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ABSTRACT

Node classification is of great importance among various graph

mining tasks. In practice, real-world graphs generally follow the

long-tail distribution, where a large number of classes only consist

of limited labeled nodes. Although Graph Neural Networks (GNNs)

have achieved significant improvements in node classification, their

performance decreases substantially in such a few-shot scenario.

The main reason can be attributed to the vast generalization gap be-

tween meta-training and meta-test due to the task variance caused

by different node/class distributions in meta-tasks (i.e., node-level

and class-level variance). Therefore, to effectively alleviate the im-

pact of task variance, we propose a task-adaptive node classification

framework under the few-shot learning setting. Specifically, we

first accumulate meta-knowledge across classes with abundant la-

beled nodes. Then we transfer such knowledge to the classes with

limited labeled nodes via our proposed task-adaptive modules. In

particular, to accommodate the different node/class distributions

among meta-tasks, we propose three essential modules to perform

node-level, class-level, and task-level adaptations in each meta-task,

respectively. In this way, our framework can conduct adaptations

to different meta-tasks and thus advance the model generalization

performance on meta-test tasks. Extensive experiments on four

prevalent node classification datasets demonstrate the superiority

of our framework over the state-of-the-art baselines. Our code is

provided at https://github.com/SongW-SW/TENT.
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Figure 1: Issues of task variance of existing few-shot node

classification frameworks.

1 INTRODUCTION

Recently, extensive research efforts have been devoted to the node

classification task, which aims at predicting class labels for unla-

beled nodes in a graph. In real-world scenarios, the task of node clas-

sification yields an expansive variety of practical applications [21,

32]. For example, predicting chemical properties for proteins in a

protein network is an important problem in bioinformatics [31],

which can be formulated as the node classification problem. In

recent years, the state-of-the-art approaches for node classifica-

tion often utilize Graph Neural Networks (GNNs) [33, 39, 41] in

a semi-supervised manner [15]. Specifically, for each node, GNNs

aim to learn a vector representation for each node by transform-

ing and aggregating information from its neighbors. The learned

representations will be further utilized for the classification task

in an end-to-end manner. Nevertheless, these approaches typically

require sufficient labeled nodes for all classes in achieving a de-

cent classification performance [45]. In practice, although we can

access a large number of labeled nodes for certain classes, many

other classes may only contain a limited number of labeled nodes.

Here we refer to the former classes as base classes and the latter

as novel classes. For example, in a protein network [11], newly

discovered chemical properties with limited protein nodes are con-

sidered as novel classes, while common properties with abundant

protein nodes are considered as base classes. Due to the widespread

existence of novel classes in real-world graphs, many recent stud-

ies [6, 18, 36] focus on the problem of classifying nodes in novel

classes, known as the few-shot node classification problem.
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To tackle the few-shot node classification problem, recent works

typically strive to extract transferable knowledge from base classes

and then generalize such knowledge to novel classes [5, 43, 45].

More specifically, these works learn from base classes across a

series of meta-training tasks and evaluate the model on meta-test

tasks sampled from novel classes (we refer to both meta-training

andmeta-test tasks asmeta-tasks). In fact, eachmeta-task contains a

small number of support nodes as references and several query nodes

to be classified. Since support nodes and query nodes in each meta-

task are sampled from nodes on the entire graph, there could exist

large variance among different meta-tasks (i.e., task variance) [12].

Therefore, the crucial part of few-shot node classification is to

ensure that the underlying model has the generalization capability

to handle a variety of meta-tasks in the presence of massive task

variance [16, 30]. However, despite much progress has been made in

few-shot node classification, recent studies ignore the task variance

and treat each meta-task identically [6, 18, 36]. As a result, the

task variance significantly jeopardizes the model generalization

capability to meta-test tasks even when the performance on meta-

training tasks is satisfactory [24].

Despite the importance of considering task variance, reducing its

adverse impact remains non-trivial. In essence, there are two main

factors that constitute such task variance. First, the Node-level Vari-

ance widely exists among meta-tasks and can lead to task variance.

Specifically, node-level variance represents the differences of node

features and local structures of nodes across different meta-tasks.

For example, in addition to the common difference in node features,

the red class nodes𝐴 and 𝐵 in Fig. 1 also have different connectivity

patterns in terms of neighboring nodes (node 𝐴 is surrounded by

blue nodes, while node 𝐵 is only connected to red nodes). It should

be noted that few-shot node classification models generally learn

crucial information from the support nodes within each meta-task

to perform classification on the query nodes. Therefore, if the vari-

ance among the support nodes is too large, it will become difficult

to extract decisive information for classification. In other words,

it is vital to consider node-level variance for the purpose of han-

dling task variance. Second, Class-level Variance may also cause

task variance. Class-level variance denotes the difference in class

distributions among meta-tasks. In practice, since many real-world

graphs contain a large number of node classes, the distribution of

classes in each meta-task varies greatly [36, 45]. For example, in

Fig. 1, different meta-tasks consist of a variety of classes (e.g., red

and blue classes in T1 and dotted blue and green classes in T ′
1 ).

Since the model evaluation is conducted on a vast number of meta-

test tasks, the model will encounter many distinct classes during

meta-test. That being said, in the presence of massive class-level

variance, the resulting task variance will substantially deteriorate

the generalization performance on meta-test tasks.

To alleviate the adverse impact of task variance resulting from

the above two factors (i.e., node-level and class-level variance),

we propose a novel Task-adaptivE few-shot Node classificaTion

framework, named as TENT. Specifically, we aim to alleviate task

variance via performing task adaptations from three perspectives.

First, to handle node-level variance, we perform node-level adapta-

tions via constructing a class-ego subgraph for each class in each

meta-task. Specifically, such a subgraph explicitly connects nodes in

the same class and their neighbors with a virtual class node. In this

way, the neighbors of nodes in the same class are aggregated in this

subgraph to reduce the influence of node-level variance. Second, to

deal with class-level variance, we design a class-specific GNN to

leverage information from different classes and perform class-level

adaptations. Third, to reduce the adverse impact of task variance

during classification on query nodes, we propose to perform task-

level adaptations via maximally preserving the mutual information

between query nodes and support nodes in each meta-task. As a

result, our proposed framework can conduct classification in a task-

adaptive manner to alleviate the adverse impact of task variance.

In summary, our main contributions are three-folds:

• Problem.We investigate the limitations of existing few-shot

node classification methods from the lens of task variance

and discuss the importance and necessity of task adaptations

for few-shot node classification.

• Method.We develop a novel task-adaptive few-shot node

classification framework with three essential modules: (1)

node-level adaptation to mitigate node-level variance; (2)

class-level adaptation to alleviate the problem of class-level

variance; and (3) task-level adaptation to consider task vari-

ance during classification on query nodes.

