EDITS: Modeling and Mitigating Data Bias
for Graph Neural Networks

Yushun Dongl, Ninghao Liu?, Brian Jalaian?, Jundong Lit
!University of Virginia, 2University of Georgia, *U.S. Army Research Laboratory
{ydéeb,jundong}@virginia.edu,ninghao.liu@uga.edu,brian.a.jalaian.civ@mail. mil

ABSTRACT

Graph Neural Networks (GNNs) have shown superior performance
in analyzing attributed networks in various applications. Never-
theless, in high-stake decision-making scenarios such as online
fraud detection, there is an increasing societal concern that GNNs
could make discriminatory decisions towards certain demographic
groups. Despite recent explorations on fair GNNs, these works are
tailored for a specific GNN model. However, myriads of GNN vari-
ants have been proposed for different applications, and it is costly
to fine-tune existing debiasing algorithms for each specific GNN
architecture. Different from existing works that debias GNN mod-
els, we aim to debias the input attributed network to achieve fairer
GNN s through feeding GNNs with less biased data. Specifically, we
propose novel definitions and metrics to measure the bias in an
attributed network, which leads to the optimization objective to mit-
igate bias. We then develop a framework EDITS to mitigate the bias
in attributed networks while maintaining the performance of GNNs
in downstream tasks. EDITS works in a model-agnostic manner, i.e.,
it is independent of any specific GNN. Experiments demonstrate
the validity of the proposed bias metrics and the superiority of
EDITS on both bias mitigation and utility maintenance.
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1 INTRODUCTION

Attributed networks are ubiquitous in a plethora of web-related
applications including online social networking [51], web adver-
tising [61], and news recommendation [45]. To better understand
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these networks, various graph mining algorithms have been pro-
posed. In particular, the recently emerged Graph Neural Networks
(GNNs) have demonstrated superior capability of analyzing attrib-
uted networks in various tasks, such as node classification [28, 55]
and link prediction [29, 63]. Despite the superior performance of
GNN:ss, they usually do not consider fairness issues in the learn-
ing process [10]. Extensive research efforts have shown that many
recently proposed GNNs [10, 49, 59] could make biased decisions
towards certain demographic groups determined by sensitive at-
tributes such as gender [16] and political ideology [42]. For example,
e-commerce platforms generate a huge amount of user activity data,
and such data is often constructed as a large attributed network in
which entities (e.g., buyers, sellers, and products) are nodes while
activities between entities (e.g.., purchasing and reviewing) are
edges. To prevent potential losses, fraud entities (e.g., manipulated
reviews and fake buyers) need to be identified on these platforms,
and GNNs have become the prevalent solution to achieve such
goal [12, 37]. Nevertheless, GNNs may have the risk of using sen-
sitive information (e.g., race and gender) to identify fraud entities,
yielding inevitable discrimination. Therefore, it is a crucial problem
to mitigate bias in these network-based applications.

