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ARTICLE INFO ABSTRACT
Keywords: Unmanned Aerial Vehicles (UAVs), as a recently emerging technology, enabled a new breed of unprecedented
UAV networks

applications in different domains. This technology’s ongoing trend is departing from large remotely-controlled
drones to networks of small autonomous drones to collectively complete intricate tasks time and cost-
effectively. An important challenge is developing efficient sensing, communication, and control algorithms
that can accommodate the requirements of highly dynamic UAV networks with heterogeneous mobility
levels. Recently, the use of Artificial Intelligence (AI) in learning-based networking has gained momentum to
harness the learning power of cognizant nodes to make more intelligent networking decisions by integrating
computational intelligence into UAV networks. An important example of this trend is developing learning-
powered routing protocols, where machine learning methods are used to model and predict topology evolution,
channel status, traffic mobility, and environmental factors for enhanced routing.

This paper reviews Al-enabled routing protocols designed primarily for aerial networks, including topology-
predictive and self-adaptive learning-based routing algorithms, with an emphasis on accommodating highly-
dynamic network topology. To this end, we justify the importance and adaptation of Al into UAV network
communications. We also address, with an Al emphasis, the closely related topics of mobility and networking
models for UAV networks, simulation tools and public datasets, and relations to UAV swarming, which serve
to choose the right algorithm for each scenario. We conclude by presenting future trends, and the remaining
challenges in Al-based UAV networking, for different aspects of routing, connectivity, topology control, security
and privacy, energy efficiency, and spectrum sharing.'

Artificial Intelligence
Predictive networking
Self-adaptive learning-based protocol

1. Introduction coordinated military attacks [13]. In addition to these commercialized

use cases, many new applications are under design and implementation

Unmanned Aerial Networks (UAVs) are an emerging technology
that has opened its way into many fields and is expected to con-
tinue impacting the future of human life in the coming years. UAVs
have already been utilized in many applications to provide fast, low-
cost, on-demand, and precise monitoring and actuation services while
minimizing human intervention and life-threatening risks. This covers
many applications including transportation [1], traffic control [2],
surveillance [3], border patrolling [4], search and rescue [5], disaster
management [6], wireless network connectivity [7,8], smart agricul-
ture and forestry [9], and remote immersion via mobile virtual real-
ity [10-12]. Drones are also widely used in the military domain. For
instance, Low-Cost UAV Swarming Technology (LOCUST) is a project
by the US navy to utilize a swarm of autonomous drones to perform
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in academia and industry. For instance, surveying and mapping [14],
volcano monitoring [15], UAV control by the brain [16], early warning
of severe weather [17], plant protection [18], airborne wind energy
harvesting systems [19], robotic herding of a flock of birds [20],
Amazon Prime Air [21], and UPS drone delivery service [22] are only
a few examples of many projects in their infancy steps.

Compared to piloted aircraft, satellite-based imaging, and ground-
based sensing and actuation platforms, UAVs offer several advantages,
including a small size, low operational and maintenance cost, less
human intervention requirements, less operational hazard, autonomous
control, more controlled imaging with adjustable zoom and angle of
view, and higher maneuverability levels [23]. Therefore, the UAV
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Fig. 1. The organization of this survey paper.

market has experienced continued growth in the past decades, from
an estimated $19.3 billion in 2019 to a projected $45.8 billion market
by 2025, which represents a Compound Annual Growth Rate (CAGR)
of 15.5% from 2019 to 2025 [24].

Despite the following advantages in using drone technology, there
still exist numerous challenges, and technical issues for implementing
networking and control protocols for UAV-based infrastructures [23].
For instance, the limited payload of UAVs translates into constraints in
power consumption, communication range, and computational limits
that in turn may cause difficulties for networking, robust control, infor-
mation acquisition and processing, autonomy, and task coordination.
Another issue is the extreme dynamicity of UAV networks due to
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their high speed, heterogeneous maneuverability levels, and obstacle-
sparse flight zones, compared to ground vehicle networks with more
predictable motion trajectories dictated by road patterns. Therefore,
communication, control, path-planning, and information acquisition
protocols that are primarily designed for ground platforms deem in-
efficient for UAV networks. For instance, connectivity of vehicular
networks along roads necessitates optimal positioning of nodes or
regulating their speed in a one-dimensional subspace that is not directly
applicable to UAV networks. Likewise, autonomous driving and colli-
sion avoidance for drones have different constraints and requirements,
compared to similar tasks in self-driving cars.

The goal of this survey paper is two-fold. First, we review UAV
networks’ features, including UAV technology, networking protocols,
and swarms, with a focus on characterizing the impact of mobility on
network topology, connectivity, and networking performance metrics.
In this respect, we highlight the importance of having an accurate
mobility prediction system for more efficient networking. Second, we
review routing protocols designed for UAV networks, emphasizing Al-
enabled routing protocols, which present better outcomes for high
mobility networks [25-27]. Furthermore, we addressed the closely re-
lated topics of mobility models for UAV networks, simulation tools and
public datasets, and relations to UAV swarming, which serve to choose
the right algorithm for each scenario, as an additional contribution of
this paper.

1.1. Motivation

Routing protocols developed for Vehicular Ad-Hoc Networks
(VANETSs) and other ground networks are not well-positioned to ac-
commodate the requirements of UAV networks. As stated earlier,
drones enjoy a higher mobility degree of freedom, compared to ground
vehicles. This leads to a more vivid and fast-changing topology in
comparison to VANETs [28]. Also, the lower node density of Flying
Ad-hoc Networks (FANETSs), compared to VANETS, raise connectivity
issues due to the drones’ limited communication ranges [29]. In terms
of channel modeling, fading, and diversity phenomena, FANETs benefit
from more accessible Line-of-Sight (LoS) links between UAVs and the
use of smart directional antennas for collective beamforming, and
similar techniques can offer higher gains [30,31]. From a different
point of view, it also highlights the necessity of developing more
accurate localization and tracking technology for aerial networks.

Furthermore, conventional routing protocols developed for VANETSs
merely rely on the node’s prior information or current perception of the
network topology, and do not perform well in maintaining connectiv-
ity. They either impose a large overhead for constantly updating the
global network information or require a time-consuming route setup
phase. Also, UAV networks are structure-free and not consistent with
centralized routing protocols. Appropriate routing protocols for UAV
networks should have properties like low complexity, low overhead,
and preferably without the need for global knowledge and lengthy
route setup stages, as discussed in [32]. The new generation of self-
adaptive learning-based and topology predictive routing protocols learn
the state of the network by experiencing and predicting dominant
trends and constantly adapting to both minor or abrupt changes. This
approach leads to a higher packet delivery ratio and energy efficiency.
In this paradigm, decisions are made based on the anticipated net-
work topology, and not solely based on the current state. These key
requirements promote Al-enabled routing protocols to achieve superior
performance [25-27]. Therefore, using Al methods to predict motion
patterns of freely flying UAVs in a 3-dimensional space is an inte-
gral part of Al-based UAV protocols, while routing protocols for a
2-dimensional network of cars along the highway (as in VANETSs) may
not necessarily need this computationally-expensive component. This
survey paper is devoted to highlighting recent developments in the Al-
based routing protocols and analyzing their benefits and drawbacks
when used in realistic situations.
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Table 1

Most recent survey papers for routing protocols in Wireless Sensor Networks.
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Year Survey Content included Drawback Application domain
SDN-based routing, monitoring, cellular, satellite, . .
. & Ag Does not include routing protocols beyond SDN-
[33] security, placement, evaluation tools and future SDN-based UAV networks
based methods.
2020 challenges.
UAV classification, application, mobility models, The review of predictive methods is not complete.
[34] routing protocols classification, challenges and open It also excludes self-adaptive learning-based routing ~ UAV networks
issues. protocols.
UAV communication networks issues, characteris-
[29] tics, design, applications, routing protocols, quality Does not consider learning-based routing protocols. UAV networks
of service, and future open research areas.
Network architecture and design, routing protocols
[35] including performance analysis and QoS metrics, Routing classification only includes a few methods. UAV networks
and opening issues.
UAV-UGV coordination, data gathering, monitor- Only considers routing methods for UAV-assisted
[36] ing, cellular communications, disaster management, networks, excluding routing protocols for UAV-to- UAV-assisted networks
computing and UAV-assisted routing. UAV communications.
. . . Only considers routing protocols for UAV-aided ve-
Routi tocols for UAV-aided vehicul d h
[37] outing pro' oco’s for & X ed vetewlar ad 19¢ ;o ar networks, excluding routing for UAV-to-UAV ~ UAV-aided vehicle networks
networks with open research issues and challenges. o
communications.
2019 138] FJAV design, architecture, routing protocols, open AI-enal?led routing prot(?co.ls and their impact in UAV networks
issues and research challenges. dynamic networks are missing.
Architect bilit; del ting techni
rehitecture, mo.l 1y mocess, r.ou ing techniques Self-adaptive learning-based methods are not con-
[39]1 and protocols with a comparative study. Future . UAV networks
. sidered.
challenges are also included.
UAV routing schemes, including objectives, chal- . . . .
N . - It only briefly mentions adaptive routing protocols,
[40] lenges, routing metrics, characteristics, and perfor- . . UAV networks
. . missing most of the Al-enabled routing protocols.
mance measures, along with open issues.
2018 [41] F{outing protocols comparison and open research  Does not include Al-enabled routing protocols, UAV networks
issues. among others.
Single-layer and cross-layer routing, challenges and Most of the routing protocols are suitable for
[42] s Y . . Y & 8 vehicular networks, but not defined for UAV Vehicular ad-hoc networks
open research directions.
2017 Networks.

UAV architectures, projects, characteristics, applica-

Does not consider Al-enabled routing protocols and

[43] tions and routing protocols, with emphasis in UAV
security challenges.
Position-based routing protocols with a detailed
[44] description and comparative study. Also, mobility
models and UAV applications are described.

Includes position-based routing protocols only,
which is just one type of UAV routing.

UAV networks

future trends.

UAV networks

UAV technology, UAV networking, UAV swarm for-
mation, mobility models, UAV routing protocols,
tools and public datasets to simulate real UAV
network environments, future trends and remaining
issues for UAV networking.

Our survey

NA

UAV networks

The rest of this paper is organized as presented in Fig. 1. In Sec-
tion 2, we investigate recently published survey papers to highlight the
new content and additional aspects covered by our paper. Next, we re-
view the UAV technologies used in military, industrial and commercial
applications in Section 3. In Section 4, we emphasize the role of Al
methods in improving the performance of UAV networking. Section 5
presents commonly used networking protocols, and UAV swarm forma-
tion methods are presented in Section 6. In Section 7, commonly-used
UAV mobility models, and their impact on key networking character-
istics, including connectivity, channel models, network topology, and
routing efficiency, is investigated. Fundamentals of conventional and
Al-enabled routing protocols, along with their stability under dynamic
conditions, are provided in Section 8. Tools, public datasets, and re-
mote experimentation infrastructures for testing routing protocols are
reviewed in Section 9. Future trends and remaining issues are discussed
in Section 10, followed by concluding remarks in Section 11.

2. Related work

There are a few recent review papers that survey routing protocols
for ground and aerial networks. Other related papers that review UAV
networks survey a broader set of aspects. Table 1 summarizes key topics
covered in these surveys, along with key topics missing in each paper.
To our knowledge, no paper provides a comprehensive and up-to-date
review of Al-based routing protocols for aerial networks, which is our
central focus.

Here, we closely discuss the most notable papers from the last
three years only, since newer papers usually tend to improve previous
reviews and cover the most recent developments. In addition to recent
studies, we also consider two fairly older papers for their remarkably
unique content. One paper is [45], which provides a thorough review of
routing protocols in inter-vehicle communication systems. This paper
covers broadcast-based routing, multicast, and geocast-based routing,
as well as unicast-based routing protocols, which is perhaps the most
complete review for routing protocols developed for vehicular net-
works. Another review is a seminal paper by Gupta et al. [23] published
in 2015, which offers a broad outlook and comprehensive review of
important issues in UAV networks. Also, it reviews the concept of
routing in networks subject to severe delays and disruptions, which is
unique among the published papers.

A survey paper by Awang et al. in 2017 [42] provides a review
of routing protocols for vehicular ad hoc networks describing existing
single-layer and cross-layer routing algorithms. It offers a fluent review
of routing protocol for VANETs along with a clear description of
the advantages and disadvantages of each method. However, most of
the methods mentioned in this paper are designed for VANETs, and
not suitable for FANETs with substantially different constraints and
requirements.

