Research Paper

WSDM ’22, Feb. 21-25, 2022, Virtual Event, Tempe, AZ, USA

Learning Fair Node Representations with
Graph Counterfactual Fairness

Jing Ma!, Ruocheng Guo?, Mengting Wan®, Longqi Yang®, Aidong Zhang!, Jundong Li!*
lUniversity of Virginia, Charlottesville, VA, USA 22904
2City University of Hong Kong, Hong Kong SAR, China
3Microsoft, Redmond, WA, USA 98052
{jm3mr, aidong, jundong}@virginia.edu, ruocheng.guo@cityu.edu.hk, {mengting.wan, Longqi.Yang}@microsoft.com

ABSTRACT

Fair machine learning aims to mitigate the biases of model predic-
tions against certain subpopulations regarding sensitive attributes
such as race and gender. Among the many existing fairness notions,
counterfactual fairness measures the model fairness from a causal
perspective by comparing the predictions of each individual from
the original data and the counterfactuals. In counterfactuals, the sen-
sitive attribute values of this individual had been modified. Recently,
a few works extend counterfactual fairness to graph data, but most
of them neglect the following facts that can lead to biases: 1) the
sensitive attributes of each node’s neighbors may causally affect the
prediction w.r.t. this node; 2) the sensitive attributes may causally
affect other features and the graph structure. To tackle these is-
sues, in this paper, we propose a novel fairness notion - graph
counterfactual fairness, which considers the biases led by the above
facts. To learn node representations towards graph counterfactual
fairness, we propose a novel framework based on counterfactual
data augmentation. In this framework, we generate counterfactuals
corresponding to perturbations on each node’s and their neighbors’
sensitive attributes. Then we enforce fairness by minimizing the
discrepancy between the representations learned from the origi-
nal graph and the counterfactuals for each node. Experiments on
both synthetic and real-world graphs show that our framework
outperforms the state-of-the-art baselines in graph counterfactual
fairness, and also achieves comparable prediction performance.
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Figure 1: Causal models generally used in existing works (M)
and in this work (M). We use S;, Xj, Y; to denote the sensitive
attribute, features, and label of any node i, and A; ; € {0,1}
denotes the edge between node pair (i, j). Each arrow denotes
a causal relation. The dashed lines denote the causal relations
that the existing works do not consider.
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1 INTRODUCTION

Representation learning on graphs aims to map nodes into a la-
tent embedding space. These node representations are often used
to power downstream predictive tasks, and have become the new
state-of-the-art in multiple real-world applications [24, 37, 43, 44].
However, these node representation learning approaches may over-
look potential biases buried in the graph data, thus introducing
algorithmic biases against subpopulations defined by certain sen-
sitive attributes such as race, gender, and age. Consequently this
may raise ethical and societal concerns, especially in high-stake
decision-making scenarios such as ranking of job applicants [29]
and credit scoring [34]. For example, it would become a serious eth-
ical issue if a bank’s decision on the loan application was affected
by the applicant’s and their close contacts’ race information.

To tackle the above problem, several approaches were proposed
to assess and address the fairness of node representation learning
on graphs. The majority of these methods aim to learn node rep-
resentations which can elicit statistically fair predictions across
the population [1, 6, 12, 27]. In addition, the concept of counterfac-
tual fairness has been extended to graph-structured data recently
[1, 2]. Different from the previous statistical notions, counterfac-
tual fairness extends Pearl’s causal structural models [32] and aims
to encourage the predictions made from different versions of the
same individual (a.k.a. counterfactuals) to be equal. For example,
the prediction for one’s loan application being approved should be
the same regardless this applicant being Black or White.
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This paper falls under the umbrella of counterfactual fairness
but focuses on addressing two critical limitations of existing studies
[1, 2] of counterfactual fairness on graphs: 1) biases induced by
one’s neighboring nodes and 2) biases induced by the causal
relations from the sensitive attributes to other features as
well as the graph structure. We follow the previous loan applica-
tion example to explain these limitations in details: i) As illustrated
in Fig. 1(a), existing studies mostly focus on mitigating the causal
influence from the sensitive attribute (race information S;) of the
i-th applicant on the prediction of the label (loan approval decision
Y;), but neglect the fact that the race information of the applicant’s
social contacts (S;) can also causally affect the fairness of the pre-
diction (as labeled using red dashed edges in Fig. 1(b)). ii) On the
other hand, existing methods may implicitly assume the sensitive
attribute (S;) has no causal effect on other variables such as node
features (X;) and the graph structure (4; ;) so that they can safely
simplify the counterfactual data generation mechanism as by just
flipping the sensitive attribute values. However, we question the ap-
plicability of this assumption since such causal effect is ubiquitous
in real-world scenarios. For example, one’s race can causally influ-
ence their social relations as well as the residential neighborhood
they live in (as labeled using dashed edges in Fig. 1(b)).!

We argue that biases in model predictions can be induced by
the aforementioned pathways. In this paper, we propose a more
comprehensive fairness notion on graphs — graph counterfactual
fairness, which considers the potential biases regarding the sensi-
tive attributes of each node and its neighboring nodes, as well as
the biases led by the causal effect from sensitive attributes on other
variables. With this notion, learning node representations towards
graph counterfactual fairness is still challenging. It is because the
causal relations among variables (as showed in Fig. 1(b)) are often
required to obtain the counterfactuals, but these causal relations are
often unknown in practice. Manually constructing the entire causal
model requires extensive domain knowledge and human efforts, es-
pecially for large-scale graph data. To address the above challenge,
we propose a novel framework to learn Graph countErfactually
fAir node Representations (GEAR). GEAR aims to learn node rep-
resentations towards graph counterfactual fairness, and maintain
high performance for downstream tasks such as node classification.
GEAR includes the following modules: 1) Subgraph generation.
To reduce the costs of modeling the causal relations on large graphs,
we first develop an algorithm to automatically infer the importance
scores among nodes. For each individual node, we then prune the
range of the causal model to an ego-centric subgraph which con-
tains only the node itself and its most influential neighboring nodes.
2) Counterfactual data augmentation. For each node, we lever-
age the graph auto-encoder technique [23] and fairness constraints
to generate two types of counterfactuals as data augmentation: 1)
self-perturbation: the counterfactuals where each node’s own sen-
sitive attribute value had been modified; 2) neighbor-perturbation:
the counterfactuals where the sensitive attribute values of neigh-
bors had been modified. 3) Node representation learning. To
learn node representations towards graph counterfactual fairness,
we leverage a Siamese network [7] to minimize the discrepancy

