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ABSTRACT

Graph embedding techniques are pivotal in real-world machine
learning tasks that operate on graph-structured data, such as so-
cial recommendation and protein structure modeling. Embeddings
are mostly performed on the node level for learning representa-
tions of each node. Since the formation of a graph is inevitably
affected by certain sensitive node attributes, the node embeddings
can inherit such sensitive information and introduce undesirable
biases in downstream tasks. Most existing works impose ad-hoc
constraints on the node embeddings to restrict their distributions
for unbiasedness/fairness, which however compromise the utility
of the resulting embeddings. In this paper, we propose a principled
new way for unbiased graph embedding by learning node embed-
dings from an underlying bias-free graph, which is not influenced
by sensitive node attributes. Motivated by this new perspective,
we propose two complementary methods for uncovering such an
underlying graph, with the goal of introducing minimum impact
on the utility of the embeddings. Both our theoretical justification
and extensive experimental comparisons against state-of-the-art
solutions demonstrate the effectiveness of our proposed methods.
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1 INTRODUCTION

Graph embedding is an indispensable building block in modern
machine learning approaches that operate on graph-structured data
[12, 13, 20, 35, 41]. Graph embedding methods map each node to a
low-dimensional embedding vector that reflects the nodes’ struc-
tural information from the observed connections in the given graph.
These node embeddings are then employed to solve downstream
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tasks, such as friend recommendation in social networks (i.e., link
prediction) or user interest prediction in e-commerce platforms (i.e.,
node classification) [32, 44].

However, the observed node connections in a graph are in-
evitably affected by certain sensitive node attributes (e.g., gender,
age, race, religion, etc., of users) [36], which are intended to be with-
held from many high-stake real-world applications. Without proper
intervention, the learned node embeddings can inherit undesired
sensitive information and lead to severe bias and fairness concerns
in downstream tasks [5, 37]. For example, in social network rec-
ommendation, if the users with the same gender are observed to
connect more often, the learned embeddings can record such infor-
mation and lead to gender bias by only recommending friends to a
user with the same gender identity. Biased node embeddings, when
applied in applications such as loan application [22] or criminal
justice [4], may unintentionally favor or disregard one demographic
group, causing unfair treatments. Besides, from the data privacy
perspective, this also opens up the possibility for extraction attacks
from the node embeddings [39]. These realistic and ethical concerns
set a higher bar for the graph embedding methods to learn both
effective and unbiased embeddings.

There is rich literature in enforcing unbiasedness/fairness in
algorithmic decision making, especially in classical classification
problems [8, 17, 48]. Unbiased graph embedding has just started
to attract research attentions in recent years. To date, the most
popular recipe for unbiased graph embedding is to add adversarial
regularizations to the loss function, such that the sensitive attributes
cannot be predicted from the learned embeddings [1, 5, 11, 26]. For
example, making a discriminator built on the node embeddings
fail to predict the sensitive attributes of the nodes. However, such
a regularization is only a necessary condition for debiasing node
embeddings, and it usually hurts the utility of the embeddings (a
trivial satisfying solution is to randomize the embeddings). Besides
these regularization-based solutions, Fairwalk [37] modifies the
random walk strategy in the node2vec algorithm [13] into two
levels: when choosing the next node on a path, it first randomly
selects a group defined by sensitive attributes, and then randomly
samples a reachable node from that group. DeBayes [6] proposes to
capture the sensitive information by a prior function in Conditional
Network Embedding [18], such that the learned embeddings will
not carry the sensitive information. Nevertheless, both Fairwalk
and DeBayes are based on specific graph embedding methods; and
how to generalize them to other types of graph embedding methods
such as GAT [43] or SGC [46] is not obvious.

Moving beyond the existing unbiased graph embedding para-
digm, in this paper, we propose a principled new framework for
the purpose with theoretical justifications. Our solution is to learn
node embeddings from an underlying bias-free graph whose edges
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are generated without influence from sensitive attributes. Specifi-
cally, as suggested by Pfeiffer et al. [36], the generation of a graph
can be treated as a two-phase procedure. In the first phase, the
nodes are connected with each other solely based on global graph
structural properties, such as degree distributions, diameter, edge
connectivity, clustering coefficients and etc., resulting in an under-
lying structural graph, free of influences from node attributes. In the
second phase, the connections are re-routed by the node attributes
(including both sensitive and non-sensitive attributes). For example,
in a social network, users in the same age group tend to be more
connected than those in different age groups, leading to the final
observed graph biased by the age attribute. Hence, our debiasing
principle is to filter out the influence from sensitive attributes on
the underlying structural graph to create a bias-free graph (that
only has non-sensitive or no attributes) from the observed graph,
and then perform embedding learning on the bias-free graph.

We propose two alternative ways to uncover the bias-free graph
from the given graph for learning node embeddings. The first is a
weighting-based method, which reweighs the graph reconstruction
based loss function with importance sampling on each edge, such
that the derived loss is as calculated on the bias-free graph, in ex-
pectation. This forms a sufficient condition for learning unbiased
node embeddings: when the reconstruction loss is indeed defined
on the corresponding bias-free graph, the resulting node embed-
dings are unbiased, since the bias-free graph is independent from
the sensitive attributes. The second way is via regularization, in
which we require that, with and without the sensitive attributes,
the probabilities of generating an edge between two nodes from
their embeddings are the same. In contrast, this forms a necessary
condition: when the learning happens on the bias-free graph, the
resulting embeddings should not differentiate if any sensitive at-
tributes participated in the generation of observed graph, i.e., the
predicted edge generation should be independent from the sensi-
tive attributes. These two methods are complementary and can be
combined to control the trade-off between utility and unbiasedness.

