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ABSTRACT

Graph Neural Networks (GNNs) have shown satisfying perfor-
mance in various graph analytical problems. Hence, they have
become the de facto solution in a variety of decision-making scenar-
ios. However, GNNs could yield biased results against certain de-
mographic subgroups. Some recent works have empirically shown
that the biased structure of the input network is a significant source
of bias for GNNs. Nevertheless, no studies have systematically scru-
tinized which part of the input network structure leads to biased
predictions for any given node. The low transparency on how the
structure of the input network influences the bias in GNN outcome
largely limits the safe adoption of GNNs in various decision-critical
scenarios. In this paper, we study a novel research problem of struc-
tural explanation of bias in GNNs. Specifically, we propose a novel
post-hoc explanation framework to identify two edge sets that can
maximally account for the exhibited bias and maximally contribute
to the fairness level of the GNN prediction for any given node,
respectively. Such explanations not only provide a comprehensive
understanding of bias/fairness of GNN predictions but also have
practical significance in building an effective yet fair GNN model.
Extensive experiments on real-world datasets validate the effec-
tiveness of the proposed framework towards delivering effective
structural explanations for the bias of GNNs. Open-source code can
be found at https://github.com/yushundong/REFEREE.
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1 INTRODUCTION

Graph Neural Networks (GNNs) have shown satisfying perfor-
mance in various real-world applications, e.g., online recommen-
dation [35], chemical reaction prediction [6], and complex physics
simulation [26], to name a few. The success of GNNs is generally
attributed to their message-passing mechanism [33, 36, 44]. Such a
mechanism enables GNNs to capture the correlation between any
node and its neighbors in a localized subgraph (i.e., the computa-
tion graph of the node [39]), which helps to extract information
from both node attributes and network structure for node embed-
ding learning [13]. Despite the remarkable success, most of the
existing GNNs do not have fairness consideration [5, 7-9, 18, 23].
Consequently, GNN predictions could exhibit discrimination (i.e.,
bias) towards specific demographic subgroups that are described by
sensitive features, e.g., age, gender, and race. Such discrimination
has become one of the most critical societal concerns when GNNs
are deployed in high-stake decision-making scenarios [17].

There is a rich body of literature on alleviating the bias of GNNs.
Generally, these works aim to decouple the learned node embed-
dings from sensitive features [5, 8, 21, 28, 34]. However, they cannot
provide explanations on how bias arises in GNNs. In fact, it is worth
noting that in various high-stake decision-making scenarios, we
not only need to alleviate bias in GNNs, but also need to understand
how bias is introduced to the prediction of each individual data
instance (e.g., a node in a graph). Such instance-level understand-
ing is critical for the safe deployment of GNNs in decision-critical
applications [39]. For example, GNNs have demonstrated superior
performance in many financial applications, such as loan approval
prediction for bank clients [31, 37]. In this scenario, different clients
form a graph based on their transaction interactions, and the records
of clients form their features. Here, the goal is to predict whether
a client will be approved for a loan, and such a problem can be
formulated as a node classification task that can be solved by GNNs.
However, GNNs could lead to undesired discrimination against
clients from certain demographic subgroups (e.g., rejecting a loan
request mainly because the applicant belongs to an underprivileged
group). In this example, understanding how bias is introduced to
the prediction of each individual client enables bank managers to
scrutinize each specific loan decision and take proactive actions to
improve the algorithm and reduce potential discrimination.

In fact, biased GNN predictions can be attributed to a variety
of factors. Among them, biased network structure has shown to
be a critical source [8, 21, 28]. Additionally, bias in the network
structure could be amplified by the core operation of GNNs - the
message-passing mechanism [8]. Therefore, understanding which
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part of the network structure leads to biased GNN predictions for
each node is vitally important. Towards this goal, we aim to provide
an instance-level (i.e., node-level) structural explanation of bias in
GNN predictions. More specifically, for any node in an input net-
work for GNNs, we aim to understand and explain how different
edges in its computation graph contribute to the level of bias for
its predictionl. Nevertheless, it remains a daunting task. Essen-
tially, we mainly face the following three challenges: (1) Fairness
Notion Gap: how to measure the level of bias for the GNN predic-
tion at the instance level? For each node, understanding how the
edges in its computation graph make its prediction biased requires
a principled bias metric at the instance level. However, most of the
existing bias metrics are defined over the whole population or the
sub-population [10, 14], thus they cannot be directly grafted to our
studied problem. In this regard, it is crucial to design a bias metric
that can quantify the level of bias for the GNN prediction at the in-
stance level. (2) Usability Gap: is a single bias explainer sufficient?
It should be noted that our ultimate goal goes beyond explaining
bias as we also aim to achieve fairer GNNs, which provide better
model usability and enable ethical decision-making. Consequently,
it is also critical to explain which edges in a node’s computational
graph contribute more to the fairness level of its prediction. How-
ever, edges that introduce the least bias cannot be simply regarded
as the edges that maximally contribute to the fairness level of the
prediction. This is because edges that introduce the least bias could
also be those prediction-irrelevant edges — such edges could barely
contribute any information to the GNN prediction. Therefore, only
explaining how each edge in a computational graph contributes
to the exhibited node-level bias is not sufficient. (3) Faithfulness
Gap: how to obtain bias (fairness) explanations that are faithful to
the GNN prediction? To ensure the obtained explanations reflect
the true reasoning results based on the given GNN model, most
existing works on the instance-level GNN explanation obtain ex-
planations that encode as much critical information as possible
for a given GNN prediction [22, 30, 39]. In this way, the obtained
explanations are considered to be faithful to the given GNN model,
as they generally reflect the critical information the GNN utilized
to make the given prediction. Similarly, when explaining how the
bias or the fairness level of the GNN prediction is achieved, we are
also supposed to identify the critical information the GNN utilized
to achieve such a level of bias or fairness for the given prediction.

As an attempt to tackle the challenges above, in this paper,
we propose a principled framework named REFEREE (stRuctural
Explanation oF biasEs in gRaph nEural nEtworks) for post-hoc
explanation of bias in GNNS. Specifically, towards the goal of ob-
taining instance-level structural explanations of bias, we formulate
a novel research problem of Structural Explanation of Node-Level
Bias in GNN . To tackle the first challenge, we propose a novel fair-
ness notion together with the corresponding metric to measure the
level of bias for a specific node in terms of GNN prediction. To tackle
the second challenge, we design two explainers in the proposed
framework REFEREE, namely bias explainer and fairness explainer.
In any given computation graph, they are able to identify edges that
maximally account for the exhibited bias in the prediction and edges

Here, we only consider the edges in its corresponding computation graph. This is
because the computation graph of a node fully encodes all information that GNN
models leverage to generate its prediction [39].
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that maximally contribute to the fairness level of the prediction,
respectively. To tackle the third challenge, we design a constraint
to enforce the faithfulness for the identified explanations, which
can be incorporated into a unified objective function for the pro-
posed framework. In this way, apart from the goal of explaining the
exhibited bias and identifying edges that help with fairness, such a
unified objective function also enforces the identified explanations
to be faithful to the given GNN prediction. To better differentiate
these two types of edges, the two explainers are designed to work
in a contrastive manner. Finally, we evaluate the effectiveness of
REFEREE on multiple real-world network datasets. The main con-
tributions of this paper are as follows. (1) Problem Formulation.
We formulate and study a novel problem of structural explanation
of biases in GNNs given any instance-level GNN prediction. (2)
Metric and Algorithmic Design. We propose a novel metric to
measure how biased the GNN outcome prediction of a node is. We
then propose a novel explanation framework named REFEREE to
provide explanations on both fairness and bias, and maintain faith-
fulness to the given prediction. (3) Experimental Evaluations. We
perform experimental evaluations on various real-world networks.
Extensive experiments demonstrate the effectiveness of REFEREE
and its superiority over other alternatives.