! There may also exist causal relations between non-sensitive features and the graph
structure, although we do not show them in Fig.1 for simplicity of illustration.
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Table 1: Notation.

Notation  Definition

GV, & the original graph, the set of vertices/edges
X, x; features of all nodes/the i-th node

A adjacency matrix

n the number of nodes

S, s; sensitive attribute values of all nodes/the i-th node

Z,z; representations of all nodes/the i-th node

®(-),¢(-) encoder/subgraph encoder

AGG(-) aggregator

f@) downstream classifier/predictor

(U)ye—o counterfactual of variable U when V had been set to v

—i the indices which are not i

d,d dimension of features/representations

(@ information of the subgraph with central node i

SUB(-) subgraph generation operator

SMP(-) sampling operation of sensitive attribute

S the summary of neighboring sensitive attribute values

é(l) .G the set of counterfactual subgraphs of G() under
self-perturbation/neighbor-perturbation

C the sampling number in neighbor-perturbation

between the representations learned from the original subgraph
and those learned from counterfactuals. The main contributions of
this work can be summarized as follows:

e Problem. We propose a new fairness notion — graph coun-
terfactual fairness, which considers the potential biases brought
by different causal pathways from sensitive attributes to the
graph model predictions.

e Method. We propose a novel framework GEAR to learn
node representations towards graph counterfactual fairness.
Specifically, for each node, we minimize the discrepancy
between the representations learned from the original data
and the augmented counterfactuals with different sensitive
attribute values.

¢ Experiments. We conduct extensive experiments on both
synthetic and real-world graphs. The results show that the
proposed method outperforms existing baselines in multi-
ple fairness notions, and achieves comparable prediction
performance in downstream tasks.

2 PROBLEM DEFINITION

Notations. Given a graph G = {V,E,X}, where V is the set
of nodes, & is the set of edges, X = {xi};’:1 denotes the node
features (n = |V|), and x; € R4 represents the features of node
i. A € R™" denotes the adjacency matrix of the graph G, where
A;j = 1lifedgei — j exists, otherwise A; j = 0. Without loss of
generalization, we assume G is undirected and unweighted, but this
work can be naturally extended to directed or weighted settings.
Each node i has a sensitive attribute s; € {0,1} (we assume one
single, binary sensitive attribute for simplicity, but our model can
also be easily extended to multivariate or continuous sensitive
attributes). S = {s;},, and s; is included in x;. We denote the
non-sensitive features as X™° = {x7*, ..., x;;°}, where x;* = x;\s;.
Traditional node representation learning methods train an en-
coder () : R4 x R™n _ R4’ t5 map each node to a latent
representation. The learned representations for the n nodes are
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denoted by Z = {z;}},, where z; = (®(X,A));, z; € R? for any
node i, and d’ is the dimensionality of node representations. These
representations can be used in various downstream tasks like node
classification [4], link prediction [28], and graph classification [46].
f(+) denotes the downstream classifier/predictor. In the node clas-
sification task, let y; denote the true label of the node i, f(-) takes
the representation z; as input, and outputs the predicted label ;.
Counterfactual fairness. Counterfactual fairness [25] is a fairness
notion based on Pearl’s structural causal model [32]. A causal model
consists of a causal graph and structural equations. A causal graph
is a directed acyclic graph (DAG), where each node represents a
variable, and each directed edge represents a causal relationship.
Structural equations describe these causal relations among variables.
For variables Y, S, the value of the counterfactual "what would Y
have been if S had been set to s?" is denoted by Ys. 5. Based on a
given causal model, a predictor Y= f(X) is counterfactually fair
[25] if under any features X = x and sensitive attribute S ='s,
P(Yses =ylX =x,S=5) =P(Ysey =ylX =x,5=5), (1)
forally and s’ # s. Here 175%3 = f(Xss, s) denotes the prediction
made on the counterfactual when S had been set to s. Intuitively, it
aims to minimize the difference between predictions made on each
individual and its counterfactuals with different sensitive attribute
values. Ideally, the counterfactuals should be generated based on
the ground truth causal model. Different from the statistical fairness
notions such as equality of opportunity (EO) [19, 47] and demo-
graphic parity (DP) [48], counterfactual fairness aims to eliminate
the biases led by the causal effect from the sensitive attribute on the
observed variables used for model training. However, most existing
works of counterfactual fairness focus on i.i.d. data.
Existing notion of counterfactual fairness on graph. Recent
works [1, 2] have extended counterfactual fairness to graphs. Given
a graph X = X, A = A, these works consider that an encoder ®(-)
satisfies counterfactual fairness if for any node i:

(P(Xs;=0, A))i = (P(Xs;=1,4))is 2
where Xs,— and Xg,—; denote the node features after setting S; as
0 and 1, respectively, while everything else does not change?. This
notion considers fairness as minimizing the discrepancy between
the representations of each node with different values of its sensi-
tive attribute (while everything else is fixed). This notion has the
following limitations: 1) it does not consider the potential biases
led by the causal effect from the sensitive attribute of other nodes
in the graph on the prediction of each node; 2) it implicitly assumes
that the sensitive attribute has no causal effect on other features
or the graph structure. In a nutshell, this fairness notion is more
limited than the general counterfactual fairness notion.