Comprehensive experiments on three datasets and several back-
bone graph embedding models prove the effectiveness of our pro-
posed framework. It achieves encouraging trade-off between unbi-
asedness and utility of the learned embeddings. Results also suggest
that the embeddings from our methods can lead to fair predictions
in the downstream applications. In Section 2, we discuss the related
work. We introduce the notation and preliminary knowledge on
unbiased graph embedding in Section 3. We formally define the
underlying bias-free graph in Section 4, and propose the unbiased
graph embedding methods in Section 5. We evaluate the proposed
methods in Section 6 and conclude in Section 7.

2 RELATED WORK

Graph embedding aims to map graph nodes to low-dimensional
vector representations such that the original graph can be recon-
structed from these node embeddings. Traditional approaches in-
clude matrix factorization and spectral clustering techniques [3, 31].
Recent years have witnessed numerous successful advances in deep
neural architectures for learning node embeddings. Deepwalk [35]
and node2vec [13] utilize a skip-gram [28] based objective to recover
the node context in random walks on a graph. Graph Convolutional
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Networks (GCNs) learn a node’s embedding by aggregating the
features from its neighbors supervised by node/edge labels in an
end-to-end manner. These techniques are widely applied in friend
or content recommendation [25, 47], protein structure prediction
[16], and many more.

Recent efforts on unbiased and fair graph embedding mainly
focus on pre-processing, algorithmic and post-processing steps in the
learning pipeline. The pre-processing solutions modify the train-
ing data to reduce the leakage of sensitive attributes [7]. Fairwalk
[37] is a typical pre-processing method which modifies the sam-
pling process of random walk on graphs by giving each group of
neighboring nodes an equal chance to be chosen. However, such
pre-processing may well shift the data distribution and leads the
trained model to inferior accuracy and fairness measures. The post-
processing methods employ discriminators to correct the learned
embeddings to satisfy specific fairness constraints [14]. However,
such ad-hoc post-correction is detached from model training which
can heavily degrade model’s prediction quality.

Our work falls into the category of algorithmic methods, which
modify the learning objective to prevent bias from the node embed-
dings. The most popular algorithmic solution is adding (adversarial)
regularizations as constraints to filter out sensitive information
[1, 5, 10]. Compositional fairness constraints [5] are realized by a
composition of discriminators for a set of sensitive attributes jointly
trained with the graph embedding model. Similarly, FairGNN [10]
adopts a fair discriminator but focuses on debiasing with missing
sensitive attribute values. Different from regularization based meth-
ods. DeBayes [6] reformulates the maximum likelihood estimation
with a biased prior which absorbs the information about sensitive
attributes; but this solution is heavily coupled with the specific em-
bedding method thus is hard to generalize. Our method differs from
these previous works by learning embeddings from an underlying
bias-free graph. We investigate the generation of the given graph
and remove the influence from sensitive attributes in the generative
process to uncover a bias-free graph for graph embedding.

Generative graph models [2, 36] focus on the statistical process
of graph generation by modeling the joint distributions of edges
conditioned on node attributes and graph structure. For instance,
Attributed Graph Model (AGM) [36] jointly models graph structure
and node attributes in a two step graph generation process. AGM
first exploits a structural generative graph model to compute un-
derlying edge probabilities based on the structural properties of
a given graph. It then learns attribute correlations among edges
from the observed graph and combines them with the structural
edge probabilities to sample edges conditioned on attribute values.
This process motivates us to uncover an underlying bias-free graph
by separating out sensitive attributes and only conditioning on
non-sensitive attributes for calculating edge probabilities.

3 PRELIMINARIES

In this section, we first introduce our notations and general graph
embedding concepts. Since the bias/fairness issues emerge most no-
tably in prediction tasks involving humans, such as loan application
or job recommendation, we will use user-related graphs as running
examples to discuss our criterion for unbiased graph embedding.
But we have to emphasize that this setting is only to illustrate the
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concept of unbiased graph embedding; and our proposed solution
can be applied to any graph data and selected sensitive attributes
to avoid biases in the learned embeddings.

3.1 Notation

Let G = (V, &, A) be an undirected, attributed graph with a set
of N nodes V, a set of edges & C V X V, and a set of N attribute
vectors A (one attribute vector for each node). We use (u,v) to
denote an edge between node u and node v. The number of at-
tributes on each node is K, and A = {aj,ay, ...,an}, where a, is
a K-dimensional attribute value vector for node u. We assume all
attributes are categorical and S; is the set of all possible values for at-
tribute i. ! For example, if node u is a user node, and the i-th attribute
is gender with possible values S; = {Female, Male, Unknown}, then
ay[i] = Female indicates u is a female. Without loss of generality,
we assume the first m attributes are sensitive, and a,[: m] and
ay[m :] stands for the m sensitive attributes and the rest of the
attributes that are non-sensitive, respectively.

In the problem of graph embedding learning, we aim to learn an
encoder ENC : V — R that maps each node u to a d-dimensional
embedding vector z, = ENC(u). We focus on the unsupervised
embedding setting which does not require node labels and the
embeddings are learned via the link prediction task. In this task, a
scoring function sg(zy, zy) with parameters 6 is defined to predict
the probability of an edge (u,v) € & between node u and node
v in the given graph. The loss for learning node embeddings and
parameters of the encoder and scoring function is defined by:

Z Ledge(se(zu,zv)), (1)

(u,v)e&

where L4, is a per-edge loss function on (4,0) € &. Such loss
functions generally aim to maximize the likelihood of observed
edges in the given graph, comparing to the negative samples of
node pairs where edges are not observed [13, 29].