• Experiments. We conduct experiments on four benchmark

node classification datasets under the few-shot setting and

demonstrate the superiority of our proposed framework.

2 PRELIMINARIES

2.1 Problem Statement

Formally, let 𝐺 = (V, E,X) denote an attributed graph, whereV

is the set of nodes, E is the set of edges, and X ∈ R |V |×𝑑 is the

feature matrix of nodes with 𝑑 denoting the feature dimension.

Moreover, we denote the entire set of node classes as C, which

can be further divided into two categories: C𝑏 and C𝑛 , where C =

C𝑏 ∪ C𝑛 and C𝑏 ∩ C𝑛 = ∅. Here C𝑏 and C𝑛 denote the sets of base

and novel classes, respectively. It is worth mentioning that the

number of labeled nodes in C𝑏 is sufficient, while it is typically

small in C𝑛 [6, 18, 45]. Then we can formulate the studied problem

of few-shot node classification as follows:

Definition 1. Few-shot Node Classification: Given an attrib-

uted graph 𝐺 = (V, E,X), our goal is to develop a machine learning

model such that after training on labeled nodes in C𝑏 , the model can

accurately predict labels for the nodes (i.e., query set Q) in C𝑛 with

only a limited number of labeled nodes (i.e., support set S).

More specifically, if the support set S contains exactly 𝐾 nodes

for each of 𝑁 classes from C𝑛 , and the query set Q are sampled

from these 𝑁 classes, the problem is called 𝑁 -way 𝐾-shot node

classification. Essentially, the objective of few-shot node classifica-

tion is to learn a classifier that can be fast adapted to C𝑛 with only

limited labeled nodes. Thus, the crucial part is to learn transferable

knowledge from C𝑏 and generalize it to C𝑛 .

2.2 Episodic Learning

In practice, we adopt the episodic learning framework for bothmeta-

training and meta-test, which has proven to be effective in many

areas [6, 7, 28, 34, 40]. Specifically, the meta-training and meta-test

1911



Task-Adaptive Few-shot Node Classification KDD ’22, August 14ś18, 2022, Washington, DC, USA

Support 

Query

A Meta-taskInput Data: A graph Classification Result

√Embedding
Learning

Prototype
Learning

Query
Matching

Node-level 
Adaptation

Class-level 
Adaptation

Task-level 
Adaptation

Maximize Mutual 
Information

Few-shot Learning Process

Nodes of Base Classes

Nodes of Novel Classes

Support Query

Information 
Loss ℒே

Base Loss ℒ஼ாClass  Embedding

Model 
Optimization

Virtual 
Class Node

1 2

3 4

1

2

3 1 2

3

?

Support 

4

4

Meta-task
Sampling

Figure 2: An illustration of the overall process of TENT. We first sample a meta-task from the given graph. Then we construct

subgraphs for node-level adaptions and utilize node embeddings in each class for class-level adaptations. We further maximize

the mutual information between the support set and the query set during query matching for task-level adaptations.

processes are conducted on a certain number of meta-training tasks

and meta-test tasks, respectively. These meta-tasks share a similar

structure, except that meta-training tasks are sampled from C𝑏 ,

while meta-test tasks are sampled from C𝑛 . The main idea of few-

shot node classification is to keep the consistency between meta-

training and meta-test to improve the generalization performance.

To construct a meta-training (or meta-test) task T𝑡 , we first ran-

domly sample 𝑁 classes from C𝑏 (or C𝑛). Then we randomly sample

𝐾 nodes from each of the 𝑁 classes (i.e., 𝑁 -way 𝐾-shot) to establish

the support setS𝑡 . Similarly, the query set Q𝑡 consists of𝑄 different

nodes (distinct from S𝑡 ) from the same 𝑁 classes. The components

of the sampled meta-task T𝑡 can be denoted as follows:

S𝑡 = {(𝑣1, 𝑦1), (𝑣2, 𝑦2), . . . , (𝑣𝑁×𝐾 , 𝑦𝑁×𝐾 )},

Q𝑡 = {(𝑞1, 𝑦
′
1), (𝑞2, 𝑦

′
2), . . . , (𝑞𝑄 , 𝑦

′
𝑄 )},

T𝑡 = {S𝑡 ,Q𝑡 },

(1)

where 𝑣𝑖 (or 𝑞𝑖 ) is a node in V , and 𝑦𝑖 (or 𝑦
′
𝑖 ) is the corresponding

label. In this way, the whole training process is conducted on a

set of 𝑇 meta-training tasks T𝑡𝑟𝑎𝑖𝑛 = {T𝑡 }
𝑇
𝑡=1. After training, the

model has learned the transferable knowledge from T𝑡𝑟𝑎𝑖𝑛 and will

generalize it to meta-test tasks T𝑡𝑒𝑠𝑡 = {T ′
𝑡 }

𝑇𝑡𝑒𝑠𝑡
𝑡=1 sampled from C𝑛 .

3 OUR PROPOSED FRAMEWORK

In this section, we introduce the overall structure of our proposed

framework TENT in detail. As illustrated in Fig. 2, we formulate the

few-shot node classification problem under the prevailing 𝑁 -way

𝐾-shot learning framework, which means a meta-task contains

𝐾 nodes for each of 𝑁 classes as the support set. In addition, the

query set consists of 𝑄 unlabeled nodes to be classified from these

𝑁 classes. Specifically, our framework follows the prevalent three

phases for few-shot learning: embedding learning, prototype learn-

ing, and query matching. Generally, in each meta-task, we learn

embeddings for its nodes and then learn a prototype (i.e., embed-

ding of a class in the support set) based on the node embeddings.

Finally, the model matches query nodes with these prototypes via

specific matching functions to output classification results. Nev-

ertheless, these three steps ignore the task variance that widely

exists among meta-tasks. Therefore, as illustrated in Fig. 2, we pro-

pose to perform three levels of adaptations (node-level, class-level,

and task-level adaptations) in these three phases, respectively, to

alleviate the adverse impact of task variance.

3.1 Node-level Adaptation

During the embedding learning phase, existing methods learn em-

beddings for nodes in each meta-task from the entire graph [6,

36, 45]. Since nodes are distributed across the entire graph, the

learned node representations can be easily influenced by node-level

variance (i.e., have different connectivity patterns in terms of neigh-

boring nodes). Instead, we perform node-level adaptations in each

meta-task, which aims to modify the neighbors of support nodes

to reduce node-level variance caused by different connectivity pat-

terns. Toward this goal, we explicitly construct a subgraph for each

class in each meta-task via a virtual class node, which connects to

the 𝐾 support nodes in that class. In addition, we also include the

one-hop neighbors of these 𝐾 nodes in this subgraph. By doing the

above, we can aggregate local structures of support nodes in the

same class into this subgraph, which contains the virtual class node,

𝐾 support nodes, and one-hop neighbors of these 𝐾 nodes. Here

the virtual class node acts as a bridge to explicitly connect these 𝐾

support nodes and their one-hop neighbors that can be originally

far from each other on the graph. Moreover, its embedding will

be used as the prototype of this class since it is the centroid node

of the subgraph. As a result, in this subgraph, support nodes will

share a similar neighbor node set because the neighboring nodes

of support nodes are explicitly connected. Since the neighbors of

support nodes become more similar in this subgraph, we can effec-

tively reduce the node-level variance. We denote the constructed

subgraphs in each meta-task as class-ego subgraphs.