Graph counterfactual fairness. To address the above limitations,
in this work, we propose a novel fairness notion on graphs:

DEFINITION 2.1. (Graph counterfactual fairness). An encoder ®(-)
satisfies graph counterfactual fairness if for any node i:

P((Zi)sesIX =X, A=A) =P((Zi)ss'|X =X, A=A), (3)

foralls’ s, wheres’,s’’ €{0,1}" are arbitrary sensitive attribute
values of all nodes, Z; = (®(X, A)); denotes the node representations

2We use italicized uppercase letters (e.g., S;, X, A) to denote random variables, and use
italicized lowercase letters (e.g., s;), non-italicized bold lowercase/uppercase letters
(e.g., x; and X) to denote specific realization of scalars or vectors/matrices, respectively.

697

WSDM ’22, Feb. 21-25, 2022, Virtual Event, Tempe, AZ, USA

for node i. In other words, given a graph X = X, A = A, ®(+) should
minimize the distribution discrepancy between the representations
(P(Xseg, Asey))i and (P(Xs—g7, As—s~))i for any node i.

Intuitively, this notion encourages the representations learned
from the original graph and counterfactuals to be equal. The coun-
terfactuals correspond to different cases when the sensitive attribute
of the n nodes had been set to any values. For notation simplicity,
in the following sections, we use Xg. ¢ to denote a specific value
of the counterfactual “what would the node features have been if
the sensitive attribute of the n nodes had been set by s’, given the
original data, i.e., node features X and graph structure A?". We also
use notation Ag. ¢ in a similar way.

In this work, we aim to develop a framework which learns node
representations on graph towards graph counterfactual fairness,
and maintains a good prediction performance simultaneously.

3 THE PROPOSED FRAMEWORK — GEAR

In this section, we propose a novel framework GEAR which aims
to learn node representations for graph counterfactual fairness. As
the illustration shown in Fig. 2, GEAR mainly includes three key
components: 1) subgraph generation; 2) counterfactual data aug-
mentation; 3) fair representation learning. In subgraph generation,
GEAR extracts a context subgraph for each node, which contains the
local graph structure including the node itself (central node) and its
nearest neighbors with respect to precomputed importance scores.
In counterfactual data augmentation, we generate counterfactuals
in which the sensitive attribute of nodes in these subgraphs had
been perturbed. Based on the augmented counterfactuals, the fair
representation learning component leverages Siamese networks
[7] to minimize the distance between the representations learned
from the original data and the counterfactuals w.r.t. the same node.

3.1 Subgraph Generation

True causal models for graph data are often difficult to be completely
obtained, especially for large-scale graphs. Based on a common ob-
servation [18, 21] that each node is mostly influenced by its nearest
neighbors, we extract a subgraph G with node features X(?) and
adjacency matrix A for each node i. This subgraph extracts the
context information of the central node i on G, i.e., the subgraph
of G which only contains the top k neighbors of node i (including
itself). These top-k neighbors are usually within several hops from
the central node. Specifically, for each node i on the graph, we gen-
erate its context subgraph G witha subgraph generator Sub(-).
Based on these context subgraphs, we learn the representations for
their corresponding central nodes. This is based on a commonly
used assumption [18] that each node has a low dependency with
the nodes outside its context subgraph. Therefore, each subgraph is
expected to be informative enough with respect to the graph struc-
ture relative to the central node for high-quality representation
learning and counterfactual data augmentation afterwards.
Inspired by recent subgraph based node representation learning
methods [21, 50], we first compute the importance scores for every
node pair with personalized pagerank algorithm [20]. The impor-
tance scores can be calculated as: R = a(I — (1 — a)A), where R
is the importance score matrix, and each entry R; ; describes how
important node j is for node i, and R;. denotes the importance
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Figure 2: An illustration of the proposed framework GEAR.

score vector for node i. « is a parameter in the range of [0, 1], I
is the identity matrix. A = AD™! denotes the column-normalized
adjacency matrix, where D is the corresponding diagonal matrix
with Dy; = X A j. We compute R in a preprocessing stage before
model training for efficiency. With the importance scores, we use a
TOP(-) operation to select the top-k important nodes V@ for each
central node i, then formulate the context subgraph G as follows:

G = (v g xDy = (A0 x Dy (4)
V@ = TOP(R;., k), (5)
AW = A ), X = Xy (6)

where the symbol : means all the indices. The above subgraph
generation process (Eq. (4) to (6)) is defined as G =sub(i, G, k).
Then the generated subgraphs are fed into encoders to learn repre-
sentations of the central nodes.

3.2 Counterfactual Data Augmentation

To achieve graph counterfactual fairness, we pretrain a counterfac-
tual data augmentation module before node representation learning.
Here we consider a relatively simple but general causal model (as
shown in Fig. 1(b)) to generate counterfactuals for each subgraph.
Based on common observations [25], we assume that the sensitive
attribute (e.g., race) is exogenous, i.e., it has no parent variables in
the causal graph, and it would causally influence the other node fea-
tures, the graph structure, and the labels. Based on the causal model
we assume, once we intervene on the sensitive attribute, we need
to model how the other variables change accordingly. To achieve
this goal, we use a graph variational auto-encoder (GraphVAE) [23]
based module, which takes each context subgraph as input and
encodes each node in the subgraph into a latent embedding h;, then
a decoder reconstructs the original subgraph with the latent em-
beddings H = {hj, ..., hy} and the sensitive attribute values of the
k nodes in this subgraph. The reconstruction loss £, is as follows
(we leave out the superscript (+) () for notation simplicity):

Lr =Eq(m|x.a) [-10g(p(X, AlH, $)) | +KL[g(H|X, A)[[p(H)], (7)
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where p(H) is a standard Normal prior distribution. We sample the
embeddings H from q(H|X, A).