3.2 Unbiased Graph Embedding

Given a node u, we consider its embedding z,, as unbiased with
respect to an attribute i if it is independent from the attribute. Prior
works evaluate such unbiasedness in the learned node embeddings
by their ability to predict the values of the sensitive attributes
[5, 6, 33]. For example, they first train a classifier on a subset of
node embeddings using their associated sensitive attribute values
as labels. If the classifier cannot correctly predict the sensitive
attribute values on the rest of node embeddings, one claims that
the embeddings have low bias. If the prediction performance equals
to that from random node embeddings, the learned embeddings
are considered bias-free. In fact, such classifiers are often used
as discriminators in adversarial methods where the classifier and
the embeddings are learned jointly: the embeddings are pushed in
directions where the classifier has low prediction accuracy [5, 26].

There are also studies that use fairness measures such as demo-
graphic parity or equalized opportunity to define the unbiasedness
of learned embeddings [6, 14]. But we need to clarify that such

!We acknowledge that there are cases where attribute values are continuous, where
discretization techniques can be applied.
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fairness measures can only evaluate the fairness of the final predic-
tion results for the intended downstream tasks, but cannot assess
whether the embeddings are biased by, or contain any information
about, sensitive attributes. In particular, fairness in a downstream
task is only a necessary condition for unbiased embedding learning,
not sufficient. The logic is obvious: unbiased embeddings can lead
to fair prediction results as no sensitive attribute information is
involved; but obtaining fairness in one task does not suggest the
embeddings themselves are unbiased, e.g., those embeddings can
still lead to unfair results in other tasks or even the fair results are
obtained by other means, such as post-processing of the prediction
results [45]. In Section 6, we will use both the prediction accuracy on
sensitive attributes and fairness measures on final tasks to evaluate
the effectiveness of our unbiased graph embedding methods.

4 EFFECT OF ATTRIBUTES IN GRAPH
GENERATION

In this section, we discuss the generation of an observed graph by
explicitly modeling the effects of node attributes in the process. In
particular, we assume that there is an underlying structural graph
behind an observed graph, whose edge distribution is governed
by the global graph structural properties such as degree distribu-
tions, diameter, and clustering coefficients. The attributes in A
will modify the structural edge distribution based on effects like
homophily in social networks, where links are rewired based on
the attribute similarities of the individuals [23, 27]. The modified
edge distribution is then used to generate the observed graph.

Formally, let M be a structural generative graph model and ©y
be the set of parameters that describe properties of the underly-
ing structural graph. In particular, this set of parameters @y is
independent from node attributes in A. We consider the class of
models that represent the set of possible edges in the graph as
binary random variables E,,, u € V,v € V:ie., the event E,, =1
indicates (u,v) € &. The model M assigns a probability to Ey;,
based on Opr, Ppr(Eyy = 1|®ap). Therefore, the edges of an un-
derlying structural graph Gy can be considered as samples from
Bernoulli(Pa;(Eyy = 1|®y1)). There are many such structural mod-
els M such as the Chung Lu model [9] and Kronecker Product
Graph Model [24]. Note that M does not consider node attributes
in the generation of the structural graph.

Now we involve the attributes in the generative process. Let
Cuv € {(ai,aj)|i €V, j € V} be arandom variable indicating the
attribute value combination of a randomly sampled pair of nodes u
and o, which is independent from ®,,. Note that Cy, instantiated
by different node pairs can be the same, as different nodes can
have the same attribute values. Py (Eyy = 1|Cyuy = ayy, Opp) is the
conditional probability of an edge (u,v) given the corresponding
attribute values on the incident nodes and structural parameters
Ou, where ayy = (ay, ay) denotes the observed attribute value
combination on nodes u and v. Based on Bayes’ Theorem, we have

Py (Eyy = 1|Cyp = ayo, Op) (2)
_ Py (Cup = ayylEyp = 1,001)Po (Eyy = 1|Op1)
Po(Cup = ayy|®p)

Py(Cyy = E,y=1,0
= Pyt (Euo = 118 0 (Cuo auf| uo M)
Po(Cup = ays|®Opn)

YueV,VoeV,
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Figure 1: Illustration of Unbiased Graph Embedding (UGE).
The color of the nodes represents the value of their at-
tributes, and different line styles suggest how the observed
edges are influenced by attributes in the generative process.

where the prior distribution on E; is specified by the structural
model M: ie., Po(Eyy = 1|Op1) = Ppr(Eyy = 1|©)p1), and the poste-
rior distribution accounts for the influences from the attribute value
combinations. Therefore, the edge probabilities used to generate
the observed graph with node attributes is a modification of those
from a structural graph defined by M and ©y. It is important to
clarify that the node attributes are given ahead of graph generation.
They are the input to the generative process, not the output. Hence,
Po(Cup = ayy|Euw = 1,0p) represents the probability that in all
edges, a specific attribute value combination ay; is observed on
an edge’s incident nodes. It is thus the same for all edges whose
incident nodes have the same attribute value combination.

To simplify the notation, let us define a function that maps the at-
tribute value combination ay, to the probability ratio that modifies
the structural graph into the observed graph by

Py (Cup = ayol|Eup = 1,0p)
Po(Cup = ays|®p)
Thus we can rewrite Eq (2) by
Po(Eyp = 1|Cup = ayy, O M)

R(ayy) = ,Yu e V,Vo e V.

= Pp(Eyo = 1|1Op)R(ayy). (3)

In this way, we explicitly model the effect of node attributes by
R(ayy), which modifies the structural graph distribution Pps(Ey,, =
1|®py) for generating the observed graph G.

