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ABSTRACT
Graph embedding techniques are pivotal in real-world machine

learning tasks that operate on graph-structured data, such as so-

cial recommendation and protein structure modeling. Embeddings

are mostly performed on the node level for learning representa-

tions of each node. Since the formation of a graph is inevitably

affected by certain sensitive node attributes, the node embeddings

can inherit such sensitive information and introduce undesirable

biases in downstream tasks. Most existing works impose ad-hoc

constraints on the node embeddings to restrict their distributions

for unbiasedness/fairness, which however compromise the utility

of the resulting embeddings. In this paper, we propose a principled

new way for unbiased graph embedding by learning node embed-

dings from an underlying bias-free graph, which is not influenced

by sensitive node attributes. Motivated by this new perspective,

we propose two complementary methods for uncovering such an

underlying graph, with the goal of introducing minimum impact

on the utility of the embeddings. Both our theoretical justification

and extensive experimental comparisons against state-of-the-art

solutions demonstrate the effectiveness of our proposed methods.
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1 INTRODUCTION
Graph embedding is an indispensable building block in modern

machine learning approaches that operate on graph-structured data

[12, 13, 20, 35, 41]. Graph embedding methods map each node to a

low-dimensional embedding vector that reflects the nodes’ struc-

tural information from the observed connections in the given graph.

These node embeddings are then employed to solve downstream
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tasks, such as friend recommendation in social networks (i.e., link

prediction) or user interest prediction in e-commerce platforms (i.e.,

node classification) [32, 44].

However, the observed node connections in a graph are in-

evitably affected by certain sensitive node attributes (e.g., gender,
age, race, religion, etc., of users) [36], which are intended to be with-

held frommany high-stake real-world applications. Without proper

intervention, the learned node embeddings can inherit undesired

sensitive information and lead to severe bias and fairness concerns

in downstream tasks [5, 37]. For example, in social network rec-

ommendation, if the users with the same gender are observed to

connect more often, the learned embeddings can record such infor-

mation and lead to gender bias by only recommending friends to a

user with the same gender identity. Biased node embeddings, when

applied in applications such as loan application [22] or criminal

justice [4], may unintentionally favor or disregard one demographic

group, causing unfair treatments. Besides, from the data privacy

perspective, this also opens up the possibility for extraction attacks

from the node embeddings [39]. These realistic and ethical concerns

set a higher bar for the graph embedding methods to learn both

effective and unbiased embeddings.

There is rich literature in enforcing unbiasedness/fairness in

algorithmic decision making, especially in classical classification

problems [8, 17, 48]. Unbiased graph embedding has just started

to attract research attentions in recent years. To date, the most

popular recipe for unbiased graph embedding is to add adversarial

regularizations to the loss function, such that the sensitive attributes

cannot be predicted from the learned embeddings [1, 5, 11, 26]. For

example, making a discriminator built on the node embeddings

fail to predict the sensitive attributes of the nodes. However, such

a regularization is only a necessary condition for debiasing node

embeddings, and it usually hurts the utility of the embeddings (a

trivial satisfying solution is to randomize the embeddings). Besides

these regularization-based solutions, Fairwalk [37] modifies the

random walk strategy in the node2vec algorithm [13] into two

levels: when choosing the next node on a path, it first randomly

selects a group defined by sensitive attributes, and then randomly

samples a reachable node from that group. DeBayes [6] proposes to

capture the sensitive information by a prior function in Conditional

Network Embedding [18], such that the learned embeddings will

not carry the sensitive information. Nevertheless, both Fairwalk

and DeBayes are based on specific graph embedding methods; and

how to generalize them to other types of graph embedding methods

such as GAT [43] or SGC [46] is not obvious.

Moving beyond the existing unbiased graph embedding para-

digm, in this paper, we propose a principled new framework for

the purpose with theoretical justifications. Our solution is to learn

node embeddings from an underlying bias-free graph whose edges
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are generated without influence from sensitive attributes. Specifi-

cally, as suggested by Pfeiffer et al. [36], the generation of a graph

can be treated as a two-phase procedure. In the first phase, the

nodes are connected with each other solely based on global graph

structural properties, such as degree distributions, diameter, edge

connectivity, clustering coefficients and etc., resulting in an under-
lying structural graph, free of influences from node attributes. In the

second phase, the connections are re-routed by the node attributes

(including both sensitive and non-sensitive attributes). For example,

in a social network, users in the same age group tend to be more

connected than those in different age groups, leading to the final

observed graph biased by the age attribute. Hence, our debiasing

principle is to filter out the influence from sensitive attributes on

the underlying structural graph to create a bias-free graph (that

only has non-sensitive or no attributes) from the observed graph,

and then perform embedding learning on the bias-free graph.

We propose two alternative ways to uncover the bias-free graph

from the given graph for learning node embeddings. The first is a

weighting-based method, which reweighs the graph reconstruction

based loss function with importance sampling on each edge, such

that the derived loss is as calculated on the bias-free graph, in ex-

pectation. This forms a sufficient condition for learning unbiased

node embeddings: when the reconstruction loss is indeed defined

on the corresponding bias-free graph, the resulting node embed-

dings are unbiased, since the bias-free graph is independent from

the sensitive attributes. The second way is via regularization, in

which we require that, with and without the sensitive attributes,

the probabilities of generating an edge between two nodes from

their embeddings are the same. In contrast, this forms a necessary
condition: when the learning happens on the bias-free graph, the

resulting embeddings should not differentiate if any sensitive at-

tributes participated in the generation of observed graph, i.e., the

predicted edge generation should be independent from the sensi-

tive attributes. These two methods are complementary and can be

combined to control the trade-off between utility and unbiasedness.

Comprehensive experiments on three datasets and several back-

bone graph embedding models prove the effectiveness of our pro-

posed framework. It achieves encouraging trade-off between unbi-

asedness and utility of the learned embeddings. Results also suggest

that the embeddings from our methods can lead to fair predictions
in the downstream applications. In Section 2, we discuss the related

work. We introduce the notation and preliminary knowledge on

unbiased graph embedding in Section 3. We formally define the

underlying bias-free graph in Section 4, and propose the unbiased

graph embedding methods in Section 5. We evaluate the proposed

methods in Section 6 and conclude in Section 7.

2 RELATED WORK
Graph embedding aims to map graph nodes to low-dimensional

vector representations such that the original graph can be recon-

structed from these node embeddings. Traditional approaches in-

clude matrix factorization and spectral clustering techniques [3, 31].

Recent years have witnessed numerous successful advances in deep

neural architectures for learning node embeddings. Deepwalk [35]

and node2vec [13] utilize a skip-gram [28] based objective to recover

the node context in random walks on a graph. Graph Convolutional

Networks (GCNs) learn a node’s embedding by aggregating the

features from its neighbors supervised by node/edge labels in an

end-to-end manner. These techniques are widely applied in friend

or content recommendation [25, 47], protein structure prediction

[16], and many more.