As the sensitive attribute is assumed to be exogenous, we can
mitigate the causal effect from the sensitive attribute on the em-
beddings by removing the statistical dependency between them. To
achieve this target, we use an adversarial learning method to learn
embeddings which are invariant to different sensitive attribute val-
ues of each node and their neighbors. Specifically, we use a discrimi-
nator here to predict the summary of neighboring sensitive attribute
values. Here we take the summary §; as the mean aggregation over
all the nodes in the subgraph G0 e, 5= W Zje(V(D sj. We
divide the summary into B ranges to formulate it as a multivariate
classification task for the discriminator D(-). We use a fairness
constraint as follows: Ly = Y p¢[p] E[log(D(H, b))],where the dis-
criminator D(H, b) predicts the probability of whether the summary
of sensitive attribute values is in range b. Based on the theoretic
analysis in [6, 36], L4 is a regularizer to minimize the mutual infor-
mation between the summary of sensitive attribute values and the
embeddings. The final loss of the counterfactual data augmentation
is: Lg = Ly + pL4, where f is a hyperparameter for the weight of
fairness constraint. We use alternating stochastic gradient descent
for optimization: 1) we minimize L, by fixing the discriminator and
updating parameters in other parts; 2) we minimize — £, with re-
spect to the discriminator while other parts fixed. To achieve graph
counterfactual fairness, we expect the embeddings H can capture
the latent variables which are informative of the input subgraph but
not causally influenced by the sensitive attribute of the nodes in the
subgraph. We pretrain the counterfactual data augmentation mod-
ule to better disentangle different components of the framework.
If more prior knowledge of the causal model is provided, we can
incorporate it in counterfactual data augmentation, e.g., directly
generate counterfactuals with a given causal model, and do not
need to change other components in the framework.

Based on the above techniques, we conduct perturbations on the
original subgraphs and obtain different types of counterfactuals. For
each context subgraph G, we generate two kinds of perturbations
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on it, including self-perturbation on the sensitive attribute of the
central node, and neighbor-perturbation on the sensitive attribute
of other nodes in the subgraph.

Self-perturbation. In the subgraph G(9), we take its node embed-
dings, flip the sensitive attribute value of the central node s;, then
feed the embeddings and the perturbed sensitive attribute into the
decoder of the pretrained counterfactual data augmentation module,
and take the reconstructed subgraph as the corresponding counter-
factual. The set containing the subgraphs after self-perturbation is

denoted by E(i) = {gS(TLH_}.
Neighbor-perturbation. Similarly, in the subgraph 6", we ran-
domly perturb the sensitive attribute values of any nodes except

the central node, i.e., the nodes in the set (V_(‘?, After such perturba-

tion, we generate a set of counterfactuals G = (@) o
g &7 =150 _gps)]
where SMP(-) randomly samples specific values of the sensitive at-

tribute out of the value space {0, 1} VP11 We use a parameter C to

denote the number of SMP(+) operations in neighbor-perturbation.

3.3 Fair Representation Learning

Based on the above counterfactual data augmentation, we learn fair
representations which are expected to elicit the same predicted label
across different counterfactuals w.r.t. the same node. To achieve this
goal, we leverage Siamese networks [7] to encode the three kinds of

subgraphs: original subgraphs G, counterfactual subgraphs é(l)
and G for each central node i. For graph counterfactual fairness,
we expect to learn the same representations for each central node
from the three kinds of subgraphs. We train a subgraph encoder
$(-) to generate the representations z;, z;, z; for each central node i
on these three kinds of subgraphs, respectively. Then we minimize
the distance between the central node representations learned from
the original subgraph and from the counterfactuals. We formulate
the loss for graph counterfactual fairness as:

Ly= ﬁ D (1= 29)d(z. %) + Asd(z,2)), (®)

where d(-) is a distance metric such as cosine distance. A5 € [0, 1] is

a hyperparameter which controls the weight of neighbor-perturbation.
From the original subgraph and the counterfactuals, we obtain the
node representations in the following way:

7= (p(XD,AD));, ©)
7= AGG({(HXS_,_ AD i), (10)
z; = AGG({($ (X" A Nih), (1)

SWsmp(sy s —smp(sth)
where ¢(-) : Rk¥d 5 Rkxk _, Rkxd’ takes each subgraph as in-
put, and embeds each node on the input subgraph into a latent
representation. We take the representations of each central node
i learned from the original data as z;, and we use Z = {z;}]_, for
downstream tasks. For the sampled counterfactual subgraphs in
5(1) and GV, we use an aggregator (e.g., mean aggregator) AGG(-)
to aggregae the representations of each central node i, and obtain
the final representations z; and z;.

To encode useful information of node features and graph struc-
ture into the representations, we use labels as supervision. We use
the task of node classification as an example, but our framework

699

WSDM ’22, Feb. 21-25, 2022, Virtual Event, Tempe, AZ, USA

Table 2: Detailed statistics of the datasets.

