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Abstract—Fabrication of a physically flexible multi-
layer metasurface composed of gallium-based liquid metal
encapsulated in polydimethylsiloxane (PDMS) is reported.
The second-order bandpass frequency selective sur-
face (FSS) operating in the X-band is comprised of two
modified Jerusalem cross resonator layers separated by
an aperture layer. The multi-layer spatial filter has a total
thickness of 4.81 mm (1p/7.5). An inverse image mold of
the FSS layer patterns is fabricated in silicon, and FSS
patterned PDMS is replicated from the silicon mold. The
FSS patterned PDMS is spray coated with liquid metal to
fabricate a massive array of discrete conductor patterns
in PDMS and subsequent encapsulation by an additional
layer of PDMS. Multiple versions of the m x n metasurfaces
have been fabricated and have been repeatedly tested for
their bendability, stretchability, twistability, and foldability.
The fabricated metasurface in a waveguide environment
demonstrated a band-pass center frequency at 8.33 GHz
which agreed well with the simulated frequency at 8.31 GHz.

Index Terms—Liquid metal, spray, flexible, band-pass,
metasurface, PDMS.

[. INTRODUCTION

ALLIUM-BASED liquid metals (e.g. Galinstan) exhibit
unique material properties (liquid phase at room tem-
perature with high electrical and thermal conductivity) [1],
which coupled with low toxicity [2], have been studied for var-
ious soft, flexible electronics [3]-[17] applications including
metasurfaces [18]-[20]. Liquid metal has been incorporated
previously into the interconnected unit cells of the metasur-
faces embedded in polydimethylsiloxane (PDMS) by using the
mechanism of microfluidic injection filling [18]-[20].
Recently we have explored the avenue of incorporating
liquid metal in a massive array of discrete metasurface patterns
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Fig. 1. Schematic diagram of the multi-layer band-pass metasurface:
(a) Top view of a unit cell: I, =2 mm, |4 =4.3 mm, wq = 0.3 mm, wp =
Tmm,g=02mm, p=105mm.(b) 3D view of 2 x 2 cells: t =0.2 mm,
hi1 = 0.7 mm, ho = 1.66 mm, hg = 1.55 mm, hs = 0.7 mm.

of unit cells incorporated in PDMS by using the mechanism
of ultra-low pressure vacuum filling [21], [22]. However, such
a mechanism might not be feasible for incorporating Galinstan
in a multi-layer structure comprising of a continuous pattern
situated in-between an array of discrete metasurface unit cell
patterns. Moreover, the mechanism of vacuum filling depends
on the expulsion of air completely from the microfluidic
channels [23], [24], which increases the lag time (2-2.5 hours)
from start to completion of filling of Galinstan in metasurface
unit cells.

In this letter, we introduce the facile spray coating technique
for incorporating Galinstan in continuous as well discrete unit
cell patterns of a multi-layer metasurface. The physically flex-
ible (stretchable, bendable, twistable, and foldable) multi-layer
frequency selective surface (FSS) using Galinstan provides a
second-order bandpass response in the X-band.

Il. DESIGN

The fabricated physically flexible multi-layer band-pass
metasurface comprised of Galinstan (t = 0.2 mm) (Figure 1)
encased within PDMS is a variation of a previously designed
structure [25]. The PDMS layers in the top and bottom
comprised of an m x n array of modified Galinstan-based
Jerusalem cross frequency selective surface (FSS). The hor-
izontal and vertical dipoles of the cross had 300 gm width,
4.3 mm length loaded with an end cap of 1 mm x 2 mm which
faced the floating patches of the same size (Figure 1a). The
thin (total thickness h = 4.81 mm, A¢/7.5, where 1p is free
space wavelength at approximately 8.3 GHz) metasurface’s
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Fig. 2. Fabrication sequence of band-pass metasurface: (a) Dry-etched Si resonator mold. (b) Bottom FSS-PDMS resonator mold planarization.
(c) Galinstan sprglng using airbrush on replicated bottom FSS-PDMS resonator mold (t = 0.2 mm). (d) Cover PDMS for encapsulation of resonator

mold, (e) Kapton

tape aperture placed overlapping the liquid metal patterned dipoles of modified Jerusalem cross. (f) Inverter layer liquid metal

spraying using airbrush (t = 0.2 mm). (g) Partial curing of cover PDMS over the inverter layer, (h) liquid metal patterned dipoles of the top FSS-PDMS
resonator mold alighed and bonded with bottom FSS-PDMS resonator mold.

layerwise substrate thickness is shown in Figure 1b. The
multi-layer metasurface comprised of an inverter layer (square
apertures: 4.3 mm x 4.3 mm) (Figure 1b) in the middle
inductively coupling the horizontal and vertical dipoles of the
Jerusalem cross FSS resonator layers. The metasurface was
simulated in ANSYS HFSS.