5 UNBIASED GRAPH EMBEDDING FROM A
BIAS-FREE GRAPH

In this section, we describe our proposed methods for learning
unbiased node embeddings based on the generative modeling of
the effects of sensitive attributes in Section 4. In a nutshell, we aim
to get rid of the sensitive attributes and modify the structural edge
probabilities by only conditioning on non-sensitive attributes. This
gives us the edge probabilities of a bias-free graph, from which we
can learn unbiased node embeddings. We illustrate this principle
in Figure 1. Consider a world without the sensitive attributes, and
the attribute vector of node u becomes a,, = a, [m :], which only
(V.8 A)
as the corresponding new graph generated with a,, Vu € V, and
ayy = (ay, ay). Therefore, G is a bias-free graph without influence

include non-sensitive attributes in a,. We denote G =
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from sensitive attributes. If we can learn node embeddings from G
instead of G, the embeddings are guaranteed to be unbiased with
respect to sensitive attributes. Specifically, the edge probabilities
used for generating G can be written as

Ps(Eup = 1|éuv = Ay, Op) = Py (B = 1|®M)R(duv), (4)
where
Pé(éuv = ayy|Eyp = 1,0p)

P5(Cup = @uo|Om)

Cuv € {(a;,aj)|i € V,j € V} is the random variable indicating
attribute value combinations without sensitive attributes, and Py

ﬁ(duv) =

NueVYoedV, (5

indicates the distributions used in generating G. We name the
class of methods that learn embeddings from G as UGE, simply for
Unbiased Graph Embedding. Next we introduce two instances of
UGE. The first is UGE-W, which reweighs the per-edge loss such
that the total loss is from G in expectation. The second method is
UGE-R, which adds a regularization term to shape the embeddings
to satisfy the properties as those directly learned from G.

5.1 Weighting-Based UGE

To compose a loss based on G, we modify the loss function in Eq (1)
by reweighing the loss term on each edge as

R(auv)

Luce-w(G) = Rldug)’

Z Leage (s (zu, 20)) 57—

(u,0) €&

(6)
The following theorem shows that, in expectation, this new loss is
equivalent to the loss for learning node embeddings from G.

THEOREM 5.1. Given a graph G, and R(duo)/R(ayo), ¥(u,0) € &,
LucE-w (G) is an unbiased loss with respect to G.

ProoOF. We take expectation over the edge observations in G as
E|Luce-w(G)] (7)
R(auv) }

edge (s(zu, 20)) 55—

R(ayo)

R(auo)
R(ayy) . Euv}

(u,0)€&

D0 Ledge(s(zu 20)

ueV,oeV
Z 'Ledge(s(zu,zv)) E m};
ueV,0eV uo

Z Ledge(s(zu)zv)) " P5(Euo = 1|éuv = ayp, Op)
ueV,veV

Z Ledge (s(zu, Zv))} .

(u,0)e&

E

Po(Eup = 1|Cyp = @y, Op)

*
Il

The step marked by * uses Eq (3) and Eq (4). O

UGE-W is closely related to the idea of importance sampling
[21], which analyzes the edge distribution of the bias-free graph
G by observations from the given graph G. The only thing needed
for deploying UGE-W in existing graph embedding methods is
to calculate the weights R(ayy) /R(ayy). To estimate R(ay,), we
need the estimates of Py (Cyuy = ayo|Euy = 1,0p1) and Py (Cyy =
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ayuy|Opr). With maximum likelihood estimates on the observed
graph, we have

2,j e llaij = auo)

Po(Cuv = aup|Eup = 1,0p) = 1Sl ) (8)
Z'e(v, jeV I[aij = ayo]
Po(Cuv = aus|®p) ~ — N2 )
Similarly we can estimate R(d,y) by
; 2 neé laij = auol
P5(Cup = @uo|Euy = 1,0) = (2 |8~| > (10)
~ 5 Yiey.jey llaij = ayyl
P5(Cup = Guo|®Opm) ~ s N2 - (1

Note that the estimation of Py ((:’m, = ayy|Eyy = 1,0)) is based on
&, which is unfortunately from the implicit bias-free graph G and
unobservable. But we can approximate it with & in the following
way: after grouping node pairs by non-sensitive attribute value
combinations @y, the sensitive attributes only re-route the edges
but do not change the number of edges in each group. Thus,

2 (i jyeé Haij = auol
€]

_ ieV,jeViay=an, L0 J) € ]
&

~ YieV,jeV.a =iy, LL (L ) € E]
€|

_ X jeellaij = aul

1]

For node pairs with the same attribute value combination, Eq (8)-
Eq (11) only need to be calculated once instead of for each pair.
This can be done by first grouping node pairs by their attribute
value combinations and then perform estimation in each group.
However, when there are many attributes or attributes can take
many unique values, the estimates may become inaccurate since
there will be many groups and each group may only have a few
nodes. In this case, we can make independence assumptions among
the attributes. For example, by assuming they are independent,
the estimate for a specific attribute value combination over all
the K attributes becomes the product of K estimates, one for each
attribute. The non-sensitive attributes can be safely removed under
this assumption with ﬁ(&uv) = 1, and only R(ayy) needs to be
estimated as R(ayo) = [1}2; R(ayy|i]). Since UGE-W only assigns
pre-computed weights to the loss, the optimization based on it will
not increase the complexity of any graph embedding method.