A review of routing protocols and security challenges in UAV net-
works is provided in [43]. This paper reviews different routing proto-
cols developed for dynamic networks. Nevertheless, it does not include
an important and emerging trend of Al-enabled routing protocols.
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Another paper [44] provides a comprehensive review of position-
based routing protocols for UAV networks. It nicely classifies routing
protocols with a detailed description of each category. Also, the routing
algorithms are compared based on various criteria and performance
metrics. However, only position-based routing protocols are mentioned,
excluding many other types of routing protocols developed for UAV
networks.

In 2018, a paper titled “Routing protocols for Unmanned Aerial
Vehicles" [41] compared the routing protocols from different stand-
points. This paper sheds light on which methods are suitable for UAV
Networks under different network conditions and application-oriented
requirements. However, the provided review is not comprehensive, and
many efficient routing protocols such as hierarchical, probabilistic and
Al-enabled methods are not discussed.

In 2019, a survey paper offered a complete review of UAV network
design, architectures, routing protocols, open issues, and research chal-
lenges [38]. Deterministic, stochastic, and social-network-based routing
protocols are discussed, along with a qualitative comparison of their
major features, characteristics, and performance. However, Al-enabled
routing protocols and their role in accommodating dynamic networks
are missing.

In [39], a comparative review of major existing routing protocols
developed for FANETSs, along with a careful analysis of their perfor-
mance under different design constraints and planning strategies, is
provided. However, the important class of self-adaptive learning-based
methods is not discussed. Similarly, [40] offers a comprehensive review
of routing schemes in FANETs, including objectives, challenges, rout-
ing metrics, characteristics, performance measures, and open issues.
However, most of the Al-enabled routing protocols are not discussed.

The following are a few survey papers published in 2020. A re-
cently published paper [33] reviews Software-Defined Network (SDN)
and Network Function Virtualization (NFV) for UAV-assisted monitor-
ing, cellular, and satellite communications systems. More specifically,
this paper reviewed SDN-based routing. However, it only considers
Air-to-Ground scenarios.

A review of mobility models and routing algorithms for FANETS is
provided in [29,34], with the inclusion of UAV communication net-
works issues. Nonetheless, they exclude an important class of learning-
based routing algorithms. A comparative analysis of emerging routing
protocols for UAV networks under different conditions is provided
in [35]. However, it includes only the position-based methods and ig-
nores different implementations of proactive, reactive, and Al-enabled
routing protocols.

Two recent works [36,37] offer an exhaustive review of communica-
tion protocols, applications, and security issues of UAV-assisted ground
and vehicular networks. However, their center of attention is UAV-
assisted routing, which excludes many routing protocols developed for
the more general class of UAV-to-UAV communication in FANETs. In
summary, almost all of the previously published surveys do not pay
enough attention to the emerging class of Al-enabled routing protocols,
which can be considered the most appropriate class of routing protocols
for extremely dynamic UAV Networks.

3. UAV technology: military, industrial and commercial drones

Like many other technologies, the use of drones initiated in military
domain, and soon afterward, made its way into industrial and commer-
cial application. One of the key motivating factors was using drones
in risky environments, and inaccessible areas with harsh conditions to
minimize human risk.

Military-grade drones typically utilized advanced features (e.g.,
stealth), custom-built sensors, equipment, and weaponry, appropriate
for military and reconnaissance missions in hostile environments [46].
For instance, hyperspectral and Light Detection and Ranging (LiDAR)
sensors, Al-based object recognition, quantum cryptography, and multi-
spectral targeting systems with infrared sensors are usually utilized in
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Industrial
drones

Fig. 2. Military, industrial and commercial drones.

more advanced technology, compared to commercial products [47,48].
For their proven performance and success in reducing casualties, the
military sector invests heavily in the research and development of
military drones [49]. UAVs in the military can be categorized based
on their weight, range, speed, and specific capabilities. Based on their
weight, we can differentiate class I, class II and class III drones. Class
I refers to micro, mini, or small drones that weigh less than 150 kgs.
Class II includes tactical drones between 150 and 600 kgs. Lastly, class
IIT are strategic drones weighing more than 600 kgs [46].

Drones in industrial settings are used in a broad range of applica-
tions such as smart agriculture, forestry, mining, construction, weather
and climate control, power plants, structural monitoring (buildings,
dams, and bridges) and the energy sector (oil and gas refineries). In
addition to high definition cameras, industrial drones are typically
equipped with different types of sensors, including but not limited to
LiDAR, Global Positioning System (GPS), range finders for collision
avoidance, Positive-Intrinsic-Negative (PIN) diodes for motion detec-
tion, and pressure gauges [50]. Environmental and climate sensors such
as temperature, humidity, air pollution, and chemical sensors are also
embodied in industrial drones when necessary.

More basic drones are also used by ordinary people for regular tasks,
ranging from hobby and entertainment to more complicated monitoring
tasks. The applications of commercial drones are countless and include
shipping and delivery, inspection, real state, security, insurance, life
habitat monitoring, border patrolling, structural monitoring, enter-
tainment, sports monitoring, fire monitoring, flood prediction, smart
agriculture, forest monitoring, volcano monitoring, fishery, weather
report, etc. Some deliverables from drones include 3D maps, orthomo-
saic, and actionable reports [51]. Commercial drones must meet the
regulations set by the Federal Aviation Administration (FAA) for safe
operation. For instance, commercial drones should have a maximum
weight of 55 pounds and should operate at or below 400 ft above the
ground when in uncontrolled (Class G) airspace. Otherwise, specific
authorizations should be obtained for flying in controlled airspace
(Class B, C, D, and E) [52].

Different types of UAV technology, including military, industrial,
and commercial drones, are displayed in Fig. 2.

3.1. Al features

UAV technology has evolved in recent years. Modern UAVs are
equipped with onboard computation boards powered by embedded
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circuitry, Graphical/Tensor Processing Units (GPU/TPU), and Field-
Programmable Gate Array (FPGA) boards that allow running light-
weight deep learning (DL) algorithms for Al applications [53]. These AL
chips, along with different sensors, allow UAVs to realize some levels of
intelligence to improve performance in various applications, including
those presented in Fig. 3. An alternative way is using UAVs with high
payload capacity (e.g., xFold rigs Dragon X12 U11 drone with a payload
size of 100 lbs) that can carry onboard huge computation servers. The
motivation for embedding Al features into UAV technology comes from
the importance of realizing low latency and fast processing of data for
real-time applications. Therefore, using deep learning with Al-enabled
chips by the UAVs can offer superior performance than streaming the
raw data and running the applications on the ground-based processing
centers [54]. This approach also substantially reduces the communica-
tion cost and satisfies the low-power requirements of UAVs compared
to aggregating the information by the UAVs and running the appli-
cations on the cloud. Online processing also is desirable for real-time
applications. However, this is not a general recipe for all applications.
There exist some scenarios (e.g., low-cost single-hop communication for
a single drone with relatively huge computation load), where raw video
streaming and offloading the computation load to the cloud servers
is advantageous [55]. Regardless of the computation load distribution
between the drone and the ground servers, the benefits of Al algorithms
are achievable.

Al hardware in modern UAVs consists of computing, storage, and
networking parts [56]. Computing has been developing rapidly in
recent years. However, storage and networking aspects still need more
research to satisfy UAVs’ diverse requirements. Particularly, there is a
need for long-term storage and networking protocols for linking equip-
ment to servers. Regarding the Al chip design, various technologies are
available and under development, including GPU, TPU, reconfigurable
Neural Processing Unit (NPU), neuromorphic chip architectures, and
analog memory-based technologies. Based on the application-specific
requirements and constraints, we can incorporate one or some of these
designs. Lastly, we must acknowledge that producing Al hardware is
a complex process [57]. Consequently, many of the tech leaders, such
as Apple, Google, Microsoft, Intel, IBM, Nvidia, etc., are competing to
design and build the most innovative Al technology, and we expect to
witness more breakthrough developments in the coming years [58].

3.2. Drone manufacturers

Drone market is expected to grow to $63.6 billion by 2025, with
2.4 million global shipments by 2023, increasing at a 66.8% Compound
Annual Growth Rate (CAGR) [59]. A large portion of the commercial
drone market share in the US (about 77%) belongs to the DJI company.
Intel, Vuneec, Parrot, GoPro, 3DR, HolyStone, Autel, SenseFly, and
Kespry are among the top 10 drone market shares in the US [60]. Also,
many companies use drones to provide 3rd party aerial solutions for
different applications. For instance, PrecisionHawk is a North Carolina-
based company that offers smart agriculture solutions [61]). Fortem
Technologies offers Al-enabled interceptor drones that can hunt intrud-
ing drones [62]. The number of these companies grows larger than 100,
and a list of such companies can be found in [63]. Commercial drones
can offer service in many domains including emergency response,
disaster relief, disease control, fighting crime, etc. [64].

4. Artificial intelligence in UAV networks

Al-based solutions help to solve complex problems related to UAV
networking and operation by integrating computational intelligence
into different aspects of UAV networks. The key idea is to incorporate
Al algorithms into networking and control protocols to assist UAVs in
perceiving the networks’ and environments’ overall conditions based
on their limited observations. Al can also empower UAVs to process
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and interpret common patterns and anticipate future states and events
when making decisions.

The benefits of using AI in UAVs are countless. For example, Al-
based decision-making with real-time data allows continuous feedback
in inaccessible areas to keep functions alive [65]. Also, training nodes
by experience, in most cases, would result in more accurate results than
taking actions blindly. Gathering information can facilitate resource
management for energy optimization and trajectory design to avoid
obstacles. However, these benefits come at a higher computational
cost. In contrast to sophisticated scenarios, the value added by the
Al methods in more straightforward scenarios, especially with no or
limited training dataset, is negligible. Therefore, each scenario should
be carefully investigated to analyze the benefits and drawbacks of using
Al methods.

In [66], applications of AI methods to UAV-enabled wireless net-
working are listed. This paper summarizes different learning approaches
including supervised and unsupervised learning, reinforcement learn-
ing and federated learning. Some areas where researchers introduced
Al-based solutions include positioning and detection [67-69], chan-
nel estimation [70,71], virtual reality applications [11,72,73], imag-
ing [74], autonomous path control [75,76], scheduling and resource
allocation [77], security [78] and sensing [79], as shown in Fig. 3.
Our paper focuses on the applications of Al in routing protocols while
mentioning how Al is embedded into UAV technology, networking
protocols and swarms, in general.

Fig. 4 presents a scenario on the importance of including Al tech-
niques for optimal routing. Node 1 intends to send a packet to node 5
through the optimal path. The edge metrics represent an arbitrary per-
formance metric such as distance, energy consumption, delay, bitrate,
or a combination of these metrics. Consider a network of freely mov-
ing UAVs that transmit their info through queued and delay-tolerant
communication. The network topology can change substantially during
the transmission session while the data packets are waiting in the
intermediate nodes’ transmission buffer. Therefore, the optimal path, if
found by the source node based on the initial network topology using a
typical shortest path algorithm, may not remain optimal throughout the
transmission. In Fig. 4, the blue and red circles, respectively, present the
original and the updated positions of the nodes (after motions shown
by dashed green arrows). A conventional algorithm would determine
(1-2-3-5) as the optimal path from source node 1 to destination 5
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Fig. 4. Scenario showing the importance of predictive routing [80].
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Fig. 5. UAV Networking from different standpoints.

(represented by blue arrows) based on the original positions (blue
circles). In contrast, a predictive routing selects the path shown by red
color (1-2-4-5), taking into account the predicted network topology
change (i.e., the position of the nodes when met by the data packets),
while the packet is waiting in the transmission buffer of node 2.

5. UAV networking protocols

Different communication protocols can be used to transfer data
among drones, to/from satellite and aerial control units through Air
to Air (A2 A) communications, and from Air to Ground (A2G) (Fig. 5).
Ground-based stations include standalone control units, larger servers,
Internet gateways, and edge computers. As shown in Fig. 6, networking
can be studied from different perspectives, especially from the commu-
nication, computation, and scheduling requirements and constraints.
Most of the aerial monitoring platforms utilize ground-based or web-
based servers for bulk processing, where drones collect and offload
raw information into processing units. However, alternative methods
such as on-the-fly processing using embedded light-weight GPUs/TPUs,
Mobile Edge Computing (MEC), and fog computing for accelerated
and near real-time processing are gaining more momentum recent
years [81,82].