Specifically, given a meta-task T and its support set S (|S| =

𝑁 × 𝐾 ) on a graph 𝐺 = (V, E,X), we aim to construct a class-ego

subgraph for each of the 𝑁 classes in T . Before the construction

of class-ego subgraphs, we employ a GNN [15, 39] parameterized
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by 𝜙 to perform message propagation on the entire graph 𝐺 and

generate first-step node representations for nodes in V as follows:

H = GNN𝜙 (V, E,X), (2)

where H ∈ R |V |×𝑑ℎ denotes the first-step representations of nodes

in V and 𝑑ℎ is the output dimension of GNN𝜙 . In this way, H will

act as the input node representations for the class-ego subgraphs.

Let S𝑖 denote the set of nodes belonging to the 𝑖-th class in S,

which means |S𝑖 | = 𝐾 , 𝑖 = 1, 2, . . . , 𝑁 . To construct the class-ego

subgraph from these nodes, we first create a virtual class node 𝑐𝑖
and connect it to all nodes inS𝑖 . Then to incorporate the local graph

structures, we also extract all one-hop neighbors of nodes in S𝑖 to

establish a neighbor node setN𝑖 =
⋃𝐾
𝑗=1N

𝑗
𝑖 , whereN

𝑗
𝑖 denotes the

set of neighbors of the 𝑗-th node in S𝑖 . In this way, the final node

set of the class-ego subgraph is aggregated as V𝑖 = {𝑐𝑖 } ∪ S𝑖 ∪ N𝑖 .

After that, we accordingly denote the extracted edge set of nodes

inV𝑖 as E𝑖 . To obtain the input node features forV𝑖 , we utilize the

corresponding first-step representations from H. However, we still

need to compute the representation of 𝑐𝑖 since it is newly created.

Here we propose to initiate its representation h𝑐𝑖 as follows:

h𝑐𝑖 = MEAN(h𝑣 |𝑣 ∈ S𝑖 ), (3)

where h𝑐𝑖 ∈ R𝑑ℎ and h𝑣 is the first-step node representation of

node 𝑣 . MEAN denotes the averaging operation. In this way, the

input node features forV𝑖 can be obtained asX𝑖 . Then the class-ego

subgraph can be constructed and denoted as 𝐺𝑖 = (V𝑖 , E𝑖 ,X𝑖 ). As

a result, we can achieve node-level adaptations by learning node

representations on the subgraphs with reduced node-level variance.

3.2 Class-level Adaptation

Typically, after learning the node representations in T , existing

models learn prototypes for classes in T by aggregating node rep-

resentations in the same class [6, 28]. However, this strategy can be

easily influenced by class-level variance and thus renders subopti-

mal generalization performance since it treats each class identically.

Instead, we propose to perform class-level adaptations, which aim

to obtain prototypes for classes in a class-adaptive manner. In par-

ticular, we design a class-specific adapter to adjust GNN parameters

regarding different classes in T . In this way, our framework can

leverage the discriminative information in each class for class-level

adaptations and reduce the adverse impact of class-level variance.

Specifically, we use a new GNN𝜃 parameterized by 𝜃 on the

class-ego subgraphs to learn prototypes. Then we adapt 𝜃 accord-

ing to the first-step representations of nodes in each class (i.e.,

{h𝑣 |𝑣 ∈ S𝑖 } , 𝑖 = 1, 2, . . . , 𝑁 ) in meta-task T . To comprehensively

incorporate the information in each class, we leverage the feature-

wise linear modulations [26, 38] to perform class-level adaptations:

𝛼𝑖 = MLP𝛼 (MEAN ({h𝑣 |𝑣 ∈ S𝑖 })) , (4)

𝛽𝑖 = MLP𝛽 (MEAN ({h𝑣 |𝑣 ∈ S𝑖 })) , (5)

whereS𝑖 is the set of nodes belonging to the 𝑖-th class inS.𝛼𝑖 ∈ R
𝑑𝜃

and 𝛽𝑖 ∈ R
𝑑𝜃 are 𝑑𝜃 -dimensional adaptation parameters, where 𝑑𝜃

is the total number of parameters in GNN𝜃 . With the adaptation

parameters 𝛼𝑖 and 𝛽𝑖 , we can perform an adaptation based on each

class to obtain class-specific GNN parameters as follows:

𝜃𝑖 = (𝛼𝑖 + 1) ◦ 𝜃 + 𝛽𝑖 , (6)

where ◦ denotes the element-wise multiplication and 1 is a vector of

ones to limit the scaling range around one. 𝜃𝑖 denotes the adapted

GNN parameters for the 𝑖-th class in S. Then we perform message

propagation on each class-ego subgraph with the adapted 𝜃𝑖 :

s𝑖 = Centroid
(
GNN𝜃𝑖 (V𝑖 , E𝑖 ,X𝑖 )

)
, (7)

where s𝑖 ∈ R
𝑑𝑠 denotes the learned embedding of the virtual class

node (i.e., the centroid node) and acts as the prototype of the 𝑖-th

class. Centroid(·) denotes the operation of extracting the centroid

node representation from the GNN output. 𝑑𝑠 is the output dimen-

sion of GNN𝜃 . As a result, the GNN parameters can absorb the

information from each class to reduce the adverse impact of class-

level variance. Similarly, for the representations of query nodes, we

also apply the proposed class-specific adapter. Since labels of query

nodes are unknown during meta-training, we utilize the entire

support set S to conduct adaptations for query nodes:

𝛼𝑞 = MLP𝛼 (MEAN ({h𝑣 |𝑣 ∈ S})) , (8)

𝛽𝑞 = MLP𝛽 (MEAN ({h𝑣 |𝑣 ∈ S})) , (9)

𝜃𝑞 = (𝛼𝑞 + 1) ◦ 𝜃 + 𝛽𝑞, (10)

where 𝜃𝑞 is the adapted GNN parameters for query nodes. To obtain

the representation q𝑖 for the 𝑖-th query node 𝑞𝑖 in the query set Q,

we extract the 2-hop neighbors of 𝑞𝑖 and obtain the corresponding

node setV
𝑞
𝑖 , edge set E

𝑞
𝑖 , and input node featuresX

𝑞
𝑖 . The reason is

that using subgraph structures (e.g., considering 2-hop neighbors)

to learn node representations provides a more robust generalization

ability [12]. Then we utilize the adapted GNN𝜃𝑞 to compute q𝑖 :

q𝑖 = Centroid
(
GNN𝜃𝑞 (V

𝑞
𝑖 , E

𝑞
𝑖 ,X

𝑞
𝑖 )
)
, (11)

where q𝑖 ∈ R
𝑑𝑠 is the embedding of 𝑞𝑖 (i.e., the centroid node).

