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Abstract
This paper considers the problem of long‐term target tracking in complex scenes when
tracking failures are unavoidable due to illumination change, target deformation, scale
change, motion blur, and other factors. More specifically, a target tracking algorithm,
called re‐detection multi‐feature fusion, is proposed based on the fusion of scale‐adaptive
kernel correlation filtering and re‐detection. The target tracking algorithm trains three
kernel correlation filters based on the histogram of oriented gradients, colour name, and
local binary pattern features and then obtains the fusion weight of response graphs
corresponding to different features based on average peak correlation energy criterion
and uses weighted average to complete the position estimation of the tracked target. In
order to deal with the problem that the target is occluded and disappears in the tracking
process, a random fern classifier is trained to perform re‐detection when the target is
occluded. After comparing the OTB‐50 target tracking dataset, the experimental results
show that the proposed tracker can track the target well in the occlusion attribute video
sequence in the OTB‐100 test dataset and has a certain improvement in tracking accuracy
and success rate compared with the traditional correlation filter tracker.
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1 | INTRODUCTION

Target tracking is one of the important branches in the field of
computer vision, with a wide range of applications in robot
navigation, video surveillance, and human–computer interac-
tion [1–3]. In the past decades, it has been the centre of
attention of many scholars. Video‐based target tracking is
usually achieved by predicting the size and position of the
target of interest in each frame by the tracking algorithm after
the size and position of the target are given artificially in the
first frame of a video.

In the past few decades, various algorithms proposed by
many scholars have made great success in the field of target
tracking. However, most of the current algorithms can only

track the target in a single scene, which cannot meet the re-
quirements of robust tracking in complex scenes. The research
focuses on the field of target tracking is still to solve the target
deformation (DEF) and illumination changes encountered in
the tracking process as well as the scale change and target
occlusion (OCC).

In recent years, due to the fast‐computing characteristics of
correlation filtering in the frequency domain, the computing
speed of the target tracking algorithm has reached hundreds of
frames per second, which makes the correlation filtering target
tracking algorithm more popular than before. A good corre-
lation filter can produce a correlation peak at the target posi-
tion and a low response at the background position. The
minimum output sum of squared error (MOSSE) algorithm
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proposed by Bolme [4] initiated the field of correlation‐filtering
target tracking. Henriques improved the MOSSE algorithm
and proposed a circular structure with kernels (CSK) algorithm
[5]. The CSK algorithm introduced a regularisation term after
the utilised minimisation function to prevent over fitting of the
obtained filter. In addition, this algorithm generated a large
number of samples by cyclic displacement of the image matrix
as input for the training classifier. Afterwards, Henriques
proposed the kernelised correlation filters (KCF) algorithm [6]
to improve the CSK algorithm, by using the histogram of
oriented gradients (HOG) feature to replace the single‐channel
grey feature; they also used the circulant matrix around the
target area as the positive and negative samples when training
the detector and used the circulant matrix Fourier space
diagonalisation to simplify the matrix calculation so that the
algorithm can meet the real‐time requirements. Daneljan et al.
proposed the colour name (CN) algorithm [7] to improve the
ability of tracking algorithm in dealing with target DEF based
on colour information and then proposed a discriminative
scale space tracker (DSST) algorithm to train a separate scale
filter to estimate the target scale in each frame [8]. The scale
adaptive kernel correlation filter (SAMF) algorithm [9] in-
troduces scale estimation based on the KCF algorithm and
combines HOG and CN features to describe the target from
different angles to tackle the issues of target tracking in com-
plex scenes. However, the algorithm does not have a re‐
detection module to combat the tracking failure when the
target encounters OCC. In Ref. [10], an improved method
based on the image block re‐detection is proposed based on
the SAMF algorithm. When the tracking accuracy of the
target is reduced due to OCC, the re‐detection module is
initiated to recover the tracking of the target. This method is
suitable for the situation where the target is occluded for a
short time. An OCC detection mechanism based on the KCF
algorithm is proposed in Ref. [11]. When the algorithm con-
cludes that the target is occluded, Kalman filtering is used to
predict the target position to solve the problem of target re‐
location after OCC. However, this method is applicable only
to linear systems. In Ref. [12], the target position is estimated
by feature fusion based on the peak to side lobe ratio of the
grey feature and local binary pattern (LBP) feature response.
The idea of applying the features obtained by the deep
convolution neural network to correlation filtering target
tracking is proposed in Ref. [13]. However, due to the high
computational cost of convolution feature extraction, it is
difficult to meet the real‐time requirements of target tracking.