Pé(éuv = Ayuo|Eup = 1,0p) = (12)

5.2 Regularization-Based UGE

We propose an alternative way for UGE which adds a regularization
term to the loss function that pushes the embeddings to satisfy
properties required by the bias-free graph G. Specifically, when
the node embeddings are learned from G, their produced edge
distributions should be the same with and without the sensitive
attributes. To enforce this condition, we need to regularize the
discrepancy between Py (Eyy = 1|Cuy = ayup, Op) and Py (Eyy =
1|Cuo = @yo, Opf) induced from the node embeddings. We can use
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the scores in sg(zy, zy) as a proxy to represent edge probability
produced by the embeddings of nodes u and v, i.e., high sg(zy, z,)
indicates high probability of an edge between u and v. We can
measure Py (Eyy = 1|Cyy = auw, ©p1) by aggregating node pairs
with the same attribute value combination to marginalize out the
effect of ©®); and focus on the influence from attributes as

Qay, = NL Z

auy .
wieV,jeV,aij=ayy

sg(zi, zj), (13)

where we use Qg to denote the approximated measure of Py (Ey =
1|Cyy = @uv, ©pr), and Ny, is the number of node pairs that has
the attribute value combination ay,. For pairs with the same at-
tribute value combination, Qq4,,, only needs to be calculated once.
Similarly, P3(Eyy = l|éuv = @y, ©)r) can be represented by Qg .
which can be obtained by aggregating the scores over pairs with
non-sensitive attribute value combination a,,. Finally, we use £,
distance between Qg,,, and Qg as the regularization

Luce-r(G) (14)
= Z Ledge(se(zu’ ZU)) + /1 Z “Qauv - Q&uv HZ >
(u,0) €& ueV,0eV

where A controls the trade-off between the per-edge losses and the
regularization.

In contrast to adversarial regularizations employed in prior work
[1,5, 11, 26], UGE-R takes a different perspective in regularizing the
discrepancy between graphs with and without sensitive attributes
induced from the embeddings. All previous regularization-based
methods impose the constraint on individual edges. We should note
that the regularization term is summed over all node pairs, which
has a complexity of O(N?) and can be costly to calculate. But in
practice, we can add the regulariztaion by only sampling batches
of node pairs in each iteration during model update, and use A to
compensate the strength of the regularization.

5.3 Combined Method

As hinted in section 1, UGE-W is a sufficient condition for unbiased
graph embedding, since it directly learns node embeddings from a
bias-free graph. UGE-R is a necessary condition, as it requires the
learned embeddings to satisfy the properties of a bias-free graph.
We can combine them to trade-off the debiasing effect and utility,

Lyce-c(G) (15)
R(dyo)

B Leage(so(zu.20)) +1 [Qavs = QoI -

(u%les ! R(am,) uE(VZ,Ue’V ?

where we use Lyge-c(G) to represent the combined method.
Luce-c(G) thus can leverage the advantages of both UGE-W and
UGE-R to achieve better trade-offs between the unbiasedness and
the utility of node embeddings in downstream tasks.

6 EXPERIMENTS

In this section, we study the empirical performance of UGE on
three benchmark datasets in comparison to several baselines. In
particular, we apply UGE to five popularly adopted backbone graph
embedding models to show its wide applicability. To evaluate the
debiasing performance, the node embeddings are firstly evaluated
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Table 1: Statistics of evaluation graph datasets.

Statistics Pokec-z Pokec-n MovieLens-1M
# of nodes 67,796 66, 569 9,992
#of edges 882,765 729,129 1, 000, 209
Density 0.00019 0.00016 0.01002

by their ability to predict the value of sensitive attributes, where
lower prediction performance means better debiasing effect. Then a
task-specific metric is used to evaluate the utility of the embeddings.
Besides, we also apply fairness metrics in the link prediction results
to demonstrate the potential of using embeddings from UGE to
achieve fairness in downstream tasks.

6.1 Setup

o Dataset. We use three public user-related graph datasets, Pokec-z,
Pokec-n and MovieLens-1M, where the users are associated with
sensitive attributes to be debiased. The statistics of these three
datasets are summarized in Table 1. Pokec? is an online social net-
work in Slovakia, which contains anonymized data of millions of
users [40]. Based on the provinces where users belong to, we used
two sampled datasets named as Pokec-z and Pokec-n adopted
from [10], which consist of users belonging to two major regions
of the corresponding provinces, respectively. In both datasets, each
user has a rich set of features, such as education, working field,
interest, etc.; and we include gender, region and age as (sensitive) at-
tributes whose effect will be studied in our evaluation. MovieLens-
1M? is a popular movie recommendation benchmark, which con-
tains around one million user ratings on movies [15]. In our exper-
iment, we construct a bipartite graph which consists of user and
movie nodes and rating relations as edges. The dataset includes
gender, occupation and age information about users, which we treat
as sensitive attributes to be studied. We do not consider movie
attributes, and thus when applying UGE, only user attributes are
counted for our debiasing purpose.

o Graph embedding models. UGE is a general recipe for learning
unbiased node embeddings, and can be applied to different graph
embedding models. We evaluate its effectiveness on five represen-
tative embedding models in the supervised setting with the link
prediction task. GCN [19], GAT [42], SGC [46] and node2vec [13]
are deep learning models, and we use dot product between two
node embeddings to predict edge probability between them and
apply cross-entropy loss for training. MF [30] applies matrix fac-
torization to the adjacency matrix. Each node is represented by an
embedding vector learned with pairwise logistic loss [38].

® Baselines. We consider three baselines for generating unbiased
node embeddings. (1) Fairwalk [37] is based on node2vec, which
modifies the pre-processing of random-walk generation by group-
ing neighboring nodes with their values of the sensitive attributes.
Instead of randomly jumping to a neighbor node, Fairwalk firstly
jumps to a group and then sample a node from that group for gen-
erating random walks. We extend it to GCN, GAT and SGC by
sampling random walks of size 1 to construct the corresponding
per-edge losses for these embedding models. (2) Compositional

Zhttps://snap.stanford.edu/data/soc-pokec.html
3https://grouplens.org/datasets/movielens/1m/
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Fairness Constraints (CFC) [5] is an algorithmic method, which
adds an adversarial regularizer to the loss by jointly training a com-
position of sensitive attribute discriminators. We apply CFC to all
graph embedding models and tune the weight on the regularizer,
where larger weights are expected to result in embeddings with less
bias but lower utility. (3) Random embeddings are considered as a
bias-free baseline. We generate random embeddings by uniformly
sampling the value of each embedding dimension from [0, 1].