2 PROBLEM DEFINITION

In this section, we first present the notations used in this paper
and some preliminaries. We then formulate a novel problem of
Structural Explanation of Bias in GNNG.

Notations. We use bold uppercase letters (e.g., A), bold lowercase
letters (e.g., x), and normal uppercase letters (e.g., N) to represent
matrices, vectors, and scalars, respectively. Uppercase letters in
math calligraphy font (e.g., V) represent sets. The k-th entry of a
vector, e.g., X, is represented as x[k]. For any number, | - | is the
absolute value operator; for any set, | - | outputs its cardinality.
Preliminaries. We denote an attributed networkas G = {V, &, X},
where V = {v1, ...,un} represents the set of N nodes; & €V XV
is the set of all edges; X = {x1, ...,xn'} is the set of node attribute
vectors. A trained GNN model fg maps each node to the out-
come space, where © denotes the parameters of the GNN model.
Without loss of generality, we consider node classification as the
downstream task. The GNN outcome for N nodes can be given as
y =A{y1, .. ¥i, .- YN}, Where y; € RC. Here C is the number of
classes for node classification, and each dimension in y; represents
the probability of the node belonging to the corresponding class.
Based on Y, the predicted label set by GNN for these N nodes is
denoted by {1?1, f/i, f/N}. Here f/, is determined by the highest
predicted probability across all C classes given by y;. For GNN
explanation, we consider the most widely studied instance-level
explanation problem in this paper, i.e., we aim to explain the given
prediction of a node based on its computation graph [22, 30, 39]. At
the instance level, the explanations can be provided from different
perspectives. Here we focus on the structural explanation, i.e., the
explanation is given as an edge set &; by any GNN explanation
model hg. Specifically, given a specific node v;, its computation
graph G;i = {V;, &, X;} (i.e., the L-hop subgraph centered on node
v; [39], where L is the total layer number of the studied GNN), and
the corresponding outcome ¥;, the GNN structural explanation
model hg with parameter ® identifies an explanation as an edge
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set &; corresponding to the outcome Vi &; is identified through
learning a weighted mask matrix M € RIVilXIVil that indicates
the importance score of each edge in &;. Edges in &; are selected
from &; based on such importance score. We denote the compu-
tation graph with the identified edge set &; as a new subgraph
Gi = {V;, &i, X;}. Based on the new subgraph G; with the iden-
tified edge set &;, the given GNN vyields a different probabilistic
outcome y; = fo(G:) compared with the vanilla outcome Vi
Based on the above notations and preliminaries, we formulate
the problem of Structural Explanation of Bias in GNNs as follows.

PrOBLEM 1. Structural Explanation of Node-Level Bias in
GNNs . Given a trained GNN fg, a node v; to be explained, and its
computation graph G; = {V;, E;, Xi}, our goal is to: (1) identify edges
that are faithful to the prediction of v; (based on fg) and maximally
account for the bias exhibited in the GNN outcome of v;; (2) iden-
tify edges that are faithful to the prediction of v; (based on fg) and
maximally contribute to the fairness level of the GNN outcome of v;.

Intuitively, Problem 1 aims to identify two edge sets as two
structural explanations: the bias explanation that accounts for the
exhibited bias, and the fairness explanation that contributes to
the fairness level of the given prediction. From the perspective of
usability, the first explanation aims to identify edges that introduce
the most bias to the instance-level GNN prediction, while the second
explanation aims to identify edges that maximally contribute to the
fairness level of the GNN prediction for any given node.

3 THE PROPOSED FRAMEWORK

In this section, we first present a principled metric to quantify the
node-level bias for any given GNN prediction. Then we provide
an overview of REFEREE, which is the proposed bias explanation
framework for GNNs. Finally, we design a unified objective function
for the proposed bias explanation framework REFEREE.

3.1 Node-Level Bias Modeling
To tackle the challenge of Fairness Notion Gap, here we aim to
formulate a novel metric to quantify the bias for the node-level GNN
prediction. Here we propose to formulate such a bias metric in the
probabilistic outcome space of GNN predictions. The reason is that
the information about the exhibited bias in the node-level prediction
could be lost when the probabilistic outcomes are transformed into
discrete predicted labels. In this regard, a bias metric based on the
probabilistic outcome can better reflect the exhibited bias in the
node-level predictions. This is also in align with some existing
bias measures [5, 8, 11]. However, although these existing bias
metrics are defined in the probabilistic outcome space, they can
only measure the level of bias for the predictions over the whole
population, and thus cannot be directly grafted to our problem.
We introduce the rationale of our proposed bias metric for node-
level GNN predictions as follows. Intuitively, by measuring how
much a node’s outcome contributes to the overall bias on the whole
population, we can have a better understanding of the bias level
of this node’s outcome. More specifically, assume the nodes can be
divided into two sensitive subgroups based on the values of their
sensitive features?. The GNN outcome of nodes in the two sensitive

2Without loss of generality, we focus on binary sensitive attribute here.
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subgroups forms two distributions, where the distance between the
two distributions generally reflects the overall bias [8, 11]. For any
specific node, if we change the probabilistic outcome of this node,
the distribution distance between the outcome sets of the two sensi-
tive subgroups will also change accordingly. Ideally, if the outcome
of a node has no contribution to the outcome distribution distance
between the two sensitive subgroups, then the distribution distance
cannot be further reduced no matter how the outcome of this node
is changed. In other words, a node that does not contribute to the
overall bias should have an outcome with which the outcome distri-
bution distance between the two sensitive subgroups is minimized.
Meanwhile, we can also employ the potential distribution distance
reduction to measure the contribution of a node’s outcome to the
overall bias. Based on such intuition, we then define Node-Level
Bias in GNNs as follows.

DEFINITION 1. Node-Level Bias in GNNs. Denote a probabilistic
GNN outcome set as M. Divide V into y}, andﬁl as the outcome sets of
the two demographic subgroups based on the sensitive feature. Denote
D as the distance between the distributions ofyo and yl. For node v;,
denote Dpin(i) as the minimum distance between the distributions
of Yo and Yy by changing the value of §; € Y while maintaining
Zle yilk]l = 1. We define B; = D — D,in(i) as the node-level bias
of node v; for the GNN prediction.