In most cases, the operation area is vast, far beyond the Line of Sight
(LoS) communication range of a single UAV, hence using networked
UAV platforms is unavoidable to ensure connectivity. One of the key
design questions is choosing the best wireless technology (e.g., WiFi,
LTE bands) with enough capacity and an acceptable Quality of Service
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(QoS) both from the technical and feasibility, and economic points of
view. Some efforts have been made to create a nationwide and high-
speed broadband wireless network for public safety communications.
For example, FirstNet offers a solution to deploy, operate, maintain, and
improve the first high-speed, nationwide wireless broadband network
dedicated to public safety that could apply to UAV networks in the
near future [83]. The potential broadband wireless technologies include
WiFi, 4G Long Term Evolution (LTE), 5G (with the 3rd Generation
Partnership Project (3GPP) standard on 5G communication for drones),
satellite communications, and dedicated public safety systems such
as TETRA and APCO25. Also, Long Range Wide Area Network (Lo-
RaWAN), which enables long-range communications at low powers,
when high throughput is not necessary [84-86].

The following is a review of the most commonly used protocols in
UAV networks, emphasizing their capability in handling the dynamicity
of the network topology.

5.1. Wi-Fi

Most commercial UAVs use Wi-Fi (IEEE 802.11 series) for their
communications, especially to a ground station (e.g., command and
control commands in the uplink and video streaming in the down-
link), as a low-cost, scalable, and affordable solution. Wi-Fi-based UAV
networks can also be used for wireless backhauling [87]. Also, inter-
drone communications can be powered by Wi-Fi provided that one
node is defined as the Access Point (AP) to implement a local WLAN.
This node may or may not provide access to the Internet. Apparently,
one drawback of Wi-Fi is handling mobility and hand-off between
the base stations, limiting the operation range of drones within direct
access to the AP to a few miles. Although the throughput of Wi-Fi
(theoretically between 54 Mbps for 802.11a to as high as 2.4 Gbps for
802.11ax [88]) is relatively lower than LTE and 5G, it is sufficient for
most applications, including real-time high-resolution video streaming.
In scenarios that long-range connectivity is required, Wi-Fi loses the
game to licensed wireless systems when such networks are available.
Some drones develop their proprietary communication protocol on
top of Wi-Fi. For instance, the XFold spy x8 KDE U3 drone by Xfold
Rigs [89] comes with a Futaba Commercial 14-channel.

5.2. LTE

LTE systems offer airborne connectivity beyond the LoS communi-
cations for drones. They improve the throughput and network connec-
tivity due to the hard and soft hand-over mechanism [90]. Recent years
have witnessed a surge of activities in using terrestrial LTE networks to
provide connectivity to UAVs. A collaborative project has been initiated
by FAA and the National Aeronautics and Space Administration (NASA)
in the U.S. since January 2017 to build a system using LTE technology.
To better understand the potential of LTE for small UAVs, the 3GPP has
formed a study group to investigate enhanced LTE support for aerial
vehicles since March 2017 [91]. The most notable drawback of using
LTE and other cellular systems is the need to register drone transmitters
with a service provider, which increases the operation cost and restricts
the operation of drones to areas covered by the service provider. This
is why using cellular systems is not as popular as Wi-Fi for drones.

Another key issue is that the LTE propagation plannings typically
aim to serve the ground users; hence, the propagation maps are not
optimized for aerial nodes. Therefore, LTE radio planning requires
substantial revisions to serve UAV networks, especially when they
scale up to large networks at higher altitudes and with a high-varying
topology.
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5.3. 5G

Similar to LTE, 5G is also considered for drone communications
when higher bitrates beyond 2.4 Gbps are required. It also enables the
concept of Internet of Things (IoT) for drones, where a drone serves
as a thing [92]. UAV-assisted communications have several promising
advantages such as facilitating on-demand deployment, high flexibility
in network reconfiguration, and enabling long-range LoS communi-
cation links. In some scenarios, drones serve as 5G radio stations
(also called AP) to extend the coverage of 5G networks for ground
users, especially for sensitive applications, such as public safety and
post-disaster management [93-95].

5.4. 6G

The demand for higher throughput and bigger numbers of devices
never stops, and 6G is on the way to serve these requirements. 6G,
the next generation for wireless communication, is expected to provide
intelligent, secure, reliable, and limitless connectivity at rates 100 times
faster than 5G [96]. Similar to 5G, we expect that the UAV networks’
diverse requirements such as low latency, reliability, and energy effi-
ciency will be better served by 6G networks, and aerial nodes will be an
integral part of 6G networks. Also, network intelligence is envisioned
to be a key feature of 6G, which can assist in many connectivity-
related applications [97], for example, in a blockchain-based solution
for UAV communications [98]. Some of the challenges brought by the
futuristic concept of connected sky include high mobility, interference,
and connection to down-tilted antennas. It is expected that aerial nodes,
when integrated into terrestrial nodes, will be instrumental in covering
such issues and enhancing the 6G user experience.

5.5. Al benefits in UAV networking

Artificial intelligence for UAV networking can help with the relia-
bility, connectivity, and security of wireless communication by offering
data-driven solutions for key challenges of interference management,
mobility management, and handover, cyber-physical attacks, and au-
thentication [99]. For instance, [100] uses Al to predict transmission
success and failures, to anticipate and avoid networking issues.

Among the aforementioned communication protocols, the most ap-
propriate one should be selected based on the application-specific
constraints and requirements. Several research efforts have been de-
voted to implementing new networking algorithms on top of these

protocols, most of which have not yet been commercialized. For in-
stance, the idea of spectrum sharing and spectrum leasing for drones is
proposed to extend the connectivity of drones for high-speed and tem-
porary service when wireless coverage is accessible, which integrates
WiFi and Cellular access [101,102]. Also, beamforming can extend
the communication range further and reduce the interference [103].
Indeed, UAVs provide a realistic scenario for distributed and coopera-
tive beamforming, since transmit antennas can be spatially separated
among UAVs [104]. The authors of this paper have proposed Al-
enabled routing [105], compression [106], and task coordination [107]
protocols to minimize the unnecessary information exchange among
the UAVs and prolong their mission time.

6. UAV swarms

The concept of using UAV swarms is gaining more momentum in
recent years. The idea is to use a sheer number of drones, in most cases
miniaturized and limited-capability drones, to collectively perform a
complicated mission with no or minimal operator intervention. This
approach mitigates the drawbacks of using a single drone, such as lim-
ited allowable payload and limited sensing and actuation capabilities. A
general architecture for task order in swarm environments is presented
in [108].

6.1. Swarming advantages

The main advantages of using UAV swarms include shortening the
task completion time, extending the coverage area, and reducing the
operation cost. In the military domain, UAV swarms also increase the
tactical mission’s success rate by eliminating the reliance of the mission
on a single drone’s functionality, which can be subject to cyber-attacks
and hijacking by an adversary. Using UAV swarms can also increase
the unpredictability of the mission and overwhelm the enemy’s defense
system with a large number of potential targets in an interactive
battleground. Further, UAV swarms are used to collectively find and
fight enemy targets [109]. These ideas were behind the US navy’s LO-
CUST project to design UAV swarm attacks [13]. Also, swarm systems
can be equipped with anti-jamming systems to more efficiently block
cyber attacks [110]. UAV swarms which incorporate an authentication
protocol using Physical Unclonable Functions (PUFs) can authenticate
multiple devices at once with high scalability while being resistant to
mobility, and multiple cyberattacks such as physical capture, cloning
attacks, eavesdropping, and man-in-middle attacks [111,112].
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Fig. 7. Different architectures for UAV swarms.

The use of UAV swarms is not limited to military applications.
They enable search and rescue missions over big areas [113]. Some
agriculture duties such as watering or identifying sick plants are time-
consuming, and using UAV swarms with minimal operator intervention
would increase the efficiency of precision agriculture [114]. More
applications for UAV swarms can be found in [115].

6.2. Swarm architectures

UAV swarm refers to scenarios when a sheer number of drones, most
of which with similar sensing, networking, and actuation capabilities,
collectively perform a designated monitoring or operation tasks [116].
For example, a swarm of drones can carry out a coordinated military
attack [13]. UAV swarms function in the following different ways from
the control and coordination point of view.

6.2.1. Infrastructure-based swarm architecture

In this architecture, a central node, mostly a Ground Control Station
(GCS), collects and processes real-time information from all swarm
members; and sends back control commands (e.g., navigation, sensor
actuation, sampling rate, camera control, etc.) to the UAVs, as shown
in Fig. 7(a). For instance, pre-planned paths can be revised during the
mission to avoid collisions when facing unexpected obstacles based on
the live video streaming by member UAVs [117]. The key advantages
of this architecture include (i) feasibility of mission for low-capability
UAVs by offloading the computation load to a more capable GCS,
(ii) global optimality of the resulting decisions, and (iii) no need for
complex networking algorithms for inter-UAV communications [118].
Also, realizing asymmetric security protocols such as Public Private
Infrastructure (PKI), which requires Central Authority (CA) to allocate
digital signatures is feasible [119]. However, it suffers from the well-
known drawbacks of central systems such as (i) sensitivity to the GSC
malfunction, hijack, or cyber threats, and (ii) the restriction of the
mission area to the accessible range of the GCS.

6.2.2. Ad-hoc structure-free architecture

This architecture allows direct communication between UAVs with
no need for APs or routers, and can utilize distributed decision making
(Fig. 7(b)). This method eliminates the sensitivity of the mission to the
GCS function and relaxes the constraints on the mission area. The cost
paid is the need for more capable UAVs for local decision making and
a routing protocol to accommodate dynamic network topology [120,
121].

6.2.3. Hybrid swarm architecture

This architecture makes use of a cellular network to connect UAVs
while using distributed decision-making without the need for a cen-
tral controller (Fig. 7(c)). This architecture leverages the strengths of
network-based and structure-free architectures by enabling long-range
missions with reliable networking among drones while not relying on

a central controller’s function [114]. This architecture takes advantage
of the high mobility and networking efficiency of M2M communication
in LTE, and 5G wireless systems [122-125].

6.3. Artificial swarm intelligence

Artificial swarm intelligence, also known as swarm Al, is a technol-
ogy that combines real-time inputs and uses algorithms to optimize the
overall performance of the swarm [126]. The initial idea comes from
the swarm intelligence found in natural systems, including ant colonies,
bird flocking, animal herding, etc.

For UAV networks, it represents an aerial system that uses Al
and data-driven methods to control the drones to achieve the des-
ignated goal [127]. In military drones, AI can be used to enhance
UAV swarm operation by increasing the range, accuracy, mass, coor-
dination, intelligence, and speed, with a potential impact on security
and strategic stability [128]. Other examples include Al-based flight
control for autonomous drones for real-time positioning without a
centralized controller [129], as well as flight control for detection,
localization, and tracking tasks while relying only on local spatial,
temporal, and electromagnetic information [130]. In the upcoming
years, we expect to see how UAV swarm Al can revolutionize many
existing systems and create a new breed of applications. A key concern
is the negative impacts that may be brought by the excessive power
of autonomous UAVs that can jeopardize people’s privacy and security.
This issue is more critical when drones’ control units are hijacked by
cyber attacks. Therefore, a hot research area is developing security and
privacy-preserving protocols for next-generation UAV networks.

7. Impact of mobility on communications

In this section, we investigate the impact of node mobility on data
transmissions. We first review popular UAV mobility models as well as
the techniques used to predict UAV mobility and network topology. We
also review the challenges that mobility brings to connectivity control
and optimal routing.

7.1. UAV mobility models

Mobility models are used to describe, model, and emulate UAV
motion trajectories. Generative modes typically incorporate location,
speed, and direction changes as model parameters. The following is
the list of commonly-used mobility models that facilitate the analysis
of UAV networks.
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7.1.1. Random WayPoint (RWP) [131,132]

This segment-wise model includes linear and independent motions
with constant speed and direction between a set of points called way-
points. Also, UAVs decide on their next action based on some fixed
probabilities, and their motion does not depend on neighbor nodes.
According to [133], RWP has two important variants, Random Walk
Model (RWM) and Random Direction Model (RDM) [134]. This model
can be used for both rotary and fixed-wing drones, and is the most
appropriate for missions with pre-path planning.

