Task-Adaptive Few-shot Node Classification

Song Wang
University of Virginia
sw3wv@virginia.edu

Chen Chen
University of Virginia
zrh6du@virginia.edu

ABSTRACT

Node classification is of great importance among various graph
mining tasks. In practice, real-world graphs generally follow the
long-tail distribution, where a large number of classes only consist
of limited labeled nodes. Although Graph Neural Networks (GNNs)
have achieved significant improvements in node classification, their
performance decreases substantially in such a few-shot scenario.
The main reason can be attributed to the vast generalization gap be-
tween meta-training and meta-test due to the task variance caused
by different node/class distributions in meta-tasks (i.e., node-level
and class-level variance). Therefore, to effectively alleviate the im-
pact of task variance, we propose a task-adaptive node classification
framework under the few-shot learning setting. Specifically, we
first accumulate meta-knowledge across classes with abundant la-
beled nodes. Then we transfer such knowledge to the classes with
limited labeled nodes via our proposed task-adaptive modules. In
particular, to accommodate the different node/class distributions
among meta-tasks, we propose three essential modules to perform
node-level, class-level, and task-level adaptations in each meta-task,
respectively. In this way, our framework can conduct adaptations
to different meta-tasks and thus advance the model generalization
performance on meta-test tasks. Extensive experiments on four
prevalent node classification datasets demonstrate the superiority
of our framework over the state-of-the-art baselines. Our code is
provided at https://github.com/SongW-SW/TENT.

CCS CONCEPTS

« Computing methodologies — Transfer learning.

KEYWORDS

node classification; few-shot learning; graph neural networks

ACM Reference Format:

Song Wang, Kaize Ding, Chuxu Zhang, Chen Chen, and Jundong Li. 2022.
Task-Adaptive Few-shot Node Classification. In Proceedings of the 28th ACM
SIGKDD Conference on Knowledge Discovery and Data Mining (KDD °22),
August 14-18, 2022, Washington, DC, USA. , 10 pages. https://doi.org/10.1145/
3534678.3539265

KDD °22, August 14-18, 2022, Washington, DC, USA
© 2022 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-9385-0/22/08.
https://doi.org/10.1145/3534678.3539265

This work is licensed under a Creative Commons Attribution
International 4.0 License.

Kaize Ding
Arizona State University
kding9@asu.edu

1910

Chuxu Zhang
Brandeis University
chuxuzhang@brandeis.edu

Jundong Li
University of Virginia
jundong@virginia.edu

Meta-training Tasks

Support Query
ROJO) T
Node-level ¢ O O O
Variance ?
Support Query
. . Task-level O O T

Variance

700

Class-level;:
Variance ;

Meta-test Tasks

Support Query

OO0 5 T/
Os

Q00 OO

Nodes of Nodes of
Base Classes Novel Classes

Figure 1: Issues of task variance of existing few-shot node
classification frameworks.

1 INTRODUCTION

Recently, extensive research efforts have been devoted to the node
classification task, which aims at predicting class labels for unla-
beled nodes in a graph. In real-world scenarios, the task of node clas-
sification yields an expansive variety of practical applications [21,
32]. For example, predicting chemical properties for proteins in a
protein network is an important problem in bioinformatics [31],
which can be formulated as the node classification problem. In
recent years, the state-of-the-art approaches for node classifica-
tion often utilize Graph Neural Networks (GNNs) [33, 39, 41] in
a semi-supervised manner [15]. Specifically, for each node, GNNs
aim to learn a vector representation for each node by transform-
ing and aggregating information from its neighbors. The learned
representations will be further utilized for the classification task
in an end-to-end manner. Nevertheless, these approaches typically
require sufficient labeled nodes for all classes in achieving a de-
cent classification performance [45]. In practice, although we can
access a large number of labeled nodes for certain classes, many
other classes may only contain a limited number of labeled nodes.
Here we refer to the former classes as base classes and the latter
as novel classes. For example, in a protein network [11], newly
discovered chemical properties with limited protein nodes are con-
sidered as novel classes, while common properties with abundant
protein nodes are considered as base classes. Due to the widespread
existence of novel classes in real-world graphs, many recent stud-
ies [6, 18, 36] focus on the problem of classifying nodes in novel
classes, known as the few-shot node classification problem.

https://github.com/SongW-SW/TENT
https://doi.org/10.1145/3534678.3539265
https://doi.org/10.1145/3534678.3539265
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1145/3534678.3539265

KDD ’22, August 14-18, 2022, Washington, DC, USA

To tackle the few-shot node classification problem, recent works
typically strive to extract transferable knowledge from base classes
and then generalize such knowledge to novel classes [5, 43, 45].
More specifically, these works learn from base classes across a
series of meta-training tasks and evaluate the model on meta-test
tasks sampled from novel classes (we refer to both meta-training
and meta-test tasks as meta-tasks). In fact, each meta-task contains a
small number of support nodes as references and several query nodes
to be classified. Since support nodes and query nodes in each meta-
task are sampled from nodes on the entire graph, there could exist
large variance among different meta-tasks (i.e., task variance) [12].
Therefore, the crucial part of few-shot node classification is to
ensure that the underlying model has the generalization capability
to handle a variety of meta-tasks in the presence of massive task
variance [16, 30]. However, despite much progress has been made in
few-shot node classification, recent studies ignore the task variance
and treat each meta-task identically [6, 18, 36]. As a result, the
task variance significantly jeopardizes the model generalization
capability to meta-test tasks even when the performance on meta-
training tasks is satisfactory [24].

Despite the importance of considering task variance, reducing its
adverse impact remains non-trivial. In essence, there are two main
factors that constitute such task variance. First, the Node-level Vari-
ance widely exists among meta-tasks and can lead to task variance.
Specifically, node-level variance represents the differences of node
features and local structures of nodes across different meta-tasks.
For example, in addition to the common difference in node features,
the red class nodes A and B in Fig. 1 also have different connectivity
patterns in terms of neighboring nodes (node A is surrounded by
blue nodes, while node B is only connected to red nodes). It should
be noted that few-shot node classification models generally learn
crucial information from the support nodes within each meta-task
to perform classification on the query nodes. Therefore, if the vari-
ance among the support nodes is too large, it will become difficult
to extract decisive information for classification. In other words,
it is vital to consider node-level variance for the purpose of han-
dling task variance. Second, Class-level Variance may also cause
task variance. Class-level variance denotes the difference in class
distributions among meta-tasks. In practice, since many real-world
graphs contain a large number of node classes, the distribution of
classes in each meta-task varies greatly [36, 45]. For example, in
Fig. 1, different meta-tasks consist of a variety of classes (e.g., red
and blue classes in 71 and dotted blue and green classes in 7;").
Since the model evaluation is conducted on a vast number of meta-
test tasks, the model will encounter many distinct classes during
meta-test. That being said, in the presence of massive class-level
variance, the resulting task variance will substantially deteriorate
the generalization performance on meta-test tasks.