It is worth mentioning that a recent work DeBayes [6], which is

based on the conditional network embedding (CNE) [18], includes
the sensitive information in a biased prior for learning unbiased
node embeddings. We did not include it since it is limited to CNE
and cannot be easily generalized to other graph embedding models.
Besides, we found the bias prior calculation in DeBayes does not
scale to large graphs where the utility of resulting node embeddings
is close to random. The original paper [6] only experimented with
two small graph datasets with less than 4K nodes and 100K edges.
By default, UGE follows Fairwalk to debias each of the sensitive
attributes separately in experiments without independence assump-
tion between attributes. CFC debiases all sensitive attributes jointly
as suggested in the original paper.*
o Configurations. For the Pokec-z and Pokec-n datasets, we apply
GCN, GAT, SGC and node2vec as embedding models and apply
debiasing methods on top of them. For each dataset, we construct
positive examples for each node by collecting Npos neighboring
nodes with Njos equal to its node degree, and randomly sample
Nneg = 20 X Npos unconnected nodes as negative examples. For
each node, we use 90% positive and negative examples for training
and reserve the rest 10% for testing. For Movielens-1M, we follow
common practices and use MF as the embedding model [5, 37]. We
do not evalaute Fairwalk on this dataset since there is no user-user
connections and fair random walk cannot be directly applied. The
rating matrix is binarized to create a bipartite user-movie graph
for MF. We use 80% ratings for training and 20% for testing. For all
datasets and embedding models, we set the node embedding size
to d = 16. We include more details about model implementations
and hyper-parameter tuning in Appendix A.

In Section 6.2, we compare the unbiasedness and utility of em-
beddings from different baselines. We evaluate fairness resulted
from the embeddings in Section 6.3. We study the unbiasedness-
utility trade-off in UGE and CFC in Section 6.4. Since there is a large
number of experimental settings composed of different datasets,
embedding models, and baselines, we report results from different
combinations in each section to maximize the coverage in each
component, and include the other results in Appendix B.

6.2 Unbiasedness and Utility Trade-off

We firstly compare the unbiasedness of node embeddings from
different debiasing methods. For each sensitive attribute, we train a
logistic classifier with 80% of the nodes using their embeddings as
features and attribute values as labels. We then use the classifier to
predict the attribute values on the rest of 20% nodes and evaluate
the performance with Micro-F1. The Micro-F1 score can be used
to measure the severity of bias in the embeddings, i.e., a lower

4UGE can debias either a single attribute or multiple attributes jointly by removing
one or more attributes in the bias-free graph.
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Table 2: Unbiasedness evaluated by Micro-F1 on Pokec-z and Pokec-n. Bold numbers highlight the best in each row.

Dataset Embedding Model Prediction Target No Debiasing Fairwalk CFC UGE-W UGE-R UGE-C Random
Gender (Micro-F1) 0.6232 0.6135 0.5840 0.6150 0.6094 0.5747  0.4921
Pokec-z GAT Region (Micro-F1) 0.8197 0.8080 0.7217  0.6784 0.7660  0.6356 0.4966
Age (Micro-F1) 0.0526 0.0522 0.0498  0.0431 0.0545 0.0429 0.0007
Gender (Micro-F1) 0.5241 0.5291 0.5241  0.5187 0.5095 0.5158 0.5078
Pokec-n node2vec Region (Micro-F1) 0.8690 0.8526  0.8423  0.8158  0.6975 0.6347  0.4987
Age (Micro-F1) 0.0626 0.0534 0.0426  0.0305  0.0294 0.0194  0.0002
@ Random  GAT {) Fairwalk A CFC «« UGE-W sl UGE-R sl UGE-C GCN without Debiasing GCN with UGE-C
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(c) MovieLens-1M with MF as embedding model
Figure 2: Trade-off between the utility (by NDCG@10) and
unbiasedness (by Micro-F1) of different methods. Random
embeddings give the lowest Micro-F1 (green line), and no de-
biasing gives the best NDCG@10 (blue line). An ideal debi-
asing method should locate itself at the upper left corner.

score means lower bias in the embeddings. Random embeddings
are expected to have the lowest Micro-F1 and embeddings without
debiasing should have the highest Micro-F1. We show the results
on Pokec-z with GAT as base embedding model and Pokec-n with
node2vec as the base embedding model in Table 2. From the results,
we see that embeddings from UGE methods always have the least
bias against all baselines with respect to all sensitive attributes and
datasets. This confirms the validity of learning unbiased embed-
dings from a bias-free graph. Besides, by combining UGE-W and
UGE-R, UGE-C usually produces the best debiasing effect, which
demonstrates the complementary effect of the two methods.
Besides the unbiasedness, the learned embeddings need to be
effective when applied to downstream tasks. In particular, we use
NDCG@10 evaluated on the link prediction task to measure the

neighbor nodes in the test set and randomly sampled negative
nodes. Then NDCG@10 is evaluated on this list with predicted edge
probabilities from the node embeddings. Figures 2a and 2b show
the unbiasedness as well as the utility of embeddings from different
methods in correspondence to the two datasets and embedding
models in Table 2. Figure 2c shows the results on MovieLens-1M
with MF as the embedding model.