Various efforts have been made to mitigate the bias exhibited in
graph mining algorithms. For example, in online social networks,
random walk algorithms can be modified via improving the ap-
pearance rate of minorities [7, 47]; adversarial learning is another
popular approach, which aims to learn node embeddings that are
not distinguishable on sensitive attributes [6, 40]. Some recent ef-
forts have also been made to mitigate bias in the outcome of GNNs.
For example, adversarial learning can also be adapted to GNNs for
outcome bias mitigation [10]. Nevertheless, existing approaches to
debias GNN outcomes are tailored for a specific GNN model on a
certain downstream task. In practical scenarios, different applica-
tions could adopt different GNN variants [19, 28], and it is costly to
train and fine-tune the debiasing approaches based on diverse GNN
backbones. As a consequence, to mitigate bias more efficiently for
different GNNs and tasks, developing a one-size-fits-all approach
becomes highly desired. Then the question is: how can we per-
form debiasing regardless of specific GNNs and downstream tasks?
Considering that a model trained on biased datasets also tends to
be biased [5, 10, 62], directly debiasing the dataset itself can be a
straightforward solution. There are already debiasing approaches
modifying original datasets via perturbing data distributions or
reweighting the data points in the dataset [8, 25, 57]. These ap-
proaches obtain less biased datasets, which help to mitigate bias
in learning algorithms. In this regard, considering that debiasing
for different GNNss is costly, it is also desired to mitigate the bias in
attributed networks before they are fed into GNNGs.
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In this paper, we make an initial investigation on debiasing attrib-
uted networks towards more fair GNNs. Specifically, we tackle the
following challenges. (1) Data Bias Modeling. Traditionally, bias
modeling is coupled with the outcome of a specific GNN [10]. Based
on the GNN outcome, bias can be modeled via different fairness
notions, e.g., Statistical Parity [14] and Equality of Opportunity [20],
to determine whether the outcome is discriminatory towards some
specific demographic groups. Nevertheless, if debiasing is carried
out directly based on the input attributed networks instead of the
GNN outcome, the first and foremost challenge is how to appro-
priately model such data bias. (2) Multi-Modality Debiasing. In
fact, attributed networks contain both graph structure and node
attribute information. Correspondingly, bias may exist with diverse
formats across different data modalities. In this regard, how to de-
bias attributed networks that have different data modalities is the
second challenge that needs to be tackled. (3) Model-Agnostic De-
biasing. Existing GNN debiasing approaches require the outcome
of a specific GNN for objective function optimization during train-
ing. Different from these approaches, model-agnostic debiasing for
GNN s should not rely on any specific GNN, as our goal is to develop
a one-size-fits-all data debiasing approach to benefit various GNNs.
Clearly, such model-agnostic debiasing could have better general-
ization capability but becomes much more difficult compared with
the model-oriented GNN debiasing approaches. Nevertheless, the
ultimate goal of debiasing is still to ensure the GNN outcome does
not exhibit any discrimination. Such a contradiction poses the chal-
lenge of how to properly formulate a debiasing objective that can
be universally applied to different GNNs in downstream tasks.

To tackle the challenges above, we present novel data bias model-
ing approaches and a principled debiasing framework named EDITS
(modEling anD mltigating daTa biaS) to achieve model-agnostic
attributed network debiasing for GNNS. Specifically, we first carry
out preliminary analysis to illustrate how bias exists in the two data
modalities of an attributed network (i.e., node attributes and net-
work structure) and affects each other in the information propaga-
tion of GNNs. Then, we formally define attribute bias and structural
bias, together with the corresponding metrics for data bias mod-
eling. Besides, we formulate the problem of debiasing attributed
networks for GNNs, and propose a novel framework named EDITS
for bias mitigation. It is worth mentioning that EDITS is model-
agnostic for GNNs. In other words, our goal is to obtain less biased
attributed networks for the input of any GNNs. Finally, empirical
evaluations on both synthetic and real-world datasets corroborate
the validity of the proposed bias metrics and the effectiveness of
EDITS. Our contributions are summarized as: (1) Problem Formu-
lation. We formulate and make an initial investigation on a novel
research problem: debiasing attributed networks for GNNs based on
the analysis of the information propagation mechanism; (2) Metric
and Algorithm Design. We design novel bias metrics for attrib-
uted networks, and propose a model-agnostic debiasing framework
named EDITS to mitigate the bias in attributed networks before
they are fed into GNNs; (3) Experimental Evaluation. We con-
duct comprehensive experiments on both synthetic and real-world
datasets to verify the validity of the proposed bias metrics and the
effectiveness of the proposed framework.
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Figure 1: Two exemplary cases illustrating how bias in the
two data modalities of an attributed network introduce bias
in GNN information propagation. Here (c) is the node at-
tribute distribution after propagation with biased node at-
tributes (a) and unbiased network structure (b); while (f) is
the attribute distribution after propagation with unbiased
node attributes (d) and biased network structure (e).