In view of the ideas and shortcomings of the above algo-
rithms, the main contributions of this paper are as follows: (1)
under the framework of KCF algorithm, a multi‐feature fusion
scale adaptive algorithm integrating HOG [4], CN [14], and
LBP [15] is proposed. (2) For the problem of complex scenes in
the tracking process, multi‐feature fusion is carried out based on
the average peak correlation energy (APCE) criterion [16]. In the
tracking task, a scale filter is trained to estimate the scale of the
target. (3) A re‐detector is trained online based on the random
fern algorithm [17]. When tracking fails due to severe OCC of
the target, we call the redetector to reposition the target.

2 | PRINCIPLE OF KERNEL
CORRELATION FILTER

The purpose of target tracking based on correlation filtering
is to find a classifier function f ðx;wÞ ¼ ðw; xÞ based on
training samples and minimise its loss. w represents the
parameter of the classifier. By taking the sum of squared
errors as the loss function, the solution of w can be written
as Equation (1):

min
w

X

i

f xið Þ − yið Þ
2

þ λkwk
2

ð1Þ

Here, xi and yi represent the training samples and their
corresponding labels, respectively, and λ represents the regu-
larisation coefficient to prevent the classifier from overfitting.
By calculating the partial derivative of the above equation and
making it equal to zero, we can get the solution of Equation (1)
as

w¼ XTX þ λI
� �−1

XTy ð2Þ

In the above formula, X ¼ x1; x2;…xn½ �
T represents the

sample matrix, xi represents a sample, I represents the identity
matrix, and yi represents the tag value of each training sample
in y¼ y1; y2;…yn½ �

T . Since the training samples based on
kernel correlation filter are obtained by the cyclic shift of the
target samples, using the Fourier transform property of cyclic
matrix, Equation (2) can be converted into Equation (3):

bw ¼
bx∗ ⊙ by

bx∗ ⊙ bx þ λ
ð3Þ

where ⊙ represents matrix dot multiplication, bx, by and bw
represent the discrete Fourier transform of x, y and w,
respectively; bx∗ represents the complex conjugate of bx. Then
kernel correlation filter maps the input sample x to the high‐
dimensional feature space through the kernel function pro-
cessing method, so the classifier parameter w can be expressed
as w¼

Pn
i¼1αiϕ xið Þ in the dual space, which transforms the

problem of solving w into solving α in the frequency
domain. Therefore, the problem can be expressed as
Equation (4)

bα ¼
by

bk
xx

þ λ
ð4Þ

where ∧ represents the Fourier transform, bk
xx

represents the
discrete Fourier transform of kernel matrix K ¼ ⟨ϕðxÞ; ϕðxÞ⟩
and has Equation (5)

kxx
0

¼ exp
�

−
1
σ2 jjxjj2 þ jjx0jj

2 − 2F−1 bx∗ ⊙ bx0ð Þ
� ��

ð5Þ

In the phase of testing sample response, the tracker con-
siders the candidate sample z by cropping an M � N pixel
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image segment from the position of the target in the previous
frame to calculate the response graph Equation (6)

f ðzÞ ¼ F−1 bk
xz

⊙ bα
� �

ð6Þ

where kxz represents the correlation between the training
sample x and the test sample z, F−1 represents the inverse
Fourier transform, and f ðzÞ represents the response value of
the test sample z. We regard the position of the test sample
with the largest response value as the position of the target in
the new frame.

3 | LONG‐TIME TARGET TRACKING
BASED ON MULTI‐FEATURE FUSION

Robust representation of the target is an essential part of the
target tracking task. Target tracking based on a single feature is
not suitable for all scenarios [18]. For example, the HOG
feature can reflect the contour of human body, so it can yield
excellent performance in pedestrian detection, but the gradient
descriptor is sensitive to noise points; the LBP feature can
describe the local feature information of the image, so it can
effectively deal with the motion blur (MB) caused by the rapid
movement of the target, but the operator is sensitive to the
direction information; the CN feature can effectively describe
the colour information of the target, so it has a preferable
effect on the DEF and partial OCC of the target, but it is easy
to be affected by the change of illumination. Therefore, we use
the fusion of multiple feature domains along with the target re‐
detection for target tracking in this paper. More specifically, the

robust model representation of the target is established by
multi‐feature fusion; when a target is occluded, the re‐detector
is activated to prevent target loss.