In these plots, different embedding methods are represented by
different shapes in the figures, and we use different colors to differ-
entiate UGE-W, UGE-R and UGE-C. Random embeddings do not
have any bias and provide the lowest Micro-F1 (green line), while
embeddings without any debiasing gives the highest NDCG@10
(blue line). To achieve the best utility-unbiasedness trade-off, an
ideal debiasing method should locate itself at the upper left corner.
As shown in the figures, UGE based methods achieve the most en-
couraging trade-offs on these two contradicting objectives in most
cases. UGE-C can usually achieve better debiasing effect, without
sacrificing too much utility. UGE-W and UGE-R maintain high util-
ity but are less effective than the combined version. CFC can achieve
descent unbiasedness in embeddings, but the utility is seriously
compromised (such as in Pokec-z and MovieLens-1M). Fairwalk
unfortunately does not present an obvious debiasing effect.

To further visualize the debiasing effect of UGE, we use t-SNE
to project the node embeddings on Pokec-n to a 2-D space in Fig-
ure 3. The left plot shows the embeddings learned via GCN without
debiasing, and the right plot exhibits the debiased embeddings by
applying UGE-C on GCN to debias the region attibute. Node colors
represent the region value. Without debiasing, the embeddings are
clearly clustered to reflect the regions of nodes. With UGE-C, em-
beddings from different regions are blended together, showing the
effect of removing the region information from the embeddings.
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on Pokec-n with node2vec as the embedding model.

6.3 High-Level Fairness from Embeddings

We study whether the debiased embeddings can lead to fairness
in downstream tasks. We adopt two popular metrics—demographic
parity (DP) and equalized opportunity (EO) to evaluate the fairness
of link prediction results from the embeddings. DP requires that
the predictions are independent from sensitive attributes, measured
by the maximum difference of prediction rates between different
combinations of sensitive attribute values. EO measures the inde-
pendence between true positive rate (TPR) of predicted edges and
sensitive attributes. It is defined by the maximum difference of TPRs
between different sensitive attribute value combinations. For both
DP and EO, lower values suggest better fairness. We use the exact
formulation of DP and EO in [6] and use the sigmoid function to
convert the edge score for a pair of nodes to a probability.

We show the results on fairness vs., utility in Figure 4, which
are evaluated on each of the three sensitive attributes in Pokec-n
with node2vec as the embedding model. In each plot, x-axis is the
DP or EO and y-axis is the NDCG@10 on link prediction. Similar
to Figure 2, the ideal debiasing methods should locate at the upper
left corner. Except for EO on the age attribute where all methods
performs similarly, UGE methods can achieve significantly better
fairness than the baselines on both DP and EO, while maintaining
competitive performance on link prediction. UGE-C can achieve
the most fair predictions. This study shows UGE’s ability to achieve
fairness in downstream tasks by effectively eliminating bias in the
learned node embeddings.

6.4 Unbiasedness-Utility Tradeoff in UGE

Last but not least, we study the unbiasedness-utility trade-off in
UGE-C by tuning the weight on regularization. Although UGE-W
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Figure 5: Trade-off comparison between CFC and UGE-C on
Pokec-z with GAT as the embedding model.

itself can already achieve promising debiasing effect, we expect
that the added regularization from UGE-R can complement it for a
better trade-off. In particular, we tune the regularization weights
in both CFC and UGE-C and plot Micro-F1 (x-axis) vs. NDCG@10
(y-axis) from the resulting embeddings in Figure 5. Weight values
are marked on each point and also listed in Appendix A. The results
are obtained on Pokec-z with GAT as the embedding model and the
two figures correspond to debiasing gender and region, respectively.
With the same extent of bias measured by Micro-F1, embeddings
from UGE-C have a much higher utility as indicated by the vertical
grids. On the other hand, embeddings from UGE-C have much less
bias when the utility is the same as CFC, as indicated by horizontal
grids. This experiment proves a better trade-off achieved in UGE-
C, which is consistent with our designs on UGE-W and UGE-R.
UGE-W learns from a bias-free graph without any constraints,
and it is sufficient to achieve unbiasedness without hurting the
utility of the embeddings. UGE-R constrains the embeddings to
have the properties of those learned from a bias-free graph, which
is necessary for the embeddings to be unbiased.

7 CONCLUSION

We propose a principled new way for learning unbiased node em-
beddings from graphs biased by sensitive attributes. The idea is
to infer a bias-free graph where the influence from sensitive at-
tributes is removed, and then learn the node embeddings from
it. This new perspective motivates our design of UGE-W, UGE-R
and their combined methods UGE-C. Extensive experiment results
demonstrated strong debiasing effect from UGE as well as better
unbiasedness-utility trade-offs in downstream applications.

We expect the principle of UGE can inspire better future designs
for learning unbiased node embeddings from bias-free graphs. For
example, instead of modeling the generation process and perform
debiasing statistically, we can directly generate one or multiple
bias-free graphs from the underlying generative graph model, and
perform graph embedding on them. The regularization UGE-R can
be refined with better moment matching mechanism than min-
imizing the I distance. The weights in UGE-W can be modeled
and learned for better debiasing effects. Besides, it is possible and
promising to directly design unbiased GNN models that directly
aggregate edges based on the inferred bias-free graph.
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Figure 6: Unbiasedness and utility trade-off using different
regularization weights on UGE-C (x-axis). The left columns
shows unbiasedness (attribute prediction), and the right
columns shows utility (link prediction).

A EXPERIMENTAL SETTINGS

Here we introduce more details about the experiment setup and
model configurations for reproducibility.