Dataset Synthetic  Bail Credit
V| 2,000 18,876 30,000
|E| 4,120 311,870 137,377
Feature dimension 26 18 13
Average degree 5.120 34.044 10.158
# of intra-group edges 2,379 162,821 120,750
# of inter-group edges 1,741 149,049 16,627

can be naturally extended to other kinds of tasks on graph data such
as link prediction. We denote the class labels as Y = {y1, ..., yn } for
the n nodes. The prediction loss can be formulated as:

Lp=2 Y o 1D, u0, (12)

where I(+) is the loss function (e.g., cross-entropy) which measures
the prediction error, f(-) makes predictions for downstream tasks
with the representations, i.e., J; = f(z;). Finally, the overall loss
function for fair representation learning is:

L=Lp+ALp+pl0l> (13)

where 6 is the set of model parameters, A and y are hyperparam-
eters controlling the weight of the graph counterfactual fairness
constraint, and Ly norm regularization, respectively.

4 EXPERIMENTS

We evaluate the proposed method on both synthetic and real-world
graphs. The detailed statistics of these datasets are shown in Table 2,
including the number of nodes, the number of edges, the dimension
of features, the average degree, and the number of intra-group and
inter-group edges with respect to the sensitive attribute.

4.1 Datasets

A synthetic dataset and two real-world datasets are used in the
experiments. In the synthetic dataset, we create a causal model
with which we can fully manipulate the data generation process.
More specifically, in this synthetic dataset, we generate the features,
latent embeddings, graph structure, and labels as below:

Si ~ Bernoulli(p), Z; ~ N(0,I), X; = S(Z;) + Siv, (14)
2jeN; S
P(A;j = 1)=0(cos(Z;, Z)+al(S; = $))), Y; = 3(w2,-+ws’|€Ti|f
(15)

where we sample the sensitive attribute with Bernoulli distribu-
tion, where p = 0.4 is the probability of S; = 1. We sample latent
embeddings Z; € R% from a Gaussian distribution, where d, = 50.
Z; influences the node features and the graph structure for each
node i, and S(-) denotes a sampling operation which randomly
selects d = 25 dimensions out of the latent embeddings to form the
observed features X;. v € R%, v ~ N(0,I) controls the influence
of the sensitive attribute on other features. We simulate the prob-
ability of each edge (i, j) based on the cosine similarity between
Z; and Zj, as well as whether their sensitive attribute values are
equal. Here 1(+) is an indicator function which outputs 1 when the
input statement is true and 0 otherwise. We set parameter a = 0.01.
Then we sum up the above similarity between (Z;, Z;) and the
indicator function’s output of (S; = S;), and map it into a range
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Table 3: Comparison of the performance of node representation learning methods with respect to prediction and fairness.

Dataset Method Prediction Performance Fairness
Accuracy (T) | Fl-score (1) AUROC (1) 2aeo (1) app (1) ocr (1) R%(])
Synthetic GCN 0.686 +£ 0.015 0.687 + 0.020 0.758 £ 0.017 0.050 £ 0.030 0.060 + 0.033 0.101 £ 0.030 0.085 + 0.050
GraphSAGE 0.712 £ 0.012 0.714 £ 0.021 0.789 £ 0.018 0.049 £ 0.036 0.053 £+ 0.042 0.172 £ 0.056 0.011 £ 0.011
GIN 0.682 +£0.021 0.691 + 0.022 0.741 £ 0.021 0.077 £ 0.053 0.081 £ 0.055 0.301 £ 0.080 0.011 £ 0.009
C-ENC 0.665 + 0.023 0.671 £ 0.031 0.732 £ 0.028 0.030 + 0.024 0.048 + 0.026 0.633 +£0.013 0.085 £ 0.016
FairGNN 0.668 + 0.020 0.672 £ 0.026 0.735 £ 0.022 0.025 £ 0.021 | 0.042 £0.033 | 0.678 +£0.014 0.091 + 0.021
NIFTY-GCN 0.618 + 0.035 0.640 + 0.037 0.672 £ 0.042 0.172 £ 0.110 0.199 £ 0.106 0.208 £ 0.090 0.105 £ 0.081
NIFTY-SAGE 0.664 + 0.041 0.682 + 0.073 0.755 £ 0.021 0.031 £ 0.027 0.048 + 0.027 0.147 £ 0.071 0.008 + 0.005
GEAR 0.718 £0.018 | 0.724+£0.022 | 0.793 £ 0.014 0.052 £+ 0.038 0.064 +£0.038 | 0.002 £0.002 | 0.007 £0.006
Bail GCN 0.838 +£0.017 0.782 £ 0.023 0.885 £ 0.018 0.023 £ 0.019 0.075 £ 0.014 0.132 £+ 0.059 0.075 £ 0.028
GraphSAGE 0.854 £ 0.026 | 0.804 +0.032 | 0.905 £ 0.021 0.039 £+ 0.022 0.086 + 0.039 0.088 + 0.047 0.069 £ 0.011
GIN 0.731 £ 0.058 0.656 + 0.084 0.773 £ 0.069 0.041 £ 0.023 0.065 + 0.034 0.143 £+ 0.069 0.047 £ 0.036
C-ENC 0.842 + 0.047 0.792 £ 0.014 0.889 £ 0.033 0.038 £+ 0.022 0.069 £ 0.020 0.040 £+ 0.025 0.078 £ 0.024
FairGNN 0.835 £ 0.024 0.784 £ 0.021 0.882 £ 0.035 0.046 +0.013 0.074 £ 0.026 0.042 + 0.032 0.086 +0.016
NIFTY-GCN 0.752 £ 0.065 0.669 + 0.050 0.799 £ 0.051 0.019 £ 0.015 | 0.036 £ 0.022 | 0.031 +£0.017 0.025 £ 0.018
NIFTY-SAGE 0.823 + 0.048 0.723 £ 0.103 0.876 +0.043 0.014 £ 0.006 | 0.047 +0.015 0.013 +£0.011 0.044 + 0.020
GEAR 0.852 + 0.026 0.800 + 0.031 0.896 £ 0.016 0.019 £+ 0.023 0.058 +£0.017 | 0.003 +£0.002 | 0.038 +£0.012
Credit GCN 0.698 + 0.028 0.794 £ 0.027 0.684 £ 0.019 0.087 £ 0.035 0.108 £+ 0.031 0.042 £+ 0.029 0.022 £ 0.014
GraphSAGE 0.739 £ 0.009 0.821 +£0.008 | 0.756 £0.011 0.094 + 0.033 0.109 £ 0.030 0.062 + 0.036 0.014 + 0.004
GIN 0.713 £ 0.018 0.805 £ 0.016 0.706 £ 0.010 0.121 £ 0.042 0.130 £+ 0.037 0.123 £ 0.060 0.025 £ 0.012
C-ENC 0.695 £ 0.011 0.786 + 0.012 0.683 +£0.018 0.098 + 0.025 0.104 £ 0.042 0.100 £ 0.024 0.048 £ 0.012
FairGNN 0.683 £+ 0.053 0.780 + 0.042 0.680 + 0.021 0.175 £ 0.035 0.187 £ 0.036 0.105 £+ 0.053 0.056 £ 0.018
NIFTY-GCN 0.697 £ 0.007 0.792 + 0.007 0.685 + 0.007 0.097 £ 0.024 0.106 £ 0.021 0.004 + 0.004 0.017 £ 0.003
NIFTY-SAGE 0.751 £ 0.023 0.833 £ 0.020 0.730 £ 0.011 0.075£0.021 | 0.094 £0.019 | 0.004 + 0.003 0.011 + 0.003
GEAR 0.755£0.011 | 0.835 £ 0.008 0.740 + 0.008 0.086 + 0.018 0.104 +£0.013 0.001 £0.001 | 0.010 £ 0.003