3.1 | Multi‐feature fusion based on average
peak correlation energy

The target tracking based on correlation filtering infers the
location of the target through the response graph. According
to Equation (6), we set the location with the largest response
value as the location of the target. It is well known that the
ideal response graph should have only one sharp peak while
the rest is flat, which indicates that the target located by the
tracker matches the actual target very well, and the tracking
effect is superior at this time. Conversely, if the rest of the
response graph is not flat enough except the peak value, it
indicates that the tracking quality is degraded due to the
complex background or the OCC of the target.

Here, we propose to evaluate the tracking performance of
the tracker based on the APCE criterion [19]. The APCE value
of the response graph reflects the flatness of the response
graph. As shown in Figure 1a,b, when the target is correctly
tracked, the maximum value and the APCE value of the
response graph are 0.46 and 37.71, respectively, and there is
only one sharp peak in the response graph and the rest of the
response graph is flat. When the tracking quality of the target is
degraded due to OCC, as shown in Figure 1c,d, the maximum
and APCE values of the response graph are 0.31 and 17.41,
respectively. At this time, there is a peak value in the response
graph, but the rest of the response graph is not flat and in-
cludes considerable fluctuations.

F I G U R E 1 Diagram of average peak correlation energy (APCE) value and maximum response under different tracking quality: (a) no Occlusion (OCC),
(b) response graph without OCC, (c) it's covered and (d) response graph with OCC
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The APCE criterion is calculated as

APCE ¼
jFmax − Fminj

2

mean
P

w;h Fw;h − Fmin
� �2

� � ð7Þ

where Fmax and Fmin represent the maximum and minimum
values in the response graph, respectively, and Fw;h represents
the response value at the position of column h in row w of
the response graph.

After getting the corresponding response graphs of HOG,
CN and LBP, we can get the final response graph by weighted
averaging the corresponding response graphs of each feature
according to the APCE criterion and select the position with
the largest response value in the final response graph as our
estimated target in the current frame position. The formula is

res¼
Ahogreshog þ Acnrescn þ Albpreslbp
� �

λ
ð8Þ

where λ ¼ Ahog þ Acn þ Albp. Ahog, Acn, Albprepresent the
APCE value of the response graph corresponding to each
feature, reshog, rescn, reslbp, respectively represent the response
graph corresponding to each feature, and the response graph is
calculated according to Equation (6).

3.2 | Abstract scale adaptive strategy

The training process of the scale filter is as follows: at the
beginning of the tracking task, an initial tracking box is cali-
brated around the target under tracking, and then training
samples with different scales are generated around the centre
of the target as the input of the scale filter. Then, S image
blocks with different scales (here we have S ¼ 33) are extrac-
ted. The scale size of training samples follows formula
anM � anN , where, n ∈ − S−1

2 ;… S−1
2

� �
and a¼ 1:02 repre-

sent the scale factor. We extract HOG features from the
training samples of different scales obtained in this way.

Let f represent the feature vector extracted around the target
under we are tracking, and there exist d training samples at
different scales, l ∈ f1;…dg. Then, the featurematrixcomposed
of training samples at different scales can be represented by

f 1;…f d
n o

, and the calculation formula of scale filter hl is

min
h

�
�
�
�

Xd

l¼1

hl ∗ f l − g
�
�
�
�

2

þ λ
Xd

l¼1

�
�hl
�
�
2

ð9Þ

where g is the expected output of each training sample, and
λ ≥ 0 is the regularisation parameter. Our goal is to find an
optimal filter h to minimise the above formula. The solution
of the above equation is given in Equation (10):

Hl ¼
GFl

Pd

k¼1
FkFk þ λ

ð10Þ

Here, Hl represents the scale filter we require. Let Alt
and Blt represent the numerator and denominator of Hl ,
respectively, then the update mode of the scale filter can be
found as follows:

Alt ¼ ð1 − ηÞAlt−1 þ ηGtFlt ð11Þ

Blt ¼ ð1 − ηÞBlt−1 þ η
Xd

k¼1

Fkt F
k
t ð12Þ

where, η is the update rate of the scaling filter, which is set to
0.025 in this work.