Definition 1 introduces how to measure the bias exhibited in the
node-level prediction given a trained GNN. Clearly, the minimum
value of B; is 0, i.e., if no change on the value of §; can be found to
further reduce the distance between the distribution of yo and yb
we say that node v; does not exhibit any node-level bias in the GNN
outcome. In this paper, we adopt the Wasserstein distance as the
metric for distribution distance measurement, considering its supe-
rior sensitivity over other distance metrics [2]. We will validate the
consistency between Definition 1 and traditional fairness notions
(e.g., Statistical Parity and Equal Opportunity) in Section 4.4.

3.2 Overview of Proposed Framework

Here we present an overview of the proposed bias explanation
framework for node-level GNN predictions. In particular, to tackle
the challenge of Usability Gap, REFEREE is designed with two dif-
ferent explainers, i.e., a bias explainer hg and a fairness explainer
hg. The two explainers aim to identify two different edge sets in
the given computation graph as two structural explanations, i.e.,
the bias explanation and the fairness explanation. The two expla-
nations are learned in a contrastive manner, in which way edges
that account for different explanations can be better distinguished.
The basic goal of the bias explainer is to identify the edges that
maximally account for the exhibited node-level bias, while the goal
of the fairness explainer is to identify the edges whose existence
can maximally alleviate the node-level bias for the instance-level
GNN prediction. Different GNN explanation models that are able
to identify edge sets as the node-level explanations can be the back-
bone of the two explainers. Besides, to reflect the true reasoning
result in the given GNN model, both identified explanations should
be faithful to the given GNN prediction. This leads to the challenge
of Faithfulness Gap: how to achieve the bias(fairness)-related goal
of each explanation and maintain faithfulness to the given GNN
prediction at the same time? To tackle this challenge, we design a
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Figure 1: Framework structure of REFEREE: the edges in the edge set given by Bias Explainer maximally account for the
node-level bias, while the edges in the edge set given by Fairness Explainer maximally alleviates the node-level bias.

constraint to enforce the faithfulness of the identified explanations,
and incorporate such constraint into a unified objective function
for the proposed framework. Optimizing such a unified objective
function helps to achieve two goals: (1) the bias(fairness)-related
explanation goals of both explainers; and (2) the goal of faithfulness
through end-to-end training. The overall structure of REFEREE is
presented in Fig. 1. Given a trained GNN fg, a node v;, and its com-
putation graph G;, the goal of Bias Explainer is to identify an edge
set &; that maximally accounts for the exhibited node-level bias of
v; as the bias explanation, while the goal of Fairness Explainer is
to identify an edge set él’ as the fairness explanation, where the

edges in él' maximally alleviate the node-level bias of v;.

3.3 Objective Function

In this subsection, we introduce the unified objective function for-
mulation of our proposed framework REFEREE. Generally, the
unified objective function includes three components, namely ex-
plaining bias (fairness), enforcing fidelity, and refining explanation.

3.3.1 Explaining Bias (Fairness). Here we first introduce the bias
(fairness)-related constraints to enable the two explainers to identify
the edges that maximally account for the node-level bias and the
edges whose existence maximally alleviate the node-level bias for
a given GNN prediction, respectively. We start from the constraint
for the Bias Explainer. Given any computation graph, the basic goal
of Bias Explainer is to identify the edges that maximally account
for the node-level bias as an obtained edge set for the explanation.
Intuitively, if only edges that maximally account for the exhibited
node-level bias are identified and preserved in such edge set, the
probabilistic outcome based on such edge set will exhibit more
node-level bias. This is because some edges whose existence help
to alleviate the node-level bias in the vanilla computation graph
are not involved in the obtained edge set anymore. Based on such
intuition, we develop the first component of our unified objective
function towards the goal of explaining bias (fairness) as follows.
We denote the identified edge set given by Bias Explainer as
é,-. Here 8,- € Gi, and éi is the computation graph with the ob-
tained edge set &;. We represent the probabilistic outcome of the
GNN model based on the computation graph G; for node v; as
= fo(Gi), where Jo is a given trained GNN model with fixed pa-
rameter ©. We utilize  to denote the GNN outcome set I/ with the
original element §; being replaced by ¥;, i.e., Y = Y\{§i} U {§i}.
According to the sensitive feature, we split Y into two outcome sets
as y}) and y] (yo U y} =Y ). We denote the distribution of y]) and

Y1 as P(Yy) and P(Yy), respectively. Generally, if the vanilla prob-
abilistic outcome §¥; is replaced with ¥;, the outcome distribution
distance between the two sensitive subgroups will also be changed
accordingly. Con51der1ng that y; is derived based on the input com-
putation graph g,, the identified edges in 8, € g, then determine
how the distribution distance changes. As discussed above, the
probabilistic outcome based on &; will exhibit more node-level bias.
From Definition 1, we know that the identified edges in éi are sup-
posed to lead to a larger distribution distance between P(¥) and
P(¥,). Correspondingly, we formulate the goal of bias explanation
based on Wasserstein-1 distance as

rr(léale (P(Yo), P(M)), (1)

where W1 (P(J}o), P(yl)) is formally presented as
Wi(P(Y), P(W)) = inf E(g, 5 )~clIF0) = F(plh]- (@)

Here k € II(P(Y), P(M)); IL(P(Y), P(M)) is the set including
all possible joint distributions of k(¥ (q), ¥ (1)) Whose marginals are
P(Y%) and P(Yy), respectively. Generally, Eq. (1) encourages the
Bias Explainer to identify edges that maximally account for the
Wasserstein-1 distance between P(Y) and P(; ). Nevertheless, the
infimum in Eq. (2) is intractable. To perform effective optimization
with gradient-based optimizing techniques (e.g., stochastic gradient
descent), we adopted a widely used approximation strategy [4] for
the Wasserstein distance and the corresponding gradients during
optimization, which has been empirically proved to be effective [12].
We follow a similar approach to set up the other goal for Fairness
Explainer to encourage the identification of edges whose existence
can maximally alleviate the node-level bias for the given GNN
predlctlon We assume the edge set given by Fairness Explainer
as 8 where 8' € Q' Here g is the computation graph with the
1dent1ﬁed 8{ . We denote the outcome of the GNN model based on
Gl’ for node v; as y; = f@(éi’). We use J}O' and y“{ to denote the
subsets of Y/ = Y \{¥i} U {F}} according to the sensitive feature.
Correspondingly, P(yo') and P(yl') are the distributions of yo' and
yl' , respectively. We formulate the goal of Fairness Explainer as

ngpwl (P(Y)), P(Y))), ©)

where Sl' is the edge set given by the Fairness Explainer for expla-
nation. To summarize, we formulate the objective function term
towards explaining bias (fairness) as