2 PRELIMINARY ANALYSIS

We provide two cases to show how the two data modalities of
an attributed network (i.e., node attribute and network structure)
introduce bias in information propagation — the most common op-
eration in GNNs. These two cases also bring insights on tackling
the three challenges mentioned in Sec. 1. Specifically, two synthetic
datasets are generated with either biased node attribute or network
structure, and then attributes are propagated across the network
structure to show how bias is introduced in GNNs. Here we consider
the attribute distribution difference between different demographic
groups as the bias in attribute, while the group membership dis-
tribution difference of the neighbors for nodes between different
demographic groups is regarded as the bias in network structure.
Such bias in attribute and structure can be regarded as the bias that
existed in two data modalities in an attributed network. It should
be noted that using distribution difference to define the level of
bias is consistent with many algorithmic fairness studies [14, 62],
Now we explain how the synthetic datasets are generated. We as-
sume the sensitive attribute is gender, and 1,000 nodes are generated
with half males (blue) and half females (orange) for both cases.
In addition to the sensitive attribute, each node is with an extra
two-dimensional attribute vector, which will be initialized and fed
as input for information propagation. To introduce bias to either
of the data modalities, different strategies are adopted to generate
the attribute vector and the network structure. To study how the
two data modalities introduce bias in information propagation, we
compare the distribution difference of attributes between groups
before and after the propagation in GCN [28].

Case 1: Biased attributes and unbiased structure. In this case,
we generate biased two-dimensional attribute vectors for nodes
from the two groups (i.e., males and females) and unbiased net-
work structure. Specifically, biased attributes at each dimension
is generated independently with Gaussian distribution N(-1.5, 12)
for female and N(1.5, 1) for male. The distributions are shown in
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Fig. (1a). We then introduce how an unbiased network structure
is generated. For each node in an unbiased network structure, the
expected membership ratio of any group in its neighbor node set
should be independent of the membership of the node itself. In
this regard, we generate unbiased network structure via random
graph model with edge formation probability as 2 x 1073. The vi-
sualization of the network is presented in Fig. (1b). The attribute
distribution after information propagation according to the net-
work structure is shown in Fig. (1c). Comparing Fig. (1a) (attribute
distribution before propagation) with (1c) (attribute distribution
after propagation), we can see the unbiased structure helps mitigate
the original attribute bias after attributes are propagated according
to the network structure. This not only implies that the attribute
distribution difference between groups is a vital source of bias, but
also demonstrates that unbiased structure helps mitigate bias in
attributes after the information propagation process.

Case 2: Unbiased attributes and biased structure. In this case,
unbiased attributes are generated independently at each dimension
with A/(0, 1) for both males and females. The distributions are
shown in Fig. (1d). The biased network structure is generated as
follows. For each node, we sum up its attribute values. Then, we
rank all nodes in descending order according to the summation
of attribute values. After that, given a threshold integer ¢, for the
top-ranked t males and bottom-ranked ¢ females, we assume that
they form two separated communities. The two communities are
shown as the bottom right community (males) and the upper left
community (females) in Fig. (1e). We generate edges via random
graph model with edge formation probability as 5% 10~2 within each
community. Similarly, the rest nodes form the third community
via random graph model with edge formation probability as 1 X
1072. We also generate edges between nodes from the male (or
female) community and the third community with the probability
of 2% 10™%. In this way, we introduce bias in network structure. The
final network is presented in Fig. (1e). The attribute distribution
after propagation according to the network structure is shown in
Fig. (1f). Comparing Fig. (1d) with (1f), we find that even if the
original attributes are unbiased, the biased structure still turns the
attributes into biased ones after information propagation. Hence
the bias in the network structure is also a source of bias.

Here we draw three preliminary conclusions to help us tackle the
challenges in Sec. 1. (1) For Data Bias Modeling, bias in attributes
can be modeled based on the difference of attribute distribution
between two groups. Also, bias in network structure can be modeled
based on the difference of attribute distribution between two groups
after information propagation. (2) For Multi-Modality Debiasing
in an attributed network, at least two debiasing processes should
be carried out targeting the two data modalities (i.e., attributes
and structure). (3) For Model-Agnostic Debiasing, if the attribute
distributions between groups can be less biased both before and
after information propagation, the learned node representations
tend to be indistinguishable between groups. Then GNNs trained
on such data could also be less biased.

3 MODELING DATA BIAS FOR GNNS

In this section, we define attribute bias and structural bias in attrib-
uted networks together with their metrics.
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3.1 Preliminaries

In this paper, without further specification, bold uppercase letters
(e.g., X), bold lowercase letters (e.g., x), and normal lowercase letters
(e.g., x) represent matrices, vectors, and scalars, respectively. For
any matrix, e.g., X, we use X; denote its i-th row.