Recent efforts on unbiased and fair graph embedding mainly

focus on pre-processing, algorithmic and post-processing steps in the

learning pipeline. The pre-processing solutions modify the train-

ing data to reduce the leakage of sensitive attributes [7]. Fairwalk

[37] is a typical pre-processing method which modifies the sam-

pling process of random walk on graphs by giving each group of

neighboring nodes an equal chance to be chosen. However, such

pre-processing may well shift the data distribution and leads the

trained model to inferior accuracy and fairness measures. The post-
processing methods employ discriminators to correct the learned

embeddings to satisfy specific fairness constraints [14]. However,

such ad-hoc post-correction is detached from model training which

can heavily degrade model’s prediction quality.

Our work falls into the category of algorithmic methods, which

modify the learning objective to prevent bias from the node embed-

dings. The most popular algorithmic solution is adding (adversarial)

regularizations as constraints to filter out sensitive information

[1, 5, 10]. Compositional fairness constraints [5] are realized by a

composition of discriminators for a set of sensitive attributes jointly

trained with the graph embedding model. Similarly, FairGNN [10]

adopts a fair discriminator but focuses on debiasing with missing

sensitive attribute values. Different from regularization based meth-

ods. DeBayes [6] reformulates the maximum likelihood estimation

with a biased prior which absorbs the information about sensitive

attributes; but this solution is heavily coupled with the specific em-

bedding method thus is hard to generalize. Our method differs from

these previous works by learning embeddings from an underlying

bias-free graph. We investigate the generation of the given graph

and remove the influence from sensitive attributes in the generative

process to uncover a bias-free graph for graph embedding.

Generative graph models [2, 36] focus on the statistical process

of graph generation by modeling the joint distributions of edges

conditioned on node attributes and graph structure. For instance,

Attributed Graph Model (AGM) [36] jointly models graph structure

and node attributes in a two step graph generation process. AGM

first exploits a structural generative graph model to compute un-

derlying edge probabilities based on the structural properties of

a given graph. It then learns attribute correlations among edges

from the observed graph and combines them with the structural

edge probabilities to sample edges conditioned on attribute values.

This process motivates us to uncover an underlying bias-free graph

by separating out sensitive attributes and only conditioning on

non-sensitive attributes for calculating edge probabilities.

3 PRELIMINARIES
In this section, we first introduce our notations and general graph

embedding concepts. Since the bias/fairness issues emerge most no-

tably in prediction tasks involving humans, such as loan application

or job recommendation, we will use user-related graphs as running

examples to discuss our criterion for unbiased graph embedding.

But we have to emphasize that this setting is only to illustrate the
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concept of unbiased graph embedding; and our proposed solution

can be applied to any graph data and selected sensitive attributes

to avoid biases in the learned embeddings.

3.1 Notation
Let G = (V, E,A) be an undirected, attributed graph with a set

of 𝑁 nodes V , a set of edges E ⊆ V ×V , and a set of 𝑁 attribute

vectors A (one attribute vector for each node). We use (𝑢, 𝑣) to
denote an edge between node 𝑢 and node 𝑣 . The number of at-

tributes on each node is 𝐾 , and A = {𝒂1, 𝒂2, . . . , 𝒂𝑁 }, where 𝒂𝑢 is

a 𝐾-dimensional attribute value vector for node 𝑢. We assume all

attributes are categorical andS𝑖 is the set of all possible values for at-
tribute 𝑖 . 1 For example, if node𝑢 is a user node, and the 𝑖-th attribute

is gender with possible values S𝑖 = {Female,Male,Unknown}, then
𝒂𝑢 [𝑖] = Female indicates 𝑢 is a female. Without loss of generality,

we assume the first 𝑚 attributes are sensitive, and 𝑎𝑢 [: 𝑚] and
𝑎𝑢 [𝑚 :] stands for the 𝑚 sensitive attributes and the rest of the

attributes that are non-sensitive, respectively.

In the problem of graph embedding learning, we aim to learn an

encoder ENC : V → R𝑑 that maps each node 𝑢 to a 𝑑-dimensional

embedding vector 𝒛𝑢 = ENC(𝑢). We focus on the unsupervised
embedding setting which does not require node labels and the

embeddings are learned via the link prediction task. In this task, a

scoring function s𝜽 (𝒛𝑢 , 𝒛𝑣) with parameters 𝜽 is defined to predict

the probability of an edge (𝑢, 𝑣) ∈ E between node 𝑢 and node

𝑣 in the given graph. The loss for learning node embeddings and

parameters of the encoder and scoring function is defined by:∑
(𝑢,𝑣) ∈E

L𝑒𝑑𝑔𝑒 (s𝜽 (𝒛𝑢 , 𝒛𝑣)), (1)

where L𝑒𝑑𝑔𝑒 is a per-edge loss function on (𝑢, 𝑣) ∈ E. Such loss

functions generally aim to maximize the likelihood of observed

edges in the given graph, comparing to the negative samples of

node pairs where edges are not observed [13, 29].

3.2 Unbiased Graph Embedding
Given a node 𝑢, we consider its embedding 𝒛𝑢 as unbiased with

respect to an attribute 𝑖 if it is independent from the attribute. Prior

works evaluate such unbiasedness in the learned node embeddings

by their ability to predict the values of the sensitive attributes

[5, 6, 33]. For example, they first train a classifier on a subset of

node embeddings using their associated sensitive attribute values

as labels. If the classifier cannot correctly predict the sensitive

attribute values on the rest of node embeddings, one claims that

the embeddings have low bias. If the prediction performance equals

to that from random node embeddings, the learned embeddings

are considered bias-free. In fact, such classifiers are often used

as discriminators in adversarial methods where the classifier and

the embeddings are learned jointly: the embeddings are pushed in

directions where the classifier has low prediction accuracy [5, 26].

There are also studies that use fairness measures such as demo-

graphic parity or equalized opportunity to define the unbiasedness

of learned embeddings [6, 14]. But we need to clarify that such

1
We acknowledge that there are cases where attribute values are continuous, where

discretization techniques can be applied.

fairness measures can only evaluate the fairness of the final predic-

tion results for the intended downstream tasks, but cannot assess

whether the embeddings are biased by, or contain any information

about, sensitive attributes. In particular, fairness in a downstream

task is only a necessary condition for unbiased embedding learning,

not sufficient. The logic is obvious: unbiased embeddings can lead

to fair prediction results as no sensitive attribute information is

involved; but obtaining fairness in one task does not suggest the

embeddings themselves are unbiased, e.g., those embeddings can

still lead to unfair results in other tasks or even the fair results are

obtained by other means, such as post-processing of the prediction

results [45]. In Section 6, wewill use both the prediction accuracy on

sensitive attributes and fairness measures on final tasks to evaluate

the effectiveness of our unbiased graph embedding methods.

4 EFFECT OF ATTRIBUTES IN GRAPH
GENERATION

In this section, we discuss the generation of an observed graph by

explicitly modeling the effects of node attributes in the process. In

particular, we assume that there is an underlying structural graph
behind an observed graph, whose edge distribution is governed

by the global graph structural properties such as degree distribu-

tions, diameter, and clustering coefficients. The attributes in A
will modify the structural edge distribution based on effects like

homophily in social networks, where links are rewired based on

the attribute similarities of the individuals [23, 27]. The modified

edge distribution is then used to generate the observed graph.