L2, @) = W1 (P(Y)), P(M))) - Wi(P(M), P(H)). (4)
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The basic rationale is that when .#} is minimized, W1 (P (yo), P (31))
is maximized to encourage Bias Explainer to identify edges that
account for the exhibited node-level bias; Wl(P(yO’ ),P(yl’)) is
minimized to encourage Fairness Explainer to identify edges whose
existence can maximally alleviate the node-level bias.
Nevertheless, considering that the probabilistic outcome corre-
sponding to only one explained node is changed during the opti-
mization of Eq. (1) (or Eq. (3)), the numerical change of Wasserstein-
1 distance could be small. Correspondingly, when using gradient-
based techniques to optimize the two explainers in REFEREE, the
gradients of .7 w.r.t. the learnable parameters in the two explainers
could be similar. This could lead to a phenomenon that the two
explainers tend to converge at similar solutions, which means that
&i € Gi and Sl’ € éi’ could be close. To better differentiate the
edges that are supposed to be separated into two different explana-
tions, here we propose to add a contrastive loss between the two
explainers. The intuition here is to encourage the Bias Explainer
and the Fairness Explainer to identify different edges from each
other. Specifically, the distribution difference between the edges
in &; and él’ are maximized as an encouragement for identifying
different edges. It should be noted that the edge sets given by both
the two explainers (i.e., & and 81’) are based on the edge set &;
in the given computation graph. Correspondingly, we denote the
distribution of &; and él’ conditional on the given &; as Py (&il&)
and Py (él' |E;), respectively. We give the optimization problem as

max Dist_Diff(Pg (E16:)|1Pg (EilE1)), (5)
(X%

Various metrics can be adopted as the distribution difference opera-
tor Dist_Diff(.), e.g., Jensen—-Shannon divergence and Wasserstein
distance, etc. We give the second objective function term as

%(®,®') = -Dist_Diff(Pgy (§]18) IPo (EilE1).  (6)

Minimizing %, helps to encourage the two explainers to yield
different edge sets from each other as the identified explanations.

3.3.2 Enforcing Fidelity. The explanations given by the two ex-
plainers should be able to reflect the true reasoning result given the
node-level GNN prediction. Hence, for both explainers (i.e., the Bias
Explainer and Fairness Explainer), the output explanation should be
faithful to the given GNN prediction. In other words, given a node
v;, the structural explanations given by both the two explainers
should lead to the same predicted label based on the given GNN fg.
Based on such intuition, here we leverage the mutual information
between the original predicted label and the subgraph with the iden-
tified edge set for explanation to formulate fidelity enforcement.
This also aligns with some existing works on GNN explanation [39].
We first introduce the fidelity enforcement formulation for the Bias
Explainer. Specifically, for node v;, the mutual information between
the original GNN prediction ¥; € {1, .., C} and the underlying sub-
graph G; is maximized to ensure that &; € G; encodes the critical
information of the given GNN prediction, which is formulated as
mg?-XMI(Yisgi) =H(Y;) - H(YilG)). ™)
Here MI(:, -) denotes the mutual information computation operator,
and H(-) represents the entropy function. It is worth mentioning
that in Eq. (7), the value of the entropy term H(Y;) = H(fo(Gi))
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is fixed, as the explanation model is post-hoc (i.e., the parameters
in the given GNN model are fixed). Therefore, the optimization
problem in Eq. (7) can be reduced to only minimizing the second
entropy term, where H(f/i |Gi) can be presented as

H(T;|G:) = ~Ey, 5 [log Po (%1G1)]. ®)
Considering fidelity is necessary for both explainers, we give the

fidelity constraint for Fairness Explainer similarly. The objective
function term to enforce fidelity for both explainers is given as

Z(®,¥) = -By, ; [log P (Vi1G1)] - By, 6, [log Po (ViIGD 1. (9)

Minimizing .%3 enforces the identified edges in éi and Gl’ to encode
as much critical information to ¥; as possible.

3.3.3 Refining Explanation. As mentioned in Section 1, our pro-
posed explanation framework should be able to identify two edge
sets, where the edges in one set can maximally account for the ex-
hibited node-level bias, and the existence of the edges in the other
set can maximally alleviate the node-level bias in GNNs. Therefore,
the identified explanations for both explainers should be maxi-
mally refined. Intuitively, to refine the learned explanations, those
goal-irrelevant edges for the GNN outcome of node v; should be
maximally identified and removed from the structural explanations
of both explainers, i.e., the learned edge sets from both explainers
should be sparse. Here we propose to regularize the sparsity of
the identified edge set to remove those goal-irrelevant edges max-
imally. We take the sparsity regularization of the Bias Explainer
as an example. Note that the explanation of the identified edge set
is identified via a weighted mask matrix M € RIVilXIVil which
indicates the edge importance score with entry values. We propose
to utilize the £;-norm of the mask matrix M for the Bias Explainer
as the regularization, i.e., || M||;. Considering both explainers, the
corresponding objective function term .%} is formulated as

Zy(®,@") = |IMl1 + [M'[lx (10)

for the two explainers. Here ® is the parameter of Bias Explainer hg,
and @’ denotes the parameter of Fairness Explainer hg. M and M’
are used to indicate the edge weights given by the explanations from
the Bias Explainer and Fairness Explainer, respectively. Besides,
there are also cases where people are only interested in a certain
number of top-ranked critical edges. In other words, there could
be a pre-assigned budget T for the explanation edge set &i e,
|E;| < T.In this case, we formulate the %, as

Z4(®,®", T, T') = ReLU(|IM|l; - T) + ReLU(|IM"[l; = T")  (11)

given pre-assigned budget T and T’ for &; and él’ , respectively.
Intuitively, minimizing .% helps to remove those goal-irrelevant
edges maximally to refine the identified explanation.

3.3.4 Unified Objective Function Formulation. Based on our discus-
sions on enforcing fidelity, explaining bias (fairness), and refining
explanation, we formally formulate the unified objective function
for the proposed GNN explanation framework REFEREE as

L=L1+a Lo+ L+ v Y. (12)

Here a, 8, and y are hyper-parameters controlling the effect of the
three constraining terms. For any specific node to be explained,
minimizing the objective function in Eq. (12) aims to: (1) encourage
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the Bias Explainer to identify an edge set that maximally accounts
for the node-level bias in the given GNN; and (2) encourage the Fair-
ness Explainer to identify an edge set that maximally contributes
to the fairness for the given GNN prediction.

4 EXPERIMENTAL EVALUATIONS

In this section, we first introduce the downstream learning task and
the real-world datasets adopted for evaluation. The experimental
settings and the implementation details are then introduced. Next,
we present the empirical evaluation results of our proposed frame-
work from the perspective of Effectiveness of Explaining Bias (Fair-
ness), Explanation Fidelity, and Debiasing GNN with Explanations. In
particular, we aim to answer the following research questions: RQ1:
How well can REFEREE identify edges to explain bias (fairness) in
GNN s given the prediction of a specific node? RQ2: How well can
the explanations given by the two explainers in REFEREE be faith-
ful to the given GNN? RQ3: How will the obtained explanations
from REFEREE help with GNN debiasing for the whole population?