After training the scale filter, in a new frame, we first obtain
the centre translation position of the target through the
translation filter based on multi‐feature fusion. Then, we
obtain multiple test samples under different scales by taking
the position as the centre. We use the scale filter to calculate
the response of each test sample and take the size of the
sample with the largest response as the actual size of the target
in the current frame. The calculation formula is as
Equation (13):

y¼ F−1

 Pd
l¼1A

l
Zl

Bþ λ

!

ð13Þ

Here, Z is the test sample of different sizes, F−1 is the
inverse Fourier transform, and y is the scale filter's response
output of the test sample. The size with the largest response
output can be taken.

3.3 | Construction of re‐detector

In this paper, a re‐detector is trained to deal with the problem
of the disappearance of target due to OCC, which eventually
leads to the tracking failure [6]. In the training phase, the
positive samples are generated by selecting 10 image frames
closest to the target. Then, we use data augmentation by
applying scaling, rotation, and affine transformation to each
frame to obtain more positive samples. The image frames far
away from the target are selected as negative samples.

Let the training sample set be X ¼ x1; x2;…xKf g, and the
samples are divided into positive and negative samples, rep-
resenting the target and non‐target, respectively, which are
represented by class labels C ¼ c1; c2f g. Fj stands for the j th
fern tree, where j ¼ 1; 2;…10. The training process of random
fern cluster classifier is as follows:

Step 1: Input positive or negative samples xj as training
samples into fern tree Fj. Each layer of the fern tree corre-
sponds to the 2‐bit LBP feature at the corresponding position
of training samples, that is, fd ¼ f00; 01; 10; 11g, where
d ¼ 1; 2;…8 corresponds to layer d of the fern tree.

Step 2: The eigenvalues of all layers of fern tree Fj are
counted to get the eigenvalue Bj ¼ f8LBP, where
Bj ∈ 0; 1; 2;…48f g.
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Step 3: For the sample ci, whose sample category is xi, we
can get the eigenvalues of the sample in the last layer of the
fern tree, and we can get the histogram of the eigenvalues
corresponding to a single fern by counting the eigenvalues of
all training samples. The abscissa is the eigenvalue, and the
ordinate represents the number of times that the eigenvalue
appears in the training process.

Step 4: The Step 3 completes the histogram statistics of the
eigenvalues of a single fern [20]. Steps 1–3 is executed 10 times
to complete the histogram statistics of the eigenvalues of the
training samples.

If S is the test sample and the sample category is repre-
sented by C, the process of classifying the test sample to
determine whether or not it is a candidate sample is as follows:

Step 1: Input the sample into the random fern classifier kj
to get the 2‐bit‐lbp eigenvalue kj of the test sample.

Step 2: Find the maximum likelihood estimation of kj ,
using the following equation:

pctj ¼ p C ¼ ct
�
�kj

� �
¼
Nkjct
j

Nct
j

; t ¼ 1; 2 ð14Þ

Here, Nct
j represents the sum of the histogram frequencies

corresponding to the jth fern tree of category ct, and N
kjct
j

represents the occurrence frequency of the characteristic val-
ue kj in the histogram.

Step 3: If the final output meets 1
n
Pn

j¼1p C ¼ ct
�
�kj

� �
> 0:6,

for n¼ 10, then the test sample belongs to class ct.
Through the above three steps, we can classify the test

samples, but after executing the random fern classifier, we
will still get multiple candidate samples. Therefore, we need
to select the best sample from these candidate samples as our
re‐detection target. Here, we calculate the correlation between
the candidate samples and the sample set based on a K‐
Nearest Neighbor classifier, that is, the Euclidean distance
between the selected and the candidate samples. Then, ac-
cording to the category of these five training samples, we
decide whether or not the candidate samples are the targets
we want to detect.

3.4 | Algorithm flow

The algorithm flow is as follows:
Input: the initial position P0 ¼ x0; y0; s0ð Þ of the target,

where x0; y0ð Þ represents the centre position coordinate of the
target and s0 represents the target scale.

Output: estimated target position Pt ¼ xt; yt; stð Þ.

� For t ¼ 1 to T (T is the total count of frames of the input
video frames).

Location estimation:

� Extract an image block in the 2nd frame. The centre of the
image block is the location of the target in the previous

frame, that is, (xt−1; yt−1), and the length and width of the
image block are 2.5 times of the length and width of the
target in the previous frame. The HOG, CN and LBP fea-
tures of the image block and its virtual samples generated by
translation are extracted, respectively [21].