Formally, let M be a structural generative graph model and Θ𝑀

be the set of parameters that describe properties of the underly-

ing structural graph. In particular, this set of parameters Θ𝑀 is

independent from node attributes in A. We consider the class of

models that represent the set of possible edges in the graph as

binary random variables 𝐸𝑢𝑣, 𝑢 ∈ V, 𝑣 ∈ V: i.e., the event 𝐸𝑢𝑣 = 1

indicates (𝑢, 𝑣) ∈ E. The model M assigns a probability to 𝐸𝑢𝑣
based on Θ𝑀 , 𝑃𝑀 (𝐸𝑢𝑣 = 1|Θ𝑀 ). Therefore, the edges of an un-

derlying structural graph G𝑀 can be considered as samples from

𝐵𝑒𝑟𝑛𝑜𝑢𝑙𝑙𝑖 (𝑃𝑀 (𝐸𝑢𝑣 = 1|Θ𝑀 )). There are many such structural mod-

els M such as the Chung Lu model [9] and Kronecker Product

Graph Model [24]. Note thatM does not consider node attributes

in the generation of the structural graph.

Now we involve the attributes in the generative process. Let

𝐶𝑢𝑣 ∈ {(𝒂𝑖 , 𝒂 𝑗 ) |𝑖 ∈ V, 𝑗 ∈ V} be a random variable indicating the

attribute value combination of a randomly sampled pair of nodes 𝑢

and 𝑣 , which is independent from Θ𝑀 . Note that 𝐶𝑢𝑣 instantiated

by different node pairs can be the same, as different nodes can

have the same attribute values. 𝑃𝑜 (𝐸𝑢𝑣 = 1|𝐶𝑢𝑣 = 𝒂𝑢𝑣,Θ𝑀 ) is the
conditional probability of an edge (𝑢, 𝑣) given the corresponding

attribute values on the incident nodes and structural parameters

Θ𝑀 , where 𝒂𝑢𝑣 = (𝒂𝑢 , 𝒂𝑣) denotes the observed attribute value

combination on nodes 𝑢 and 𝑣 . Based on Bayes’ Theorem, we have

𝑃𝑜 (𝐸𝑢𝑣 = 1|𝐶𝑢𝑣 = 𝒂𝑢𝑣,Θ𝑀 ) (2)

=
𝑃𝑜 (𝐶𝑢𝑣 = 𝒂𝑢𝑣 |𝐸𝑢𝑣 = 1,Θ𝑀 )𝑃𝑜 (𝐸𝑢𝑣 = 1|Θ𝑀 )

𝑃𝑜 (𝐶𝑢𝑣 = 𝒂𝑢𝑣 |Θ𝑀 )

= 𝑃𝑀 (𝐸𝑢𝑣 = 1|Θ𝑀 ) 𝑃𝑜 (𝐶𝑢𝑣 = 𝒂𝑢𝑣 |𝐸𝑢𝑣 = 1,Θ𝑀 )
𝑃𝑜 (𝐶𝑢𝑣 = 𝒂𝑢𝑣 |Θ𝑀 ) ,∀𝑢 ∈ V,∀𝑣 ∈ V,
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Figure 1: Illustration of Unbiased Graph Embedding (UGE).
The color of the nodes represents the value of their at-
tributes, and different line styles suggest how the observed
edges are influenced by attributes in the generative process.

where the prior distribution on 𝐸𝑢𝑣 is specified by the structural

model M: i.e., 𝑃𝑜 (𝐸𝑢𝑣 = 1|Θ𝑀 ) = 𝑃𝑀 (𝐸𝑢𝑣 = 1|Θ𝑀 ), and the poste-

rior distribution accounts for the influences from the attribute value

combinations. Therefore, the edge probabilities used to generate

the observed graph with node attributes is a modification of those

from a structural graph defined byM and Θ𝑀 . It is important to

clarify that the node attributes are given ahead of graph generation.

They are the input to the generative process, not the output. Hence,

𝑃𝑜 (𝐶𝑢𝑣 = 𝒂𝑢𝑣 |𝐸𝑢𝑣 = 1,Θ𝑀 ) represents the probability that in all

edges, a specific attribute value combination 𝒂𝑢𝑣 is observed on

an edge’s incident nodes. It is thus the same for all edges whose

incident nodes have the same attribute value combination.

To simplify the notation, let us define a function that maps the at-

tribute value combination 𝒂𝑢𝑣 to the probability ratio that modifies

the structural graph into the observed graph by

𝑅(𝒂𝑢𝑣) B
𝑃𝑜 (𝐶𝑢𝑣 = 𝒂𝑢𝑣 |𝐸𝑢𝑣 = 1,Θ𝑀 )

𝑃𝑜 (𝐶𝑢𝑣 = 𝒂𝑢𝑣 |Θ𝑀 ) ,∀𝑢 ∈ V,∀𝑣 ∈ V .

Thus we can rewrite Eq (2) by

𝑃𝑜 (𝐸𝑢𝑣 = 1|𝐶𝑢𝑣 = 𝒂𝑢𝑣,Θ𝑀 ) = 𝑃𝑀 (𝐸𝑢𝑣 = 1|Θ𝑀 )𝑅(𝒂𝑢𝑣) . (3)

In this way, we explicitly model the effect of node attributes by

𝑅(𝒂𝑢𝑣), which modifies the structural graph distribution 𝑃𝑀 (𝐸𝑢𝑣 =
1|Θ𝑀 ) for generating the observed graph G.

5 UNBIASED GRAPH EMBEDDING FROM A
BIAS-FREE GRAPH

In this section, we describe our proposed methods for learning

unbiased node embeddings based on the generative modeling of

the effects of sensitive attributes in Section 4. In a nutshell, we aim

to get rid of the sensitive attributes and modify the structural edge

probabilities by only conditioning on non-sensitive attributes. This

gives us the edge probabilities of a bias-free graph, from which we

can learn unbiased node embeddings. We illustrate this principle

in Figure 1. Consider a world without the sensitive attributes, and

the attribute vector of node 𝑢 becomes 𝒂̃𝑢 = 𝒂𝑢 [𝑚 :], which only

include non-sensitive attributes in 𝒂𝑢 . We denote
˜G = (V, ˜E, ˜A)

as the corresponding new graph generated with 𝒂̃𝑢 ,∀𝑢 ∈ V , and

𝒂̃𝑢𝑣 = (𝒂̃𝑢 , 𝒂̃𝑣). Therefore, ˜G is a bias-free graph without influence

from sensitive attributes. If we can learn node embeddings from
˜G

instead of G, the embeddings are guaranteed to be unbiased with

respect to sensitive attributes. Specifically, the edge probabilities

used for generating
˜G can be written as

𝑃𝑜 (𝐸𝑢𝑣 = 1|𝐶𝑢𝑣 = 𝒂̃𝑢𝑣,Θ𝑀 ) = 𝑃𝑀 (𝐸𝑢𝑣 = 1|Θ𝑀 )𝑅̃(𝒂̃𝑢𝑣), (4)

where

𝑅̃(𝒂̃𝑢𝑣) B
𝑃𝑜 (𝐶𝑢𝑣 = 𝒂̃𝑢𝑣 |𝐸𝑢𝑣 = 1,Θ𝑀 )