3.3 Task-level Adaptation

Although we have achieved node-level and class-level adaptations

in the embedding learning and prototype learning phases, respec-

tively, the task variance caused by differences in the support set

among meta-tasks still exist in the final query matching phase [12].

Nevertheless, existing methods typically leverage the Euclidean

distance metric [6] or an MLP layer [18] to classify query nodes,

which ignores the task variance. Instead, we propose to perform

task-level adaptations in each meta-task, which aim to further re-

duce the adverse impact of task variance in this phase. Specifically,

we propose a task-adaptive matching strategy to maximally pre-

serve the mutual information between learned representations of

nodes in the query set Q and the support set S. As a result, the

matching phase on query nodes can incorporate information from

the entire support set S for task-level adaptations.

The optimization problem of maximizing the mutual information

can be formulated as follows:

max
𝜃

𝐼 (Q; S) = max
𝜃

𝑄∑︁

𝑖=1

𝑁∑︁

𝑗=1

𝑝 (𝑞𝑖 , 𝑠 𝑗 ;𝜃 ) log
𝑝 (𝑞𝑖 |𝑠 𝑗 ;𝜃 )

𝑝 (𝑞𝑖 ;𝜃 )
, (12)

where Q ∈ R𝑄×𝑑𝑠 and S ∈ R𝑁×𝑑𝑠 are learned representations of

query nodes in Q and classes (i.e., prototypes) in S, respectively.

𝑄 = |Q| and 𝑁 is the number of classes in S. 𝜃 denotes the param-

eters of our framework to be optimized. 𝑞𝑖 is the 𝑖-th query node
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in Q and 𝑠 𝑗 is the 𝑗-th class in S. Since the mutual information

𝐼 (Q; S) is difficult to obtain and thus infeasible to maximize [23],

we re-write the function to obtain an accessible form:

𝐼 (Q; S) =

𝑄∑︁

𝑖=1

𝑁∑︁

𝑗=1

𝑝 (𝑞𝑖 |𝑠 𝑗 ;𝜃 )𝑝 (𝑠 𝑗 ;𝜃 ) log
𝑝 (𝑞𝑖 |𝑠 𝑗 ;𝜃 )

𝑝 (𝑞𝑖 ;𝜃 )
. (13)

Since each meta-task contains 𝑁 classes, we may assume that the

prior probability of 𝑝 (𝑠 𝑗 ;𝜃 ) follows a uniform distribution and set

it as 𝑝 (𝑠 𝑗 ;𝜃 ) = 1/𝑁 . Since 𝑝 (𝑠 𝑗 ;𝜃 ) is a constant, according to the

Bayes’ theorem, the objective function becomes:

𝐼 (Q; S) =
1

𝑁

𝑄∑︁

𝑖=1

𝑁∑︁

𝑗=1

𝑝 (𝑞𝑖 |𝑠 𝑗 ;𝜃 ) log
𝑝 (𝑠 𝑗 |𝑞𝑖 ;𝜃 )

𝑝 (𝑠 𝑗 ;𝜃 )

=

1

𝑁

𝑄∑︁

𝑖=1

𝑁∑︁

𝑗=1

𝑝 (𝑞𝑖 |𝑠 𝑗 ;𝜃 )

(
log(𝑝 (𝑠 𝑗 |𝑞𝑖 ;𝜃 )) − log

(
1

𝑁

))
.

(14)

To further estimate 𝑝 (𝑞𝑖 |𝑠 𝑗 ;𝜃 ), we compute it by 𝑝 (𝑞𝑖 |𝑠 𝑗 ;𝜃 ) =

1(𝑞𝑖 ∈ 𝑠 𝑗 ), where 1(𝑞𝑖 ∈ 𝑠 𝑗 ) = 1 if 𝑞𝑖 belongs to the class rep-

resented by 𝑠 𝑗 ; otherwise 1(𝑞𝑖 ∈ 𝑠 𝑗 ) = 0. In this way, the above

objective function is simplified as follows:

𝐼 (Q; S) =
1

𝑁

𝑄∑︁

𝑖=1

𝑁∑︁

𝑗=1

1(𝑞𝑖 ∈ 𝑠 𝑗 )

(
log(𝑝 (𝑠 𝑗 |𝑞𝑖 ;𝜃 )) − log

(
1

𝑁

))
.

(15)

Since each 𝑞𝑖 can only belong to one 𝑠 𝑗 (i.e., one class), we can

further simplify the objective function:

𝑄∑︁

𝑖=1

𝑁∑︁

𝑗=1

1(𝑞𝑖 ∈ 𝑠 𝑗 ) log(𝑝 (𝑠 𝑗 |𝑞𝑖 ;𝜃 )) =

𝑄∑︁

𝑖=1

log(𝑝 (𝑠 ′𝑖 |𝑞𝑖 ;𝜃 )), (16)

where 𝑠 ′𝑖 denotes the specific 𝑠 𝑗 that 𝑞𝑖 belongs to (i.e., 𝑞𝑖 ∈ 𝑠 ′𝑖 ).

Moreover, since log (1/𝑁 ) is also a constant, we can simplify the

objective function as follows:

𝐼 (Q; S) =

𝑄∑︁

𝑖=1

log(𝑝 (𝑠 ′𝑖 |𝑞𝑖 ;𝜃 )) . (17)

To estimate 𝑝 (𝑠 ′𝑖 |𝑞𝑖 ;𝜃 ), we can define the probability of𝑞𝑖 belonging

to 𝑠 𝑗 according to the squared ℓ2 norm of the embedding distance.

Specifically, we further assign a weight parameter 𝜏𝑖 to each class

and normalize the probability with a softmax function:

𝑝 (𝑠 ′𝑖 |𝑞𝑖 ;𝜃 ) =
exp

(
−(q𝑖 − s′𝑖 )

2/𝜏 ′𝑖
)

∑𝑁
𝑗=1 exp

(
−(q𝑖 − s𝑗 )2/𝜏 𝑗

) , (18)

where q𝑖 and s𝑗 denote the representations of the 𝑖-th query node

𝑥𝑖 in Q and the 𝑗-th class-ego subgraph in S, respectively. 𝜏𝑖 is

the adaptation parameter of the 𝑖-th class, and s′𝑖 and 𝜏
′
𝑖 denote

the specific class-ego subgraph representation and the adaptation

parameter of the class that q𝑖 belongs to, respectively. Then if we

further apply the ℓ2 normalization to both q𝑖 and s𝑖 , we obtain

(q𝑖 − s𝑖 )
2
= 2 − 2q𝑖 · s𝑖 . Combining the above equations, we can

present the final optimization problem as follows:

max
𝜃

𝐼 (Q;S) = min
𝜃

𝑄∑︁

𝑖=1

− log
exp(q𝑖 · s

′
𝑖/𝜏

′
𝑖 )∑𝑁

𝑗=1 exp(q𝑖 · s𝑗/𝜏 𝑗 )
. (19)

Algorithm 1 Detailed learning process of our framework.