To alleviate the adverse impact of task variance resulting from
the above two factors (i.e., node-level and class-level variance),
we propose a novel Task-adaptivE few-shot Node classificaTion
framework, named as TENT. Specifically, we aim to alleviate task
variance via performing task adaptations from three perspectives.
First, to handle node-level variance, we perform node-level adapta-
tions via constructing a class-ego subgraph for each class in each
meta-task. Specifically, such a subgraph explicitly connects nodes in
the same class and their neighbors with a virtual class node. In this

1911

Song Wang et al.

way, the neighbors of nodes in the same class are aggregated in this
subgraph to reduce the influence of node-level variance. Second, to
deal with class-level variance, we design a class-specific GNN to
leverage information from different classes and perform class-level
adaptations. Third, to reduce the adverse impact of task variance
during classification on query nodes, we propose to perform task-
level adaptations via maximally preserving the mutual information
between query nodes and support nodes in each meta-task. As a
result, our proposed framework can conduct classification in a task-
adaptive manner to alleviate the adverse impact of task variance.
In summary, our main contributions are three-folds:

e Problem. We investigate the limitations of existing few-shot
node classification methods from the lens of task variance
and discuss the importance and necessity of task adaptations
for few-shot node classification.

e Method. We develop a novel task-adaptive few-shot node
classification framework with three essential modules: (1)
node-level adaptation to mitigate node-level variance; (2)
class-level adaptation to alleviate the problem of class-level
variance; and (3) task-level adaptation to consider task vari-
ance during classification on query nodes.

e Experiments. We conduct experiments on four benchmark
node classification datasets under the few-shot setting and
demonstrate the superiority of our proposed framework.

2 PRELIMINARIES

2.1 Problem Statement

Formally, let G = (V, §,X) denote an attributed graph, where V
is the set of nodes, & is the set of edges, and X € RIVIXd i the
feature matrix of nodes with d denoting the feature dimension.
Moreover, we denote the entire set of node classes as C, which
can be further divided into two categories: Cp, and Cp,, where C =
Cp U Cp and Cp, N Cp, = 0. Here Cp, and C,, denote the sets of base
and novel classes, respectively. It is worth mentioning that the
number of labeled nodes in Cy, is sufficient, while it is typically
small in Cy, [6, 18, 45]. Then we can formulate the studied problem
of few-shot node classification as follows:

DEFINITION 1. Few-shot Node Classification: Given an attrib-
uted graph G = (V, &,X), our goal is to develop a machine learning
model such that after training on labeled nodes in Cp,, the model can
accurately predict labels for the nodes (i.e., query set Q) in Cp with
only a limited number of labeled nodes (i.e., support set S).

More specifically, if the support set S contains exactly K nodes
for each of N classes from Cp,, and the query set Q are sampled
from these N classes, the problem is called N-way K-shot node
classification. Essentially, the objective of few-shot node classifica-
tion is to learn a classifier that can be fast adapted to C,, with only
limited labeled nodes. Thus, the crucial part is to learn transferable
knowledge from Cj, and generalize it to Cy.

2.2 Episodic Learning

In practice, we adopt the episodic learning framework for both meta-
training and meta-test, which has proven to be effective in many
areas [6, 7, 28, 34, 40]. Specifically, the meta-training and meta-test

Task-Adaptive Few-shot Node Classification

Meta-task Node-level
Sampling Adaptation
0®% &0
Virtual
Support Class No‘de

0]0)
®®

Query
Nodes of Novel Classes O

Nodes of Base Classes

Embedding
Learning

Input Data: A graph , A Meta-task

Few-shot Learning Process

KDD ’22, August 14-18, 2022, Washington, DC, USA

Class-level Task-level Model
Adaptation Adaptation Optimization
Support Support Query
QO Q0O O Information
O O O O Loss Ly

EEEP

Maximize Mutual

Class Embedding Information Base Loss L
Prototype Query O O \/
Learning Matching @)

Classification Result

Figure 2: An illustration of the overall process of TENT. We first sample a meta-task from the given graph. Then we construct
subgraphs for node-level adaptions and utilize node embeddings in each class for class-level adaptations. We further maximize
the mutual information between the support set and the query set during query matching for task-level adaptations.

processes are conducted on a certain number of meta-training tasks
and meta-test tasks, respectively. These meta-tasks share a similar
structure, except that meta-training tasks are sampled from Cp,
while meta-test tasks are sampled from Cy,. The main idea of few-
shot node classification is to keep the consistency between meta-
training and meta-test to improve the generalization performance.

To construct a meta-training (or meta-test) task 77, we first ran-
domly sample N classes from Cy, (or Cy,). Then we randomly sample
K nodes from each of the N classes (i.e., N-way K-shot) to establish
the support set S;. Similarly, the query set Q; consists of Q different
nodes (distinct from S;) from the same N classes. The components
of the sampled meta-task 77 can be denoted as follows:

S ={(v1,y1), (v2,Y2), . . ., (UNxK> YNxK) }>
Q = {(q1.97): (q2.93).---. (90.yp)) 1)
Tt ={St, Qt},

where v; (or g;) is a node in V, and y; (or y;) is the corresponding
label. In this way, the whole training process is conducted on a
set of T meta-training tasks T7rqin = {‘7}}th1. After training, the
model has learned the transferable knowledge from 7;y4in and will
generalize it to meta-test tasks Tress = {7}’ }f;els‘ sampled from Cj,.

3 OUR PROPOSED FRAMEWORK

In this section, we introduce the overall structure of our proposed
framework TENT in detail. As illustrated in Fig. 2, we formulate the
few-shot node classification problem under the prevailing N-way
K-shot learning framework, which means a meta-task contains
K nodes for each of N classes as the support set. In addition, the
query set consists of Q unlabeled nodes to be classified from these
N classes. Specifically, our framework follows the prevalent three
phases for few-shot learning: embedding learning, prototype learn-
ing, and query matching. Generally, in each meta-task, we learn
embeddings for its nodes and then learn a prototype (i.e., embed-
ding of a class in the support set) based on the node embeddings.
Finally, the model matches query nodes with these prototypes via

specific matching functions to output classification results. Nev-
ertheless, these three steps ignore the task variance that widely
exists among meta-tasks. Therefore, as illustrated in Fig. 2, we pro-
pose to perform three levels of adaptations (node-level, class-level,
and task-level adaptations) in these three phases, respectively, to
alleviate the adverse impact of task variance.

3.1 Node-level Adaptation

During the embedding learning phase, existing methods learn em-
beddings for nodes in each meta-task from the entire graph [6,
36, 45]. Since nodes are distributed across the entire graph, the
learned node representations can be easily influenced by node-level
variance (i.e., have different connectivity patterns in terms of neigh-
boring nodes). Instead, we perform node-level adaptations in each
meta-task, which aims to modify the neighbors of support nodes
to reduce node-level variance caused by different connectivity pat-
terns. Toward this goal, we explicitly construct a subgraph for each
class in each meta-task via a virtual class node, which connects to
the K support nodes in that class. In addition, we also include the
one-hop neighbors of these K nodes in this subgraph. By doing the
above, we can aggregate local structures of support nodes in the
same class into this subgraph, which contains the virtual class node,
K support nodes, and one-hop neighbors of these K nodes. Here
the virtual class node acts as a bridge to explicitly connect these K
support nodes and their one-hop neighbors that can be originally
far from each other on the graph. Moreover, its embedding will
be used as the prototype of this class since it is the centroid node
of the subgraph. As a result, in this subgraph, support nodes will
share a similar neighbor node set because the neighboring nodes
of support nodes are explicitly connected. Since the neighbors of
support nodes become more similar in this subgraph, we can effec-
tively reduce the node-level variance. We denote the constructed
subgraphs in each meta-task as class-ego subgraphs.