� Calculate response matrices fhog; f cn; f lbp for corresponding
to each feature map according to Equation (6) based on the
corresponding filter, where the response matrices fhog;
f cn; f lbp are corresponding to the response graphs reshog;
rescn; reslbp.

� Assign the weight of each response graph according to
Equation (8) based on the APCE criterion to get the final
response graph. The position of the maximum response
value in the final response graph is the estimated target
position xt; ytð Þ.

Scale estimation:

� Taking xt; ytð Þ as the centre, cut out the image blocks of
different scales around the centre, and extract their
HOG features. According to Equation (13), the image
blocks of different scales are correlated with the scale
filter, and the image block size with the largest response
value is selected as the size st of the current frame
target.

Determine the target location:

� Calculate the APCE value for each feature according to
Equation (7). When Ahog;Acn;Albp are all less than 0.45
times of the historical mean value, we conclude that the
performance of the tracker is poor due to the OCC of the
target. Therefore, the re‐detector is activated to re‐locate the
target position P0

t ¼ x0
t; y

0
t; s

0
t

� �
and Pt ¼ P0

t; otherwise, the
re‐detector is not activated, and Pt is the result of the po-
sition and scale estimations.

Model update:

� When Ahog;Acn;Albp are greater than or equal to 0.45
times of the historical mean value, we conclude that the
target position is more accurate. At this time, we use the
results of the tracker to train the position filter and scale
filter. Also, positive and negative samples are collected
around the target as training samples of the re‐detector.
We update the re‐detector every time we collect 200
training samples.

The pseudo code of the algorithm is as follows:

void main ()
{

Read video;
if (First frame?)
{

Generate virtual samples based on
target location;
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Training position filter;
Training scale filter;

}
else
{
Cut the test sample based on the target
position of the previous frame;
Extract the characteristics of hog, LBP
and CN of test samples;
Perform correlation operation with the
position filter to obtain the response
diagram;
The estimated target position is
obtained by fusing multiple features
based on APCE;
The estimated scale is obtained by
correlation operation with the scale
filter;
if (Is the tracker reliable?)
{
Training filter based on estimated
target position and scale;
The training samples of the re-detector
are collected around the target;
if (Training sample reaches 200?)

Update re-detector;
}
else
{
Activate the re-detector for target
relocation;
Target location and scale training filter
based on relocation of detector;
}
}

}
The framework of this algorithm is given in Figure 2.

4 | EXPERIMENTAL RESULTS AND
ANALYSIS

This section is divided into three parts. First, the software and
hardware environment used to verify the re‐detection multi‐
feature fusion (RDMF) tracking algorithm RDMF proposed
in this paper is introduced. Second, the test video dataset is
introduced. Finally, the algorithm results of this paper are
analysed and summarised from two aspects of qualitative
evaluation and quantitative evaluation.

4.1 | Introduction of experimental software
and hardware environment

The experimental conditions of RDMF algorithm are as
follows:

F I G U R E 2 Algorithm flow chart

T A B L E 1 Video properties

Attribute classification Property description

IV (illumination variation) Light change

SV (scale variation) Scale change

OCC(Occlusion) Occlusion

DEF(Deformation) Deformation

MB (motion blur) Motion blur

FM (fast motion) Fast motion

IPR (in‐plane rotation) Plane rotation

OPR (out‐of‐plane rotation) Solid rotation

OV(Out‐of‐view) The target is out of view
of the camera

BC (background clutters) The background of the
target is complex

LR (low resolution) Low resolution
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F I G U R E 3 Comparision of illumination variation (IV), Deformation (DEF), motion blur (MB) and one pass evaluation (OPE)
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� Hardware conditions: the Central Processing Unit is Intel
(R) core (TM) i5, the main frequency is 2.4 GHz, and the
memory is 8 GB.

� Software conditions: Windows 7 operating system and the
code environment is MATLAB 2016a.

� Test video: OTB‐50 video test sequence in visual tracker
benchmark library.

4.2 | Introduction to test dataset

In order to evaluate the efficacy of the proposed tracking al-
gorithm in a comprehensive way, the data in the video library
are marked with attributes. There are 11 kinds of video attri-
butes, as shown in Table 1.

Each group of videos in the video set contains many of
these 11 attributes, enabling us to evaluate the tracking algo-
rithm objectively. The evaluation method includes both quali-
tative and quantitative evaluations. Qualitative evaluation refers
to marking the target location of the tracking algorithm directly
in the test video, and the effect of tracking algorithm can be
observed directly by the human eyes. Because the qualitative
evaluation is subjective, the quantitative evaluation method is
also proposed. This method describes the effect of tracking
algorithm's efficacy from two perspectives of the range accu-
racy and the overlap success rate.