7.1.2. Levy walk/flight [135]

This mobility model is similar to the random walk mobility model,
with a distinction that the steps-lengths are not constant, rather random
values that follow a power-law distribution. The truncated Levy walk
model incorporates tendency of the node to stay in confined area with
some randomness and hence has been shown to be a reasonable model
for human walk and cellular users based on statistical analysis, com-
pared to pure random models (like random walk and Brownian motion)
and also random way points, as stated in [136,137]. We conjecture
that the rotary drones in some missions may have mobility patterns
to human and follow similar models. It is recognized by former works
and some believe that Levy flight model is able to mimic movement
patterns of aerial nodes over a larger time span where mixed effects
may be experienced [138].

7.1.3. Gauss Markov Mobility Model (GMMM) [139]

This model is used to simulate the movement of UAVs in swarms,
which incorporates controlled randomness to the speed and direction
equations. It prevents sudden stops and sharp turns within the simula-
tion region, to realize smooth and more realistic trajectories, especially
for fixed-wing UAVs, and targeted missions.

7.1.4. Semi random circular movement [133,140]

Used to simulate the curved movements of UAVs when they hover
at a constant altitude (e.g., for collecting imagery). It has a uniform
node spatial distribution and outperforms random waypoints (in terms
of connectivity and scanning coverage over 2D disk). The nodes move
around co-centered circles to cover destinations located on the circle
perimeters. Uniform distributions are used for directional and angular
velocities and the node pause at each destination. Once a circle scan is
finished, the node switches to the next circle.

7.1.5. Mission Plan-Based mobility model (MPB) [141]

In this mobility model, UAVs are aware of trajectory information
and move according to a predetermined path to the mission area, where
potential information is available. Start and end points are randomly
assigned, but the velocity and the flight time are given.

7.1.6. PaPaRaZzi Mobility model (PPRZM) [142]

It is a stochastic mobility model that combines various models with
a Markov state diagram. Each UAV chooses a movement type from
a set of predefined motion patterns with different parameters. Each
motion state’s parameters are initialized randomly according to a given
distribution and remain unchanged until the transition to another state
with different motion parameters. A set of common motion patterns
includes “Stay-at” “Way-Point”, “Eight”, “Scan”, and “Oval”, which
are used in the original implementation of PPRZM. Results show that
this model outperforms the RWP model in terms of geometric and net-
work performance, since it brings the flexibility of switching between
different modes.

Most of the aforementioned models consider independent motion
trajectories for each drone. However, in some scenarios (e.g., UAV
swarms), the motion of network members can be highly correlated. Sev-
eral models are proposed to address this concept and realize correlated
trajectories.
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7.1.7. Distributed pheromone repel model [143]

This model uses a pheromone map to guide UAVs in reconnaissance
scenarios. Each UAV maintains its own pheromone map, and scans the
area of the corresponding map. The UAVs share information every few
seconds to create a global pheromone map. UAVs turn right, left, or go
straight with probabilities based on the pheromone smell. UAVs prefer
areas with a low pheromone smell, so new areas are scanned. This
model results in good scanning properties, but does not consider the
network connectivity between UAVs that serve different areas.

7.1.8. Hybrid Mobility model with Pheromones (H3MP) [144]

This model is suitable for search and rescue applications. This
hybrid mobility model combines Markov chains and pheromones to
adapt to dynamic environments. Markov chains guide UAVs to promis-
ing areas, and pheromones guide information sharing that allows
mobility management through UAVs. Results show the superiority
of this method in detecting and tracking targets, compared to other
pheromone-based methods.

7.1.9. UAV fleet mobility model [7]

This mobility model incorporates the remaining energy level, the
area coverage, and network connectivity into the mobility decision
criterion. After receiving information from its neighbors, each UAV
determines its next movement based on these criteria. The direction
and the speed of the UAVs are calculated using weighted vectors
considering neighbor UAVs. Results show that this method outperforms
random motion methods in terms of coverage and connectivity.

These models clearly are more appropriate to design motion paths
for specific missions, and less appropriate for modeling general UAVs
networks. Overall, a proper mobility model should be adopted for each
application based on the drone types, the mission requirements, and
the utilized path planning method.

7.2. Mobility prediction

Network nodes use radar-based and visual target tracking to per-
ceive the network topology, at least in their close neighborhood. The
purpose of mobility prediction is to go one step beyond and antici-
pate the future locations of the objects that form the network. These
methods can be categorized into the following two mainstream trends,
data-driven, and model-based methods.

7.2.1. Data-driven

This approach includes data mining and fuzzy methods, where
frequent motion patterns are exploited by analyzing relatively large
datasets. These methods indirectly capture the influence of the natural
and human-made textures, user behavioral habits on the spatial and
temporal variations of node mobility. For instance, TAPASCologne is a
project to collect and publish datasets of vehicle motion patterns in
the city of Cologne, in Germany with application to cellular network
design [145,146]. Similar data-driven methods are proposed to model
the motion patterns of pedestrians [147-149], vehicles [150,151],
animals [152] and other mobile users. In a similar line of research, node
mobilities are not exploited directly, rather traffic distribution trends
are extracted [153,154]. Although these methods are useful in the
network planning phase, their primary goal is to characterize general
properties of the motion of a population of objects in different settings.
Therefore, they are not well suited for predicting the position of single
objects, which is influenced by the real-time node decisions. For such
scenarios, model-based prediction methods are more appropriate.
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7.2.2. Model-based

In this approach, the smoothness of the motion paths is used to
predict the future locations of mobile objects, typically in an online
fashion. These methods include piecewise segment methods [155],
Hidden Markov Models (HMM) [149], Levy flight process [136-138],
Bayesian methods [156,157], Manifold learning [158], Kalman filter-
ing [159,160], fuzzy zone-based method [156] and mixture Gaussian
models [156]. Each method relies on a model that is appropriate for a
different class of mobile objects, including pedestrians, indoor mobile
users, vehicles, etc. Indeed, these methods rely on an underlying model,
which is customized for a specific object with a different mobility
model such as random walk [161], Random Waypoint (RWP) [162],
HMM [149], Gaussian Morkov Mobility Model (GMMM) [163], Brown-
ian motion [164], Linear model via Durbin’s curve [165], and mixture
models [166]. Consequently, they are not applicable to a network of
heterogeneous nodes and fail in balancing between the randomness and
predictability of node’s mobility.

7.3. Mobility-related networking challenges

High mobility nodes, especially when not properly predicted, pose
critical challenges to the communication performance in terms of con-
nectivity and routing optimality. Mobility of nodes translates to the
network dynamicity that can disrupt the information exchange by
losing connectivity and undermining the routing efficiency. In extreme
cases, the network can breakdown into isolated islands. Different ap-
proaches can be taken to overcome the loss of connectivity in UAV
networks. One main approach is topology control to avoid connectivity
issues, which can be seen as jointly optimizing the networking and
control aspects. For instance, the idea of the dynamic placement of new
nodes in locations to cover connectivity holes is introduced in [167].
ML methods can assist with achieving this goal by modeling and
predicting network topology, traffic mobility, spectrum availability,
and channel states. An online learning procedure is used in [168]
to adjust the UAVs to their radio transmission parameters, based on
the perceived topology while revising their flight paths. The authors
of [169] propose a Chaotic Ant Colony Optimization approach (CA-
COC) to maximize the coverage area while preserving the connectivity.
Another method to improve network connectivity is ECORA [170]. This
method uses geographic protocols considering positioning prediction
and link expiration time by excluding links with approaching expiration
time from the path selection algorithm. These methods usually aim
to enhance network connectivity by controlling the network topology.
Recently, the idea of using predictive and self-adaptive learning-based
routing protocols gained a lot of attention to use ML methods to
enhance networking efficiency. One approach is predicting network
topology changes and incorporating the predicted network topology
into the networking decisions [105,171]. These methods are more
appropriate for separating the networking layer from mission-based
path-planning algorithms. Also, prediction-based positioning is more
appropriate for scenarios that the nodes have limited connectivity
or on-demand link establishments which are costly to share location
information, nodes which are prohibited from sharing their locations
for privacy and security concerns, nodes which belong to different
and even adversary and competing networks, and nodes whose motion
trajectories are subject to constant changes due to using autonomous
on-the-fly control systems.

8. Routing protocols for UAV networks

This section reviews routing protocols, emphasizing the role of ML
methods to accommodate the requirements of UAV networks.

Routing protocols can be categorized in many different senses, as
shown in Fig. 8. Regardless of their reaction to topology changes,
routing algorithms can be divided into centralized and distributed algo-
rithms (Fig. 8, layer 1). In centralized algorithms, the global network
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topology is known for a central node, which can share with network
members. Therefore, the source node can execute a local algorithm to
find the optimal end-to-end path. In distributed algorithms, the nodes
are not aware of the entire network topology, and they have partial
knowledge about their local subnetwork topology. In these methods,
either sequential methods are used to break down finding the optimal
end-to-end path into piece-wise sub-problems; or methods like “hello
messages” are used to discover the network topology.

Routing algorithms can also be classified into deterministic and
probabilistic algorithms based on the optimization approach or equiv-
alently the resulting route’s randomness (Fig. 8, layer 2). Deterministic
routing refers to a non-stochastic decision-making policy, where the
resulting routes are fully and explicitly determined under given assump-
tions, network conditions, and decision rules. On the other hand, in
probabilistic algorithms, the resulting routes are probabilistic; hence
the actual paths are selected in run-time by the nodes based on a set of
rules and probabilities.

From a different standpoint, we can classify routing protocols into
static and dynamic routing protocols (Fig. 8, layer 3). In static routing
protocols, the route is established based on the initial network topology
without considering the changes which occur during the transmission.
These algorithms are appropriate for static networks and low-volume
transmissions. On the other hand, in dynamic routing protocols, the
resulting end-to-end path can change over time to accommodate node
mobility. Therefore, they are more suitable for UAV networks and will
be discussed in more detail in this paper. Dynamic routing algorithms
have different variants based on how paths are determined in response
to network topology changes. Main categories include proactive, re-
active, hybrid, position-based, topology predictive, and self-adaptive
learning-based routing methods.

To investigate the performance of different routing protocols in
UAV networks, we first present the key characteristics of these routing
methods in Table 2. Next, we review different implementations of each
category and investigate their use for highly dynamic UAV networks.

8.1. Conventional routing protocols

In this section, we briefly review routing protocols that were mainly
introduced for low-speed ad hoc networks. These routing protocols
do not adapt to high mobility and abrupt changes we find in UAV
networks. Therefore, most of them are not applicable for high-speed
UAV applications.

8.1.1. Static routing protocols

Static protocols are mainly designed for networks with static or
slow-varying topology, meaning that the optimal end-to-end path for
any source—destination pair does not change over time. Static routing
algorithms consider the initial network topology when finding the
best path. Generally, in this approach, the global network topology
is known to a central node (which can also be shared with network
members). Therefore, the optimal paths for all source-destination
nodes are calculated and programmed in terms of routing tables. In
other words, each intermediate node receives a packet, passes the
packet to the next node determined by the routing tables based on
the destination address. These algorithms are suitable for structured
networks, but some modified versions are proposed for UAV net-
works. Examples of such algorithms include shortest path algorithm
(Dijkstra’s and Bellman-Ford’s algorithms) [172], shortest-path-aided
back-pressure [173], Multi-Level Hierarchical Routing (MLHR) [174],
Load Carry and Deliver Routing (LCDR) [174], and Data-Centric Rout-
ing [174].
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Fig. 8. Routing classification based on different criteria and dynamic types of routing protocols.