Specifically, given a meta-task 7~ and its support set S (|S| =
N x K) on a graph G = (V, &,X), we aim to construct a class-ego
subgraph for each of the N classes in 7. Before the construction
of class-ego subgraphs, we employ a GNN [15, 39] parameterized

1912

KDD ’22, August 14-18, 2022, Washington, DC, USA

by ¢ to perform message propagation on the entire graph G and
generate first-step node representations for nodes in V as follows:

H = GNNy (V, &,X), @)

where H € denotes the first-step representations of nodes
in V and dj, is the output dimension of GNNy. In this way, H will
act as the input node representations for the class-ego subgraphs.

Let S; denote the set of nodes belonging to the i-th class in S,
which means |S;| = K, i = 1,2,...,N. To construct the class-ego
subgraph from these nodes, we first create a virtual class node c;
and connect it to all nodes in S;. Then to incorporate the local graph
structures, we also extract all one-hop neighbors of nodes in S; to
UK N, J where N; J denotes the
set of neighbors of the j-th node in S In thlS way, the final node
set of the class-ego subgraph is aggregated as V; = {c;} U S; UN;.
After that, we accordingly denote the extracted edge set of nodes
in V; as &;. To obtain the input node features for V;, we utilize the
corresponding first-step representations from H. However, we still
need to compute the representation of ¢; since it is newly created.
Here we propose to initiate its representation h; as follows:

h., = MEAN(h,|o € S;),

[R‘(legih

establish a neighbor node set \; =

®)

where he;, € R and h, is the first-step node representation of
node v. MEAN denotes the averaging operation. In this way, the
input node features for V; can be obtained as X;. Then the class-ego
subgraph can be constructed and denoted as G; = (V}, E;, X;). As
a result, we can achieve node-level adaptations by learning node
representations on the subgraphs with reduced node-level variance.

3.2 Class-level Adaptation

Typically, after learning the node representations in 7, existing
models learn prototypes for classes in 7~ by aggregating node rep-
resentations in the same class [6, 28]. However, this strategy can be
easily influenced by class-level variance and thus renders subopti-
mal generalization performance since it treats each class identically.
Instead, we propose to perform class-level adaptations, which aim
to obtain prototypes for classes in a class-adaptive manner. In par-
ticular, we design a class-specific adapter to adjust GNN parameters
regarding different classes in 7. In this way, our framework can
leverage the discriminative information in each class for class-level
adaptations and reduce the adverse impact of class-level variance.

Specifically, we use a new GNNy parameterized by 6 on the
class-ego subgraphs to learn prototypes. Then we adapt 6 accord-
ing to the first-step representations of nodes in each class (i.e.,
{hylv € S;},i =1,2,...,N) in meta-task 7. To comprehensively
incorporate the information in each class, we leverage the feature-
wise linear modulations [26, 38] to perform class-level adaptations:

i = MLPy (MEAN ({hofo € Si})), 4
pi = MLPg (MEAN ({ho|v € Si})), ®)
where S; is the set of nodes belonging to the i-th class in S. a; € R%0
and f; € R% are dp-dimensional adaptation parameters, where dy
is the total number of parameters in GNNy. With the adaptation

parameters «; and f;, we can perform an adaptation based on each
class to obtain class-specific GNN parameters as follows:

0i = (ai+1)o0 0+ pi, 6)

1913

Song Wang et al.

where o denotes the element-wise multiplication and 1 is a vector of
ones to limit the scaling range around one. 8; denotes the adapted
GNN parameters for the i-th class in S. Then we perform message
propagation on each class-ego subgraph with the adapted 6;:

= Centroid (GNNgi V4, Si,Xi)) s (7)

where s; € R% denotes the learned embedding of the virtual class
node (i.e., the centroid node) and acts as the prototype of the i-th
class. Centroid(-) denotes the operation of extracting the centroid
node representation from the GNN output. d; is the output dimen-
sion of GNNy. As a result, the GNN parameters can absorb the
information from each class to reduce the adverse impact of class-
level variance. Similarly, for the representations of query nodes, we
also apply the proposed class-specific adapter. Since labels of query
nodes are unknown during meta-training, we utilize the entire
support set S to conduct adaptations for query nodes:

tg = MLP, (MEAN ({h,o € 8})), (8)
Bq = MLPg (MEAN ({ho|o € S})), ©)
0 = (ag+1) 0 0+ fy, (10)

where 0 is the adapted GNN parameters for query nodes. To obtain
the representation q; for the i-th query node g; in the query set Q,
we extract the 2-hop neighbors of ¢; and obtain the corresponding
node set (Vl.q, edge set 8?, and input node features X?. The reason is
that using subgraph structures (e.g., considering 2-hop neighbors)
to learn node representations provides a more robust generalization
ability [12]. Then we utilize the adapted GNNp_ to compute g;:

q; = Centroid (GNNgq (vl el X?)) , (11)

where q; € R% is the embedding of g; (i.e., the centroid node).

3.3 Task-level Adaptation

Although we have achieved node-level and class-level adaptations
in the embedding learning and prototype learning phases, respec-
tively, the task variance caused by differences in the support set
among meta-tasks still exist in the final query matching phase [12].
Nevertheless, existing methods typically leverage the Euclidean
distance metric [6] or an MLP layer [18] to classify query nodes,
which ignores the task variance. Instead, we propose to perform
task-level adaptations in each meta-task, which aim to further re-
duce the adverse impact of task variance in this phase. Specifically,
we propose a task-adaptive matching strategy to maximally pre-
serve the mutual information between learned representations of
nodes in the query set Q and the support set S. As a result, the
matching phase on query nodes can incorporate information from
the entire support set S for task-level adaptations.

The optimization problem of maximizing the mutual information
can be formulated as follows:

(gils;:0)
maxI(Q S) —m;xZZp(ql,s],G)logp 4% ,

(12)
i=1 j= p(qlae)

where Q € R2%4s and § € RNV*4s are learned representations of
query nodes in Q and classes (i.e., prototypes) in S, respectively.
Q =|Q| and N is the number of classes in S. 0 denotes the param-
eters of our framework to be optimized. g; is the i-th query node

Task-Adaptive Few-shot Node Classification

in Q and s; is the j-th class in S. Since the mutual information
I(Q;S) is difficult to obtain and thus infeasible to maximize [23],
we re-write the function to obtain an accessible form:
p(qils;; 0)
p(qi;0)

O N _ _
1(Q;8) =) > plgilsj; 0)p(s;3 0) log (13)

i=1 j=1
Since each meta-task contains N classes, we may assume that the
prior probab1hty of p(sj; 0) follows a uniform distribution and set

it as p(sj; 9) = 1/N. Since p(sj; 9) is a constant, according to the
Bayes’ theorem, the objective function becomes:

ZZP(quJ,e) g S

11]1

O N _
> p(gilsj 0)

i=1 j=1

s

(log(P(Sj|qi; 0)) —log (%)))

(14)
To further estimate p(qi|3j;9~), we compute it by p(qi|sj-;§) =
1(q; € sj), where 1(q; € sj) = 1 if g; belongs to the class rep-
resented by s;; otherwise 1(g; € sj) = 0. In this way, the above
objective function is simplified as follows:

ZZ 1(qi € sj)

11]

ZIH

1(Q;S) = (10g(P(S]|qz,9)) log())

(15)
Since each g; can only belong to one s; (i.e., one class), we can
further simplify the objective function:

Z Z 1(qi € 5) log(p(s;lqi; 0) = Z log(p(s]lgi:0)). (16)
=1 j=

where s/ denotes the specific s; that g; belongs to (ie., q; € s)).