4.1 Experimental Settings

4.1.1  Downstream Task & Real-world Dataset. In this paper, we
focus on the widely studied node classification as the downstream
task. We adopt three real-world attributed networks for experiments
— German Credit, Recidivism, and Credit Defaulter [1], where all
node labels are binary. A detailed description is in the Appendix.

4.1.2  Explainer Backbones. Different GNN explanation approaches
that are able to identify edge sets as the node-level explanations can
be adopted as the backbone of the two explainers in REFEREE. To
evaluate how well the proposed framework can be generalized to
different explanation backbones, we adopt GNN Explainer [39] and
PGExplainer [22] as two backbones of explainers for evaluation.

4.1.3 Baselines. To the best of our knowledge, no other work is
able to give structural explanations for the exhibited node-level bias
of GNNs. Therefore, we modify some existing GNN explanation ap-
proaches to adapt them to explain exhibited node-level bias in terms
of the computation graph structure. The adopted existing GNN ex-
planation approaches for adaptation include the attention-based
GNN explanation [29], the gradient-based GNN explanation [29],
and two state-of-the-art GNN explanation approaches (GNN Ex-
plainer [39] and PGExplainer [22]). We elaborate more details on
how we achieve the adaptation for these approaches as follows.
First, we introduce how we adapt these approaches as the base-
lines to evaluate Effectiveness of Explaining Bias (Fairness). For
attention-based explanation, we directly add a bias(fairness)-related
objective onto the vanilla loss function of a Graph Attention Net-
work (GAT) model [29] to maximize (as Eq. (1)) or minimize (as
Eq. (3)) the Wasserstein-1 distance between the outcome distribu-
tions of the two sensitive subgroups. This enables the GAT model
to identify the two types of critical edges for bias and fairness
explanation, i.e., edges that maximally account for the exhibited
node-level bias and edges whose existence can maximally alleviate
the node-level bias. The learned attention weights are regarded
as the indicator of the final explanations. For gradient-based ex-
planation, we utilize the same objective function as the objective
function adopted by attention-based explanation. The two types
of critical edges for bias and fairness explanation are identified
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through gradient ascend w.r.t. the adjacency matrix of the given
computation graph. For GNN Explainer and PGExplainer, we modi-
fied their objective function in a similar way as the attention-based
explanation. Specifically, a bias(fairness)-related objective is added
onto the vanilla loss function for both explanation models. For
any given computation graph, the two types of critical edges for
bias and fairness explanation are identified through maximizing
(as Eq. (1)) or minimizing (as Eq. (3)) the Wasserstein-1 distance
between the outcome distributions of the two sensitive subgroups.

Second, for the evaluation of Explanation Fidelity, we aim to
compare whether the GNN explanation backbones in REFEREE can
still maintain their faithfulness to the given GNN prediction. Here
the most widely-used GNN Explainer is adopted as the baseline
model. Correspondingly, GNN Explainer is also adopted as the
backbone of the two explainers in REFEREE for a fair comparison.

Third, for the evaluation of Debiasing GNNs with Explanation,
we adopt the same baselines as those adopted in the evaluation of
Effectiveness of Explaining Bias (Fairness).

4.1.4  Evaluation Metrics. We first introduce the metrics for the
evaluation of Effectiveness of Explaining Bias (Fairness). Specifically,
we evaluate how much the node-level bias B; is promoted or reduced
between the two sensitive subgroups when only the identified edge
set is utilized for the GNN prediction of the given node. Intuitively,
this enables us to evaluate how well each explainer can identify
those edges that maximally account for the exhibited bias and edges
whose existence can maximally alleviate the node-level bias for the
prediction, respectively. For the evaluation of Explanation Fidelity,
a widely acknowledged metric is Fidelity— score [41]. Traditionally,
Fidelity— score measures the ratio of the consistent pairs between
the vanilla correct predictions and the correct predictions based on
the identified edge set. Nevertheless, to reflect the true reasoning
process in GNNs, we argue that the faithfulness of those incorrect
predictions is also critical, as bias may also exhibit and need to
be explained for those incorrect predictions from the perspective
of the usability of the GNNs. As a consequence, we extend the Fi-
delity— score to measure the ratio of the consistent pairs between all
vanilla predictions and the predictions based on the identified edge
set. Formally, the extended fidelity metric for M explained nodes
can be measured with Fidelity = A—I/I 2%1 (Il (f/, = f/,)) Here ¥;
represents the vanilla GNN prediction for node ;. Y; denotes the
prediction of the given GNN fg for node v;, where only the iden-
tified edges for explanation are preserved in the corresponding
computation graph. 1(-) is the indicator function, which returns
1if ¥; = ¥; and 0 otherwise. Finally, for Debiasing GNNs with Ex-
planation, we utilize two traditional fairness metrics Agp and Agp
to quantitatively evaluate how much the predictions of a GNN are
debiased in terms of the whole population. Here Agp and Agp mea-
sure the positive prediction rate difference between two sensitive
subgroups over all nodes and nodes with only positive class labels,
respectively. Additionally, we use node classification accuracy to
evaluate the GNN utility.

4.2 Effectiveness of Explaining Bias (Fairness)

To answer RQ1, we compare our proposed framework REFEREE
with other baselines to evaluate the effectiveness of explaining bias
(fairness). Here we adopt the widely used model GAT as the trained
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Table 1: AB; (Promoted) and AB; (Reduced) present how much Wasserstein-1 distance between the outcome distribution of
two sensitive subgroups improves and reduces on average. Absolute values of normalized promotion and reduction are given
in X104 scale. Larger values indicate better effectiveness in explaining bias (fairness). GE- and PGE- prefixes indicate the
backbone of both explainers in REFEREE as GNN Explainer and PGExplainer, respectively. The best results are in Bold.