𝑃𝑜 (𝐶𝑢𝑣 = 𝒂̃𝑢𝑣 |Θ𝑀 )
,∀𝑢 ∈ V,∀𝑣 ∈ V, (5)

𝐶𝑢𝑣 ∈ {(𝒂̃𝑖 , 𝒂̃ 𝑗 ) |𝑖 ∈ V, 𝑗 ∈ V} is the random variable indicating

attribute value combinations without sensitive attributes, and 𝑃𝑜
indicates the distributions used in generating

˜G. We name the

class of methods that learn embeddings from
˜G as UGE, simply for

Unbiased Graph Embedding. Next we introduce two instances of

UGE. The first is UGE-W, which reweighs the per-edge loss such

that the total loss is from
˜G in expectation. The second method is

UGE-R, which adds a regularization term to shape the embeddings

to satisfy the properties as those directly learned from
˜G.

5.1 Weighting-Based UGE
To compose a loss based on

˜G, we modify the loss function in Eq (1)

by reweighing the loss term on each edge as

L𝑈𝐺𝐸−𝑊 (G) =
∑

(𝑢,𝑣) ∈E
L𝑒𝑑𝑔𝑒 (s𝜽 (𝒛𝑢 , 𝒛𝑣))

𝑅̃(𝒂̃𝑢𝑣)
𝑅(𝒂𝑢𝑣)

. (6)

The following theorem shows that, in expectation, this new loss is

equivalent to the loss for learning node embeddings from
˜G.

Theorem 5.1. Given a graph G, and 𝑅̃(𝒂̃𝑢𝑣)/𝑅(𝒂𝑢𝑣),∀(𝑢, 𝑣) ∈ E,
L𝑈𝐺𝐸−𝑊 (G) is an unbiased loss with respect to ˜G.

Proof. We take expectation over the edge observations in G as

E
[
L𝑈𝐺𝐸−𝑊 (G)

]
(7)

=E

[ ∑
(𝑢,𝑣) ∈E

L𝑒𝑑𝑔𝑒 (s(𝒛𝑢 , 𝒛𝑣))
𝑅̃(𝒂̃𝑢𝑣)
𝑅(𝒂𝑢𝑣)

]
=E

[ ∑
𝑢∈V,𝑣∈V

L𝑒𝑑𝑔𝑒 (s(𝒛𝑢 , 𝒛𝑣))
𝑅̃(𝒂̃𝑢𝑣)
𝑅(𝒂𝑢𝑣)

· 𝐸𝑢𝑣

]
=

∑
𝑢∈V,𝑣∈V

L𝑒𝑑𝑔𝑒 (s(𝒛𝑢 , 𝒛𝑣))
𝑅̃(𝒂̃𝑢𝑣)
𝑅(𝒂𝑢𝑣)

· 𝑃𝑜 (𝐸𝑢𝑣 = 1|𝐶𝑢𝑣 = 𝒂𝑢𝑣,Θ𝑀 )

∗ =
∑

𝑢∈V,𝑣∈V
L𝑒𝑑𝑔𝑒 (s(𝒛𝑢 , 𝒛𝑣)) · 𝑃𝑜 (𝐸𝑢𝑣 = 1|𝐶𝑢𝑣 = 𝒂̃𝑢𝑣,Θ𝑀 )

=E

[ ∑
(𝑢,𝑣) ∈ ˜E

L𝑒𝑑𝑔𝑒 (s(𝒛𝑢 , 𝒛𝑣))
]
.

The step marked by ∗ uses Eq (3) and Eq (4). □

UGE-W is closely related to the idea of importance sampling

[21], which analyzes the edge distribution of the bias-free graph

˜G by observations from the given graph G. The only thing needed

for deploying UGE-W in existing graph embedding methods is

to calculate the weights 𝑅̃(𝒂̃𝑢𝑣)/𝑅(𝒂𝑢𝑣). To estimate 𝑅(𝒂𝑢𝑣), we
need the estimates of 𝑃𝑜 (𝐶𝑢𝑣 = 𝒂𝑢𝑣 |𝐸𝑢𝑣 = 1,Θ𝑀 ) and 𝑃𝑜 (𝐶𝑢𝑣 =
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𝒂𝑢𝑣 |Θ𝑀 ). With maximum likelihood estimates on the observed

graph, we have

𝑃𝑜 (𝐶𝑢𝑣 = 𝒂𝑢𝑣 |𝐸𝑢𝑣 = 1,Θ𝑀 ) ≈
∑

(𝑖, 𝑗) ∈E I[𝒂𝑖 𝑗 = 𝒂𝑢𝑣]
|E | , (8)

𝑃𝑜 (𝐶𝑢𝑣 = 𝒂𝑢𝑣 |Θ𝑀 ) ≈
∑
𝑖∈V, 𝑗 ∈V I[𝒂𝑖 𝑗 = 𝒂𝑢𝑣]

𝑁 2
. (9)

Similarly we can estimate 𝑅̃(𝒂̃𝑢𝑣) by

𝑃𝑜 (𝐶𝑢𝑣 = 𝒂̃𝑢𝑣 |𝐸𝑢𝑣 = 1,Θ𝑀 ) ≈
∑

(𝑖, 𝑗) ∈ ˜E I[𝒂̃𝑖 𝑗 = 𝒂̃𝑢𝑣]

| ˜E|
, (10)

𝑃𝑜 (𝐶𝑢𝑣 = 𝒂̃𝑢𝑣 |Θ𝑀 ) ≈
∑
𝑖∈V, 𝑗 ∈V I[𝒂̃𝑖 𝑗 = 𝒂̃𝑢𝑣]

𝑁 2
. (11)

Note that the estimation of 𝑃𝑜 (𝐶𝑢𝑣 = 𝒂̃𝑢𝑣 |𝐸𝑢𝑣 = 1,Θ𝑀 ) is based on

˜E, which is unfortunately from the implicit bias-free graph
˜G and

unobservable. But we can approximate it with E in the following

way: after grouping node pairs by non-sensitive attribute value

combinations 𝒂̃𝑢𝑣 , the sensitive attributes only re-route the edges

but do not change the number of edges in each group. Thus,

𝑃𝑜 (𝐶𝑢𝑣 = 𝒂̃𝑢𝑣 |𝐸𝑢𝑣 = 1,Θ𝑀 ) ≈
∑

(𝑖, 𝑗) ∈ ˜E I[𝒂̃𝑖 𝑗 = 𝒂̃𝑢𝑣]

| ˜E|
(12)

=

∑
𝑖∈V, 𝑗 ∈V,𝒂̃𝑖 𝑗=𝒂̃𝑢𝑣 I[(𝑖, 𝑗) ∈ ˜E]

| ˜E|

=

∑
𝑖∈V, 𝑗 ∈V,𝒂̃𝑖 𝑗=𝒂̃𝑢𝑣 I[(𝑖, 𝑗) ∈ E]

| ˜E|

=

∑
(𝑖, 𝑗) ∈E I[𝒂̃𝑖 𝑗 = 𝒂̃𝑢𝑣]

|E | .