Moreover, since log (1/N) is also a constant, we can simplify the

objective function as follows:

Q e
1(Q;8) =) log(p(s{lgi; 6)). (17)
i=1

To estimate p(s/|q;; 5) we can define the probability of g; belonging
to s; according to the squared #; norm of the embedding distance.
Specifically, we further assign a weight parameter z; to each class
and normalize the probability with a softmax function:

exp (~(qi - 8))?/7])
Sy exp (=(qi = s)%/7))

where q; and s; denote the representations of the i-th query node
x; in Q and the j-th class-ego subgraph in S, respectively. 7; is
the adaptation parameter of the i-th class, and s] and 7 denote
the specific class-ego subgraph representation and the adaptation
parameter of the class that q; belongs to, respectively. Then if we
further apply the £ normalization to both q; and s;, we obtain
(qi — si)? = 2 — 2q; - 5;. Combining the above equations, we can
present the final optimization problem as follows:

p(s1qi: 0) = (18)

exp(q; - /7))
Z?I:l exp(q; - 8;/7;)

Qs —log 19
max()= mean (19)

i=1

1914

KDD ’22, August 14-18, 2022, Washington, DC, USA

Algorithm 1 Detailed learning process of our framework.

Input: A graph G = (V, &,X), a meta-test task Tesr = {S, Q},
base classes Cp,, meta-training epochs T, the number of classes
N, and the number of labeled nodes for each class K.
Output: Predicted labels of the query nodes in Q.
// Meta-training phase
1. fori=1,2,...,T do
2: Sample a meta-training task 7; = {S;, Q;} from Cp;
3. Compute first-step node representations with GNNg;
4 Construct a class-ego subgraphs for each of N classes in S;;
5
6

Adapt GNNy to 7; according to Eq. (6) and (10);
Compute the representations for class-ego subgraphs and
query nodes with the adapted GNNjy, and GNN 045
7. Update model parameters with the meta-training loss of 7;
according to Eq. (24) by one gradient descent step;
8: end for
// Meta-test phase
9: Compute first-step node representations with GNNg;
10: Construct a class-ego subgraphs for each of N classes in S;
11: Adapt GNNy to T7es; according to Eq. (6) and (10);
12: Compute the representations for class-ego subgraphs and query
nodes with the adapted GNNy, and GNNgq ;
: Predict labels for query nodes in Q;

Since the distribution of node embeddings in each class S; differs
around the class representation s;, the node embeddings of specific
classes can be scattered in a large distance from s;. In this case, the
classification process should incorporate the distribution of node
embeddings in each class while considering the entire support set
8. Thus, we propose to obtain 7] as follows:

N T lIs§ = sill2

_ (20)
YR lIss = sjllz

T =

where {si.C }{i 1 denotes the node embeddings in the i-th class pro-
cessed by GNNp,. In this way, the classification process is adapted
regrading the entire support set to reduce the adverse impact of
task variance. Hence, the model is able to incorporate information
in the entire support set to achieve task-level adaptations. Then
according to Eq. (19), we can optimize the following information
loss to preserve the mutual information I(Q; S):

Zl

It is worth mentioning that £ shares a similar expression with
the InfoNCE loss [10, 23]. Thus, InfoNCE can be considered as a
special case where positive and negative pairs are defined by differ-
ent views of nodes, while in our case, they are defined according
to the labels of query nodes. Ly also differs from the supervised
contrastive loss [13], which utilizes various views of images and
supervised information, as our loss aims at maximally preserving
the mutual information between query nodes and support nodes
within each meta-task. Moreover, the adaptation parameter acts
similarly with the temperature parameter in InfoNCE, while in our
framework, it is adjustable and provides task-level adaptations.

exp(q; - s; /T)
1exp((h S]/Tj)

(21)

KDD ’22, August 14-18, 2022, Washington, DC, USA

3.4 Few-shot Node Classification

So far, we can train GNNy and GNNy with the proposed loss Ly
in Eq. (21). However, since GNNy provides the first-step repre-
sentations for nodes from an overview of the entire graph G, the
supervised information within each meta-task could be insufficient
for the optimization of GNN. Thus, we propose to classify query
nodes from base classes Cp, to optimize GNNy. Specifically, we uti-
lize an MLP layer followed by a softmax function to calculate the
cross-entropy classification loss over Cy:

pi = Softmax (MLP(h;)), (22)
Q |Gl

LcE =~ Z Z yi,jlog pij, (23)
i=1 j=1

where p; € RICb! is the probability that the i-th query node in Q
belongs to each class in Cp. y; j = 1 if the i-th node belongs to the
Jj-thclass, and y; j = 0, otherwise. p; ; is the j-th element in p;. In
this way, instead of classifying nodes only from classes in a meta-
task, we can utilize the supervised information in Cp, from a global
perspective. Then the meta-training loss is defined as follows:

L=Ln+yLcE (29)

where y is an adjustable weight hyper-parameter.

After meta-training, the meta-test process is the same as the
meta-training process, except that meta-test tasks are sampled
from novel classes Cy,. The labels of query nodes are obtained by
4i = argmax;{q; - sj/7ilj = 1,2,..., N}, where q; and s; are repre-
sentations of the i-th query node and the j-th class-ego subgraph,
respectively. 7; is the adaptation parameter of the i-th class. The
detailed process of our framework is demonstrated in Algorithm 1.

4 EXPERIMENTS

In this section, we conduct experiments to evaluate our frame-
work TENT on four prevalent few-shot node classification datasets.
Furthermore, we conduct experiments to verify the effectiveness
of different modules in our framework with ablation study and
demonstrate the parameter sensitivity.

4.1 Datasets

To evaluate our framework on few-shot node classification tasks, we
conduct experiments on four prevalent real-world graph datasets:
Amazon-E [20], DBLP [32], Cora-full [1], and OGBN-arxiv [11].
We summarize the detailed statistics of these datasets in Table 1.
Specifically, # Nodes and # Edges denote the number of nodes and
edges in the graph, respectively. # Features denotes the dimension
of node features. Class Split denotes the number of classes used for
meta-training/validation/meta-test. More details are provided in
Appendix A.2.4.

Table 1: Statistics of four node classification datasets.

Dataset # Nodes # Edges # Features | Class Split
Amazon-E 42,318 43,556 8,669 90/37/40
DBLP 40,672 288,270 7,202 80/27/30
Cora-full 19,793 65,311 8,710 25/20/25
OGBN-arxiv 169,343 1,166,243 128 15/5/20

Song Wang et al.

4.2 Experimental Settings

To validate the effectiveness of our proposed framework TENT,
we conduct experiments with the following baseline methods to
compare performance:

e Prototypical Networks [28]: Prototypical Networks learn
prototypes for classes for query matching.

e MAML [7]: MAML proposes to optimize model parameters
based on gradients of support instances across meta-tasks.

e GCN [15]: GCN performs information propagation based
on local structures.

o G-Meta [12]: G-Meta utilizes representations of subgraphs
as node embeddings for few-shot learning on graphs.

e GPN [6]: GPN leverages node importance and Prototypical
Networks to improve performance.

e RALE [18]: RALE proposes to learn node dependencies ac-
cording to node locations on the graph.

During training, we sample a certain number of meta-training
tasks from training classes (i.e., base classes) and train the model
with these meta-tasks. Then we evaluate the model based on a
series of randomly sampled meta-test tasks from test classes (i.e.,
novel classes). For consistency, the class splitting is identical for all
baseline methods. Then the final result of the average classification
accuracy is obtained based on these meta-test tasks. More detailed
parameter settings can be found in Appendix A.2.1.