Input: A graph 𝐺 = (V, E,X), a meta-test task T𝑡𝑒𝑠𝑡 = {S,Q},

base classes C𝑏 , meta-training epochs 𝑇 , the number of classes

𝑁 , and the number of labeled nodes for each class 𝐾 .

Output: Predicted labels of the query nodes in Q.

// Meta-training phase

1: for 𝑖 = 1, 2, . . . ,𝑇 do

2: Sample a meta-training task T𝑖 = {S𝑖 ,Q𝑖 } from C𝑏 ;

3: Compute first-step node representations with GNN𝜙 ;

4: Construct a class-ego subgraphs for each of 𝑁 classes in S𝑖 ;

5: Adapt GNN𝜃 to T𝑖 according to Eq. (6) and (10);

6: Compute the representations for class-ego subgraphs and

query nodes with the adapted GNN𝜃𝑖 and GNN𝜃𝑞 ;

7: Update model parameters with the meta-training loss of T𝑖
according to Eq. (24) by one gradient descent step;

8: end for

// Meta-test phase

9: Compute first-step node representations with GNN𝜙 ;

10: Construct a class-ego subgraphs for each of 𝑁 classes in S;

11: Adapt GNN𝜃 to T𝑡𝑒𝑠𝑡 according to Eq. (6) and (10);

12: Compute the representations for class-ego subgraphs and query

nodes with the adapted GNN𝜃𝑖 and GNN𝜃𝑞 ;

13: Predict labels for query nodes in Q;

Since the distribution of node embeddings in each class S𝑖 differs

around the class representation s𝑖 , the node embeddings of specific

classes can be scattered in a large distance from s𝑖 . In this case, the

classification process should incorporate the distribution of node

embeddings in each class while considering the entire support set

S. Thus, we propose to obtain 𝜏 ′𝑖 as follows:

𝜏𝑖 =
𝑁
∑𝐾
𝑘
∥s𝑘𝑖 − s𝑖 ∥2

∑𝑁
𝑗

∑𝐾
𝑘
∥s𝑘𝑗 − s𝑗 ∥2

, (20)

where {s𝑘𝑖 }
𝐾
𝑖=1 denotes the node embeddings in the 𝑖-th class pro-

cessed by GNN𝜃𝑖 . In this way, the classification process is adapted

regrading the entire support set to reduce the adverse impact of

task variance. Hence, the model is able to incorporate information

in the entire support set to achieve task-level adaptations. Then

according to Eq. (19), we can optimize the following information

loss to preserve the mutual information 𝐼 (Q;S):

L𝑁 = −

𝑄∑︁

𝑖=1

log
exp(q𝑖 · s

′
𝑖/𝜏

′
𝑖 )∑𝑁

𝑗=1 exp(q𝑖 · s𝑗/𝜏 𝑗 )
. (21)

It is worth mentioning that L𝑁 shares a similar expression with

the InfoNCE loss [10, 23]. Thus, InfoNCE can be considered as a

special case where positive and negative pairs are defined by differ-

ent views of nodes, while in our case, they are defined according

to the labels of query nodes. L𝑁 also differs from the supervised

contrastive loss [13], which utilizes various views of images and

supervised information, as our loss aims at maximally preserving

the mutual information between query nodes and support nodes

within each meta-task. Moreover, the adaptation parameter acts

similarly with the temperature parameter in InfoNCE, while in our

framework, it is adjustable and provides task-level adaptations.
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3.4 Few-shot Node Classification

So far, we can train GNN𝜙 and GNN𝜃 with the proposed loss L𝑁
in Eq. (21). However, since GNN𝜙 provides the first-step repre-

sentations for nodes from an overview of the entire graph 𝐺 , the

supervised information within each meta-task could be insufficient

for the optimization of GNN𝜙 . Thus, we propose to classify query

nodes from base classes C𝑏 to optimize GNN𝜙 . Specifically, we uti-

lize an MLP layer followed by a softmax function to calculate the

cross-entropy classification loss over C𝑏 :

p𝑖 = Softmax (MLP(h𝑖 )) , (22)

L𝐶𝐸 = −

𝑄∑︁

𝑖=1

|C𝑏 |∑︁

𝑗=1

𝑦𝑖, 𝑗 log 𝑝𝑖, 𝑗 , (23)

where p𝑖 ∈ R
|C𝑏 | is the probability that the 𝑖-th query node in Q

belongs to each class in C𝑏 . 𝑦𝑖, 𝑗 = 1 if the 𝑖-th node belongs to the

𝑗-th class, and 𝑦𝑖, 𝑗 = 0, otherwise. 𝑝𝑖, 𝑗 is the 𝑗-th element in p𝑖 . In

this way, instead of classifying nodes only from classes in a meta-

task, we can utilize the supervised information in C𝑏 from a global

perspective. Then the meta-training loss is defined as follows:

L = L𝑁 + 𝛾L𝐶𝐸 , (24)

where 𝛾 is an adjustable weight hyper-parameter.

After meta-training, the meta-test process is the same as the

meta-training process, except that meta-test tasks are sampled

from novel classes C𝑛 . The labels of query nodes are obtained by

𝑦𝑖 = argmax𝑗 {q𝑖 · s𝑗/𝜏𝑖 | 𝑗 = 1, 2, . . . , 𝑁 }, where q𝑖 and s𝑗 are repre-

sentations of the 𝑖-th query node and the 𝑗-th class-ego subgraph,

respectively. 𝜏𝑖 is the adaptation parameter of the 𝑖-th class. The

detailed process of our framework is demonstrated in Algorithm 1.

4 EXPERIMENTS

In this section, we conduct experiments to evaluate our frame-

work TENT on four prevalent few-shot node classification datasets.

Furthermore, we conduct experiments to verify the effectiveness

of different modules in our framework with ablation study and

demonstrate the parameter sensitivity.

4.1 Datasets

To evaluate our framework on few-shot node classification tasks, we

conduct experiments on four prevalent real-world graph datasets:

Amazon-E [20], DBLP [32], Cora-full [1], and OGBN-arxiv [11].

We summarize the detailed statistics of these datasets in Table 1.