Let G = (A, X) be an undirected attributed network. Here A €
RN*N s the adjacency matrix, and X € RN*M js the node attribute
matrix, where N is the number of nodes and M is the attribute
dimension. Let a diagonal matrix D be the degree matrix of A, where
its (i,i)-thentry D;; = 31; A j,and D; ; = 0 (i # j). L=D—As the
graph Laplacian matrix. Denote the normalized adjacency matrix
and the normalized Laplacian matrix as Aporm = D :AD"? and

1 1
Lporm = D72LD™ 2. |.| is the absolute value operator.

3.2 Definitions of Bias

We consider two types of bias on attributed networks, i.e., attribute
bias and structural bias. We first define attribute bias as follows.

DEFINITION 1. Attribute bias. Given an undirected attributed
network G = (A, X) and the group indicator (w.r.t. the sensitive at-
tribute) for each node s = [s1,s2,....,sN], wheres; € {0,1} (1 <
i < N). For any attribute, if its value distributions between different
demographic groups are different, then attribute bias exists in G.

Besides, as shown in the second example in Sec. 2, bias can
also emerge after attributes are propagated in the network even
when original attributes are unbiased. Therefore, an intuitive idea to
identify structural bias is to check whether information propagation
in the network introduces or exacerbates bias [22]. Formally, we
define structural bias on attributed networks as follows.

DEFINITION 2. Structural bias. Given an undirected attributed
network G = (A, X) and the corresponding group indicator (w.r.t.
sensitive attribute) for each node s = [s1, s2, ..., sN°], wheres; € {0,1}
(1 < i £ N). For the attribute values propagated w.r.t. A, if their
distributions between different demographic groups are different at
any attribute dimension, then structural bias exists in G.

Apart from these definitions, it is also necessary to quantitatively
measure the attribute bias and structural bias. In the sequel, we
introduce our proposed metrics for the two types of bias.

3.3 Bias Metrics

Here we take the first step to define metrics for both attribute bias
and structural bias for an undirected attributed network G.
Attribute bias metric. Let Xporm € RV*M be the normalized
attribute matrix. For the m-th dimension (1 < m < M) of Xpnorm,
we use X9, and X}, to denote attribute value set for nodes with
si=0ands; =1 (1 < i < N). Then, attributes of all nodes can
be divided into tuples: X;oq1 = {(X7, X]), (X3, X)), ... (X} Xip) Y-
We measure attribute bias with Wasserstein-1 distance [54] between
the distributions of the two groups:

bute = 37 2, W (pdf (X0).pdf(X}). o

Here pdf(-) is the probability density function for a set of values,
and W(,,.) is the Wasserstein distance between two distributions. In-
tuitively, batiy describes the average Wasserstein-1 distance between
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attribute distributions of different groups across all dimensions. It
should be noted that taking the distribution difference between
demographic groups as the indication of bias is in align with many
existing algorithmic fairness studies [6, 10, 62].

Structural bias metric. As illustrated in Sec. 2, the key mechanism
of GNNss is information propagation, during which the structural
bias could be introduced. Let Pporm = @Anorm +(1—a)I. Here Prorm
can be regarded as a normalized adjacency matrix with re-weighted
self-loops, where a € [0, 1] is a hyper-parameter. Before measuring
structural bias, we define the propagation matrix Mgy € RN*N as

Mg = ﬂanorm + ﬁzpflorm +...+ ﬁHPnHorm’ ()

where B, (1 < h < H) is re-weighting parameters. The rationale
behind the formulation above is to measure the aggregated reaching
likelihood from each node to other nodes within a distance of H.
To achieve localized effect for each node, a desired choice is to let
p1 = P2 > ... = Py, ie., emphasizing short-distance terms and
reducing the weights of long-distance terms. For example, assume
H = 3, then the value (M3); ; is the aggregated reaching likelihood
from node i to node j within 3 hops with re-weighting parameters
being f1, f2 and f3. Also, given attributes Xporm, we define the
reachability matrix R € RN*M 45 R = My Xnorm. Intuitively, R;
is the aggregated reachable attribute value for attribute m of node
i. We utilize RY, and R}, to represent the set of values of the m-
th dimension in R for nodes with s; = 0 ands; = 1 (1 < i <
N). The entries in R can also be divided into tuples according to
attribute dimensions: R;zq = {(R?, R%), (RY, R%), o (R RJIVI)}
We define structural bias as:

bstru =

= > W(pdf (RS, pdf (Rb). ©

Here bgiry is defined in a similar way as bytir, except that the former
uses RY, and R}, instead of X7, and X,. In this way, structural bias
bstru describes the average difference between aggregated attribute
distributions of different groups after rounds of propagation.