The statistical method of distance accuracy is to calculate
the average Euclidean distance between the actual target centre
position and the target centre position determined by the al-
gorithm in each frame. The distance accuracy value in the

F I G U R E 4 Comparision of the proposed re‐detection multi‐feature fusion (RDMF) algorithm with commonly used target tracking methods in terms of
dealing with complex backgrounds

F I G U R E 5 Comparision of the proposed re‐detection multi‐feature fusion (RDMF) algorithm with commonly used target tracking methods in terms of
dealing with scale change
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current video sequence is the ratio of the number of frames
with Euclidean distance below the threshold to the total
number of the frames.

The statistical method of overlapping success rate is to
calculate the overlapping rate between the target position
determined by the tracking algorithm and the actual target
position, and the ratio of the number of frames, whose over-
lapping rate is greater than the specified threshold to the total
number of frames is the overlapping success rate of the current
video sequence. It can be calculated as

S ¼
γðtÞ ∩ γðaÞ
γðtÞ ∪ γðaÞ

ð15Þ

The numerator refers to the area intersection of the actual
target and the target position determined by the tracking

algorithm, and the denominator refers to the area union of
the two positions; the ratio of the two determines the overlap
rate S.

4.3 | Experimental results and analysis

First, the algorithm is evaluated quantitatively. Since the algo-
rithm tracks the target based on the multi‐feature fusion
strategy, considering the robustness of the HOG, LBP, and CN
feature maps, respectively, to illumination, MB, and target
DEF, combining these three complementary features is bene-
ficial to deal with the illumination change, target DEF and MB
altogether. One pass evaluation represents the experimental
results, which are drawn based on the tracking algorithm after
one run on the dataset.

F I G U R E 6 Comparision of the proposed re‐detection multi‐feature fusion (RDMF) algorithm with commonly used target tracking methods in terms of
dealing with occlusion (OCC) effect

F I G U R E 7 Overall effect comparison

46 - QU ET AL.



In Figure 3, we compare the RDMF algorithm with
classical target tracking algorithms such as KCF, DSST,
SAMF, Track‐Learning‐Detection and CSK. It can be seen
that due to the fusion of multiple features, the tracking

accuracy of the proposed algorithm is among the best in
the three challenging scenarios of illumination change,
target DEF and MB. Due to using the multi‐feature fusion,
the proposed algorithm exhibits a good tracking accuracy

F I G U R E 8 Comparision of effect of soccer sequence and jumping sequence: (a) soccer sequence and (b) jumping sequence
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in the case of complex target background, as shown in
Figure 4:

As can be seen in Figure 4, when dealing with a complex
background, the overlapping success rate of the RDMF algo-
rithm is 6.1% higher than that of KCF, and the range accuracy
is 3.5% higher than that of KCF. The main reason is that the
KCF only uses HOG features to describe the target, while our
algorithm uses HOG, CN, and LBP features to describe the
target. The advantage of this algorithm is not easy to introduce
background noise when the object is similar.

Figure 5 presents the performance of the algorithms when
subjected to the target scale change. It can be seen that, the
overlapping success rate of the proposed RDMF algorithm is
6.9% higher than that of DSST algorithm equipped with scale
estimation. Also, the range accuracy is 6.5% higher than that of
the DSST algorithm. The justification is that the centre posi-
tion filter of the RDMF algorithm is trained based on three
features, while the DSST algorithm only uses HOG features,
therefore, the accuracy of the RDMF algorithm is higher in

determining the centre position of the target. The subsequent
scale estimation is based on the centre position of the image
multi‐scale sampling, selecting the sample block with the best
scale as the best scale of the target.

Figure 6 presents the operation of different algorithms
subject to target OCC. It can be seen that the overlapping
success rate of the RDMF algorithm is 2.1% higher than that
of the SAMF algorithm, and the distance accuracy is 1.9%
higher than that of the SAMF algorithm. This is due to using a
re‐detector in the RDMF algorithm. When the target is
occluded and lost, the re‐detector will start to search for the
target, and when the target reappears, the re‐detector will
remove the target from the target, that is why the anti‐occlu-
sion ability of the algorithm is improved.