4.3 Overall Evaluation Results

We first present the performance comparison of our framework
and baseline methods on few-shot node classification in Table 2.
Specifically, to better demonstrate the efficacy of our framework un-
der different few-shot settings, we conduct the experiments under
four different settings: 5-way 3-shot, 5-way 5-shot, 10-way 3-shot,
and 10-way 5-shot. Moreover, the evaluation metric is the average
classification accuracy over ten repetitions. From the overall results,
we can obtain the following observations:

e Our proposed framework TENT outperforms all other base-
lines in all datasets under different few-shot settings, which
validates the effectiveness of our task-adaptive framework
on few-shot node classification.

e Conventional few-shot methods such as Prototypical Net-
work [28] and MAML [7] exhibit inferior performance com-
pared with other baselines. The reason is that such methods
are proposed in other domains and thus result in unsatisfac-
tory performance on graphs.

e When increasing the value of K (i.e., more support nodes
in each class), all methods gain considerable performance
improvements. Moreover, our framework achieves better
results due to that the node-level and class-level adaptations
benefit more from a larger size of nodes in each class.

o The performance of all methods significantly decreases when
the value of N increases (i.e., more classes in each meta-task).
The main reason is that the variety of classes in each meta-
task leads to a more complex class distribution and results
in classification difficulties. However, by incorporating the
class-level and task-level adaptations, our framework is capa-
ble of alleviating this problem when a larger N is presented.

Task-Adaptive Few-shot Node Classification

KDD ’22, August 14-18, 2022, Washington, DC, USA

Table 2: The overall few-shot node classification results (accuracy in %) of various models under different few-shot settings.

Dataset DBLP Amazon-E
Setting 5-way 3-shot | 5-way 5-shot | 10-way 3-shot ‘ 10-way 5-shot || 5-way 3-shot | 5-way 5-shot | 10-way 3-shot | 10-way 5-shot
PN [28] 41.51 + 3.60 46.17 + 3.55 28.98 +3.87 36.71 £3.35 56.80 + 3.60 62.53 + 2.80 44.26 + 2.64 48.20 + 3.89
MAML [7] 43.06 £+ 2.92 49.93 £ 2.57 34.63 +£3.91 38.44 +£3.25 56.03 £ 2.11 63.40 + 3.33 40.80 + 2.75 47.06 £+ 3.15
GCN [15] 62.87 £ 1.44 70.51 £ 1.37 47.22 £2.97 53.95 +2.49 55.33 +£1.23 62.96 + 2.61 45.18 + 2.61 50.89 + 2.95
G-Meta [12] 73.49 £+ 2.82 78.56 £ 2.86 60.77 £ 3.03 66.26 + 3.47 64.56 + 4.23 68.36 + 4.10 59.75 £ 4.90 63.02 £ 4.11
GPN [6] 76.42 £ 3.11 80.85 + 3.68 63.14 £ 2.25 69.55 £ 2.56 65.16 + 3.17 71.89 +£3.94 62.52 £3.12 63.98 + 2.04
RALE [18] 75.38 £ 4.94 79.85 £ 4.69 62.81 +£3.48 67.61 £3.99 69.55 +4.24 74.97 £ 4.66 63.27 £3.31 64.85 + 3.04
TENT 79.04 + 3.14 | 82.84 +3.97 65.47 + 4.21 72.38 + 4.14 75.76 +£ 3.63 | 79.38 + 4.98 67.59 + 4.16 69.77 + 3.76
Dataset Cora-full OGBN-arxiv
Setting 5-way 3-shot | 5-way 5-shot | 10-way 3-shot | 10-way 5-shot || 5-way 3-shot | 5-way 5-shot | 10-way 3-shot | 10-way 5-shot
PN [28] 42.62+£3.78 | 56.66+2.91 | 35.95+3.95 | 38.69+3.09 | 37.99+£3.98 | 49.71+420 | 31.44+3.00 | 35.79+3.63
MAML [7] || 47.10+4.32 | 54.89+3.09 | 30.68+3.08 | 42.22+276 || 41.83+2.54 | 42.14+3.86 | 33.15+2.92 | 36.82+3.03
GCN [15] || 49.05+2.04 | 58.03+3.50 | 34.27+3.98 | 39.85+350 | 44.80 256 | 47.29+3.58 | 35.80+2.21 | 37.78+2.90
G-Meta [12] || 57.93%3.79 | 60.30 £2.93 | 45.67+3.35 | 47.76+3.25 || 47.66+3.27 | 49.81+4.01 | 35.93+3.04 | 40.13+4.35
GPN [6] 58.38+3.49 | 63.82+2.93 | 41.65+£2.20 | 45.63+3.17 || 49.16+3.43 | 53.06+3.13 | 37.28+3.99 | 43.33%3.27
RALE [18] || 62.83+3.12 | 65.93+3.24 | 48.05+3.09 | 51.67+3.21 || 53.90+3.45 | 56.99+443 | 37.60+4.12 | 41.42+3.03
TENT 64.80 + 4.10 | 69.24 +4.49 | 5173 +4.34 | 56.00 =3.53 || 55.62+3.13 | 62.96 £3.74 | 41.13 +4.26 | 44.73 + 3.42
85 85 task-level adaptation module with a common Euclidean distance
g 80 ;EE?S g 80 iizgg classifier, which means during training, the framework fails to learn
& TENT\T &8s TENT\T task-level adaptations across meta-training tasks, and we refer it
§ o TENT g o TENT to as TENT\T. The overall ablation study results are presented in
< < Fig. 3. From the results, we can observe that TENT outperforms all
865 865 variants, which demonstrates the effectiveness of all three types of
00 R s 103 1005 60 s 103 1005 adaptations. Specifically, removing node-level adaptations results
in a large decrease in few-shot node classification performance.
(a) DBLP (b) Amazon-E Furthermore, integrating class-level adaptations provides a con-
70 65 siderable performance improvement, especially when the number
gss TENTIN 360 TENTIN of classes increases, which introduces larger class variance. More
TENT\C TENT\C
560 TENT\T g 55 TENT\T significantly, without the task-level adaptations, the performance
g s TENT 3 50 TENT decreases rapidly when the support set size increases. Therefore,
< <45 the result further demonstrates the importance of task-level adap-
&30 &40 tations in the presence of a more complex few-shot setting with a
45 35

5-3
(c) Cora-full

5-5 10-3 10-5

5-3
(d) 0GBN-arxiv

5-5 10-3 10-5

Figure 3: Ablation study on our framework in the N-way
K-shot setting,.

4.4 Ablation Study

In this part, we conduct an ablation study on four datasets to verify
the importance of three crucial components in TENT. First, we
remove the node-level adaptation and directly utilize the original
graph instead of class-ego subgraphs to learn representations for
each class in meta-tasks. In this way, the support nodes of different
classes are distributed over the entire graph and thus lack node-
level adaptations. We refer to this variant as TENT\N. Second, we
remove the class-specific adapter so that the framework identically
learns class representations and lacks class-level adaptations, and
we refer to this variant as TENT\C. The final variant is to replace the

1916

large support set.