For GCN-type models (GCN, GAT, SGC), we use two convolu-
tional layers with dimension d; = 64 and d2 = 16. For node2vec,
we set walk length to 1 which turns a general skip-gram loss to ob-
jective of the link prediction task. All the deep learning models are
trained via Adam optimizer with step size 0.01 for 800 epochs, and
we use a normalized weight decay 0.0005 to prevent overfitting. Our
proposed UGE methods and the baseline CFC require a regulariza-
tion weight to balance the task-specific objective and the debiasing
effect. For CFC, we report the result with the regularization weight
chosen from the set {1.0, 5.0, 10.0, 15.0, 25.0, 35.0, 45.0, 55.0, 65.0},
which finally is A = 55.0. For UGE, we test {0.1,0.3,0.5,0.7,0.9, 1.1,
1.3,1.5,1.7,1.9}, and report the performance when A = 0.5. The
regularization term in Eq (14) is summed over all node pairs and
can be costly to calculate. But empirically, M group pairs sampled
uniformly in each round of model update, where M is around 10%
of the number of node groups, can already yield promising results.
For evaluating the unbiasedness of the node embeddings, we use
implementations from scikit-learn [34] for classifier training and
evaluating Micro-F1.

B RESULTS

In Appendix B.1, we include additional experiment results to report
the trade-off between unbiasedness and utility on the complete
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Figure 7: Comparison among our proposed models on dif-
ferent embedding models. The left columns shows the unbi-
asedness (attribute prediction) and the right columns shows
the utility (link prediction).

set of embedding models on Pokec-z. In Appendix B.2, we show a
complete comparison among our proposed instances of unbiased
graph embedding UGE-W, UGE-R and UGE-C. In Appendix B.3,
we investigate the influence of the regularization weight on the
complete set of embedding models.

B.1 Additional Analysis on Undebiasedness

Table 3 summarizes the debiasing and utility performance of the
proposed method and baselines when using four graph neural net-
works on Pokec-z. Each line of attribute prediction result is followed
by the corresponding performance on link prediction. Generally,
UGE-W achieves the best link prediction performance and UGE-R
has better debiasing effect. Combining UGE-W with UGE-R pro-
duces UGE-C with better trade-off.

B.2 Ablation Study

Figure 7 presents the performance of three proposed model (UGE-
W, UGE-R and UGE-C) applied to four graph neural networks (GAT,
SGC, GCN and node2vec). We can clearly observe that in most
cases UGE-R has better debiasing effect compared with UGE-W,
while UGE-W can better maintain the utility for downstream link
prediction task. UGE-C as the combination of them indeed makes
the best of the both designs.

B.3 Unbiasedness-Utility Tradeoff in UGE

In addition to Section 6.4 where we only showed the effect of regu-
larization weight on Pokec-z with GAT as the embedding model,
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Table 3: The prediction performance of node embeddings learned on Pokec-z using four graph neural networks as embedding
models. In each row, we use bold to mark the best debiasedness on attribute prediction or utility on link prediction.

Debiasing Method
Dataset Embedding Model Prediction Target No Debiasing Fairwalk  CFC  UGE-W UGE-R UGE-C Random
Gender (Micro-F1) 0.6232 0.6135 0.5840  0.6150  0.6094 0.5747  0.4921
Link (NDCG@10) 0.3618 0.3280 0.2757  0.3554  0.3422  0.3376 0.0570
Region (Micro-F1) 0.8197 0.8080 0.7217  0.6784  0.7660 0.6356  0.4966
GAT Link (NDCG@10) 0.3618 0.3287 0.2757  0.3451  0.3547 0.3098 0.0570
Age (Micro-F1) 0.0526 0.0522 0.0498  0.0431  0.0545 0.0429  0.0007
Link (NDCG@10) 0.3618 0.3122 0.2757  0.3471 0.3205 0.3718  0.0570
Gender (Micro-F1) 0.6766 0.6631 0.6520 0.6822  0.6531  0.6596 0.4921
Link (NDCG@10) 0.4975 0.4461 0.4011  0.4938 0.4850  0.4765 0.0570
Region (Micro-F1) 0.7806 0.7820 0.7150 0.7402  0.7680  0.7323 0.4966
SGC Link (NDCG@10) 0.4975 0.4460 0.4011 0.4832 0.4799 0.4644 0.0570
Age (Micro-F1) 0.0621 0.0662 0.0654  0.0606  0.0529 0.0510  0.0007
Link (NDCG@10) 0.4975 0.4461 0.4011 0.4889 0.4694 0.4630 0.0570
Gender (Micro-F1) 0.5532 0.5589 0.5493  0.5306  0.5301 0.5162 0.4921
Pokec-z Link (NDCG@10) 0.3865 0.2807 0.3836  0.3851 0.3727  0.3488 0.0570
Region (Micro-F1) 0.7445 0.7616 0.7693  0.5800  0.6105 0.4951  0.4966
GCN Link (NDCG@10) 0.3865 0.2807 0.3836  0.3801 0.3360  0.3386 0.0570
Age (Micro-F1) 0.0425 0.0416 0.0391 0.0439  0.0409 0.0324  0.0007
Link (NDCG@10) 0.3865 0.2807 0.3836  0.3987  0.3550  0.3391 0.0570
Gender (Micro-F1) 0.5248 0.5347 0.5137  0.5171  0.4949 0.4982 0.4921
Link (NDCG@10) 0.5491 0.5120 0.5496 0.5430  0.5463  0.5206 0.0570
Region (Micro-F1) 0.8423 0.8462 0.8423  0.8012  0.6490 0.6372  0.4966
node2vec Link (NDCG@10) 0.5491 0.5120 0.5496 0.4816  0.5354  0.4506 0.0570
Age (Micro-F1) 0.0365 0.0404 0.0365  0.0200  0.0122 0.0068  0.0007
Link (NDCG@10) 0.5491 0.5120  0.5496 0.5173  0.5439  0.5002 0.0570
we now include a complete analysis on unbiasedness and utility trade-off: as the weight increases, we obtain a stronger debiasing

trade-off across embedding models in Figure 6. It clearly shows a effect with a cost of the utility on link prediction.
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