of [0, 1] with a Sigmoid function o(+) to compute the link proba-
bility between (i, j). w € R% contains parameters sampled from
Normal distribution. We average each node’s and their one-hop
neighbors’ sensitive attribute values and use it into label genera-
tion with weight ws = 0.5. In B(+), we map Y; into a binary value.
Specifically, we first compute the mean value of ¥; over all nodes,
and set ¥; = 1if it is larger than the mean value, otherwise Y; = 0.

As for the real-world graphs, we use: 1) Bail [1]: This graph
contains the data of defendants who got released on bail at the U.S
state courts. In this graph, each node represents a defendant, each
edge between a pair of nodes represents their similarity of criminal
records and demographics. We use the defendants’ race as the sensi-
tive attribute. The task is to classify defendants into bail (not tend to
commit a violent crime if released) or no bail. 2) Credit defaulter [1]:
This graph contains people’s default payment information. In this
graph, each node represents an individual, each edge between a pair
of nodes represents the similarity of their spending and payment
patterns. We use their age as the sensitive attribute, and the task is
to predict that their default ways of payment is credit card or not.

To evaluate the graph counterfactual fairness of the proposed
method, we need to generate the ground-truth counterfactuals
with the perturbations on different nodes’ sensitive attribute. On
the synthetic dataset, the counterfactuals can be generated based
on the predefined causal model. On the real-world graphs, the
ground-truth causal models are unknown, so we use a simple causal
model and fit the observed data, and use the learned parameters
in the fitted causal model to generate the counterfactuals for the
whole graph. More specifically, we first use a Naive Bayes model
to learn P(X;|S;), and then update the counterfactual features by
(%i)s;-1-s; = E[XilSi = 1= 5;] = E[X;[S; = s;] + x;. We use (-)F
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to denote any counterfactuals. Then we generate the counterfactual
graph edge for each (i, j) based on the following rules:

P(AST = 1) = o(cos(XFP\STF, XTF\SEF) + y1(7F, $6)), (16)

where cos(-) is cosine similarity. We use ¢(-) to map its input into
arange [0, 1] to compute the link probability for any node pairs in
the counterfactual graph. We fit the data with this causal model and
learn the parameter y. For evaluation, we use the counterfactual
data generated by the causal model and learned parameters.

As discussed in [33], there might be multiple possible causal
models in the real-world data, so we have tried different causal
models to fit the real-world data. Due to the space limit, we only
show the results based on the causal model as described above, but
the observations over all the experiments are generally consistent.

4.2 Experiment Settings

Metrics. We evaluate the proposed framework with respect to
two aspects: prediction performance and fairness. To evaluate the
prediction performance, we use the widely-used node classification
metrics: accuracy, F1-score, and AUROC. To measure the fairness of
the representations, we first use two metrics which are commonly
used in statistical fairness: Agp = |P(17i|Si =0) - P(EISi =1)|,and
Ao = |P(YGi]Y; = 1,S; = 0) = P(Yi|Y; = 1,S; = 1)|. To evaluate
graph counterfactual fairness, we design a metric §cp:

dcr = |P(Yi)ses X =X, A=A) - P(Yi)ses |X =X A= A)|,
17)
where s’,s”" € {0,1}" are arbitrary values of sensitive attribute
of all nodes. As there are too many different counterfactuals (e.g.,
there are 2" cases for a graph with n nodes), it is difficult to eval-
uate the difference of predictions under all these counterfactuals.
Therefore, we evaluate the graph counterfactual fairness of the



Research Paper

WSDM ’22, Feb. 21-25, 2022, Virtual Event, Tempe, AZ, USA

Table 4: Comparison of the performance of different variants of GEAR.