4.5 Effect of Meta-training Support Set Size

In this section, we conduct experiments to study the sensitivity of
several parameters in TENT. Since TENT provides task adaptations
for both meta-training and meta-test tasks, the values of N (i.e.,
number of classes in a support set) and K (i.e., number of support
nodes in each class) are unnecessary to be consistent during meta-
training and meta-test. In other words, it differs from the general
few-shot learning setting, where the parameters of N and K are
consistent during meta-training and meta-test. Therefore, we can
adjust these two parameters during meta-training to analyze their
effects for better performance. Fig. 4 reports the classification ac-
curacy of TENT when varying the parameters of N and K during
meta-training on four datasets, denoted as N; and Ky, respectively.
Specifically, we vary the values of N; and K as 3, 5, 10, and 20. Note

KDD ’22, August 14-18, 2022, Washington, DC, USA

-83

" 79.60 2L o
- | . -79
S 82
“—n 82.84 82.34 [:HPX4 e XY 7862
S 81 O 78
g E
= o 8215 83.01 8270 = o 79.42 ady
> 80 = 77
S 80.73 81.14 79 S 77.72 7669 [R
3 5 10 20 3 5 10 20
Value of N, Value of N,
(a) DBLP (b) Amazon-E
- 67.25 68.66 68.62 N 60.13 61.14 63
- -69 -
A A
e 69.24 69.45 It} ey 6163 R 62
) 68 g
= 69.38 69.92 [ELkys = o I 63.11
> 67 > 61
S 67.84 67.91 68.28 S 6144 6226 6201 61.86
3 5 10 20 3 5 10 20
Value of N, Value of N,

(c) Cora-full
Figure 4: Results of TENT with different N; and K;.

(d) 0GBN-arxiv

~95 ~ 86
X —e— TENTW xX —e— TENTWN
=90 TENT\C =83 TENT\C
2 — TENT\T] —4— TENT\T
§85 —*— TENT ‘580 —*— TENT
g %0 ‘—/‘/k—-ﬁ ::’ . f,/H/'\,
75— ' E74

3 5 10 20 3 5 10 20

Query Set Size Q| Query Set Size 19|
(a) DBLP (b) Amazon-E
g76] —~ et @75 —— TENTWN
=73 TENT\C 3; 70 TENT\C
2 < TENTIT 2 —<— TENT\T
§ 70 :*_’TD:’I/** 565 —— TENT
51 ‘_/-»/4**

267 W ; 60— —e————s
S — sl

3 5 10 20 3 5 10 20

Query Set Size Q|
(c) Cora-full

Query Set Size 19|
(d) 0GBN-arxiv

Figure 5: Results of TENT with different values of |Q|.

that during meta-test, the values of N and K are kept invariant as 5
and 5, respectively (i.e., 5-way 5-shot). From the results, we observe
that increasing N; and K; both provide better results on few-shot
node classification. The reason is that TENT learns the three types
of adaptations from a larger support set during meta-training and
thus is more capable of handling node-level and class-level vari-
ance. More specifically, increasing the value of N results in a more
significant improvement. The main reason is that the class-level
and task-level adaptations benefit from more classes in each meta-
task. In addition, incorporating more support nodes in each class
(i.e., larger K;) also enhances the interactions among nodes in each
class-ego subgraph for more comprehensive node-level adaptations.

4.6 Effect of Query Set Size

In this part, we conduct experiments to present how the query set
size |@| in each meta-task during meta-training affects the perfor-
mance of our proposed framework TENT. Fig. 5 reports the results

1917

Song Wang et al.

of TENT when varying the value of |Q| on four datasets under
the 5-way 5-shot setting. Specifically, |Q| during meta-training is
changed from 3 to 20, while it remains 10 during meta-test for a
fair comparison. From the results, we can observe that the few-
shot node classification performance increases when |Q| becomes
larger. The reason is mainly attributed to the fact that involving
more query nodes during meta-training (i.e., increasing the value
of |@Q]) helps alleviate the over-fitting problem. However, as the
results suggest, an excessively large query set size may result in a
performance drop. The reason is that the optimization process may
be more difficult on a large query set.

5 RELATED WORK
5.1 Graph Neural Networks

Recently, many researchers focus on studying Graph Neural Net-
works (GNNs) to learn comprehensive node representations in
graphs [2, 3, 42]. In general, GNNs aim at learning node repre-
sentations through a certain number of information propagation
steps in a recurrent manner [9, 44, 46]. In this way, GNNs can
aggregate information from neighboring nodes to generate node
representations based on local structures. For example, Graph Con-
volutional Networks (GCNs) [15] perform convolution operations
on graphs based on the graph spectral theory. Graph Attention Net-
works (GATs) [33] leverage the attention mechanism to select more
important neighboring nodes for aggregation. Moreover, Graph Iso-
morphism Networks (GINs) [41] develop an expressive architecture,
which is as powerful as the Weisfeiler-Lehman graph isomorphism
test. Nonetheless, GNNs typically render sub-optimal performance
when there are limited labeled nodes for each class [6, 43], which
further indicates the necessity of few-shot learning on graphs.

5.2 Few-shot Learning on Graphs

Few-shot Learning (FSL) aims to learn transferable knowledge
from tasks with abundant supervised information and general-
ize it to novel tasks with a limited number of labeled instances.
In general, few-shot learning methods can be divided into two
categories: metric-based approaches and meta-optimizer-based ap-
proaches. Specifically, the metric-based approaches aim at learning
generalizable metric functions to match the query set with the
support set for classification [17, 29]. For example, Matching Net-
works [34] conduct predictions based on the similarity between
a query instance and each support instance learned by attention
networks. Prototypical Networks [28] learn a prototype as the rep-
resentation for each class and perform classification based on the
Euclidean distances between query instances and prototypes. On
the other hand, meta-optimizer-based approaches aim at optimizing
model parameters according to gradients calculated from few-shot
instances [22, 27]. For example, MAML [7] optimizes model parame-
ters based on gradients on support instances for fast generalization.
Moreover, LSTM-based meta-learner [27] proposes to adjust the
step size for updating parameters during meta-training.

In the field of graphs, several recent works propose to conduct
graph-based tasks under the few-shot learning scenario [4, 19, 37].
Among them, GPN [6] proposes to leverage node importance based
on Prototypical Networks [28] for better performance, where nodes
are classified via finding the nearest class prototype. G-Meta [12]

Task-Adaptive Few-shot Node Classification

leverages local subgraphs to learn node representations while com-
bining meta-learning [7] for model generalization. More recently,
RALE [18] learns to model node dependencies within each meta-
task by assigning relative and absolute locations for nodes with
task-level and graph-level dependencies, respectively.

6 CONCLUSION

In this paper, we study the problem of few-shot node classifica-
tion, which aims at predicting labels for nodes in novel classes
with limited labeled nodes. Furthermore, to address the associated
challenges caused by insufficient labeled nodes and the variety of
novel classes, we propose a novel framework TENT to perform task
adaptations for each meta-task from three perspectives: node-level,
class-level, and task-level. As a result, our framework can perform
these adaptions to each meta-task and advance classification perfor-
mance with respect to a variety of novel classes during meta-test.
Moreover, extensive experiments are conducted on four prevalent
few-shot node classification datasets. The experimental results fur-
ther validate that TENT outperforms other state-of-the-art base-
lines. In addition, the ablation study also verifies the effectiveness
of three different levels of adaptations in our framework. Never-
theless, there still exists a considerable number of difficulties in
few-shot node classification. For example, the inductive setting for
few-shot node classification is still challenging. Future work may
incorporate more sophisticated adaptation methods to handle the
novel classes on graphs unseen during meta-training.

ACKNOWLEDGEMENT

This material is supported by the National Science Foundation (NSF)
under grant #2006844.