For node pairs with the same attribute value combination, Eq (8)-

Eq (11) only need to be calculated once instead of for each pair.

This can be done by first grouping node pairs by their attribute

value combinations and then perform estimation in each group.

However, when there are many attributes or attributes can take

many unique values, the estimates may become inaccurate since

there will be many groups and each group may only have a few

nodes. In this case, we can make independence assumptions among

the attributes. For example, by assuming they are independent,

the estimate for a specific attribute value combination over all

the 𝐾 attributes becomes the product of 𝐾 estimates, one for each

attribute. The non-sensitive attributes can be safely removed under

this assumption with 𝑅̃(𝒂̃𝑢𝑣) = 1, and only 𝑅(𝒂𝑢𝑣) needs to be

estimated as 𝑅(𝒂𝑢𝑣) =
∏𝑚

𝑖=1 𝑅(𝒂𝑢𝑣 [𝑖]). Since UGE-W only assigns

pre-computed weights to the loss, the optimization based on it will

not increase the complexity of any graph embedding method.

5.2 Regularization-Based UGE
We propose an alternative way for UGE which adds a regularization

term to the loss function that pushes the embeddings to satisfy

properties required by the bias-free graph
˜G. Specifically, when

the node embeddings are learned from
˜G, their produced edge

distributions should be the same with and without the sensitive

attributes. To enforce this condition, we need to regularize the

discrepancy between 𝑃𝑜 (𝐸𝑢𝑣 = 1|𝐶𝑢𝑣 = 𝒂𝑢𝑣,Θ𝑀 ) and 𝑃𝑜 (𝐸𝑢𝑣 =

1|𝐶𝑢𝑣 = 𝒂̃𝑢𝑣,Θ𝑀 ) induced from the node embeddings. We can use

the scores in s𝜽 (𝒛𝑢 , 𝒛𝑣) as a proxy to represent edge probability

produced by the embeddings of nodes 𝑢 and 𝑣 , i.e., high s𝜽 (𝒛𝑢 , 𝒛𝑣)
indicates high probability of an edge between 𝑢 and 𝑣 . We can

measure 𝑃𝑜 (𝐸𝑢𝑣 = 1|𝐶𝑢𝑣 = 𝒂𝑢𝑣,Θ𝑀 ) by aggregating node pairs

with the same attribute value combination to marginalize out the

effect of Θ𝑀 and focus on the influence from attributes as

𝑄𝒂𝑢𝑣 =
1

𝑁𝒂𝑢𝑣

∑
𝑖∈V, 𝑗 ∈V,𝒂𝑖 𝑗=𝒂𝑢𝑣

s𝜽 (𝒛𝑖 , 𝒛 𝑗 ), (13)

wherewe use𝑄𝒂𝑢𝑣 to denote the approximatedmeasure of 𝑃𝑜 (𝐸𝑢𝑣 =
1|𝐶𝑢𝑣 = 𝒂𝑢𝑣,Θ𝑀 ), and 𝑁𝒂𝑢𝑣 is the number of node pairs that has

the attribute value combination 𝒂𝑢𝑣 . For pairs with the same at-

tribute value combination, 𝑄𝒂𝑢𝑣 only needs to be calculated once.

Similarly, 𝑃𝑜 (𝐸𝑢𝑣 = 1|𝐶𝑢𝑣 = 𝒂̃𝑢𝑣,Θ𝑀 ) can be represented by 𝑄𝒂̃𝑢𝑣 ,

which can be obtained by aggregating the scores over pairs with

non-sensitive attribute value combination 𝒂̃𝑢𝑣 . Finally, we use ℓ2
distance between 𝑄𝒂𝑢𝑣 and 𝑄𝒂̃𝑢𝑣 as the regularization

L𝑈𝐺𝐸−𝑅 (G) (14)

=
∑

(𝑢,𝑣) ∈E
L𝑒𝑑𝑔𝑒 (s𝜽 (𝒛𝑢 , 𝒛𝑣)) + 𝜆

∑
𝑢∈V,𝑣∈V



𝑄𝒂𝑢𝑣 −𝑄𝒂̃𝑢𝑣




2
,

where 𝜆 controls the trade-off between the per-edge losses and the

regularization.

In contrast to adversarial regularizations employed in prior work

[1, 5, 11, 26], UGE-R takes a different perspective in regularizing the

discrepancy between graphs with and without sensitive attributes

induced from the embeddings. All previous regularization-based

methods impose the constraint on individual edges. We should note

that the regularization term is summed over all node pairs, which

has a complexity of 𝑂 (𝑁 3) and can be costly to calculate. But in

practice, we can add the regulariztaion by only sampling batches

of node pairs in each iteration during model update, and use 𝜆 to

compensate the strength of the regularization.

5.3 Combined Method
As hinted in section 1, UGE-W is a sufficient condition for unbiased

graph embedding, since it directly learns node embeddings from a

bias-free graph. UGE-R is a necessary condition, as it requires the

learned embeddings to satisfy the properties of a bias-free graph.

We can combine them to trade-off the debiasing effect and utility,

L𝑈𝐺𝐸−𝐶 (G) (15)

=
∑

(𝑢,𝑣) ∈E
L𝑒𝑑𝑔𝑒 (s𝜽 (𝒛𝑢 , 𝒛𝑣))

𝑅̃(𝒂̃𝑢𝑣)
𝑅(𝒂𝑢𝑣)

+ 𝜆
∑

𝑢∈V,𝑣∈V



𝑄𝒂𝑢𝑣 −𝑄𝒂̃𝑢𝑣




2
,

where we use L𝑈𝐺𝐸−𝐶 (G) to represent the combined method.

L𝑈𝐺𝐸−𝐶 (G) thus can leverage the advantages of both UGE-W and

UGE-R to achieve better trade-offs between the unbiasedness and

the utility of node embeddings in downstream tasks.

6 EXPERIMENTS
In this section, we study the empirical performance of UGE on

three benchmark datasets in comparison to several baselines. In

particular, we apply UGE to five popularly adopted backbone graph
embedding models to show its wide applicability. To evaluate the

debiasing performance, the node embeddings are firstly evaluated
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Table 1: Statistics of evaluation graph datasets.

Statistics Pokec-z Pokec-n MovieLens-1M

# of nodes 67, 796 66, 569 9, 992

# of edges 882, 765 729, 129 1, 000, 209

Density 0.00019 0.00016 0.01002

by their ability to predict the value of sensitive attributes, where

lower prediction performance means better debiasing effect. Then a

task-specific metric is used to evaluate the utility of the embeddings.

