal Frossard, Antonio Ortega, and Pierre

Vandergheynst. 2013. The emerging field of signal processing on graphs: Ex-

tending high-dimensional data analysis to networks and other irregular domains.

IEEE Signal Processing Magazine 30, 3 (2013), 83–98.
[40] Jie Tang, Jing Zhang, Limin Yao, Juanzi Li, Li Zhang, and Zhong Su. 2008. Arnet-

miner: extraction and mining of academic social networks. In Proceedings of the
14th ACM SIGKDD International Conference on Knowledge Discovery and Data
Mining. 990–998.

[41] Petar Veličković, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro

Lio, and Yoshua Bengio. 2017. Graph attention networks. arXiv preprint
arXiv:1710.10903 (2017).

[42] Xiang Wang, Xiangnan He, Meng Wang, Fuli Feng, and Tat-Seng Chua. 2019.

Neural graph collaborative filtering. In Proceedings of the 42nd international ACM
SIGIR conference on Research and development in Information Retrieval. 165–174.

[43] Felix Wu, Tianyi Zhang, Amauri Holanda de Souza Jr, Christopher Fifty, Tao Yu,

and Kilian QWeinberger. 2019. Simplifying graph convolutional networks. arXiv
preprint arXiv:1902.07153 (2019).

[44] Zonghan Wu, Shirui Pan, Fengwen Chen, Guodong Long, Chengqi Zhang, and

S Yu Philip. 2020. A comprehensive survey on graph neural networks. IEEE
Transactions on Neural Networks and Learning Systems (2020).

[45] Keyulu Xu, Weihua Hu, Jure Leskovec, and Stefanie Jegelka. 2018. How powerful

are graph neural networks? arXiv preprint arXiv:1810.00826 (2018).
[46] Zhilin Yang, William W Cohen, and Ruslan Salakhutdinov. 2016. Revisiting semi-

supervised learning with graph embeddings. arXiv preprint arXiv:1603.08861
(2016).

[47] Zhitao Ying, Jiaxuan You, Christopher Morris, Xiang Ren,Will Hamilton, and Jure

Leskovec. 2018. Hierarchical graph representation learning with differentiable

pooling. In Advances in Neural Information Processing Systems. 4800–4810.
[48] Si Zhang, Hanghang Tong, Jiejun Xu, and Ross Maciejewski. 2019. Graph convo-

lutional networks: a comprehensive review. Computational Social Networks 6, 1
(2019), 11.

[49] Xiang Zhang, Junbo Zhao, and Yann LeCun. 2015. Character-level Convolutional

Networks for Text Classification. In Advances in Neural Information Processing
Systems. 649–657.

[50] Ziwei Zhang, Peng Cui, and Wenwu Zhu. 2020. Deep learning on graphs: A

survey. IEEE Transactions on Knowledge and Data Engineering (2020).

[51] Lingxiao Zhao and Leman Akoglu. 2019. PairNorm: Tackling Oversmoothing in

GNNs. arXiv preprint arXiv:1909.12223 (2019).
[52] Dengyong Zhou, Olivier Bousquet, Thomas N Lal, Jason Weston, and Bernhard

Schölkopf. 2004. Learning with local and global consistency. In Advances in
Neural Information Processing Systems. 321–328.

[53] Xiaojin Zhu, Zoubin Ghahramani, and John D Lafferty. 2003. Semi-supervised

learning using gaussian fields and harmonic functions. In Proceedings of the 20th
International Conference on Machine Learning. 912–919.

[54] Chenyi Zhuang and Qiang Ma. 2018. Dual graph convolutional networks for

graph-based semi-supervised classification. In Proceedings of the 2018 World Wide
Web Conference. 499–508.

[55] Dongmian Zou and Gilad Lerman. 2019. Encoding robust representation for

graph generation. In Proceedings of 2019 International Joint Conference on Neural
Networks. IEEE, 1–9.

Full Paper Track CIKM ’21, November 1–5, 2021, Virtual Event, Australia

401

	Abstract
	1 Introduction
	2 The Proposed Framework – AdaGNN
	2.1 Notations and Preliminaries
	2.2 Adaptive Frequency Response Filtering
	2.3 Overall Architecture of AdaGNN

	3 Theoretical Analysis
	3.1 Connections to GCN and GraphSAGE
	3.2 Spectral Analysis of AdaGNN
	3.3 Spatial Analysis of AdaGNN
	3.4 Over-smoothing Analysis

	4 Experimental Evaluations
	4.1 Experimental Settings
	4.2 Experimental Results

	5 Relatex Work
	6 Conclusion
	7 Acknowledgements
	References