REFERENCES

[1] Aleksandar Bojchevski and Stephan Giinnemann. 2018. Deep Gaussian Embed-
ding of Graphs: Unsupervised Inductive Learning via Ranking. In ICLR.
Shaosheng Cao, Wei Lu, and Qiongkai Xu. 2016. Deep neural networks for
learning graph representations. In AAAL

Shiyu Chang, Wei Han, Jiliang Tang, Guo-Jun Qi, Charu C Aggarwal, and
Thomas S Huang. 2015. Heterogeneous network embedding via deep archi-
tectures. In SIGKDD.

Jatin Chauhan, Deepak Nathani, and Manohar Kaul. 2020. Few-Shot Learning on
Graphs via Super-Classes based on Graph Spectral Measures. In ICLR.

Kaize Ding, Jundong Li, Nitin Agarwal, and Huan Liu. 2020. Inductive anomaly
detection on attributed networks. In IJCAL

Kaize Ding, Jianling Wang, Jundong Li, Kai Shu, Chenghao Liu, and Huan Liu.
2020. Graph prototypical networks for few-shot learning on attributed networks.
In CIKM.

Chelsea Finn, Pieter Abbeel, and Sergey Levine. 2017. Model-agnostic meta-
learning for fast adaptation of deep networks. In ICML.

Xavier Glorot and Yoshua Bengio. 2010. Understanding the difficulty of training
deep feedforward neural networks. In AISTATS.

William L Hamilton, Rex Ying, and Jure Leskovec. 2017. Inductive representation
learning on large graphs. In NeurIPS.

Kaiming He, Haoqi Fan, Yuxin Wu, Saining Xie, and Ross Girshick. 2020. Mo-
mentum contrast for unsupervised visual representation learning. In CVPR.
Weihua Hu, Matthias Fey, Marinka Zitnik, Yuxiao Dong, Hongyu Ren, Bowen
Liu, Michele Catasta, and Jure Leskovec. 2020. Open Graph Benchmark: Datasets
for Machine Learning on Graphs. In NeurIPS.

Kexin Huang and Marinka Zitnik. 2020. Graph meta learning via local subgraphs.
In NeurIPS.

Prannay Khosla, Piotr Teterwak, Chen Wang, Aaron Sarna, Yonglong Tian, Phillip
Isola, Aaron Maschinot, Ce Liu, and Dilip Krishnan. 2020. Supervised contrastive
learning. In NeurlIPS.

Diederik P Kingma and Jimmy Ba. 2015. Adam: A method for stochastic opti-
mization. In ICLR.

[2

(3

=

=
=2

(1]

[12

[13]

[14

1918

[15

[16

(17]
(18]

[19

™
=

[21

[22

[23

[24

[25]

[27

[28

[29

[30

(31]

[32

[33

[34

[35

[36]

®
=

[38

[39

[40

[41

[42]

~
o

KDD ’22, August 14-18, 2022, Washington, DC, USA

Thomas N Kipf and Max Welling. 2017. Semi-supervised classification with graph
convolutional networks. In ICLR.

Moshe Lichtenstein, Prasanna Sattigeri, Rogerio Feris, Raja Giryes, and Leonid
Karlinsky. 2020. Tafssl: Task-adaptive feature sub-space learning for few-shot
classification. In ECCV.

Lu Liu, Tianyi Zhou, Guodong Long, Jing Jiang, and Chenggqi Zhang. 2019. Learn-
ing to propagate for graph meta-learning. In NeurIPS.

Zemin Liu, Yuan Fang, Chenghao Liu, and Steven CH Hoi. 2021. Relative and
absolute location embedding for few-shot node classification on graph. In AAAL
Ning Ma, Jiajun Bu, Jieyu Yang, Zhen Zhang, Chengwei Yao, Zhi Yu, Sheng Zhou,
and Xifeng Yan. 2020. Adaptive-Step Graph Meta-Learner for Few-Shot Graph
Classification. In CIKM.

Julian McAuley, Rahul Pandey, and Jure Leskovec. 2015. Inferring networks of
substitutable and complementary products. In SIGKDD.

Julian J McAuley and Jure Leskovec. 2012. Learning to discover social circles in
ego networks.. In NeurIPS.

Nikhil Mishra, Mostafa Rohaninejad, Xi Chen, and Pieter Abbeel. 2018. A Simple
Neural Attentive Meta-Learner. In ICLR.

Aaron van den Oord, Yazhe Li, and Oriol Vinyals. 2018. Representation learning
with contrastive predictive coding. In arXiv:1807.03748.

Boris N Oreshkin, Pau Rodriguez, and Alexandre Lacoste. 2018. Tadam: Task
dependent adaptive metric for improved few-shot learning. In NeurIPS.

Adam Paszke, Sam Gross, Soumith Chintala, Gregory Chanan, Edward Yang,
Zachary DeVito, Zeming Lin, Alban Desmaison, Luca Antiga, and Adam Lerer.
2017. Automatic differentiation in pytorch. In NeurIPS.

Ethan Perez, Florian Strub, Harm De Vries, Vincent Dumoulin, and Aaron
Courville. 2018. Film: Visual reasoning with a general conditioning layer. In
AAAL

Sachin Ravi and Hugo Larochelle. 2016. Optimization as a model for few-shot
learning. In ICLR.

Jake Snell, Kevin Swersky, and Richard Zemel. 2017. Prototypical networks for
few-shot learning. In NeurIPS.

Flood Sung, Yongxin Yang, Li Zhang, Tao Xiang, Philip HS Torr, and Timothy M
Hospedales. 2018. Learning to compare: relation network for few-shot learning.
In CVPR.

Qiuling Suo, Jingyuan Chou, Weida Zhong, and Aidong Zhang. 2020. Tadanet:
Task-adaptive network for graph-enriched meta-learning. In SIGKDD.

Damian Szklarczyk, Annika L Gable, David Lyon, Alexander Junge, Stefan Wyder,
Jaime Huerta-Cepas, Milan Simonovic, Nadezhda T Doncheva, John H Morris,
Peer Bork, et al. 2019. STRING v11: protein—protein association networks with in-
creased coverage, supporting functional discovery in genome-wide experimental
datasets. In Nucleic Acids research.

Jie Tang, Jing Zhang, Limin Yao, Juanzi Li, Li Zhang, and Zhong Su. 2008. Arnet-
miner: extraction and mining of academic social networks. In SIGKDD.

Petar Veli¢kovié, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro
Lio, and Yoshua Bengio. 2018. Graph attention networks. ICLR.

Oriol Vinyals, Charles Blundell, Timothy Lillicrap, Daan Wierstra, et al. 2016.
Matching networks for one shot learning. In NeurIPS.

Kuansan Wang, Zhihong Shen, Chiyuan Huang, Chieh-Han Wu, Yuxiao Dong,
and Anshul Kanakia. 2020. Microsoft academic graph: When experts are not
enough. In Quantitative Science Studie.

Ning Wang, Minnan Luo, Kaize Ding, Lingling Zhang, Jundong Li, and Qinghua
Zheng. 2020. Graph Few-Shot Learning with Attribute Matching. In CIKM.
Song Wang, Xiao Huang, Chen Chen, Liang Wu, and Jundong Li. 2021. REFORM:
Error-Aware Few-Shot Knowledge Graph Completion. In CIKM.

Zhihao Wen, Yuan Fang, and Zemin Liu. 2021. Meta-inductive node classification
across graphs. In SIGIR.

Zonghan Wu, Shirui Pan, Fengwen Chen, Guodong Long, Chenggqi Zhang, and
S Yu Philip. 2020. A comprehensive survey on graph neural networks. In IEEE
TNNLS.