Besides, we also apply fairness metrics in the link prediction results

to demonstrate the potential of using embeddings from UGE to

achieve fairness in downstream tasks.

6.1 Setup
•Dataset.We use three public user-related graph datasets, Pokec-z,

Pokec-n and MovieLens-1M, where the users are associated with

sensitive attributes to be debiased. The statistics of these three

datasets are summarized in Table 1. Pokec
2
is an online social net-

work in Slovakia, which contains anonymized data of millions of

users [40]. Based on the provinces where users belong to, we used

two sampled datasets named as Pokec-z and Pokec-n adopted

from [10], which consist of users belonging to two major regions

of the corresponding provinces, respectively. In both datasets, each

user has a rich set of features, such as education, working field,

interest, etc.; and we include gender, region and age as (sensitive) at-
tributes whose effect will be studied in our evaluation.MovieLens-
1M3

is a popular movie recommendation benchmark, which con-

tains around one million user ratings on movies [15]. In our exper-

iment, we construct a bipartite graph which consists of user and

movie nodes and rating relations as edges. The dataset includes

gender, occupation and age information about users, which we treat

as sensitive attributes to be studied. We do not consider movie

attributes, and thus when applying UGE, only user attributes are

counted for our debiasing purpose.

•Graph embeddingmodels. UGE is a general recipe for learning

unbiased node embeddings, and can be applied to different graph

embedding models. We evaluate its effectiveness on five represen-

tative embedding models in the supervised setting with the link

prediction task.GCN [19],GAT [42], SGC [46] and node2vec [13]
are deep learning models, and we use dot product between two

node embeddings to predict edge probability between them and

apply cross-entropy loss for training.MF [30] applies matrix fac-

torization to the adjacency matrix. Each node is represented by an

embedding vector learned with pairwise logistic loss [38].

• Baselines.We consider three baselines for generating unbiased

node embeddings. (1) Fairwalk [37] is based on node2vec, which

modifies the pre-processing of random-walk generation by group-

ing neighboring nodes with their values of the sensitive attributes.

Instead of randomly jumping to a neighbor node, Fairwalk firstly

jumps to a group and then sample a node from that group for gen-

erating random walks. We extend it to GCN, GAT and SGC by

sampling random walks of size 1 to construct the corresponding

per-edge losses for these embedding models. (2) Compositional

2
https://snap.stanford.edu/data/soc-pokec.html

3
https://grouplens.org/datasets/movielens/1m/

Fairness Constraints (CFC) [5] is an algorithmic method, which

adds an adversarial regularizer to the loss by jointly training a com-

position of sensitive attribute discriminators. We apply CFC to all

graph embedding models and tune the weight on the regularizer,

where larger weights are expected to result in embeddings with less

bias but lower utility. (3) Random embeddings are considered as a

bias-free baseline. We generate random embeddings by uniformly

sampling the value of each embedding dimension from [0, 1].

It is worth mentioning that a recent work DeBayes [6], which is

based on the conditional network embedding (CNE) [18], includes

the sensitive information in a biased prior for learning unbiased

node embeddings. We did not include it since it is limited to CNE

and cannot be easily generalized to other graph embedding models.

Besides, we found the bias prior calculation in DeBayes does not

scale to large graphs where the utility of resulting node embeddings

is close to random. The original paper [6] only experimented with

two small graph datasets with less than 4𝐾 nodes and 100𝐾 edges.

By default, UGE follows Fairwalk to debias each of the sensitive

attributes separately in experiments without independence assump-

tion between attributes. CFC debiases all sensitive attributes jointly

as suggested in the original paper.
4

• Configurations. For the Pokec-z and Pokec-n datasets, we apply

GCN, GAT, SGC and node2vec as embedding models and apply

debiasing methods on top of them. For each dataset, we construct

positive examples for each node by collecting 𝑁𝑝𝑜𝑠 neighboring

nodes with 𝑁𝑝𝑜𝑠 equal to its node degree, and randomly sample

𝑁𝑛𝑒𝑔 = 20 × 𝑁𝑝𝑜𝑠 unconnected nodes as negative examples. For

each node, we use 90% positive and negative examples for training

and reserve the rest 10% for testing. For Movielens-1M, we follow

common practices and use MF as the embedding model [5, 37]. We

do not evalaute Fairwalk on this dataset since there is no user-user

connections and fair random walk cannot be directly applied. The

rating matrix is binarized to create a bipartite user-movie graph

for MF. We use 80% ratings for training and 20% for testing. For all

datasets and embedding models, we set the node embedding size

to 𝑑 = 16. We include more details about model implementations

and hyper-parameter tuning in Appendix A.

In Section 6.2, we compare the unbiasedness and utility of em-

beddings from different baselines. We evaluate fairness resulted

from the embeddings in Section 6.3. We study the unbiasedness-

utility trade-off in UGE and CFC in Section 6.4. Since there is a large

number of experimental settings composed of different datasets,

embedding models, and baselines, we report results from different

combinations in each section to maximize the coverage in each

component, and include the other results in Appendix B.

6.2 Unbiasedness and Utility Trade-off
We firstly compare the unbiasedness of node embeddings from

different debiasing methods. For each sensitive attribute, we train a

logistic classifier with 80% of the nodes using their embeddings as

features and attribute values as labels. We then use the classifier to

predict the attribute values on the rest of 20% nodes and evaluate

the performance with Micro-F1. The Micro-F1 score can be used

to measure the severity of bias in the embeddings, i.e., a lower

4
UGE can debias either a single attribute or multiple attributes jointly by removing

one or more attributes in the bias-free graph.
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Table 2: Unbiasedness evaluated by Micro-F1 on Pokec-z and Pokec-n. Bold numbers highlight the best in each row.

Dataset Embedding Model Prediction Target No Debiasing Fairwalk CFC UGE-W UGE-R UGE-C Random

Pokec-z GAT

Gender (Micro-F1) 0.6232 0.6135 0.5840 0.6150 0.6094 0.5747 0.4921

Region (Micro-F1) 0.8197 0.8080 0.7217 0.6784 0.7660 0.6356 0.4966

Age (Micro-F1) 0.0526 0.0522 0.0498 0.0431 0.0545 0.0429 0.0007

Pokec-n node2vec

Gender (Micro-F1) 0.5241 0.5291 0.5241 0.5187 0.5095 0.5158 0.5078

Region (Micro-F1) 0.8690 0.8526 0.8423 0.8158 0.6975 0.6347 0.4987

Age (Micro-F1) 0.0626 0.0534 0.0426 0.0305 0.0294 0.0194 0.0002
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(a) Pokec-z with GAT as embedding model
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(c) MovieLens-1M with MF as embedding model
Figure 2: Trade-off between the utility (by NDCG@10) and
unbiasedness (by Micro-F1) of different methods. Random
embeddings give the lowest Micro-F1 (green line), and no de-
biasing gives the best NDCG@10 (blue line). An ideal debi-
asing method should locate itself at the upper left corner.

score means lower bias in the embeddings. Random embeddings

are expected to have the lowest Micro-F1 and embeddings without

debiasing should have the highest Micro-F1. We show the results

on Pokec-z with GAT as base embedding model and Pokec-n with

node2vec as the base embedding model in Table 2. From the results,

we see that embeddings from UGE methods always have the least

bias against all baselines with respect to all sensitive attributes and

datasets. This confirms the validity of learning unbiased embed-

dings from a bias-free graph. Besides, by combining UGE-W and

UGE-R, UGE-C usually produces the best debiasing effect, which

demonstrates the complementary effect of the two methods.