Table 2

Types of routing.
Routing protocol Central/distributed Deterministic/Probabilistic Scalable Mobility Global info Discovery message Al aspect
Static Central Deterministic Yes Static Yes No No
Position-based Distributed Deterministic Yes Low speed No No No
Proactive Distributed Deterministic Bigger overhead Low speed Yes Hello message No
Reactive Distributed Deterministic Longer RREQ Low speed No RREQ & RREP No
Hybrid Distributed Deterministic Complexity Low speed No Hello message No
Hierarchical Distributed Deterministic Yes, into clusters Low speed Yes Hello message No
Probabilistic Distributed Probabilistic Adds complexity Low speed Yes No No
Topology predictive Distributed Deterministic Yes Dynamic No Depends Yes
Self-adaptive learning-based Distributed Deterministic Yes Dynamic No Depends Yes

8.1.2. Proactive routing protocols

Proactive routing protocols can be implemented as table-driven
methods, where optimal paths are found for all source-destination pairs
based on the global network topology. The routing tables are filled
accordingly at all nodes to guide the packets link-by-link to their final
destinations. In applications like UAV networks, routing tables should
be updated if optimal paths are changed due to varying network topol-
ogy or link budgets. The main advantage of this approach is that the
route can easily be calculated and established. In case of a link break-
down, new links can be re-established quickly. However, it may impose
a large overhead for time-consuming topology exploration and path dis-
covery, such as using hello packets to learn the network topology. Some
important implementations of proactive routing algorithms designed
for UAV networks include Optimized Link State Routing (OLSR) [175],
Directional Optimized Link State Routing (DOLSR) [176], Multidimen-
sional Perception and Energy Awareness OLSR (MPEAOLSR) [177],
Dynamic Dual Reinforcement Learning Routing (DDRLR) [178], Desti-
nation Sequenced Distance Vector (DSDV) [179], BABEL [180], Cluster
head Gateway Switch Routing (CGSR) [181], Wireless Routing Protocol
(WRP) [182], Topology Broadcast based on Reverse Path Forward-
ing (TBRPF) [183] and Better Approach To Mobile Ad hoc Network
(BATMAN) [184].

8.1.3. Reactive routing protocols

Reactive routing protocols create on-demand routing information.
It means that the route discovery process is executed only when a
transmission session has to be established. The main benefit of this
approach is its reduced overhead, especially in the low-traffic regime.
On the other hand, in case of a route failure, the re-establishment of
a new route can take a long time. The following are some important
implementations of reactive routing protocols: Dynamic Source Routing
(DSR) [185], Ad hoc On Demand Distance Vector (AODV) [186],
Dynamic Topology-Multipath AODV (DT-MAODV) [187], Associativity-
Based Routing (ABR) [188], Signal Stability-based Adaptive routing
(SSA) [189], Message Priority and Fast Routing (MPFR) [190], Dy-
namic Backup Routes Routing Protocol (DBR2P) [191], Dynamic
MANET On-demand (DYMO) [192] and Time Slotted On-demand
Routing (TSOR) [193].

8.1.4. Hybrid routing protocols

Hybrid routing protocols combine proactive and reactive routing
features. The route is initially determined with a proactive protocol.
However, a reactive routing protocol is activated when a substan-
tial network topology is recognized or a previously established route
breaks. Some important implementations of hybrid routing algorithms
designed for UAV networks are Zone Routing Protocol (ZRP) [194] and
Temporarily Ordered Routing Algorithm (TORA) [195].
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8.1.5. Position-based routing protocols

Position-based routing protocols find the optimal route based on
the location information. For example, the next node can be selected
based on its distance to the current node or to the destination. The
key disadvantage of these methods are their dependence on accurate
positioning and tracking systems. Some important implementations of
position-based routing algorithms proposed for UAV networks include:
Greedy Perimeter Stateless Routing (GPSR) [196], Greedy-Hull-Greedy
(GHG) [197], Greedy—-Random-Greedy (GRG) [198], greedy forward-
ing [199], Energy-Balanced Greedy forwarding Routing (EBGR) [200],
Greedy Distributed Spanning Tree Routing (GDSTR) [201], Cross-layer
Link quality and Geographical-aware beaconless Opportunistic routing
(Xlingo) [202], Adaptive Forwarding Protocol (AFP) [203], Reactive-
Greedy-Reactive (RGR) [204], scoped flooding and delayed route re-
quest RGR [205], beaconless opportunistic routing [206], Location-
Oriented Directional MAC (LODMAC) [207], Extremely Opportunistic
Routing (ExOR) [208] and Location-Aided Routing (LAR) [209].

8.1.6. Hierarchical routing protocols

Hierarchical routing protocols consider nodes arranged hierarchi-
cally, where the lower layers can form clusters. Each node typically
holds information only about its neighbors stored in a table that is
updated through hello packets. Each cluster head communicates with
the rest of the cluster heads to select the best path. Cluster-Based Rout-
ing Protocol (CBRP) [210], Enhanced Cluster head Gateway Switch
Routing (ECGSR) [211] and Fisheye State Routing (FSR) [212,213] are
examples of recently-developed algorithms for UAV networks.

8.1.7. Probabilistic routing protocols

Probabilistic routing protocols find multiple routes from source to
destination, which can be selected based on probabilistic mechanisms
to cope with network congestion and security. Some examples of these
algorithms used in UAV networks are random walk routing [214] and
MIMO-based random walk routing [215].

8.2. Al-enabled routing protocols

In this section, we study the Al-enabled routing protocols, which
use the learning power of ML algorithms for optimal route path se-
lection based on a more accurate perception of the network topology,
channel status, user behavior, traffic mobility, etc. These algorithms
bridge the two networking and Al research areas to implement modern
networking, especially for dynamic UAV networks. These algorithms
can be viewed as state of the art and are not included in most previous
survey papers. The following is a fairly comprehensive list of Al-based
algorithms.

8.2.1. Topology predictive routing protocols

The main feature of topology-predictive routing protocols is using
ML algorithms to predict the node’s motion trajectories (as an approx-
imate of the network topology, if the communication range of nodes is
known) and incorporate them into the path selection mechanism.

Here, we review some of the proposed routing protocols that use
mobility or trajectory prediction approaches to enhance the perfor-
mance of routing algorithms for UAV networks.

» Learning-based Adaptive Position MAC protocol [216]: This
routing protocol proposes an adaptive hybrid communication pro-
tocol by integrating a novel Position-Prediction-based directional
MAC protocol (PPMAC) and a Self-learning Routing Protocol
based on Reinforcement Learning (RLSRP). The performance re-
sults show that the proposed PPMAC overcomes the directional
deafness problem, which happens when the transmitter fails to
communicate with the receiver due to having the receiver’s an-
tenna oriented in a different direction. Also, RLSRP provides
an automatically evolving and more effective routing scheme,
appropriate for autonomous FANETS.
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+ Predictive Dijkstra’s [80,105]: This routing protocol assumes
that the intermediate nodes’ locations when the packet is sup-
posed to meet them are predicted using ML methods. Then, it
incorporates this predictive information into the path selection
criterion based on Dijkstra’s shortest path algorithm. Results show
superior performance compared to the standard Dijkstra’s algo-
rithm, especially when higher velocities are applied. The achieved
performance gain is dependent upon the prediction accuracy. Two
important shortcomings of this method is its reliance to accurate
trajectory prediction methods, and the need for global location
information exchange.

Predictive greedy routing [32]: Distance-based greedy routing
algorithm solves the issues of [105] and relies solely on the UAVs’
local observations of their surrounding subnetwork. Each node
estimates the location of its neighbors (e.g., using model-based
object motion trajectory prediction) and selects the next node
that makes maximum progress toward the destination node. This
method adapts to highly dynamic network topology. Moreover, it
has low complexity and low overhead with no need for an initial
route setup. Simulation results show considerable improvement,
compared to centralized shortest path routing algorithms.
Predictive Optimized Link State Routing (P-OLSR) [217,218]:
This routing protocol is an advanced version of OLSR routing
protocol. This algorithm exploits GPS information and calculates
an Expected Transmission (ETX) count metric to estimate the
quality of the link when finding the optimal path. Numerical
results show that the P-OLSR outperforms other algorithms such
as OLSR and BABEL under dynamic network topology.
Geographic Position Mobility Oriented Routing (GPMOR)
[219]: This routing protocol proposes an efficient and effective
geographic-based routing protocol that uses the Gauss—-Markov
mobility model to predict the movement of UAVs to eliminate the
impact of highly dynamic movements. This approach selects the
next hop according to the mobility relationship in addition to the
Euclidean distance to make more accurate decisions. Experiment
results show that this approach provides effective and accurate
data forwarding solutions. Moreover, it decreases the impact of
intermittent connectivity and achieves a better latency and packet
delay rate than other position-based routing protocols.

Mobility Prediction Clustering Algorithm (MPCA) [220]: This
routing algorithm is appropriate for clustered UAV networks. It
finds the highest node reliability to select the cluster head. Then,
it predicts the network topology using the Trie data structure
dictionary prediction and link expiration time mobility model.
Also, this approach ensures the stability of cluster formation.
Robust and Reliable Predictive (RARP) [221]: This routing
protocol combines omnidirectional and directional transmission
schemes with dynamic angle adjustment. This method features a
hybrid use of unicasting and geocasting routing protocols using
the location and trajectory information. The intermediate node
locations are predicted using 3-D estimation; then, directional
transmission is used toward the predicted location, enabling a
longer transmission range and tracking topology changes. The
authors show that their method reduces path re-establishment
and service disruption time and achieves higher successful packet
delivery rates.

Scoped Flooding and Mobility Prediction-based RGR (SFM-
PRGR) [222]: This algorithm is a modified version of RGR. This
method associates with data packets mobility prediction informa-
tion, including velocity, direction, and timestamp, to compute the
distance between the current node and its neighbors. Then, if the
next hop is out of range, the approach directly switches to GGF
to save dropped data packets, making it a better approach for
dynamic networks.
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+ Q-learning-based Geographic adhoc routing protocol (QGeo)
[223]: This is an ML-based geographic routing scheme to re-
duce network overhead in high-mobility scenarios. The basic idea
is that nodes make geographic routing decisions distributively,
utilizing a reinforcement learning method without knowing the
entire network topology. It consists of location estimation, a
neighbor table, and a Q-learning module. The location estimation
module updates the current location information reported by
the GPS or other localization methods. Their results show that
QGeo provides a higher packet delivery rate and a lower network
overhead than previously reported routing protocols.

Predictive Ad-hoc Routing fueled by Reinforcement learning
and Trajectory Knowledge (PARRoOT) [224]: This is another
ML-powered routing protocol, which exploits mobility control
information for integrating knowledge about the future motion of
the mobile agents into the routing process. Each agent estimates
its own future position based on the current position and prop-
agates the result to other nodes. This algorithm achieves higher
robustness and a significantly lower end-to-end latency compared
to similar algorithms previously reported. This algorithm is ap-
propriate for separating networking from path planning layer
or when the paths are planned on the fly, since the nodes are
assumed to be unaware of their future locations.

Fuzzy Logic Reinforcement Learning-Based Routing Algo-
rithm (FLRLR) [225]: This algorithm uses fuzzy logic to de-
termine the neighbor nodes in real-time. Then, by using the
future reward method of reinforcement learning, this method
reduces the average number of hops through continuous training.
Simulation results show lower average numbers of hops and
high link connectivity, compared to the Ant Colony Optimization
(ACO) algorithm.

8.2.2. Self-adaptive learning-based routing protocols

Most learning-based routing protocols use Reinforcement Learning
(RL) to make routing decisions by continued and online learning of the
environment and their decision consequences on desired performance
metrics such as delay, throughput, energy efficiency, and fairness. A key
advantage of RL-based algorithms is their abstract formulation which
brings independence from topology prediction and channel estimation.
This comes from the concept of learning from experience.

The concept of RL for optimized routing is shown in Fig. 9. Initially,
the scenario is represented by state s;, where node or agent A, has
two candidate neighbors A, and A; to send its packet. Consequently,
we must select between action a; or a, based on the reward expected
for each action a at state s, defined as Q(s,a). Once we select the
appropriate action, the agent A, obtains an immediate reward from
the environment, r; or r,, respectively. Next, we start the same pro-
cess in a new state s,, where decisions are made based on the new
environmental conditions and the learned policy in terms of actions-
rewards relations. The end goal is to find an optimal policy in which
the cumulative reward over time is maximized by assigning optimal
actions to each state [226].

RL-based routing was first introduced in [228], where Q-Routing
considered packet forwarding as an application of Q-learning. This
method demonstrated superior performance compared to a non-
adaptive algorithm based on the pre-computed shortest paths [229].
The essence of Q-Routing is gauging the impact of routing strategies
on a desired performance metric by investigating different paths in the
exploration phase, and using the discovered best paths in the exploitation
phase. Exploration imposes an overhead to the system, but is critical
for finding newly emerged optimal paths, especially when the network
topology undergoes substantial changes. An inherent challenge is to
adaptively solve the trade-off between the exploration and exploitation
times to accommodate the dynamicity of the network topology.