Specifically, # Nodes and # Edges denote the number of nodes and

edges in the graph, respectively. # Features denotes the dimension

of node features. Class Split denotes the number of classes used for

meta-training/validation/meta-test. More details are provided in

Appendix A.2.4.

Table 1: Statistics of four node classification datasets.

Dataset # Nodes # Edges # Features Class Split

Amazon-E 42,318 43,556 8,669 90/37/40

DBLP 40,672 288,270 7,202 80/27/30

Cora-full 19,793 65,311 8,710 25/20/25

OGBN-arxiv 169,343 1,166,243 128 15/5/20

4.2 Experimental Settings

To validate the effectiveness of our proposed framework TENT,

we conduct experiments with the following baseline methods to

compare performance:

• Prototypical Networks [28]: Prototypical Networks learn

prototypes for classes for query matching.

• MAML [7]: MAML proposes to optimize model parameters

based on gradients of support instances across meta-tasks.

• GCN [15]: GCN performs information propagation based

on local structures.

• G-Meta [12]: G-Meta utilizes representations of subgraphs

as node embeddings for few-shot learning on graphs.

• GPN [6]: GPN leverages node importance and Prototypical

Networks to improve performance.

• RALE [18]: RALE proposes to learn node dependencies ac-

cording to node locations on the graph.

During training, we sample a certain number of meta-training

tasks from training classes (i.e., base classes) and train the model

with these meta-tasks. Then we evaluate the model based on a

series of randomly sampled meta-test tasks from test classes (i.e.,

novel classes). For consistency, the class splitting is identical for all

baseline methods. Then the final result of the average classification

accuracy is obtained based on these meta-test tasks. More detailed

parameter settings can be found in Appendix A.2.1.

4.3 Overall Evaluation Results

We first present the performance comparison of our framework

and baseline methods on few-shot node classification in Table 2.

Specifically, to better demonstrate the efficacy of our framework un-

der different few-shot settings, we conduct the experiments under

four different settings: 5-way 3-shot, 5-way 5-shot, 10-way 3-shot,

and 10-way 5-shot. Moreover, the evaluation metric is the average

classification accuracy over ten repetitions. From the overall results,

we can obtain the following observations:

• Our proposed framework TENT outperforms all other base-

lines in all datasets under different few-shot settings, which

validates the effectiveness of our task-adaptive framework

on few-shot node classification.

• Conventional few-shot methods such as Prototypical Net-

work [28] and MAML [7] exhibit inferior performance com-

pared with other baselines. The reason is that such methods

are proposed in other domains and thus result in unsatisfac-

tory performance on graphs.

• When increasing the value of 𝐾 (i.e., more support nodes

in each class), all methods gain considerable performance

improvements. Moreover, our framework achieves better

results due to that the node-level and class-level adaptations

benefit more from a larger size of nodes in each class.

• The performance of all methods significantly decreases when

the value of 𝑁 increases (i.e., more classes in each meta-task).

The main reason is that the variety of classes in each meta-

task leads to a more complex class distribution and results

in classification difficulties. However, by incorporating the

class-level and task-level adaptations, our framework is capa-

ble of alleviating this problem when a larger 𝑁 is presented.
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Table 2: The overall few-shot node classification results (accuracy in %) of various models under different few-shot settings.

Dataset DBLP Amazon-E

Setting 5-way 3-shot 5-way 5-shot 10-way 3-shot 10-way 5-shot 5-way 3-shot 5-way 5-shot 10-way 3-shot 10-way 5-shot

PN [28] 41.51 ± 3.60 46.17 ± 3.55 28.98 ± 3.87 36.71 ± 3.35 56.80 ± 3.60 62.53 ± 2.80 44.26 ± 2.64 48.20 ± 3.89

MAML [7] 43.06 ± 2.92 49.93 ± 2.57 34.63 ± 3.91 38.44 ± 3.25 56.03 ± 2.11 63.40 ± 3.33 40.80 ± 2.75 47.06 ± 3.15

GCN [15] 62.87 ± 1.44 70.51 ± 1.37 47.22 ± 2.97 53.95 ± 2.49 55.33 ± 1.23 62.96 ± 2.61 45.18 ± 2.61 50.89 ± 2.95

G-Meta [12] 73.49 ± 2.82 78.56 ± 2.86 60.77 ± 3.03 66.26 ± 3.47 64.56 ± 4.23 68.36 ± 4.10 59.75 ± 4.90 63.02 ± 4.11

GPN [6] 76.42 ± 3.11 80.85 ± 3.68 63.14 ± 2.25 69.55 ± 2.56 65.16 ± 3.17 71.89 ± 3.94 62.52 ± 3.12 63.98 ± 2.04

RALE [18] 75.38 ± 4.94 79.85 ± 4.69 62.81 ± 3.48 67.61 ± 3.99 69.55 ± 4.24 74.97 ± 4.66 63.27 ± 3.31 64.85 ± 3.04

TENT 79.04 ± 3.14 82.84 ± 3.97 65.47 ± 4.21 72.38 ± 4.14 75.76 ± 3.63 79.38 ± 4.98 67.59 ± 4.16 69.77 ± 3.76

Dataset Cora-full OGBN-arxiv

Setting 5-way 3-shot 5-way 5-shot 10-way 3-shot 10-way 5-shot 5-way 3-shot 5-way 5-shot 10-way 3-shot 10-way 5-shot

PN [28] 42.62 ± 3.78 56.66 ± 2.91 35.95 ± 3.95 38.69 ± 3.09 37.99 ± 3.98 49.71 ± 4.20 31.44 ± 3.00 35.79 ± 3.63

MAML [7] 47.10 ± 4.32 54.89 ± 3.09 30.68 ± 3.08 42.22 ± 2.76 41.83 ± 2.54 42.14 ± 3.86 33.15 ± 2.92 36.82 ± 3.03

GCN [15] 49.05 ± 2.04 58.03 ± 3.50 34.27 ± 3.98 39.85 ± 3.50 44.80 ± 2.56 47.29 ± 3.58 35.80 ± 2.21 37.78 ± 2.90

G-Meta [12] 57.93 ± 3.79 60.30 ± 2.93 45.67 ± 3.35 47.76 ± 3.25 47.66 ± 3.27 49.81 ± 4.01 35.93 ± 3.04 40.13 ± 4.35

GPN [6] 58.38 ± 3.49 63.82 ± 2.93 41.65 ± 2.20 45.63 ± 3.17 49.16 ± 3.43 53.06 ± 3.13 37.28 ± 3.99 43.33 ± 3.27

RALE [18] 62.83 ± 3.12 65.93 ± 3.24 48.05 ± 3.09 51.67 ± 3.21 53.90 ± 3.45 56.99 ± 4.43 37.60 ± 4.12 41.42 ± 3.03

TENT 64.80 ± 4.10 69.24 ± 4.49 51.73 ± 4.34 56.00 ± 3.53 55.62 ± 3.13 62.96 ± 3.74 41.13 ± 4.26 44.73 ± 3.42

(a) DBLP (b) Amazon-E

(c) Cora-full (d) OGBN-arxiv

Figure 3: Ablation study on our framework in the 𝑁 -way

𝐾-shot setting.