3.4 Problem Statement

Based on the definitions and metrics in Sec. 3.2 and 3.3, we argue
that if both b4 and bgsry are reduced, bias in an attributed net-
work can be mitigated. As a result, if GNNs are trained on such
data, the bias issues in downstream tasks could also be alleviated.
Formally, we define the debiasing problem as follows.

PrROBLEM 1. Debiasing attributed networks for GNNs. Given
an attributed network G = (A, X), our goal is to debias G by reducing
bater and bgtry to obtain G = (A, X), so that the bias of GNNs trained
ongG is mitigated. The debiasing is independent of any specific GNNE.

4 MITIGATING DATA BIAS FOR GNNS

In this section, we discuss how to tackle Problem 1 with our pro-
posed framework EDITS. We focus on the binary sensitive attribute
for the sake of simplicity and discuss the extension later. We first
present an overview of EDITS, followed by the formulation of the
objective function. Finally, we present the optimization process.
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4.1 Framework Overview

An overview of the proposed framework EDITS is shown in Fig. (2).
Specifically, EDITS consists of three modules: (1) Attribute Debi-
asing. This module learns a debiasing function gg with learnable
parameter @ € RM. The debiased version of X is obtained as output
where X = gg(X); (2) Structural Debiasing. This module outputs
A as the debiased A. Specifically, A is initialized with A at the be-
ginning of the optimization process. The entries in A are optimized
via gradient descent with binarization; (3) Wasserstein Distance
Approximator. This module learns an f for each attribute dimen-
sion. f is utilized to estimate the Wasserstein distance between the
attribute distributions of different groups.

4.2 Objective Function

In this subsection, we introduce the details of our framework. Fol-
lowing the Definition 1 and Definition 2, our goal is to reduce baitr
and bty simultaneously. For the ease of understanding, we first
consider the m-th attribute dimension as an example, and then
extend it to all M dimensions to obtain our objective function.

Let Py, and Py p, be the value distribution at the m-th attribute
dimension in X for nodes with sensitive attribute s =0 and s = 1,
respectively. Denote xg,; ~ P( ) and x1,m ~ P( ) as two random
variables drawn from the two dlstrlbutlons Assume that we have a
function gg, : R — R to mitigate attribute bias, where 1 <m < M.

For the m-th dimension, we denote x( ) = = go,, (x0,m) ~ P(O) nd

(0> =go,, (x1,m) ~ P( ) as the deblasmg results for xo m; and x1 m,
respectlvely Here the superscrlpt (0) indicates that no information
propagation is performed in the debaising process. Correspondingly,
when such operation is extended to all M dimensions, we will have
the debiased attribute matrix X. Apart from the goal of mitigating
attribute bias, we also want to mitigate structural bias. Let A be the
adjacency matrix from the debiased network structure, and Poorm
denotes the normalized A with re-weighted self-loops. Information
propagation with h hops using the debiased adjacency matrix could
< h < H. Let Pé’}r’,)l and P{") be
X for nodes with
(h ) P(h)

be expressed as f’ﬁormf( where 1 <

the value distribution at the m-th column of Pnom1

sensitive attribute s = 0 and s = 1, respectively. Denote X,

(h) (h)

and x as two random variables drawn from the two

dlstrlbutlons. We hope that A could mitigate structural bias. We
combine attribute and structural debiasing as below.

Based on the random variables x(o) to x(H) and x(o) to xl(P,Q
we have (H + 1)-dimensional vectors Xo , = [xé(izl, xélrzl, v 512]

=[x 0 .M (H)]

and x1,m X} Xp o o2 X

int
POJ C,'rlln and P1] ‘::l" , respectively. To reduce both b,y and bty at
the m-th dimension, our goal is to minimize the Wasserstein dis-
oint oint . . oint oint
tance between Pg’m and P{m ,Le,ming & W(Pém ,P{m ).