Besides the unbiasedness, the learned embeddings need to be

effective when applied to downstream tasks. In particular, we use

NDCG@10 evaluated on the link prediction task to measure the

GCN without Debiasing GCN with UGE-C

Figure 3: Visualization of embeddings learned on Pokec-n.
Node color represents the region of the nodes.

utility of the embeddings. Specifically, for each target node, we

create a candidate list of 100 nodes that includes all its observed

neighbor nodes in the test set and randomly sampled negative

nodes. Then NDCG@10 is evaluated on this list with predicted edge

probabilities from the node embeddings. Figures 2a and 2b show

the unbiasedness as well as the utility of embeddings from different

methods in correspondence to the two datasets and embedding

models in Table 2. Figure 2c shows the results on MovieLens-1M

with MF as the embedding model.

In these plots, different embedding methods are represented by

different shapes in the figures, and we use different colors to differ-

entiate UGE-W, UGE-R and UGE-C. Random embeddings do not

have any bias and provide the lowest Micro-F1 (green line), while

embeddings without any debiasing gives the highest NDCG@10

(blue line). To achieve the best utility-unbiasedness trade-off, an

ideal debiasing method should locate itself at the upper left corner.

As shown in the figures, UGE based methods achieve the most en-

couraging trade-offs on these two contradicting objectives in most

cases. UGE-C can usually achieve better debiasing effect, without

sacrificing too much utility. UGE-W and UGE-R maintain high util-

ity but are less effective than the combined version. CFC can achieve

descent unbiasedness in embeddings, but the utility is seriously

compromised (such as in Pokec-z and MovieLens-1M). Fairwalk

unfortunately does not present an obvious debiasing effect.

To further visualize the debiasing effect of UGE, we use t-SNE

to project the node embeddings on Pokec-n to a 2-D space in Fig-

ure 3. The left plot shows the embeddings learned via GCN without

debiasing, and the right plot exhibits the debiased embeddings by

applying UGE-C on GCN to debias the region attibute. Node colors

represent the region value. Without debiasing, the embeddings are

clearly clustered to reflect the regions of nodes. With UGE-C, em-

beddings from different regions are blended together, showing the

effect of removing the region information from the embeddings.



WWW ’22, April 25–29, 2022, Virtual Event, Lyon, France Wang, et al.

0.002 0.004 0.006
DPGender

0.1
0.2
0.3
0.4
0.5
0.6

Lin
k 

Pr
ed

ict
io

n 
 (N

DC
G@

10
)

0.0 0.2 0.4 0.6
EOGender

Random
node2vec

Fairwalk
CFC

UGE-W
UGE-R

UGE-C

0.00 0.02 0.04 0.06 0.08
DPRegion

0.1

0.2

0.3

0.4

0.5

0.6

Lin
k 

Pr
ed

ict
io

n 
 (N

DC
G@

10
)

0.1 0.2 0.3 0.4
EORegion

0.00 0.05 0.10 0.15 0.20
DPAge

0.2

0.4

0.6

Lin
k 

Pr
ed

ict
io

n 
 (N

DC
G@

10
)

0.2 0.4 0.6 0.8 1.0
EOAge

Figure 4: Fairness metrics evaluated on link prediction task
on Pokec-n with node2vec as the embedding model.

6.3 High-Level Fairness from Embeddings
We study whether the debiased embeddings can lead to fairness

in downstream tasks. We adopt two popular metrics—demographic
parity (DP) and equalized opportunity (EO) to evaluate the fairness

of link prediction results from the embeddings. DP requires that

the predictions are independent from sensitive attributes, measured

by the maximum difference of prediction rates between different

combinations of sensitive attribute values. EO measures the inde-

pendence between true positive rate (TPR) of predicted edges and

sensitive attributes. It is defined by the maximum difference of TPRs

between different sensitive attribute value combinations. For both

DP and EO, lower values suggest better fairness. We use the exact

formulation of DP and EO in [6] and use the sigmoid function to

convert the edge score for a pair of nodes to a probability.

We show the results on fairness vs., utility in Figure 4, which

are evaluated on each of the three sensitive attributes in Pokec-n

with node2vec as the embedding model. In each plot, x-axis is the

DP or EO and y-axis is the NDCG@10 on link prediction. Similar

to Figure 2, the ideal debiasing methods should locate at the upper

left corner. Except for EO on the age attribute where all methods

performs similarly, UGE methods can achieve significantly better

fairness than the baselines on both DP and EO, while maintaining

competitive performance on link prediction. UGE-C can achieve

the most fair predictions. This study shows UGE’s ability to achieve

fairness in downstream tasks by effectively eliminating bias in the

learned node embeddings.

6.4 Unbiasedness-Utility Tradeoff in UGE
Last but not least, we study the unbiasedness-utility trade-off in

UGE-C by tuning the weight on regularization. Although UGE-W
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Figure 5: Trade-off comparison between CFC and UGE-C on
Pokec-z with GAT as the embedding model.

itself can already achieve promising debiasing effect, we expect

that the added regularization from UGE-R can complement it for a

better trade-off. In particular, we tune the regularization weights

in both CFC and UGE-C and plot Micro-F1 (x-axis) vs. NDCG@10

(y-axis) from the resulting embeddings in Figure 5. Weight values

are marked on each point and also listed in Appendix A. The results

are obtained on Pokec-z with GAT as the embedding model and the

two figures correspond to debiasing gender and region, respectively.
With the same extent of bias measured by Micro-F1, embeddings

from UGE-C have a much higher utility as indicated by the vertical

grids. On the other hand, embeddings from UGE-C have much less

bias when the utility is the same as CFC, as indicated by horizontal

grids. This experiment proves a better trade-off achieved in UGE-

C, which is consistent with our designs on UGE-W and UGE-R.

UGE-W learns from a bias-free graph without any constraints,

and it is sufficient to achieve unbiasedness without hurting the

utility of the embeddings. UGE-R constrains the embeddings to

have the properties of those learned from a bias-free graph, which

is necessary for the embeddings to be unbiased.

7 CONCLUSION
We propose a principled new way for learning unbiased node em-

beddings from graphs biased by sensitive attributes. The idea is

to infer a bias-free graph where the influence from sensitive at-

tributes is removed, and then learn the node embeddings from

it. This new perspective motivates our design of UGE-W, UGE-R

and their combined methods UGE-C. Extensive experiment results

demonstrated strong debiasing effect from UGE as well as better

unbiasedness-utility trade-offs in downstream applications.