4.4 Ablation Study

In this part, we conduct an ablation study on four datasets to verify

the importance of three crucial components in TENT. First, we

remove the node-level adaptation and directly utilize the original

graph instead of class-ego subgraphs to learn representations for

each class in meta-tasks. In this way, the support nodes of different

classes are distributed over the entire graph and thus lack node-

level adaptations. We refer to this variant as TENT\N. Second, we

remove the class-specific adapter so that the framework identically

learns class representations and lacks class-level adaptations, and

we refer to this variant as TENT\C. The final variant is to replace the

task-level adaptation module with a common Euclidean distance

classifier, which means during training, the framework fails to learn

task-level adaptations across meta-training tasks, and we refer it

to as TENT\T. The overall ablation study results are presented in

Fig. 3. From the results, we can observe that TENT outperforms all

variants, which demonstrates the effectiveness of all three types of

adaptations. Specifically, removing node-level adaptations results

in a large decrease in few-shot node classification performance.

Furthermore, integrating class-level adaptations provides a con-

siderable performance improvement, especially when the number

of classes increases, which introduces larger class variance. More

significantly, without the task-level adaptations, the performance

decreases rapidly when the support set size increases. Therefore,

the result further demonstrates the importance of task-level adap-

tations in the presence of a more complex few-shot setting with a

large support set.

4.5 Effect of Meta-training Support Set Size

In this section, we conduct experiments to study the sensitivity of

several parameters in TENT. Since TENT provides task adaptations

for both meta-training and meta-test tasks, the values of 𝑁 (i.e.,

number of classes in a support set) and 𝐾 (i.e., number of support

nodes in each class) are unnecessary to be consistent during meta-

training and meta-test. In other words, it differs from the general

few-shot learning setting, where the parameters of 𝑁 and 𝐾 are

consistent during meta-training and meta-test. Therefore, we can

adjust these two parameters during meta-training to analyze their

effects for better performance. Fig. 4 reports the classification ac-

curacy of TENT when varying the parameters of 𝑁 and 𝐾 during

meta-training on four datasets, denoted as 𝑁𝑡 and 𝐾𝑡 , respectively.

Specifically, we vary the values of 𝑁𝑡 and𝐾𝑡 as 3, 5, 10, and 20. Note
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(a) DBLP (b) Amazon-E

(c) Cora-full (d) OGBN-arxiv

Figure 4: Results of TENT with different 𝑁𝑡 and 𝐾𝑡 .

(a) DBLP (b) Amazon-E

(c) Cora-full (d) OGBN-arxiv

Figure 5: Results of TENT with different values of |Q|.

that during meta-test, the values of 𝑁 and 𝐾 are kept invariant as 5

and 5, respectively (i.e., 5-way 5-shot). From the results, we observe

that increasing 𝑁𝑡 and 𝐾𝑡 both provide better results on few-shot

node classification. The reason is that TENT learns the three types

of adaptations from a larger support set during meta-training and

thus is more capable of handling node-level and class-level vari-

ance. More specifically, increasing the value of 𝑁 results in a more

significant improvement. The main reason is that the class-level

and task-level adaptations benefit from more classes in each meta-

task. In addition, incorporating more support nodes in each class

(i.e., larger 𝐾𝑡 ) also enhances the interactions among nodes in each

class-ego subgraph for more comprehensive node-level adaptations.

4.6 Effect of Query Set Size

In this part, we conduct experiments to present how the query set

size |Q| in each meta-task during meta-training affects the perfor-

mance of our proposed framework TENT. Fig. 5 reports the results

of TENT when varying the value of |Q| on four datasets under

the 5-way 5-shot setting. Specifically, |Q| during meta-training is

changed from 3 to 20, while it remains 10 during meta-test for a

fair comparison. From the results, we can observe that the few-

shot node classification performance increases when |Q| becomes

larger. The reason is mainly attributed to the fact that involving

more query nodes during meta-training (i.e., increasing the value

of |Q|) helps alleviate the over-fitting problem. However, as the

results suggest, an excessively large query set size may result in a

performance drop. The reason is that the optimization process may

be more difficult on a large query set.

5 RELATEDWORK

5.1 Graph Neural Networks

Recently, many researchers focus on studying Graph Neural Net-

works (GNNs) to learn comprehensive node representations in

graphs [2, 3, 42]. In general, GNNs aim at learning node repre-

sentations through a certain number of information propagation

steps in a recurrent manner [9, 44, 46]. In this way, GNNs can

aggregate information from neighboring nodes to generate node

representations based on local structures. For example, Graph Con-

volutional Networks (GCNs) [15] perform convolution operations

on graphs based on the graph spectral theory. Graph Attention Net-

works (GATs) [33] leverage the attention mechanism to select more

important neighboring nodes for aggregation. Moreover, Graph Iso-

morphism Networks (GINs) [41] develop an expressive architecture,

which is as powerful as the Weisfeiler-Lehman graph isomorphism

test. Nonetheless, GNNs typically render sub-optimal performance

when there are limited labeled nodes for each class [6, 43], which

further indicates the necessity of few-shot learning on graphs.

5.2 Few-shot Learning on Graphs

Few-shot Learning (FSL) aims to learn transferable knowledge

from tasks with abundant supervised information and general-

ize it to novel tasks with a limited number of labeled instances.

In general, few-shot learning methods can be divided into two

categories: metric-based approaches and meta-optimizer-based ap-

proaches. Specifically, the metric-based approaches aim at learning

generalizable metric functions to match the query set with the

support set for classification [17, 29]. For example, Matching Net-

works [34] conduct predictions based on the similarity between

a query instance and each support instance learned by attention

networks. Prototypical Networks [28] learn a prototype as the rep-

resentation for each class and perform classification based on the

Euclidean distances between query instances and prototypes. On

the other hand, meta-optimizer-based approaches aim at optimizing

model parameters according to gradients calculated from few-shot

instances [22, 27]. For example, MAML [7] optimizes model parame-

ters based on gradients on support instances for fast generalization.

Moreover, LSTM-based meta-learner [27] proposes to adjust the

step size for updating parameters during meta-training.

In the field of graphs, several recent works propose to conduct

graph-based tasks under the few-shot learning scenario [4, 19, 37].