The following is a summary of learning-based routing protocols
mainly based on Q-Routing to show they evolved over time to better
serve dynamic UAV networks.
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Fig. 9. Illustration of the RL-based routing [227].

* Q-Routing [228]: The first proposed Q-Routing protocol operates
based on learning from experience. Each node stores the expected
time to the destination through any of its neighbors as Q-values
in a Q-table. Each node selects the next node that minimizes the
expected travel time to the destination. Once a packet is received
by a node, it sends back the real travel time to the previous node
to updates its Q-values for the next round.

Predictive Q-Routing (PQ-Routing) [230]: This method is an ex-
tension of the conventional Q-Routing that addresses the
exploration-exploitation trade-off and fine-tunes the routing poli-
cies for the low network loads. Their approach was based on
learning and storing new optimal policies under decreasing load
conditions and reusing the learned best experiences by predicting
the traffic trend. Their idea was to re-investigate the paths that
remain unused for a while due to the congestion-related delays.
The probing frequency is an adjustable parameter to be tuned
based on the path recovery rate estimate. Their proposed results
showed that PQ-Routing outperformed the Q-Routing in terms
of both learning speed and adaptability. However, PQ-Routing
requires large memory for the recovery rate estimation. Also,
it is not accurate in estimating the recovery rate under varying
topology change rates (e.g., when nodes start to moving faster).
Furthermore, this method only works for delays arising from the
queuing congestion and not delays coming from the network
topology change.

Dual Reinforcement Q-Routing (DRQ-Routing) [231]: The key
idea of this algorithm is to use forward and backward explorations
by the sender and receiver of each communication hop, by ap-
pending information to the packets they receive from their neigh-
bors. Simulation results prove that this method learns the opti-
mal policy more than twice faster than the standard Q-Routing.
A comparative analysis of learning-based routing algorithms is
provided in [232], where the performance of the self-adaptive
Q-Routing and dual reinforcement Q-Routing algorithms are com-
pared against the conventional shortest path algorithms. Their
results showed that the Q-learning approach performs better than
the traditional non-adaptive approach under scenarios with in-
creasing traffic that causes node and link failures. However, Q-
Routing does not always guarantee finding the shortest path and
does not explore multiple forwarding options in parallel.
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+ Credence-based Q-Routing (CrQ-Routing) and Probabilistic
Credence-based Q-Routing (PCrQ-Routing) [233]: These two
methods dynamically capture the traffic congestion to improve
the learning process to select less congested paths. Both methods
adapt to the current network conditions much faster than the
conventional Q-Routing.

Full-echo Q-Routing [228]: Another technique proposed to ac-
celerate the learning speed of conventional Q-Routing is the
full-echo approach. In conventional Q-Routing, each node only
updates the Q-values for its selection (the best neighbor). In
contrast, in the full-echo routing, a node gets each neighbor’s
estimate of the total time to the destination, which helps update
the Q-values accordingly for each of the neighbors.

Full-echo Q-Routing with Adaptive Learning Rate [234]: A
more recent work added adaptive learning rates to the full-echo
Q-Routing to improve the exploration performance. Results show
that this technique reduces the oscillations of the full-echo Q-
Routing for high load scenarios.

Adaptive Q-Routing with Random Echo and Route Memory
(AQRERM) [235]: An extension of the previous work is AQRERM,
which improves the performance of the baseline method in terms
of the overshoot and settling time of the learning process, as well
as the learning stability.

Poisson’s probability-based Q-Routing (PBQ-Routing) [236]:
This approach uses forwarding probability and Poisson’s proba-
bility for decision making and controlling transmission energy for
intermittently connected networks. Results show that the delivery
probability is almost twice bigger than for Q-Routing, and the
overhead ratio is reduced to half.

Delayed Q-Routing (DQ-Routing) [237]: This routing protocol
uses two sets of value functions to carry out random delayed
updates to reduce the overestimation of the value function and
improve the rate of convergence. Experiments show that this
method also improves the learning rate.

QoS-aware Q-Routing (Q?-Routing) [238]: This method in-
cludes a variable learning rate based on how big are variations
in Q-values and ensures the traffic Quality of Service (QoS).
Results show that this method outperforms the well-known ad-
hoc routing algorithms in dynamic environments under QoS
constraints.

Q-Network Enhanced Geographic Ad-Hoc Routing Protocol
Based on GPSR (QNGPSR) [239]: This routing protocol uses Q-
network as an approximator to estimate the quality of different
routing paths. Then, it makes forwarding decisions based on the
estimated Q-values. Also, the neighbor topology information is in-
troduced to estimate the environment and node states. QNGPSR is
trained off-line when the signal propagation model is determined.
Therefore, online-learning is not necessary, which reduces the
computational load. Results show a higher packet delivery ratio
and a lower end-to-end delay compared to the original GPSR.
Adaptive and Reliable routing protocol with deep reinforce-
ment learning (ARdeep) [240]: This is a deep RL-based adaptive
and reliable routing protocol that formulates routing decisions
with a Markov Decision Process model to characterize the net-
work variations automatically. It considers link status, the packet
error ratio, the expected connection time of the link, the re-
maining energy of nodes, the distance between the node and
the destination when making routing decisions to precisely infer
the network environment and make more appropriate forwarding
decisions. Simulation results show that ARdeep outperforms the
existing QGeo and conventional GPSR routing protocols.
Traffic-aware Q-Network enhanced routing protocol based
on GPSR (TQNGPSR) [241]: Traffic-aware Q-network enhanced
geographic routing protocol based on Greedy Perimeter Stateless
Routing (GPSR). This algorithm uses the congestion information
of neighbors and evaluates the quality of a wireless link by the
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Q-network algorithm as a traffic balancing strategy. Then, the
protocol makes routing decisions based on the evaluation of each
wireless link. Results show an improving performance in terms of
packet delivery ratio and end-to-end delay.

Q-learning based Multi-objective optimization Routing pro-
tocol (QMR) [242]: This novel Q-learning-based multi-objective
optimization routing protocol adaptively adjusts the learning pa-
rameters based on the dynamicity of the network. The authors
proposed a new mechanism to explore some undiscovered poten-
tial optimal paths while exploiting the acquired knowledge by
re-estimating neighboring relationships to select the more reliable
next hop. Results show a higher packet arrival ratio, lower delay,
and energy consumption than the preceding Q-learning-based
routing methods.

Q-Learning-based Fuzzy Logic for Multi-Objective Routing
algorithm in Flying Ad Hoc Networks (QLFLMOR) [243]: This
multi-objective Q-learning-based fuzzy logic algorithm facilitates
the selection of the routing paths in terms of the per-link and over-
all path performances. The optimal routing path to the destination
is determined by each UAV using a fuzzy system with link-level
and path-level parameters. The link-level parameters include the
transmission rate, energy state, and flight status between neigh-
bor UAVs, while the path-level parameters include the hop count
and successful packet delivery time. Simulation results show that
the proposed method can maintain low hop count and energy
consumption and prolong the network lifetime.

Adaptive UAV-assisted Geographic Routing with Q-Learning
(QAGR) [244]: This algorithm uses fuzzy-logic and Depth-First-
Search (DFS) algorithms to calculate the global path routing.
As it is designed for UAV-Assisted networks, the vehicle on the
ground maintains a fix-sized Q-table that converges with a well-
designed reward function and forwards the routing request to the
optimal node by looking up the Q-table filtered according to the
global routing path. Results show a good performance in packet
delivering and end-to-end delay.

Fully-Echoed Q-Routing with Simulated Annealing Inference
for Flying Adhoc Networks (FESAIQ-Routing) [227]: This rout-
ing protocol is a full-echo Q-Routing with an adaptive learning
rate controlled by Simulated Annealing (SA) optimization, where
the temperature parameter captures the influence of the nodes’
mobility on the Q-value update rates. The soft variation of the
exploration rate not only optimizes the exploration rate, but also
accommodates abrupt changes in the network dynamicity. Simu-
lation results show better performance than previous state-of-art
Q-Routing algorithms.

A summary of some of these routing protocols is presented in
Tables 3 and 4 with some characteristics for each routing protocol,
as well as some comparative results to provide an idea of how these
routing protocols perform under certain circumstances.

9. Tools and public datasets

In this section, we review tools and public datasets available for
simulating real UAV networking environments. We investigate their
features and capabilities, emphasizing their use for testing networking
solutions (e.g., routing protocols) for UAV networks under different
conditions.

9.1. Simulation tools

UAV simulation tools emulate virtual environments to model UAV
flights in close-to-reality situations. It gives the convenience of evaluat-
ing the performance of UAV networks in virtual environments at much
lower costs and trouble before testing in real scenarios. The choice of
the appropriate simulator depends on both the testing objective and
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Table 3
Performance comparison table for topology predictive routing protocols.
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Algorithm Objective performance

Results

Energy Delay Throughput

Connectivity

PPMAC+RLSRP [216] v v

Predictive Dijkstra’s [80,105] v

Predictive greedy routing [32] v v

P-OLSR [217,218] v

GPMOR [219] v v

MPCA [220] 4

RARP [221] v

SFMPRGR [222] v v

QGeo [223] v v

PARROT [224] v v

FLRLR [225] v

Compared to DMAC, LODMAC, OLSR, GPMOR, RARP, IMAC+OLSR:
« Lowest network delay and longest path lifetime

« Highest route setup success and data delivery ratio.

« Better successful throughout without retransmissions.

Compared to conventional Dijkstra’s algorithm:
« Up to 25% decrease in end-to-end delay for 100 nodes.

Compared to conventional Dijkstra’s and static greedy:
« Higher probability of success (up to 100%).
« Energy consumption reduction (up to 30%).

Compared to OLSR and BABEL:
« Cuts down the outage time by at least 85%.
« Achieves a more stable goodput.

Compared to GPSR and GLSR:
« Better packet delivery ratio (up to 250%).
« Lower average delay of the network (up to 50%).

Compared with LID, HD and WCA:
« Up to 500% increase in clusterhead duration.
« Up to 70% lower reaffiliation frequency.

Compared to conventional AODV:
« Up to 30% increase in route setup success rate.
« Higher average path lifetime.

Compared to AODV, RGR, and MPRGR:
« 10% increase in packet delivery ratio.
« 20% reduction end-to-end delay.

Compared to GPSR and QGrid:
« Up to 50% increase in packet delivery ratio
« 20% reduction in end-to-end delay.

Compared to AODV, OLSR, GPSR and B.A.T.M.A.N:
« Higher packet delivery ratio (at least by 45%).
« Lower end-to-end latency

Compared to Fuzzy Logic and ACO:
« Up to 20% lower average number of hops.
« Around 30% higher connectivity.

the list of features offered by each simulator. Some simulators incorpo-
rate the Motion of Capture (MOCAP), which allows simulating UAVs’
natural movements [257]. Another tool is MAVLink, a lightweight mes-
saging protocol for communicating with drones to test communication
protocols and algorithms. Software In The Loop (SITL) is a hardware-
free simulation environment that facilitates simulating real-time UAV
operations. It includes a c++ code to directly implement autopilot
operation on the user’s computer for testing [258].

The list of tools for simulating UAV networking is large and still
growing. A comparative analysis of some popular simulation tools,
including X-Plane [247], FlightGear [248] (compatible with MATLAB
Simulink), Gazebo [249], JMavSim [250], Microsoft AirSim [251],
and UE4Sim [252], is presented in Table 5. The first four simulate
the UAV motions solely based on physics laws and do not support
MOCAP. On the other hand, Microsoft AirSim and UE4Sim support
MOCAP by using Unreal Engine 4 (UE4), an open-source tool that
simulates UAV movement using physics along with a high-quality
trajectory creation engine. AirSim is considered a platform for both Al
research and training [259]. AirSim is empowered with deep learning,
computer vision, and reinforcement learning features to generate and
utilize training datasets [260]. Also, UE4Sim simulator benefits from
a built-in and robust DL-based approach for real-time autonomous
driving that does not require manually collected training data. For
this reason, Microsoft AirSim and UE4Sim are considered two of the
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best simulators currently available. By combining Al components, these
simulators allow researchers to simulate their algorithms in near-real
environments, with the opportunity to develop better algorithms for
Al-based networking and control tasks.

9.2. Experimental platforms

Experimental platforms enable testing networking protocols in em-
ulated network setups. Most experimentation platforms can be exe-
cuted on a standalone computer or High-Performance Computing (HPC)
servers. However, larger experimentation platforms typically consist of
custom-built hardware with a set of simulation and operation software
packages, programming environment, and web-based user interface to
enable remote experimentation for the research community.