German Recidivism Credit
AB; (Promoted) AB; (Reduced) AB; (Promoted) AB; (Reduced) AB; (Promoted) AB; (Reduced)

Att. 6.11 + 2.51 7.84 + 3.48 4.58 + 1.67 7.18 + 2.24 6.72 £ 0.75 8.48 + 3.29
Grad. 4.27 £ 0.98 5.60 £ 1.85 3.59 £ 2.02 442 + 2.01 5.97 £ 1.07 9.79 £ 1.78
GNN Explainer 5.17 £ 1.20 3.37 £ 1.53 1.74 + 0.72 3.55 + 2.08 7.41 £ 1.75 9.24 + 2.66
PGExplainer 8.73 £ 0.74 9.37 £ 1.87 6.36 + 2.39 8.66 + 1.82 7.48 £ 2.70 10.54 + 3.22
GE-REFEREE 14.29 + 2.73 14.45 + 2.29 13.94 + 3.74 12.05 £ 2.79 10.30 + 2.64 15.07 + 3.35
PGE-REFEREE 15.72 + 2.31 11.97 £+ 2.62 10.39 + 4.08 12.57 + 3.12 11.57 = 2.91 14.67 + 3.49

GNN for experiments, and similar results can be observed based
on other GNNs. Specifically, we first randomly sample 50 nodes to
be explained (i.e., M = 50). Then for each node, we obtain the two
predictions of the given GNN fg based on the computation graph
corresponding to each of the two identified edge sets given by the
two explainers. For obtained predictions, the normalized average
value of how much the node-level bias B; is promoted (given by
Bias Explainer) or reduced (given by Fairness Explainer) compared
with the vanilla B; based on the complete computation graph is
presented in Table 1. For both promotion and reduction of B;, a
larger value indicates better results, as more biased or fairer node-
level outcome can be obtained based on the identified structural
explanation. We make the following observations from Table 1:

o Stable promotion and reduction of node-level bias is observed
in all GNN explanation approaches. This indicates that the
Wasserstein distance-based objective functions formulated
in Eq. (1) and Eq. (3) effectively help to identify edges that
account for the exhibited node-level bias and edges whose
existence can alleviate the exhibited node-level bias.

o Existing GNN explanation models (e.g., GNN Explainer and
PGExplainer) do not show any superior performance over
other straightforward GNN explanation approaches such
as Att and Grad. This observation implies that for these
representative GNN explanation approaches, simply adding
a constraint to explain bias (fairness) at the instance level
only achieves limited effectiveness.

e Among all GNN explanation approaches, REFEREE yields the
structural explanations that lead to the highest promotion
and reduction of node-level bias in all datasets. Based on
such observations, we argue that REFEREE achieves the best
performance over other alternatives on identifying edges
that account for the exhibited bias and whose existence can
alleviate the exhibited node-level bias for the prediction.

4.3 Explanation Fidelity

We then answer RQ2 in this subsection. Generally, it is necessary
to ensure that the structural explanation results given by both ex-
plainers in REFEREE are faithful to the given trained GNN, i.e.,
the identified edge sets should encode critical information for the
given GNN predictions. More specifically, in our experiments, the
predicted labels given by the GNN model based on the compu-
tation graph with the identified edge sets should be the same as
those based on the vanilla computation graph. To evaluate how
well the proposed framework can maintain faithfulness when it is
generalized to different GNNs, here we choose three widely used
GNNs, namely GCN [20], GAT [29], and GIN [38] for explanation.

Table 2: Explanation fidelity evaluation for different GNNs.
Numerical results are in percentage. Vanilla denotes the ex-
planation results given by the vanilla GNN Explainer. B. Ex-
plainer and F. Explainer represent the Bias Explainer and
Fairness Explainer, respectively. The best results are in Bold.

German Recidivism Credit

Vanilla 88.02 + 1.48 90.04 + 1.43 85.26 + 1.67

GCN B. Explainer 92.20 + 1.39 90.26 + 3.24 87.60 = 2.79
F. Explainer  89.17 + 0.85 92.08 +2.44 89.41 + 4.08
Vanilla 83.65 + 3.02 8791 +2.04 88.64 + 3.41

GAT B. Explainer 85.71 + 2.31 90.51 + 4.58 86.09 + 2.07
F. Explainer 8440 +1.57 91.98 +£3.95 87.04 +3.10
Vanilla 88.58 +2.50 91.77 + 1.42  87.62 £ 2.60

GIN B.Explainer 88.11+1.78 90.26 + 4.13 86.47 + 2.13
F. Explainer 89.67 +2.23 9145+ 178 88.17 +2.98

Fidelity is adopted as the metric for evaluation. Intuitively, fidelity
measures to what proportion the predicted labels based on the
identified explanation are maintained to be the same as the vanilla
ones. Here we adopt the GNN Explainer as the backbone of the
two explainers in REFEREE. For both the baseline model and our
proposed framework, we train and make predictions five times
separately for 50 randomly selected nodes. We present the perfor-
mance comparison between the two explainers in our framework
and vanilla GNN Explainer on the average performance of fidelity
in Table 2. We can make the observation that both Bias Explainer
and Fairness Explainer achieve comparable performance on fidelity
with the vanilla GNN Explainer across different datasets and GNNs.
Consequently, we argue that the explanation given by REFEREE
maintains faithfulness to the GNN predictions.

4.4 Debiasing GNNs with Explanations

In this subsection, our goal is to answer RQ3 to study how the
instance-level explanations given by REFEREE help with GNN debi-
asing in terms of the whole population. A straightforward approach
here is to first identify the edges that tend to introduce bias in the
outcome of GNNs for some randomly sampled nodes, then remove
such bias-introducing edges and input the network data into the
GNN model to obtain less biased predictions. Nevertheless, the
edges involved in the bias structural explanation (given by Bias
Explainer) cannot be directly removed as a whole, as some edges
could be critical for the GNN prediction of the explained node. Be-
sides, it is neither reasonable to only preserve the edges whose
existence can maximally alleviate the node-level bias, as some re-
moved non-critical edges for the explained node could be vital for
the prediction of other nodes. Here we adopt an alternative strategy
to study how the explanations help with GNN debiasing in terms of
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Figure 2: Debiasing GAT with explanations given by REFEREE with two different backbones and other baselines.

the whole population. Specifically, for those baseline explanation
models, we randomly sample a subset of nodes for explanation. For
each node, baselines are trained to learn structural explanations
towards more biased and fairer predictions independently. Then
edges that appear in the bias explanation but not in the fairness
explanation are removed from the original input network. The in-
tuition here is that if an edge only appears in the edge set that
maximally accounts for the exhibited bias but not in the edge set
whose existence can maximally alleviate the node-level bias of the
prediction, such edge can be regarded as being more critical to the
exhibited bias instead of being more critical to an accurate and
fair prediction. Therefore, removing edges bearing such property
has the potential to reduce the exhibited bias while maintaining
the utility (i.e., yielding accurate and fair predictions) of the GNN.
Correspondingly, for our proposed framework REFEREE, we also
randomly sample nodes and remove edges that appear in the ex-
planation given by Bias Explainer but not in the explanation from
Fairness Explainer, i.e., removing edges in set Si\éi’ . In this way,
edges are removed from the input network data towards the goal of
debiasing the GNN and maintaining its usability at the same time.
It is worth mentioning that such an edge removal strategy does not
necessarily lead to graph structure modifications that are globally
optimal for debiasing. However, if fairer GNNs can be achieved via
removing edges that exhibit node-level bias defined in Definition 1,
the consistency between Definition 1 and traditional fairness no-
tions can be validated, i.e., reducing the node-level bias also helps to
promote the overall fairness level of the GNN predictions in terms
of traditional fairness metrics.