Among them, GPN [6] proposes to leverage node importance based

on Prototypical Networks [28] for better performance, where nodes

are classified via finding the nearest class prototype. G-Meta [12]
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leverages local subgraphs to learn node representations while com-

bining meta-learning [7] for model generalization. More recently,

RALE [18] learns to model node dependencies within each meta-

task by assigning relative and absolute locations for nodes with

task-level and graph-level dependencies, respectively.

6 CONCLUSION

In this paper, we study the problem of few-shot node classifica-

tion, which aims at predicting labels for nodes in novel classes

with limited labeled nodes. Furthermore, to address the associated

challenges caused by insufficient labeled nodes and the variety of

novel classes, we propose a novel framework TENT to perform task

adaptations for each meta-task from three perspectives: node-level,

class-level, and task-level. As a result, our framework can perform

these adaptions to each meta-task and advance classification perfor-

mance with respect to a variety of novel classes during meta-test.

Moreover, extensive experiments are conducted on four prevalent

few-shot node classification datasets. The experimental results fur-

ther validate that TENT outperforms other state-of-the-art base-

lines. In addition, the ablation study also verifies the effectiveness

of three different levels of adaptations in our framework. Never-

theless, there still exists a considerable number of difficulties in

few-shot node classification. For example, the inductive setting for

few-shot node classification is still challenging. Future work may

incorporate more sophisticated adaptation methods to handle the

novel classes on graphs unseen during meta-training.
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A APPENDIX

A.1 Notations

To provide better understandings, we present the utilized notations

in this paper and the corresponding descriptions.

Table 3: Notations used in this paper.

Notations Definitions or Descriptions

𝐺 the input graph

V , E the node set and the edge set of𝐺

X the input node features of𝐺

C𝑏 ,C𝑛 the base class set and the novel class set

T𝑖 , S𝑖 , Q𝑖 the 𝑖-th meta-task and its support set and query set

𝛼𝑖 , 𝛽𝑖 , 𝜏𝑖 adaptation parameters for the 𝑖-th class

𝑁 the number of support classes in each meta-task

𝐾 the number of labeled nodes in each class

𝑁𝑡 , 𝐾𝑡 the value of 𝑁 and 𝐾 during meta-training

s𝑖 the embedding of the 𝑖-th class in each meta-task

q𝑖 the embedding of the 𝑖-th query node in each meta-task

p𝑖 the classification probabilities of the 𝑖-th query node over C𝑏

A.2 Reproducibility

In this section, we present the details on the reproducibility of our

experiments. More specifically, we first elaborate on the implemen-

tation setting of our experiments. Then we introduce the required

packages with the corresponding versions, followed by the experi-

mental settings of baselines used in our main experiments. Finally,

we provide details of datasets used in this paper.

A.2.1 Implementation of TENT. Our framework TENT is imple-

mented based on PyTorch [25]. We train our model on a single 16GB

Nvidia V100 GPU. For the specific implementation setting, we set

the number of training epochs 𝑇 as 500. We implement GNN𝜃 and

GNN𝜙 using two-layer GINs [41] with the hidden sizes 𝑑ℎ and 𝑑𝑠
both set as 16. To effectively initialize GNNs in our experiments, we

utilize the Xavier initialization [8]. The READOUT function is im-

plemented as mean-pooling. For the model optimization, we adopt

Adam [14] with the learning rate of 0.05 and a dropout rate of 0.2.

The weight decay rate is set as 10−4 and the loss weight 𝛾 is set as

1. Finally, the model that achieves the best result on the validation

dataset will be saved and used for test. In addition, we randomly

sample 500 tasks from novel classes C𝑛 (i.e.,𝑇𝑡𝑒𝑠𝑡=500) for test with

a query set size |Q| of 10. Furthermore, to keep consistency, the

test tasks are identical for all baselines. Our code is provided at

https://github.com/SongW-SW/TENT.

A.2.2 Required Packages. Themore detailed package requirements

are listed as below.

• Python == 3.7.10

• torch == 1.8.1

• torch-cluster == 1.5.9

• torch-scatter == 2.0.6

• torch-sparse == 0.6.9

• torch-geometric == 1.4.1

• torch-spline-conv==1.2.1

• numpy == 1.18.5

• scipy == 1.5.3

• cuda == 11.0

• tensorboard == 2.2.2

• networkx == 2.5.1

• scikit-learn == 0.24.1

• pandas==1.2.3

A.2.3 Baseline Setting. Here, we present the detailed parameter

setting of baselines. We mainly follow the original setting in the

corresponding source code while adopting specific selections of

parameters for better performance.

• Prototypical Network (PN) [28]: For PN, we set the learn-

ing rate as 0.005 with a weight decay of 0.0005.

• MAML [7]: The meta-learning rate is set as 0.001 and the

number of update step is 10 with a learning rate of 0.01.

• GCN [15]: The learning rate is set as 0.001 and the hidden

size of GCN is set as 32.

• G-Meta [12]: For G-Meta, we set the meta-learning rate

as 0.001. The number of update step is 10 and the update

learning rate is 0.01. The dimension size of GNN is 128.

• GPN [6]: For GPN, we follow the setting in the source code

and set the learning rate as 0.005 with a weight decay of

0.0005. The dimension sizes of two GNNs used in GPN are

set as 32 and 16, respectively.

• RALE [18]: We follow the setting in the source code and set

the learning rates for training and fine-tuning as 0.001 and

0.01, respectively. The dropout rate is set as 0.6. The hidden

size of used GNNs is 32.

A.2.4 Dataset Description. In this section, we describe the detailed

dataset settings. Specifically, among the four prevalent datasets

used in our experiments, Amazon-E [20] and DBLP [32] datasets are

obtained from [6], while Cora-full [1] and OGBN-arxiv [11] are

obtained from the corresponding sources and processed by us. The

statistics and details are as follows:

• Amazon-E [20] is a product network, where nodes repre-

sent different "Electronics" products on Amazon. Moreover,

edges are created according to the "viewed" relationship and

class labels are assigned from the low-level product cate-

gories. For this dataset, we use 90/37/40 node classes for

training/validation/test.

• DBLP [32] is a citation network. More specifically, each

node represents a paper, and links are created according

to the citation relations. The attributes are obtained via

the paper abstract, and the class labels denote the paper

venues. For this dataset, we use 80/27/30 node classes for

training/validation/test.

• Cora-full [1] is a prevalent citation network, where nodes

are labeled based on the paper topic. This dataset extends

the prevalent small dataset via extracting original data from

the entire network. For this dataset, we use 25/20/25 node

classes for training/validation/test.

• OGBN-arxiv [11] is a directed citation network of all CS

arXiv papers indexed by MAG [35], where nodes represent

arXiv papers and edges indicate citations. The feature of each

node is a 128-dimensional feature vector obtained by averag-

ing the embeddings of words in its title and abstract. The la-

bels are assigned according to 40 subject areas of arXiv CS pa-

pers. We use 15/5/20 node classes for training/validation/test.
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