We expect the principle of UGE can inspire better future designs

for learning unbiased node embeddings from bias-free graphs. For

example, instead of modeling the generation process and perform

debiasing statistically, we can directly generate one or multiple

bias-free graphs from the underlying generative graph model, and

perform graph embedding on them. The regularization UGE-R can

be refined with better moment matching mechanism than min-

imizing the 𝑙2 distance. The weights in UGE-W can be modeled

and learned for better debiasing effects. Besides, it is possible and

promising to directly design unbiased GNN models that directly

aggregate edges based on the inferred bias-free graph.
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Figure 6: Unbiasedness and utility trade-off using different
regularization weights on UGE-C (x-axis). The left columns
shows unbiasedness (attribute prediction), and the right
columns shows utility (link prediction).

A EXPERIMENTAL SETTINGS
Here we introduce more details about the experiment setup and

model configurations for reproducibility.

For GCN-type models (GCN, GAT, SGC), we use two convolu-

tional layers with dimension 𝑑1 = 64 and 𝑑2 = 16. For node2vec,

we set walk length to 1 which turns a general skip-gram loss to ob-

jective of the link prediction task. All the deep learning models are

trained via Adam optimizer with step size 0.01 for 800 epochs, and

we use a normalized weight decay 0.0005 to prevent overfitting. Our

proposed UGE methods and the baseline CFC require a regulariza-

tion weight to balance the task-specific objective and the debiasing

effect. For CFC, we report the result with the regularization weight

chosen from the set {1.0, 5.0, 10.0, 15.0, 25.0, 35.0, 45.0, 55.0, 65.0},
which finally is 𝜆 = 55.0. For UGE, we test {0.1, 0.3, 0.5, 0.7, 0.9, 1.1,
1.3, 1.5, 1.7, 1.9}, and report the performance when 𝜆 = 0.5. The

regularization term in Eq (14) is summed over all node pairs and

can be costly to calculate. But empirically,𝑀 group pairs sampled

uniformly in each round of model update, where𝑀 is around 10%

of the number of node groups, can already yield promising results.

For evaluating the unbiasedness of the node embeddings, we use

implementations from scikit-learn [34] for classifier training and

evaluating Micro-F1.

B RESULTS
In Appendix B.1, we include additional experiment results to report

the trade-off between unbiasedness and utility on the complete
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Figure 7: Comparison among our proposed models on dif-
ferent embedding models. The left columns shows the unbi-
asedness (attribute prediction) and the right columns shows
the utility (link prediction).

set of embedding models on Pokec-z. In Appendix B.2, we show a

complete comparison among our proposed instances of unbiased

graph embedding UGE-W, UGE-R and UGE-C. In Appendix B.3,

we investigate the influence of the regularization weight on the

complete set of embedding models.

B.1 Additional Analysis on Undebiasedness
Table 3 summarizes the debiasing and utility performance of the

proposed method and baselines when using four graph neural net-

works on Pokec-z. Each line of attribute prediction result is followed

by the corresponding performance on link prediction. Generally,

UGE-W achieves the best link prediction performance and UGE-R

has better debiasing effect. Combining UGE-W with UGE-R pro-

duces UGE-C with better trade-off.

B.2 Ablation Study
Figure 7 presents the performance of three proposed model (UGE-

W, UGE-R and UGE-C) applied to four graph neural networks (GAT,

SGC, GCN and node2vec). We can clearly observe that in most

cases UGE-R has better debiasing effect compared with UGE-W,

while UGE-W can better maintain the utility for downstream link

prediction task. UGE-C as the combination of them indeed makes

the best of the both designs.

B.3 Unbiasedness-Utility Tradeoff in UGE
In addition to Section 6.4 where we only showed the effect of regu-

larization weight on Pokec-z with GAT as the embedding model,
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Table 3: The prediction performance of node embeddings learned on Pokec-z using four graph neural networks as embedding
models. In each row, we use bold to mark the best debiasedness on attribute prediction or utility on link prediction.

Debiasing Method

Dataset Embedding Model Prediction Target No Debiasing

Fairwalk CFC UGE-W UGE-R UGE-C

Random

Gender (Micro-F1) 0.6232 0.6135 0.5840 0.6150 0.6094 0.5747 0.4921

Link (NDCG@10) 0.3618 0.3280 0.2757 0.3554 0.3422 0.3376 0.0570

Region (Micro-F1) 0.8197 0.8080 0.7217 0.6784 0.7660 0.6356 0.4966

Link (NDCG@10) 0.3618 0.3287 0.2757 0.3451 0.3547 0.3098 0.0570

Age (Micro-F1) 0.0526 0.0522 0.0498 0.0431 0.0545 0.0429 0.0007

GAT

Link (NDCG@10) 0.3618 0.3122 0.2757 0.3471 0.3205 0.3718 0.0570

Gender (Micro-F1) 0.6766 0.6631 0.6520 0.6822 0.6531 0.6596 0.4921

Link (NDCG@10) 0.4975 0.4461 0.4011 0.4938 0.4850 0.4765 0.0570

Region (Micro-F1) 0.7806 0.7820 0.7150 0.7402 0.7680 0.7323 0.4966

Link (NDCG@10) 0.4975 0.4460 0.4011 0.4832 0.4799 0.4644 0.0570

Age (Micro-F1) 0.0621 0.0662 0.0654 0.0606 0.0529 0.0510 0.0007

SGC

Link (NDCG@10) 0.4975 0.4461 0.4011 0.4889 0.4694 0.4630 0.0570

Gender (Micro-F1) 0.5532 0.5589 0.5493 0.5306 0.5301 0.5162 0.4921

Link (NDCG@10) 0.3865 0.2807 0.3836 0.3851 0.3727 0.3488 0.0570

Region (Micro-F1) 0.7445 0.7616 0.7693 0.5800 0.6105 0.4951 0.4966

Link (NDCG@10) 0.3865 0.2807 0.3836 0.3801 0.3360 0.3386 0.0570

Age (Micro-F1) 0.0425 0.0416 0.0391 0.0439 0.0409 0.0324 0.0007

GCN

Link (NDCG@10) 0.3865 0.2807 0.3836 0.3987 0.3550 0.3391 0.0570

Gender (Micro-F1) 0.5248 0.5347 0.5137 0.5171 0.4949 0.4982 0.4921

Link (NDCG@10) 0.5491 0.5120 0.5496 0.5430 0.5463 0.5206 0.0570

Region (Micro-F1) 0.8423 0.8462 0.8423 0.8012 0.6490 0.6372 0.4966

Link (NDCG@10) 0.5491 0.5120 0.5496 0.4816 0.5354 0.4506 0.0570

Age (Micro-F1) 0.0365 0.0404 0.0365 0.0200 0.0122 0.0068 0.0007

Pokec-z

node2vec

Link (NDCG@10) 0.5491 0.5120 0.5496 0.5173 0.5439 0.5002 0.0570

we now include a complete analysis on unbiasedness and utility

trade-off across embedding models in Figure 6. It clearly shows a

trade-off: as the weight increases, we obtain a stronger debiasing

effect with a cost of the utility on link prediction.
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