We adopt GAT as the explained GNN model here, and similar
observations can also be found based on other GNNs. We vary the
random sampling ratio of the number of explained nodes over the
number of all nodes among {0%, 5%, 10%, 15%, 20%}. The changes
of node classification accuracy, Agp, and Agp w.r.t. the sampled
node ratio on German dataset is presented in Fig. 2. We make the
following observations: (1) With more nodes being sampled and
more edges that only appear in the bias explanations being removed,
both Agp and Agp reduce significantly. This verifies that removing
the edges that account for the node-level bias generally alleviates
the exhibited bias in terms of the whole population. Besides, the
reduction of both Agp and Agp also validates the consistency be-
tween traditional fairness notions and node-level bias given in
Definition 1. (2) Removing the edges that only appear in the bias
explanations generally reduces the GAT prediction accuracy. We
argue that it is because some edges that lead to more biased re-
sults could also be critical for accurate predictions. However, the
accuracy reduction is within an acceptable range. (3) Compared
with other baseline approaches, REFEREE leads to limited accuracy

reduction but achieves a more significant reduction on Agp and
AEo. Such observation indicates that a fairer GNN is achieved (in
terms of traditional fairness notions) based on the explanations
identified by REFEREE compared with the explanations given by
other alternatives. Considering our baselines also bear constraints
for fidelity and explaining bias(fairness), it is safe to attribute such
superiority to the designed contrastive mechanism of REFEREE.
Consequently, we argue that REFEREE outperforms baselines in
helping achieve fairer GNNs in terms of traditional fairness notions.

5 RELATED WORK

Explanation of GNN . Generally, existing GNN explanation ap-
proaches can be divided into data-level approaches and model-level
ones [41]. For data-level approaches, the explanation models iden-
tify critical components in the input network data of GNN, e.g.,
node features or edges. For example, squared gradient values are
regarded as the importance scores of different input features in
the node classification task [3]; interpretable surrogate models are
leveraged to approximate the prediction of a certain GNN model,
where the explanations from the surrogate model can be regarded
as the explanation for the corresponding GNN prediction [15, 30].
Another popular approach to identify important components of the
input network data is to make perturbations on the input network,
then observe the corresponding change in the output. The basic
rationale is that if small perturbations lead to dramatic changes
in the GNN prediction, then what has been perturbed is regarded
as critical for the GNN prediction [22, 27, 32, 39, 42]. Despite its
significance, this is a less studied topic. To provide model-level
explanations for GNNs, graph generation can be leveraged to maxi-
mize the prediction of a GNN regarding a specific prediction (e.g.,
the probability of a class in graph classification) [40]. If the pre-
diction probability of GNN regarding a specific prediction result
can be maximized, then the generated input graph can be regarded
as the explanation for this GNN that includes critical graph pat-
terns. Different from the existing GNN explanation approaches,
our proposed framework REFEREE not only explores critical edges
for GNN predictions, but also identifies their contribution to the
bias in GNNs. Hence, REFEREE is able to provide explanations for
bias in GNNs, which helps understand how bias arises. This is with
significance for GNN deployment in decision-critical scenarios and
potentially facilitates the development of fairer GNNs.

Fairness of GNNs. With the increasing societal concerns on the
fairness of GNNs [31], explorations have been made to alleviate
the bias exhibited in GNNs. Generally, existing works focus either
on group fairness [10] or individual fairness [43]. Group fairness
requires that GNNs should not yield biased predictions against
any specific demographic subgroups [24]. Among existing works,
promoting group fairness through adversarial learning is one of the
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most popular GNN debiasing approaches [5]. Its goal is to train a
discriminator to identify the sensitive information from the learned
node embeddings. When the discriminator can barely distinguish
the sensitive feature given any learned embedding, the sensitive
feature can be regarded as being decoupled from the learned embed-
dings. Additionally, GNN debiasing can also be performed based on
the input network data. For example, the network structure can be
modified such that nodes in different demographic subgroups bear
similar distributions on their neighbor node attribute values [8].
Moreover, edge dropout [28] is also proved to be effective in debi-
asing GNNs. On the other hand, individual fairness requires that
similar individuals should be treated similarly [16, 43]. However,
promoting individual fairness for GNNs remains under-explored.
To the best of our knowledge, the only approach to fulfill such a
goal is developed from a ranking perspective [7].

6 CONCLUSION

In this paper, we focus on a novel problem of structural explanation
of node-level bias in GNNs. Specifically, we first propose to model
node-level bias quantitatively, and then develop a principled post-
hoc explanation framework named REFEREE with two different
explainers: the bias explainer and the fairness explainer. Conditional
on being faithful to the given GNN prediction, the two explainers
aim to identify structural explanations that maximally account for
the exhibited bias and that maximally contribute to the fairness
level of the GNN prediction. Experiments on real-world network
datasets demonstrate the effectiveness of REFEREE in identifying
edges that maximally account for the exhibited node-level bias and
edges whose existence can maximally alleviate the node-level bias
for any given GNN prediction. Furthermore, REFEREE also shows
superior performance over baselines on helping debias GNNs.
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A APPENDIX
A.1 Reproducibility

In this section, we focus on the reproducibility of our experiments
as a supplement of Section 4.1. More specifically, we first present
a detailed review of the three real-world datasets adopted in our
experiments. Then we introduce the experimental settings, followed
by the implementation details of our proposed framework REFEREE,
GNNs, and baseline models. We finally present some key packages
with the corresponding versions for our implementations.

A.1.1 Real-World Datasets. Three real-world attributed network
datasets are adopted in the experiments of this paper, namely Ger-
man Credit, Recidivism, and Credit Defaulter [1]. We present the
statistics of these three datasets in Table 3. Some detailed informa-
tion corresponding to the three datasets is introduced as follows.

e German Credit. In German Credit dataset, nodes and edges
represent the bank clients and the connections between
client accounts, respectively. Here the gender of the bank
clients is regarded as the sensitive feature, and the task is to
classify if the credit risk of each client is high or not.

e Recidivism. In Recidivism, nodes represent defendants that
were released on bail from the year 1990 to the year 2009, and
edges represent the connection between defendants based
on their past criminal records. Race of the defendants is
considered as the sensitive feature, and the task is to classify
if a certain defendant deserves bail. A positive bail decision
indicates that the corresponding defendant is unlikely to
commit a crime if released.

e Credit Defaulter. In Credit Defaulter, each node represents
a credit card user, and an edge between two nodes is the
connection between two credit card users. The age of the
credit card users is the sensitive feature, and the task is to
predict the future default of credit card payments for users.

A.1.2  Experimental Settings. For the three real-world datasets used
in this paper, we adopt the split rate for the training set and vali-
dation set as 0.8 and 0.1, respectively. The input node features are
normalized before they are fed into the GNNs and the correspond-
ing explanation models. For the downstream task node classification,
only the training set is available for all models during the training
process. The trained GNN models with the best performance on
the validation set are preserved for test and explanation.