Wenhan Xiong, Mo Yu, Shiyu Chang, Xiaoxiao Guo, and William Yang Wang.
2018. One-shot relational learning for knowledge graphs. In EMNLP.

Keyulu Xu, Weihua Hu, Jure Leskovec, and Stefanie Jegelka. 2019. How powerful
are graph neural networks?. In ICLR.

Keyulu Xu, Chengtao Li, Yonglong Tian, Tomohiro Sonobe, Ken-ichi
Kawarabayashi, and Stefanie Jegelka. 2018. Representation learning on graphs
with jumping knowledge networks. In ICML.

Huaxiu Yao, Chuxu Zhang, Ying Wei, Meng Jiang, Suhang Wang, Junzhou Huang,
Nitesh Chawla, and Zhenhui Li. 2020. Graph few-shot learning via knowledge
transfer. In AAAL

Ziwei Zhang, Peng Cui, and Wenwu Zhu. 2020. Deep learning on graphs: A
survey. In IEEE TKDE.

Fan Zhou, Chengtai Cao, Kunpeng Zhang, Goce Trajcevski, Ting Zhong, and Ji
Geng. 2019. Meta-gnn: On few-shot node classification in graph meta-learning.
In CIKM.

Jie Zhou, Ganqu Cui, Shengding Hu, Zhengyan Zhang, Cheng Yang, Zhiyuan Liu,
Lifeng Wang, Changcheng Li, and Maosong Sun. 2020. Graph neural networks:
A review of methods and applications. In AI Open.

KDD ’22, August 14-18, 2022, Washington, DC, USA

A APPENDIX
A.1 Notations

To provide better understandings, we present the utilized notations
in this paper and the corresponding descriptions.

Table 3: Notations used in this paper.

Notations Definitions or Descriptions
G the input graph
YV, E the node set and the edge set of G
X the input node features of G
Cp,Cn the base class set and the novel class set
Ti, Si, Qi the i-th meta-task and its support set and query set
a;, Pi, Ti adaptation parameters for the i-th class
N the number of support classes in each meta-task
K the number of labeled nodes in each class
N, K; the value of N and K during meta-training
s the embedding of the i-th class in each meta-task
qi the embedding of the i-th query node in each meta-task
Pi the classification probabilities of the i-th query node over Cp,

A.2 Reproducibility

In this section, we present the details on the reproducibility of our
experiments. More specifically, we first elaborate on the implemen-
tation setting of our experiments. Then we introduce the required
packages with the corresponding versions, followed by the experi-
mental settings of baselines used in our main experiments. Finally,
we provide details of datasets used in this paper.

A.2.1 Implementation of TENT. Our framework TENT is imple-
mented based on PyTorch [25]. We train our model on a single 16GB
Nvidia V100 GPU. For the specific implementation setting, we set
the number of training epochs T as 500. We implement GNNy and
GNNy; using two-layer GINs [41] with the hidden sizes dj, and ds
both set as 16. To effectively initialize GNNs in our experiments, we
utilize the Xavier initialization [8]. The READOUT function is im-
plemented as mean-pooling. For the model optimization, we adopt
Adam [14] with the learning rate of 0.05 and a dropout rate of 0.2.
The weight decay rate is set as 1074 and the loss weight y is set as
1. Finally, the model that achieves the best result on the validation
dataset will be saved and used for test. In addition, we randomly
sample 500 tasks from novel classes Cy, (i.e., Tzesr=500) for test with
a query set size |Q| of 10. Furthermore, to keep consistency, the
test tasks are identical for all baselines. Our code is provided at

https://github.com/SongW-SW/TENT.

A.2.2 Required Packages. The more detailed package requirements
are listed as below.

e Python ==3.7.10

e torch == 1.8.1

e torch-cluster == 1.5.9

e torch-scatter == 2.0.6

o torch-sparse == 0.6.9

e torch-geometric == 1.4.1
e torch-spline-conv==1.2.1
e numpy == 1.18.5

® scipy == 1.5.3

e cuda==11.0

1919

Song Wang et al.

e tensorboard == 2.2.2

e networkx == 2.5.1

o scikit-learn == 0.24.1

e pandas==1.2.3

A.2.3 Baseline Setting. Here, we present the detailed parameter
setting of baselines. We mainly follow the original setting in the
corresponding source code while adopting specific selections of
parameters for better performance.

e Prototypical Network (PN) [28]: For PN, we set the learn-
ing rate as 0.005 with a weight decay of 0.0005.

e MAML [7]: The meta-learning rate is set as 0.001 and the
number of update step is 10 with a learning rate of 0.01.

o GCN [15]: The learning rate is set as 0.001 and the hidden
size of GCN is set as 32.

e G-Meta [12]: For G-Meta, we set the meta-learning rate
as 0.001. The number of update step is 10 and the update
learning rate is 0.01. The dimension size of GNN is 128.

e GPN [6]: For GPN, we follow the setting in the source code
and set the learning rate as 0.005 with a weight decay of
0.0005. The dimension sizes of two GNNs used in GPN are
set as 32 and 16, respectively.

e RALE [18]: We follow the setting in the source code and set
the learning rates for training and fine-tuning as 0.001 and
0.01, respectively. The dropout rate is set as 0.6. The hidden
size of used GNNs is 32.

A.2.4 Dataset Description. In this section, we describe the detailed
dataset settings. Specifically, among the four prevalent datasets
used in our experiments, Amazon-E [20] and DBLP [32] datasets are
obtained from [6], while Cora-full [1] and OGBN-arxiv [11] are
obtained from the corresponding sources and processed by us. The
statistics and details are as follows:

o Amazon-E [20] is a product network, where nodes repre-
sent different "Electronics” products on Amazon. Moreover,
edges are created according to the "viewed" relationship and
class labels are assigned from the low-level product cate-
gories. For this dataset, we use 90/37/40 node classes for
training/validation/test.

e DBLP [32] is a citation network. More specifically, each
node represents a paper, and links are created according
to the citation relations. The attributes are obtained via
the paper abstract, and the class labels denote the paper
venues. For this dataset, we use 80/27/30 node classes for
training/validation/test.

e Cora-full [1] is a prevalent citation network, where nodes
are labeled based on the paper topic. This dataset extends
the prevalent small dataset via extracting original data from
the entire network. For this dataset, we use 25/20/25 node
classes for training/validation/test.

e OGBN-arxiv [11] is a directed citation network of all CS
arXiv papers indexed by MAG [35], where nodes represent
arXiv papers and edges indicate citations. The feature of each
node is a 128-dimensional feature vector obtained by averag-
ing the embeddings of words in its title and abstract. The la-
bels are assigned according to 40 subject areas of arXiv CS pa-
pers. We use 15/5/20 node classes for training/validation/test.

https://github.com/SongW-SW/TENT

	Abstract
	1 INTRODUCTION
	2 Preliminaries
	2.1 Problem Statement
	2.2 Episodic Learning

	3 Our Proposed Framework
	3.1 Node-level Adaptation
	3.2 Class-level Adaptation
	3.3 Task-level Adaptation
	3.4 Few-shot Node Classification

	4 Experiments
	4.1 Datasets
	4.2 Experimental Settings
	4.3 Overall Evaluation Results
	4.4 Ablation Study
	4.5 Effect of Meta-training Support Set Size
	4.6 Effect of Query Set Size

	5 Related Work
	5.1 Graph Neural Networks
	5.2 Few-shot Learning on Graphs

	6 Conclusion
	References
	A Appendix
	A.1 Notations
	A.2 Reproducibility