I1l. FABRICATION

Fabrication was started with patterning of S1813 photoresist
(Micro Resist Technology) on a 4-inch silicon wafer and sub-
sequent Cr layer deposition by e-beam evaporation and liftoff
to get the patterned Cr layer for the modified Jerusalem cross
resonator layers. Si was etched 0.2 mm using in inductively
coupled plasma (ICP) with C4Fg (75 sccm), SFg (100 sccm),
Ar (30 sccm) to create a mold. The patterned Si mold was
coated with C4Fg (75 sccm) to have a 2 nm Teflon layer to
ensure reliable replication.

3D printed borders were attached to the Si mold to facilitate
PDMS curing (Figure 2a). The Si-mold was placed on a
planarization plate and PDMS was casted over the mold as
per designed thickness (Figure 2b). Planarization was allowed
at room temperature for 24 hours. After planarization, thermal
curing of the bottom FSS-PDMS resonator mold was done on
a hotplate (96° C) for 21 minutes. After curing Galinstan (Ga
68.5%, In 21.5%, Sn 10%) was sprayed into the patterns using
airbrush (36 psi) (Figure 2c). Following cleaning of the excess
liquid metal outside of patterns, PDMS was casted again
and cured at room temperature for 48 hours to encapsulate
the patterned liquid metal in the modified Jerusalem cross
resonator (Figure 2d).

Four layers of Kapton® tape (DuPont, Wilmington, DE,
USA) (thickness: 55 pm/layer) were stacked and cut in
shape of square apertures measuring 4.3 mm x 4.3 mm.
The Kapt0n® tape square apertures were placed overlap-
ping the liquid metal patterned horizontal and vertical dipoles

Inverter aperture
(4.3 mm x 4.3 mm)

Jerusalem cross
resonator
I_‘_I

pDMS liquid metal  52.5 mm

Fig. 3. A photomicrograph of 1 x 5 fabricated band-pass metasurface.

of the bottom FSS-PDMS resonator mold, by flipping over
the liquid metal patterned modified Jerusalem cross with
cover PDMS (Figure 2e). Galinstan was sprayed to form the
inverter layer by using an airbrush (Figure 2f). Followed by
spraying and liquid metal planarization, the Kapton® tape
square apertures were peeled off and PDMS was casted again
to cover the inverter layer. The cover PDMS of the inverter
layer was allowed to partially cure at room temperature for
22 hours (Figure 2g).

The liquid metal patterned top FSS-PDMS resonator mold
was fabricated following the fabrication steps of the bottom
FSS-PDMS resonator. At the end of 22 hours of partial curing,
the horizontal/vertical dipole alignment of the liquid metal
patterned modified Jerusalem cross of the top FSS-PDMS
resonator mold was done with respect to the bottom FSS
resonator mold before placement over the collective stack.
Curing of the integrated multi-layer structure (h = 4.81 mm)
was done for 48 hours at room temperature (Figure 2h).

Multiple band-pass metasurfaces of m x n array were
fabricated. Figure 3 shows a top view of a 1 x 5 metasurface.
Multiple metasurfaces were repeatedly tested for their physi-
cal flexibility; namely, bendability, stretchability, twistability,
and foldability (Figure 4). However, no visually identifiable
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Fig. 4. Physical flexibility demonstration of the fabricated metasurface.
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Fig. 5. WR-90 waveguide results for band-pass metasurface. (a) Sim-
ulated and measured transmission coefficient. (b) Measured reflection
coefficients.

damage was on the metasurface after more than 20 cycles,
demonstrating its physical flexibility.

IV. CHARACTERIZATION

A 1 x 2 metasurface cut from a fabricated 1 x 5 meta-
surface was characterized inside WR-90 waveguide. Detailed
measurement setup has been previously described [21], [22].
The measured S-parameter results for the reflection and trans-
mission of the multi-layer metasurface show good agreement
with the simulated results (Fig. 5). The center frequency of the
simulated and measured sample was observed at 8.31 GHz and

8.33 GHz, with a 3-dB fractional bandwidth of 17% and 12%
respectively (Fig. 5a).
V. CONCLUSION

Eliminating the need of a previously reported sophisticated
vacuum system [21], [22], Galinstan was spray coated using an
airbrush in continuous as well as discrete patterns (t = 0.2 mm)
encapsulated in multiple PDMS layers enabling extremely thin
(h = 4.81 mm) high-order band-pass metasurface operating
in the X-band (7 - 11.2 GHz) by the virtue of inverter cou-
pling. The simulated band-pass center frequency at 8.31 GHz
showed good agreement with the measured center frequency at
8.33 GHz. The demonstration of physically flexible (bendable,
stretchable, twistable, and foldable) band-pass metasurface
may enable transportable, conformable, and field deployable
metasurfaces uniquely suited for practical applications in
restricted volume in space and military applications..
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