Dataset Method Prediction Performance Fairness
Accuracy (T) | Fl-score () AUROC (1) aeo (1) app (1) ocr (1) R%(])
Synthetic GEAR-NS 0.722 £ 0.023 0.726 £ 0.025 0.794 £ 0.028 0.061 + 0.044 0.071 £ 0.024 0.005 £+ 0.002 0.011 £ 0.006
GEAR-NN 0.725 £ 0.026 | 0.727 £0.016 | 0.794 £ 0.024 0.066 + 0.048 0.086 + 0.033 0.008 + 0.004 0.016 £+ 0.005
GEAR-NP 0.729 £0.022 | 0.727 £0.027 | 0.796 £ 0.016 0.094 + 0.051 0.116 £ 0.063 0.012 £ 0.005 0.023 £0.018
GEAR-NC 0.720 £ 0.019 0.725 £ 0.018 0.793 £ 0.018 0.058 £ 0.042 0.069 £ 0.028 0.006 + 0.003 0.012 £+ 0.004
GEAR 0.718 £ 0.018 0.724 £ 0.022 0.793 £ 0.014 0.052 £ 0.038 | 0.064 £0.038 | 0.002 £ 0.002 | 0.007 £ 0.006
Bail GEAR-NS 0.854 £+ 0.020 0.802 +£0.014 0.897 £ 0.020 0.027 £ 0.024 0.066 £+ 0.020 0.014 £+ 0.007 0.056 +£0.018
GEAR-NN 0.855 +0.024 | 0.804 £0.024 | 0.898 £0.020 0.032 £+ 0.027 0.068 + 0.023 0.022 + 0.009 0.058 +£0.016
GEAR-NP 0.860 £ 0.022 | 0.804 +0.031 | 0.898 £ 0.022 0.041 £ 0.028 0.073 £ 0.028 0.027 £ 0.010 0.064 £ 0.019
GEAR-NC 0.853 £ 0.024 0.801 +£0.019 0.896 + 0.021 0.025 £ 0.027 0.064 +£0.014 0.007 £ 0.004 0.053 +£0.014
GEAR 0.852 £+ 0.026 0.800 £+ 0.031 0.896 £ 0.016 0.019 £0.023 | 0.058 £0.017 | 0.003 £ 0.002 | 0.049 £ 0.012
Credit GEAR-NS 0.749 £ 0.014 0.831 £ 0.024 0.741 £ 0.011 0.089 £ 0.018 0.109 £ 0.038 0.016 £+ 0.027 0.012 £+ 0.005
GEAR-NN 0.751 £ 0.012 0.832 +£0.018 0.742 £ 0.009 0.092 £ 0.034 0.114 £ 0.043 0.020 £+ 0.047 0.013 £ 0.004
GEAR-NP 0.753 £0.018 | 0.836 £0.017 | 0.749 £ 0.010 0.099 £ 0.043 0.122 + 0.049 0.028 £+ 0.054 0.016 £+ 0.007
GEAR-NC 0.749 £ 0.015 0.830 +£0.011 0.741 £ 0.009 0.088 +£0.012 0.106 £ 0.011 0.004 + 0.002 0.013 £ 0.004
GEAR 0.755£0.011 | 0.835+0.008 0.740 £+ 0.008 0.086 +£0.018 | 0.104 £0.013 | 0.001 £ 0.001 | 0.010 £ 0.003

proposed model in the following way: on each dataset, we control
the rate of sensitive subgroup population and randomly perturb
the sensitive attribute of all nodes. More specifically, we randomly
select 0%, 50%, 100% nodes, and set their sensitive attribute values
to be 1, while set the sensitive attribute of other nodes to be 0.
With such perturbations, we generate counterfactual data for the
whole graph with different ratios of sensitive subgroup, based on
the causal model described in Section 4.1. Intuitively, these pertur-
bations implicitly control the distribution of the sensitive attribute
in each node’s neighborhood, and we take the averaged ratio of
nodes which flip their predicted labels as an estimation for §cp.
Besides, we also compute the R-square R%(Y;,S;) to measure how
well a linear regression predictor for Y; can be explained by the
summary of the neighboring sensitive attribute values for any node
i. Here we use the mean aggregator over the sensitive attribute
values of all one-hop neighbors and each node i itself to compute
the sensitive attribute summary S;. This R-square metric can reflect
the statistical dependency between Y; and ;.

Baselines. We compare the proposed framework with several state-
of-the-art node representation learning methods. We divide them
into two categories: 1) node representation learning methods with-
out fairness constraints: these methods only aim to encode useful
information from the input graph and improve the prediction perfor-
mance in downstream tasks. We use graph convoluntional network
(GCN) [24], GraphSAGE [18], and Graph Isomorphism Network
(GIN) [44] as baselines; 2) fair representation learning methods on
graphs: these methods target on learning fair node representation
on graphs. Among them, C-ENC [6] and FairGNN [12] enforces
fairness with an adversarial discriminator to predict the sensitive
attribute; NIFTY [1] enforces fairness by maximizing the similarity
of representations learned from the original graph and their aug-
mented counterfactual graphs, where the sensitive attribute values
of all nodes are flipped, while other parts remain unchanged. We
use two variants of it with GCN or GraphSAGE encoders, denoted
by NIFTY-GCN and NIFTY-SAGE, respectively.

Setup. Each dataset is randomly splitted into 60%/20%/20% train-
ing/validation/test set. Unless otherwise specified, we set the hy-
perparametersas A = 0.6, C =2,A; =04, =10,y = le—5,k = 20,
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Figure 3: Comparison of the performance of different sub-
graph encoders in GEAR on Bail dataset.
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Figure 4: Parameter study on Bail dataset.

B = 4. The learning rate is 0.001, the number of epochs is 1, 000, the
representation dimension is 1,024, batch size is 100. Experimental
results are averaged over ten repeated executions. We use the Adam
optimizer and implement our method with Pytorch [31].