The most commonly-used experimental platforms are Network Sim-
ulator (NS-3) [261], and OPNET [262]. NS-3 is an open-source, free,
and discrete-event network simulator for Internet and networking sys-
tems, enabling testing different layers of networking protocols, includ-
ing routing protocols in MAC and Network layers. OPNET is an open
network simulator used to simulate the function and performance of
different networking systems. It is known for its power and versatility to
create and simulate different network topologies. OPNET Technologies
considers requests for free access for academic use.
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Table 4
Performance comparison table for self-adaptive learning-based routing protocols.
Algorithm Objective performance Results
Energy Delay Throughput
Adapiive QRouting. Full- y ler avrage delvry mer
echo [234] 8 Ty time.
Compared to Q-Routing, DRQ-Routing and AQFE:
AORERM [235] v « Better overshoot al"ld sett.hng time of the learning.
« Lower average delivery time.
Compared to Q-Routing, Epi-R, PROPHET and HBPR:
3 « Delivery probability almost gets doubled.
PBQ-Routing [236] 4 / / « Lower energy use and overhead reduced to half.
Compared to AODV and EQ-Routing:
) . « Lower packet delay.
Q"-Routing [23] 4 4 « Higher packet success ratio.
Compared to Q-Routing:
. » Much higher average reward of DQ-routing.
DQ-Routing [237] 4 « More likely to choose best action.
Compared to OLSR, AODV and GPSR:
« Up to 65% lower end-to-end delay.
2
QNGPSR [239] Y 4 « Up to 35% higher packet delivery ratio.
Compared to QGeo and conventional GPSR:
« Up to 30% higher packet delivery ratio.
2
ARdeep [240] 4 v « Up to 30% lower average end-to-end delay.
Compared with AODV, OLSR, GPSR, and QNGPSR:
TONGPSR [241] v Y « Outperforms in terms of the packet delivery ratio, end-to-end delay, and
throughput.
Compared to other Q-learning based routing methods:
QMR [242] v v v « Higher packet arrival ratio, lower delay and energy consumption.
Compared to conventional fuzzy logic and Q-value-based AODV:
QLFLMOR [243] v v v « Lower hop count and energy consumption and longer network lifetime.
Compared to ARPRL [245], U2RV [246], GPSR and AODV:
« Up to 300% higher in packet delivering ratio.
QAGR [244] v v « Around 50% lower end-to-end delay and up to 90% reduction in average
number of hops.
Compared to Q-R, REE-R, PE-R, AFEQ-R and SAHQ-R:
. L . o o
FESAIQ-Routing [227] v v Reduction in energy consumption between 7% to 82%.

« Increase of up to 264% in packet delivery ratio.

Table 5
UAVs simulation tools.
Simulator Free access ROS Interface MOCAP MAVLink SITL Obstacles Usability
X-Plane [247] No No No Yes Yes Yes Medium
FlightGear [248] Yes No No Yes Yes Yes Medium
Gazebo [249] Yes Yes No Yes Yes Yes Easy
JMavSim [250] Yes Yes No Yes Yes No Easy
Microsoft AirSim [251] Yes No Yes Yes Yes Yes Medium
UE4Sim [252] Yes No Yes No No Yes Medium
Table 6
UAVs experimental platforms.
Experimental platform Interface Free access MAVLink Compatible pilot software
QGround-Control [253] Graphical Yes Yes PX4 Autopilot, ArduPilot
Mission Planner [254] Graphical Yes Yes PX4 Autopilot, Ardupilot
MAVProxy [255] Command Yes Yes Ardupilot
UGCS [256] Graphical Yes, but limited Yes DJI, Innoflight, Micropilot, Mikrokopter, Microdrones, Parrot

Some other simulators are developed specifically for UAV net-

works. For instance, ROS-NetSim [263] is a Robot Operating System

(ROS) package, which acts as an interface between robots (UAVs in

this case) and network simulators. ROS-NetSim accurately replicates

Perception-Action-Communication (PAC) loops. Moreover, ROS-NetSim
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is tunable to account for a large range of communication fidelity and
complexity.

Another UAV-specific simulator is UB-ANC University at Buffalo’s
Airborne Networking and Communications Testbed (UB-ANC) [264],
which is an open platform that facilitates rapid testing and repeatable
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Table 7
UAVs trajectory datasets.
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Trajectory datasets Size/Length of flight

Description

Blackbird [272] 10 h of flight data from 168 flights.

KAUST [273] 11.172 Gb including all material.

420k frames representing 79 min of
drone flight records extracted out of
more than 5 h of flight.

Mid-Air [274]

Over 27 flight sequences, with more

UZH-FPV [275] than 10 km of flight distance.

Large-scale, aggressive indoor flight dataset collected using a custom-built quadrotor
platform. Over 17 flight trajectories and 5 environments at velocities up to 7.0 m/s.

Trajectories, proxy meshes and images generated for path planning on real and
synthetic scenes. It includes a benchmarking tool allowing new trajectories to output
camera images for reconstruction.

Multi-purpose synthetic dataset for low altitude drone flights. Data corresponding to
flight records of a flying quadcopter recorded in different climate conditions, including
a test set for benchmarking.

Visual-inertial odometry dataset from a drone racing quadrotor with fast laps around a
racetrack trajectories, as well as free-form indoor and out trajectories around obstacles.

comparative evaluation of airborne networking and communications
protocols at different layers of the protocol stack. It enables the flexible
deployment of novel communications and networking protocols, with
emphasis on modularity and extensibility.

A recently established experimentation center is Aerial Experimen-
tation and Research Platform for Advanced Wireless (AERPAW) in the
North Carolina State University (NCSU) [265,266]. This NSF-funded
center integrates drones and 5G wireless technology to provide in-
creased coverage and connectivity, high throughput aerial monitoring,
and improved signals and location data. The idea is to allow U.S.
researchers to test new ways of increasing wireless speed and capacity
in an experimental infrastructure, where nodes are mobile with the
ability to transmit and receiving radio/video waves from user devices
while moving on demand. This can be convenient under disaster relief
circumstances, in which existing cellular networks may be damaged.
Moreover, it is expected to make an impact in time-sensitive deliv-
eries, smart agriculture, autonomous driving, and accident control
applications [267].

Another remote experimentation Platform is the Open Wireless
Data-driven Experimental Research (POWDER) that operates as a highly
flexible, remotely accessible, end-to-end software defined platform
supporting a broad range of wireless and mobile related research [268].
This NSF-funded center has many features and capabilities including a
massive MIMO base station and Software-Defined Radios (SDRs) that
advances competitors in scale, realism, diversity, flexibility, and access.
More advanced routing protocols which require function virtualiza-
tion and SDR technology can be tested in this environment before
implementing in UAV networks.

We can also find experimental platforms that act as a ground control
station operating artificial UAVs. These platforms can be used to test
communication protocols developed for UAV networks in simulated
environments. Depending on the test scenario and objectives, we can
select from a list of available software packages. These platforms in-
clude QGround-Control [253], Mission Planner [254], MAVProxy [255]
and UGCS [256], as presented in Table 6.

Some experimental platforms use a graphical interface for user
convenience, and some are command-line-based to provide more flexi-
bility. We analyze the inclusion of MAVLink and the tools’ compatibility
with pilot software. We found that PX4 Autopilot, Ardupilot, ROS,
DJI Pilot, Innoflight, Micropilot, Mikrokopter, Microdrones, and Parrot
are open-source autopilot systems capable of controlling autonomous
vehicles, with a variety of aircraft operation scenarios, such as aerial
mapping, surveying, and more applications.

It is worth mentioning that some of the mentioned experimental
platforms offer Al capabilities for networking research. For instance,
NS-3 has NS3-GYM [269], and NS3-Al [270] extension modules that
enable applying Al to network simulations in NS-3. The key idea is to
provide a high-efficiency solution to allow data interaction between NS-
3 and other AI frameworks and encourage the use of Al in networking
research. Also, AERPAW and POWDER contain AI embedded into hard-
ware for superior detection, tracking, and classification of UAVs [271],
as well as for spectrum-maximizing resource allocations.
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9.3. Trajectory datasets

Trajectory datasets consist of recorded data from real-time UAV
flights that are useful for simulation purposes. The idea is to test new
methodologies or protocols using trajectory data that mimic real-world
situations. The bigger the size of the dataset, the more variability
of flight trajectories is incorporated. In Table 7, we compare some
UAV trajectory and imagery datasets available for all users that can
be helpful in simulating unmanned aerial monitoring platforms. These
datasets include Blackbird [272], KAUST [273], Mid-Air [274] and
UZH-FPV [275]. We observe that each dataset offers UAV motions
with different characteristics. The most appropriate dataset should
be selected based on the specific test requirements and conditions.
There exist many UAV datasets containing UAV imagery, as well as
aircraft trajectory datasets. However, they do not exactly reflect UAV
motion patterns, which is the main feature in path planning and routing
scenarios. Therefore, there is a need to produce more relevant UAV
trajectory datasets. Some methods use real data to train deep learning
algorithms for trajectory design and recognition [276,277]. Having
access to accurate trajectory datasets will allow researchers to develop
better solutions for real-world scenarios.

10. Future trends and remaining challenges

Despite the recent advances in developing ML-powered networking
protocols for UAV networks, there still are challenges and issues that
would be the center of attention for coming years. From the commu-
nication perspective, most technical challenges arise from the limited
payload, processing power, and structure-free and highly dynamic na-
ture of unmanned aerial platforms [278-282]. This section summarizes
part of these challenges and the future outlook of UAV networking
technology from different perspectives, including Al integration, energy
efficiency, security, regulations, etc.

10.1. Al integration

Using Al to accelerate networking is the dominant research trend,
as discussed in this paper. Al is shown to offer superior performance
for communication, control, and operation of autonomous UAVs un-
der different networking scenarios [25-27]. Moreover, it can opti-
mize network management and reduce their complexity [283]. We
believe that the current networking designs have not yet fully uti-
lized the power of Al-based solutions, and further research is on the
way to integrate Al and networking paradigms by using more ad-
vanced ML algorithms [67], RL-based decision-making [284], and deep
learning [285] for different aspects of networking, including sensing,
scheduling, routing, spectrum sharing, path planning, and resource
allocation.

However, it is worth mentioning that the use of Al-based methods
can bring up new challenges, and needs to be studied carefully. For
instance, Al methods can help to predict the future locations of the
network nodes and potential link losses, and hence improve the power
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consumption by avoiding the transmission of hopeless packets that
will be lost during the transmission. However, the use of Al methods
can add to the computation complexity and CPU power use in power-
constrained UAVs. Therefore, the right choice of the routing protocol
should be based on the application-specific requirements and design
constraints. Then, as a future solution, we need to study if the effect
of including AI techniques into our model is worth the complexity that
will be added, which could be affecting other important aspects such
as the network lifetime and power consumption.

10.2. Connectivity

Maintaining connectivity for UAV networks remains an important
issue considering the limited communication range of commercial
UAVs, which is typically limited to a few miles, while the coverage area
in some applications like forest fire monitoring, disaster management,
and wildlife monitoring can scale to hundreds of miles [286-288].
Connectivity loss can cause packet drop, frequent link re-establishment,
shortened link lifetime, prolonged delays, and ultimately disrupt the
mission and compromise the user QoE. Recent methods use ML meth-
ods to predict network topology change ahead of time and avoid
connectivity loss by learning-based routing [105,220,222,224]. An-
other approach is including the link remaining time or path lifetime
into the routing criteria [37]. Other methods try to identify and resolve
the connectivity loss by methods such as placement of new UAVs and
link re-establishment mechanisms [219].

One of the potential future trends would be integrating online
path planning methods with networking algorithms to realize topology
control with minimal connectivity issues. This approach is feasible in
many real-world scenarios where the coverage area is defined, but there
is a high degree of freedom in UAV’s motion paths (e.g., search and
rescue scenarios, regular forest monitoring, etc.). Also, connectivity is
dependent on the interference caused by objects and environmental
factors. Therefore, using more advanced AI methods to predict the
influence of network nodes, environment, and surrounding objects on
networking quality, can mitigate connectivity issues. In some appli-
cations with sparsely distributed nodes, intermittent connectivity is
unavoidable. Also, connectivity can be caused by UAVs that ran out
of battery. Developing Al methods to predict and accommodate such
conditions is another potential research direction [34].