A.1.3  Implementation of REFEREE. REFEREE is implemented in
PyTorch [25] and optimized through Adam optimizer [19]. In our
experiments, the learning rate and training epoch number are set
as le-5 and 200 for the explanation of all GNNs on all datasets.
Jensen-Shannon divergence is leveraged to measure the difference
of the identified edge distributions between Gl’ and Q,—, as its bound-
edness empirically leads to a more stable optimization process. The
edge budget T (and T”) is set to be 500 and 200 for Effectiveness of
Explaining Bias (Fairness) and Debiasing GNNs with Explanations, re-
spectively. In our experiments, hyper-parameter a, 8, and y are set
as 1, le-4, and 1le-4, respectively. Numerical results for performance
evaluation are based on the average of multiple runs. Open-source
code can be found at https://github.com/yushundong/REFEREE.
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Table 3: Statistics of the three real-world graph data. Sens.
denotes the sensitive feature.

Dataset German Credit  Recidivism Credit Defaulter
# Nodes 1,000 18,876 30,000

# Edges 22,242 321,308 1,436,858

# Attributes 27 18 13

Avg. degree 44.5 34.0 95.8

Sens. Gender Race Age

Label Good / Bad Bail / No Bail Default / No Default

A.1.4  Implementation of Graph Neural Networks. For all explained
GNNss (i.e., GCN, GAT, and GIN) in our experiments, their released
implementations are utilized for a fair comparison. The layer num-
ber for GCN and GIN is set as 3. For GAT, we only adopt two layers
due to the memory limit. The attention head number of GAT is set
as one. The hidden size is set as 20 for all explained GNNs.

A.1.5 Implementation of Baselines. For all adopted GNN explana-
tion baselines (i.e., Att, Grad, GNN Explainer, and PGExplainer), we
also adopt their released implementations for a fair comparison.

e Att and Grad. The implementations of Att and Grad are
adopted based on the implementations of [39].

e GNN Explainer. For GNN Explainer, we adopt the imple-
mentations of [39]. For the training of GNN Explainer, the
learning rate is set as 0.001, and the weight decay rate is set
as 0.005.

e PGExplainer. For PGExplainer, we adopt the implementa-
tions of [22]. For the training of PGExplainer, the learning
rate is set as 0.003.

A.1.6  Packages Required for Implementations. We list the key pack-
ages and corresponding versions in our implementations as below.

Python == 3.7.10
torch == 1.8.1
torch-cluster == 1.5.9
torch-geometric == 1.4.1
torch-scatter == 2.0.6
torch-sparse == 0.6.9
cuda == 11.0

numpy == 1.20.0
tensorboard == 1.13.1
networkx == 2.5.1
scikit-learn == 0.24.1
pandas==1.2.3
scipy==1.4.1

A.2 Summary of Notations

To facilitate understanding, we present a summary of commonly
utilized notations and the corresponding descriptions in Table 4.

A.3 Parameter Sensitivity

We present the parameter sensitivity of our proposed framework
REFEREE in this section. More specifically, we explore how the
hyper-parameters « and f influence the performance of REFEREE
on (1) explaining the bias (fairness) in GNNs and (2) debiasing the
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Figure 3: A parameter study of the proposed framework
REFEREE based on hyper-parameter « and f. In (a), higher
AB; (Reduced) indicates better performance on explaining
fairness for the Fairness Explainer in REFEREE. In (b), lower
Agsp indicates a higher level of fairness is achieved based on
the obtained explanations in terms of debiasing GNNs for
the whole population. In (c), higher accuracy represents bet-
ter GNN utility performance.

GNN across the whole population. Here @ and f control the effect
of the distribution difference constraint between the two explana-
tions from the two explainers and the constraint to achieve better
fidelity, respectively. In our experiments, we choose the widely
used GAT model as the GNN to be explained, and we present the
parameter study based on the performance of debiasing GNNs with
explanations on German dataset. Similar observations can also be
drawn on other GNN models and datasets.

Now we introduce the experimental settings for the parameter
sensitivity study. Specifically, we fix the value for parameter y as
le-4 (the same as the setting in our implementation). First, for the
parameter study of a, we set § =1e-4 (the same as the setting in our
implementation), and we vary « from {le-5, le-4, le-3, le-2, le-1,
1e0, lel, 1e2}. Second, for the parameter study of §, we set @ = 1
(the same as the setting in our implementation), and we also vary
P from {1e-5, le-4, 1e-3, le-2, le-1, 1e0, lel, 1e2}. The performance
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Table 4: Notations commonly used in this paper and the cor-

responding descriptions.

Notations Definitions or Descriptions
G input graph
V, 6 X node, edge set, and attribute set
yi probabilistic GNN outcome set for all nodes
Gi computation graph centered on the i-th node
Si bias explanation for the i-th node
& fairness explanation for the i-th node

Vi probabilistic GNN outcome of the i-th node

Vi outcome of the i-th node based on bias explanation
V; outcome of the i-th node based on fairness explanation
Y; predicted label of the i-th node

N number of nodes in the input graph

M number of nodes to be explained

C number of classes for node classification

changes of the proposed framework on explaining fairness (with
AB; (Reduced) being the node-level bias metric) and debiasing the
GNN predictions over the whole population (with Agp being the
fairness metric and accuracy being the utility metric) are presented
in Fig. 3. We can draw observations as below:

o From the perspective of explaining fairness (i.e., identifying
the edges whose existence can maximally alleviate the ex-
hibited node-level bias), we observe that a relatively larger a
and a relatively smaller f help to achieve better performance,
i.e, larger AB; (Reduced), in Fig. 3a. This is because larger
a and smaller f help the framework better differentiate the
edges between the two types of explanations given by the
two explainers. In this way, the fairness explainer is able to
identify an edge set that leads to more significant node-level
bias reduction, i.e., to give a fairness explanation that brings
higher AB; (Reduced) for any given node to be explained.

e From the perspective of debiasing the GNN predictions, we
observe that a relatively larger @ and a relatively smaller
B help to achieve better debiasing performance in Fig. 3b.
This is because: (1) Larger « helps to better differentiate the
edges between bias explanation and the fair explanation. This
makes it easier for the framework to distinguish the edges
that account for the exhibited bias and edges whose existence
can alleviate the node-level bias. (2) Smaller f means that
the constraint strength on prediction fidelity is weak. This
enables the framework to focus more on explaining bias
(fairness) for edges in any given computation graph.

e From the perspective of maintaining GNN utility, we observe
that a relatively smaller « and a relatively larger $ help
achieve higher prediction accuracy in Fig. 3c. This is because
smaller « and larger f§ enforce the framework to focus more
on the fidelity of the explanation. Therefore, more critical
information could be encoded in the identified edges. Such
an advantage leads to higher prediction accuracy based on
the identified edges for any given node.

e Practically, it is necessary to balance the performance of
bias reduction and model utility for any given GNN. In this
regard, moderate values (e.g., values between 1le-4 and 1e0)
for both a and f are recommended.
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