4.3 Prediction Performance and Fairness

The performance of prediction and fairness is shown in Table 3.
The best results are shown in bold, and the runner-up results are
underlined. Generally speaking, we have the following observa-
tions: 1) The proposed model GEAR shows comparable prediction



Research Paper

performance with the state-of-the-art node representation learn-
ing methods, and it outperforms all the fair node representation
learning methods in prediction; 2) The proposed model outper-
forms all the other fair node representation learning methods in
Scr and R?. These two fairness metrics explicitly consider the
causal/statistical relation between the neighboring sensitive at-
tribute and the model prediction, thus this observation validates
the effectiveness of our framework in mitigating the biases from
neighbors. Besides, GEAR also performs well in other fairness met-
rics Agp and App. The baseline NIFTY also has good performance
in graph counterfactual fairness, because NIFTY also generates
counterfactuals during training. Although NIFTY does not explic-
itly consider the causal effect from neighbors’ sensitive attribute
on each node, its counterfactuals still implicitly promote graph
counterfactual fairness. However, our method still outperforms all
these fairness methods mainly for two reasons: a) GEAR gener-
ates multiple versions of counterfactuals with self-perturbation and
neighbor-perturbation. It has better coverage of the space of possi-
ble counterfactuals, while NIFTY only generates one counterfactual
by flipping all nodes’ sensitive attribute values, here the influence
from the neighbors’ sensitive attribute may counteract with each
other; b) GEAR generates counterfactuals which include changes
in both features and graph structure after modifying the sensi-
tive attribute, rather than simply changing the sensitive attribute.
More specifically, the counterfactual augmentation component in
GEAR removes biases caused by misusing the descendants of the
sensitive attribute in node representation learning.

4.4 Model Structure & Parameter Study

To investigate the model performance under different options of
model structure, we vary the encoder of subgraphs, including GCN
[24], GraphSAGE (mean aggregator) [18], Informax [38], GIN [44],
and Jumping Knowledge (JK) [45]. Due to the space limit, we only
show the results in Bail in Fig. 3, but the observations are consistent
in other datasets. Generally, all the subgraph encoders show good
performance in both prediction and fairness. Among them, Graph-
SAGE encoder shows the best performance over all the variants.

To evaluate the robustness of GEAR under different parame-
ters, we vary the parameters A (the weight of constraint for graph
counterfactual fairness), A5 (the weight for neighbor-perturbation),
subgraph size k, and the number of neighbor-perturbations C in
SMP(+) to investigate how the model performance varies. The results
over different settings of parameters in Bail are shown in Fig 4. We
observe that: 1) The model achieves better fairness with larger A and
As while with slight sacrifice of the prediction performance; 2) The
model achieves better fairness with relatively larger subgraph size,
but this improvement becomes less significant when the subgraph
size is over 20. 3) When the number of neighbor-perturbations in
SMP(-) becomes larger, the predictions become more fair. These
observations generally match our expectation.

4.5 Ablation Study

In ablation study, we compare different variants of GEAR to verify
the effectiveness of different components. We first remove self-
perturbations, denote this variant as GEAR-NS. Next, we remove
neighbor-perturbations, denoted by GEAR-NN. We then remove all
the perturbations, denote this variant as GEAR-NP. We remove the
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counterfactual data augmentation module, just flip the sensitive
attribute values, and denote this variant as GEAR-NC. The model
performance of these variants is shown in Table 4. We observe that
all the variants perform worse than GEAR with respect to fairness.
These results validate the effectiveness of different components in
GEAR for learning fair node representations.

5 RELATED WORK

Graph representation learning. Many efforts have been made for
graph representation learning [16, 17, 41] in recent years. Among
them, neural network methods encode the attributes and graph
structure into a latent space as representations to capture useful
information. These methods include the well-known graph con-
volutional networks (GCNs) [24], variational graph auto-encoders
(VGAE) [23], GraphSAGE [18], and structural deep network embed-
ding (SDNE) [40]. Recently, subgraph-based methods [11, 21, 30]
utilize the correlation between central nodes and their sampled sub-
graphs to capture regional structure information and improve the
model scalability. Despite the success of these methods in different
domains, they may exhibit biases against certain sensitive groups.
Fairness on graphs. Fairness in machine learning has attracted
significant attention recently [5, 26, 39]. Typical fairness notions in-
clude group fairness [10, 13, 19, 47, 48], individual fairness [15, 35],
and counterfactual fairness [9, 25, 33, 42]. Recent works [1, 6, 8, 12,
14, 22] promote fairness in node representation learning. Most of
works are based on adversarial learning [3, 49], aiming to prevent
the learned representations from accurately predicting the corre-
sponding sensitive attribute. These works focus on removing the
statistical dependency between the sensitive attribute and predic-
tions elicited by the learned representations, but do not consider
the biases in the features, graph structure or labels due to the causal
effect from the sensitive attribute on them. Differently, few works
[1, 2] extend counterfactual fairness to graphs. However, most of
these works do not consider the potential biases brought by the
sensitive attribute of neighboring nodes, and the causal effect from
the sensitive attribute to other node features and graph structure.

6 CONCLUSION

In this paper, we propose a novel fairness notion of graph coun-
terfactual fairness, which explicitly considers the causal influence
from the neighboring nodes’ sensitive attribute to each node, as
well as the causal effect from the sensitive attribute to other features
and the graph structure. We propose a novel framework GEAR to
learn node representations which can achieve graph counterfactual
fairness and good prediction performance simultaneously. Specifi-
cally, in GEAR, we use a counterfactual data augmentation module
to generate counterfactuals with interventions on the sensitive
attribute of different nodes. GEAR then maximizes the similarity
between the node representations learned from the original data
and different counterfactuals. Experimental results on synthetic
and real-world graphs validate the effectiveness of our framework
with respect to both prediction performance and fairness.
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