10.3. Routing

In Section 8, we studied Al-enabled routing protocols, which use ML
algorithms to predict network topology directly (e.g., predictive routing
methods [32,105]) or indirectly (e.g., RL-based methods [242,243])
and use it for the route selection process. However, there still exist
challenges to be addressed.

Most routing protocols consider a fully connected network, whereas
in reality, link breakages exist, causing routing protocols to fail [289].
Also, node mobility in routing protocols is mostly developed for and
tested in 2D spaces, whereas UAVs move in 3D spaces. The third
research challenge is developing vision-based target tracking meth-
ods to predict network topology, noting that future UAVs will be
equipped with Graphics/Tensor Processing Units (GPU/TPUs), capable
of running deep learning methods for video processing. Developing
probabilistic and priority-based routing protocols to prioritize packets
with critical and confidential content is another potential research
direction. Finally, extending RL-based method to accommodate non-
linear motions and implementing light-weight routing protocols for
miniaturized UAVs are two important remaining challenges.
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10.4. Energy efficiency

UAVs are highly constrained in payload and battery lifetime. The
available energy should be optimally used for navigation, sensing, ac-
tuation, transmission, and data processing [290]. Therefore, developing
energy-efficient networking to prolong mission time and extend cover-
age area is usually considered a top priority in UAV networks [291,
292].

A parallel research direction to solve energy issues of UAVs is
developing new battery technologies, such as hydrogen fuel cells [293],
and enhanced lithium-ion batteries [294]. Also, Radio Frequency (RF)
transmission can be used for Wireless Power Transfer (WPT) [295],
which provides controllable and sustainable energy supply for UAVs
[296,297]. Further research is required to improve the use of WPT
by reducing the distance between charging stations and UAVs, the
random energy arrivals, and the scalable nature of UAVs [298,299].
Another research direction is considering mmWave communications for
UAV networks, energy beamforming, and the optimized placement of
wireless charging stations. Integration with 5G, and 6G wireless systems
are also research topics related to energy optimization. A few routing
protocols consider energy as a routing criterion. Developing multi-
objective and constrained optimization methods for routing protocols
to enhance routing efficiency, while maintaining maximal connectivity
and minimizing energy consumption is an important future direction.
Further research is required to develop energy-aware routing protocols.
Some recent works offer storing data and postponing calculations to the
future to reduce power consumption while flying [300].

Another potential solution can be using energy-efficient ML and
DL algorithms for networking, such as energy-efficient convolutional
neural networks [301]. However, new challenges come into place when
we use the mentioned techniques. First, it is misbelieved that reducing
the energy consumption of the algorithms does not necessarily lead
to a reduction of the overall energy consumption. Second, in some
scenarios, measuring the energy consumption becomes redundant since
energy and time are correlated, and time is already measured. Third,
it might be hard to measure the energy consumption, making it time
consuming and impractical [302]. Despite a few scenarios where these
statements are true, we can find that reducing the energy consumption
of the algorithms used will impact positively the overall energy con-
sumption and also, measuring energy consumption can offer a unique
overview, compared to time consumed. Last, there are some solutions
that can model the energy consumption of different algorithms [303],
as for example Alphabet’s DeepMind.

10.5. Spectrum management

Enabling high-rate, low-latency, and ultra-reliable wireless commu-
nications in UAV networks is a necessity for future applications. Cur-
rently, UAVs use different communication protocols, including WiFi,
LTE, LoRA, and 5G for A2 A and A2G communications. In recent
years, progress has been made in obtaining additional dedicated radio-
frequency spectrum (5030-5091 MHz) for drone operations [279]. In
addition to the usual ways of power management, interference control,
spectrum-efficient networks, the use of different spectrum sensing,
spectrum sharing, and spectrum leasing is considered to extend the
service area of UAVs [101,102,304,305], especially in unexpected and
harsh conditions such as disaster management.

In a different line of research, some models offer using fiber optic
communications [306], laser [307] and LiFi [308] to provide a faster
and more efficient way for transmitting large amounts of data over
long distances to cover the increasing demand for bandwidth. These
methods would alleviate the spectrum scarcity issue. However, more
research is expected to solve optical communications’ specific issues,
including sensitivity to interference and adaptive antenna steering.
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Table 8

Remaining issues and future directions.

Ad Hoc Networks 130 (2022) 102790

Open issues

Problems

Future directions

« Al integration

« Current networking designs have not yet fully utilized the
power of Al-based solutions.

o« The use of AI methods can add to the computation
complexity and CPU power use in power-constrained UAVs.

« Use ML, RL and DL techniques for different aspects of networking,
including sensing, scheduling, routing, spectrum sharing, path planning,
and resource allocation.

« Study if AI improves performance and does not impact negatively
network lifetime and power consumption aspects.

« Connectivity

« Link failures bring limited network lifetime.

« Communication links between UAVs are extremely vulnera-
ble.

« Connectivity is dependent on the interference caused by
objects and environmental factors.

« Use ML methods to predict network topology change ahead of time
and avoid connectivity loss by using learning-based routing.

« Consider techniques that enhance link lifetime by adding link remaining
time or path lifetime into routing criteria.

« Resolve the connectivity loss by methods such as placement of new
UAVs and link re-establishment mechanisms.

« Integrate online path planning methods with networking algorithms to
realize topology control with minimal connectivity issues.

« Routing

« Most routing protocols consider a fully connected network,
whereas in reality, link breakages happen.

« Node mobility in routing protocols is mostly developed for
and tested in 2D spaces, whereas UAVs move in 3D spaces.
« Non-linear motions are not considered in current routing
protocols.

« Miniaturized UAVs have limited battery lifetime.

« Design a routing protocol that considers intermittent connectivity into
the routing selection process, as well as 3-dimensional space.

« Design a topology-predictive routing to accommodate non-linear mo-
tions.

« Develop vision-based target tracking methods for GPU-powered UAVs
to predict network topology.

« Develop a light-weight Al-powered routing appropriate for miniaturized
UAVs.

« Energy efficiency

« UAVs are highly constrained in payload.

« Battery designs are limited in energy optimization trends.

« Only a small portion of routing protocols considers energy
or power as a routing criteria.

« Develop energy-efficient networking to prolong mission time and extend
coverage area as a top priority.

« Develop new battery technologies, such as hydrogen fuel cells and
enhanced lithium-ion batteries.

« Use RF transmission for WPT.

« Consider mmWave communications, energy beamforming and place-
ment optimization of wireless charging stations.

« Examine energy-aware routing future directions to incorporate energy
level in the decision-making criteria to extend path lifetime.

« Use energy-efficient ML and DL algorithms for networking, such as
energy-efficient convolutional neural networks.

« Spectrum management

« Spectrum unavailability can cause the loss of command and
control of the aircraft.

« Spectrum remains vulnerable to unintentional or intentional
interference.

« Spectrum sharing and spectrum leasing techniques using advanced Al-
based solutions.

« Optimal communications including sensitivity to interference and
adaptive antenna steering can optimize data acquisition objectives.

« Security and user privacy

« UAVs are usually subject to different security attacks.

« Aerial monitoring systems may exchange imagery with
people’s private information, which requires higher protection
levels.

« Conventional PKI-based asymmetric security solutions are not
feasible due to the lack of central authority to issue digital
signatures.

« Jamming attacks can also disrupt UAV missions.

« Use hardware-driven security keys for UAV authentication and enable
the non-repudiation feature.

« ML methods can be used to detect and eliminate jamming, or provide
an additional reference for positioning verification.

« Develop secure routing schemes that alleviate security issues while
finding optimal paths.

« Operational regulations

« Lack of or ambiguity of regulations and standards for UAV
operations, characteristics, safety requirements, secrecy and
privacy considerations, and allowed airspace.

« Develop certification standards and air traffic requirements for UAV
operations that are universal.

« Use Al software for regulation compliance to ensure safety of confiden-
tial information, risks mitigation and instant response to new regulatory
requirements.

10.6. Security and user privacy

Developing secure and privacy-preserving networking methods is
another key challenge for UAV networks. UAVs are usually subject
to different security attacks, including physical hijacking, jamming
attacks, cyber-attacks, man-in-the-middle attack, intruding malicious
nodes, channel interception, and denial of service, especially when fly-
ing over adversary territory [43]. Also, aerial monitoring systems may
exchange imagery with people’s private information, which requires
higher protection levels.

A key challenge in structure-less UAV networks is that using con-
ventional PKI-based asymmetric security solutions is not feasible due
to the lack of central authority to issue digital signatures. Therefore,
methods based on distributed certificate [309], key pre-distribution
algorithms [310,311], and blockchain security [312] are under inves-
tigation. Also, the idea of using hardware-driven security keys for UAV
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authentication and enabling the non-repudiation feature is recently pro-
posed as a potential future direction [313]. Jamming attacks can also
disrupt UAV missions, especially when they rely in GPS positioning.
Using alternative localization methods [314], as well as, designing a
secure handover mechanism which is resistant to both passive and ac-
tive attacks [315], can solve this issue. Also, machine learning methods
can be used to detect and eliminate jamming, or provide an additional
reference for positioning verification [316]. Another emerging research
trend is developing secure routing schemes that alleviate security issues
while finding optimal paths [317].

10.7. Operational regulations
Another hindrance to the widespread use of drone technology is the

lack of or ambiguity of sufficient regulations and standards for UAV
operations, characteristics, safety requirements, secrecy and privacy
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considerations, and allowed airspace. In the US, the FAA is responsible
for developing certification standards and air traffic requirements for
drones. For instance, flying drones above class G airspace and in
autonomous modes require special permits from the FAA that can take
a long time. Also, international coordination would help develop global
regulations, noting that different territories follow different standards
and regulations. For instance, currently, there exist three different
regions, including (i) region 1 that covers Europe, Africa, and parts
of the Middle East, (ii) region 2 that covers America, and (iii) region
3 that covers Asia and the Pacific, which have different frequency
bands for UAV operations. One more potential solution would be
using Al software for regulation compliance, which ensures increased
safety of confidential information, risks mitigation and instant response
to new regulatory requirements. This way, we could find Al-enabled
drones authorized for use in different regions, following the operational
regulations at each specific area.

10.8. Summary of challenges

We identified the need for (i) advanced AI methods to precisely
predict networking conditions and environmental factors, (ii) integra-
tive networking and topology control for extended connectivity, (iii)
vision-based tracking methods for GPU-powered UAVs, (iv) topology-
predictive routing to accommodate non-linear motions, (v) developing
light-weight Al-powered routing appropriate for miniaturized UAVs,
(vi) distributed structure-free extension of asymmetric security proto-
cols based on key pre-distribution, hardware-driven keys, blockchain,
and distributed certificate methods, (vii) ML methods to recognize and
combat jamming attacks, (viii) energy-efficient low-power and low-
complexity networking, (ix) Al-based spectrum sharing and leasing
policies, security-aware mission planning, and (xi) universal regulation
and guidelines for UAV operation, as top key issues that are worthy of
investigation by the research community. A more detailed summary of
the remaining challenges and future trends is included in Table 8.

11. Conclusion

The dominant trend of UAV systems is departing from single-drone
systems to networked autonomous drones to accomplish complicated
tasks at lower cost and time. The idea of using Al-based network-
ing and control protocols to accommodate dynamic situations has
recently gained a lot of attention, thanks to the advances in AI and
deep learning methods powered by fast and affordable computational
platforms. Here, we focused on the most recent Al-based methods
that aim to model and predict network topology to facilitate more
efficient information flow for aerial networks. This important class of
routing protocols is overlooked or not received the deserved emphasis
in previous survey papers.

In this paper, we reviewed Al-based routing protocols designed
for UAV networks, highlighting the benefits and costs of each type,
along with available testing and implementation tools, relations to
mobility models and networking protocols, and connection to UAV
swarming. These methods include the direct use of ML methods for
topology prediction, as well as learning-by-experience approaches. We
also reported substantial improvements of the most recent methods in
terms of connectivity control, successful packet delivery rate, transmis-
sion delay, and throughput for Al-based routing protocols, compared
to conventional methods. We also provided our perspective on the
future trends for Al-based networking, which mainly center around
developing method for more accurate environment perception, vision-
based tracking, light-weight DL algorithms appropriate for on-board
processing, Al-based spectrum sharing, and security-aware networking.
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