Figure 7 shows the overall quantitative evaluation effect
comparison chart of each algorithm. We observe that the
overlapping success rate of the RDMF algorithm is 8.1%
higher than that of the SAMF algorithm, and the distance
accuracy is 10.1% higher than that of the SAMF algorithm.

F I G U R E 9 Comparision of car scale sequence and car dark sequence: (a) car scale sequence and (b) car dark sequence
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In addition to the presented quantitative results, we eval-
uate each algorithm's tracking effect in a more intuitive quali-
tative manner.

The two sequences in Figure 8 present the soccer sequence
and jumping sequence in OTB‐50. In the soccer sequence, we
see the results of each tracking algorithm when the target
encounters the MB and complex background. In the 85th
frame of the soccer sequence, the target becomes blurred due
to the person's jump, and in the 107th frame, the target suffers
from the interference of background noise. We can see the
effect of this algorithm on these two sequences; all the chal-
lenges have good robustness. In the jumping sequence, the
tracking target is always suffering from the MB due to the
continuous jumping of characters. We observe that the RDMF
algorithm can perfectly trace the target.

The two sequences in Figure 9 represent car scale and dark
car sequences in OTB‐50. In the car scale sequence, the main
challenge we face is the scale change and OCC of the target. It
can be seen that the RDMF algorithm can carry out scale
adaptation in the process of tracking. In the 164th frame of the
car scale sequence, the target is occluded, making some algo-
rithms fail to track. The RDMF algorithm is implemented in
sequential steps after OCC, and the target can still be tracked
adaptively. In the car dark sequence, the main challenges we
encounter are the illumination change and target scale change.
We can see that the RDMF algorithm can still follow the target
successfully when facing these two challenges.

The two sequences in Figure 10 include the jogging and
tiger sequences in OTB‐50. In the 72nd frame of the
jogging sequence, the target disappears entirely due to OCC.
At this time, the re‐detector is invoked to re‐locate the target.
We can see that the target position is re‐detected in the 79th
frame. The challenge in the tiger sequence is the OCC and
DEF of the target. In the 257th frame, the target is seriously
occluded. We observe that in the 284th frame, the RDMF al-
gorithm can resume the tracking of the target.

The sequence in Figure 11 is the singer2 sequence in OTB‐
50. It can be seen that the drastic change of illumination in the
41st frame leads to the failure of some trackers. In the 244th
and 365th frames, it can be seen that the continuous move-
ment of the target causes the constant DEF of the target.
However, the RDMF algorithm can still follow the target
robustly.

5 | CONCLUSION

In this paper, we used the idea of fusing feature maps and
invoking re‐detection of targets to implement a robust long‐
term target tracking algorithm called RDMF. The results
show that the proposed algorithm outperforms the most
recently developed target trackers, especially when the target is
subject to scale change, extreme illumination variation, and
OCC. Compared with the SAMF algorithm, the overlap suc-
cess rate and the range accuracy of the RDMF algorithm are
improved by 8.1% and 10.1%, respectively. Scale adaptive
kernel correlation filter is a scale adaptive target tracking

algorithm, which combines HOG and CN features. Compared
with the SAMF, we also integrate LBP features to improve the
proposed algorithm's robustness to target MB. Besides, we also
offered to train a re‐detector online to enhance the algorithm's
robustness against OCC. Compared with SAMF, the overlap
success rate and range accuracy of RDMF algorithm are

F I G U R E 1 0 Comparision of effect of jogging sequence and tiger
sequence: (a) jogging sequence and (b) tiger sequence

F I G U R E 1 1 Comparision of singer2 sequence effect
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improved by 8.1% and 10.1%, respectively. Scale adaptive
kernel correlation filter is a scale adaptive target tracking al-
gorithm, which combines HOG and CN features. Compared
with SAMF, we also integrate LBP features to improve the
robustness of the proposed algorithm to target MB. In addi-
tion, we also proposed to train a re‐detector online to improve
the robustness of the algorithm against OCC. Compared with
SAMF, the overlap success rate and range accuracy of RDMF
algorithm are improved by 8.1% and 10.1%, respectively. Scale
adaptive kernel correlation filter is a scale adaptive target
tracking algorithm, which combines HOG and CN features.
Compared with SAMF, we also integrate LBP features to
improve the robustness of the proposed algorithm to target
MB. In addition, we also proposed to train a re‐detector online
to improve the robustness of the algorithm against OCC.
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