W(POJ‘;;M, P{‘::;m) can be expressed as

following the joint distribution

W (PO plomty = @)

inf E (x0 %1, m)~y [1X0,m = X1,mll1]-

YET(Py TP



EDITS: Modeling and Mitigating Data Bias
for Graph Neural Networks

WWW ’22, April 25-29, 2022, Virtual Event, Lyon, France

e )< > Reachabilty from 0o hop 1’/ ot Wasserstein distance
J Ce— ) 2
g ~ minimization
& >
- b TR A X o
: b= &5 " / 2 1
)< Pt Nodes with s=0 § 4 o
. B —» b
a N E
o« ‘\—) ~, Reachabilty from 0o hop | pyoie =¥ T \(
// " / N SE _ \
. N >< > 8 Distributions
— (/\ from two groups
) Node in group 1 (s=1) i

Nodes with s=1

Figure 2: An illustration of EDITS with H =

2: Wasserstein Distance Approximator yields the approximated Wasserstein

distance between POJ ‘::;m and Pl] ﬁ"t ; Attribute Debiasing and Structural Debiasing are optimized towards less biased X and A.

Here H(POJ (::;m, P{ %nt) represents the set of all joint distributions

Y(X0,m, X1,m) whose marginals are P({‘;:;M and P{;int, respectively.
After considering all the M dimensions, the overall objective is

min s Y, W R ©)
- 1<m<M
It is non-trivial to optimize Eq. (5) as the infimum is intractable.
Therefore, in the next subsection, we show how to convert it into
a tractable optimization problem through approximation, which
enables end-to-end gradient-based optimization.

4.3 Framework Optimization

In this subsection, we introduce our optimization algorithm. For
simplicity, first we still use the m-th attribute dimension in X to
illustrate the idea. Considering the infimum in Wasserstein distance
computation is intractable, we apply the Kantorovich-Rubinstein
duality [56] to convert the problem of Eq. (4) as:

W(P({j:;nt,PIOint — (6)

~P]omt [f(XO m)] mNP{?rint [f(XI,M)]'

su
||f||Lp <1 o
Here ||f|lL < 1 denotes that the supremum is taken over all 1-
Lipschitz functions f : RF*! — R. The problem can be solved by
learning a neural network as f. Nevertheless, it is worth noting that
the 1-Lipschitz function is difficult to obtain during optimization.
Therefore, here we relax || f]|; < 1to ||f||L < k (k is a constant). In
this case, the left side of Eq. (6) also changes to kW(PJOint PJOint

Then, the Wasserstein distance between P] oint and P] oint uptoa
multiplicative constant can be attained via:

E,, plomt Umxim)]. (7)

max E

fs [fm (x0,m)] =

where F denotes the set of all k-Lipschitz functions (i.e., || fin|lL < k,
fm € ). Then, extending Eq. (7) to all M dimensions leads to our
final objective function as:

= D, (B promifm(xom)] -

1<m<M

B, ., <pioime Lfn (xLm)]}:

®
where {f;;, : 1 < m < M} c . To model the function f in Eq. (8),
a single-layered neural network serves as the Wasserstein Distance
Approximators in Fig. (2) to approximate each fi, (1 < m < M),
where the objective can be formulated as:

max 2 . 9)
{fm:1<m<M}cF
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The weights of neural networks are clipped within [—c,c] (cis a
pre-defined constant), which has been proved to be a simple but
effective way to enforce the Lipschitz constraint for every fp, [3].
For the Attribute Debiasing module in Fig. (2), we choose a linear
function, i.e., gg,, (*s,m) = OmXs,m (s € {0,1}). One advantage is
that it acts as the role of feature re-weighting by assigning a feature
weight for each attribute, which enables better interpretability for
the debiased result. In matrix form, assume © is a diagonal matrix
with the m-th diagonal entry being 6, we have X = gg(X) = X©
Then the optimization goal for attribute debiasing is:

min L+ X = X7+ p2llO]), (10)

where p1 and py are hyper-parameters. The second term ensures
that the debiased attributes after feature re-weighting are close to
the original ones (i.e., preserve as much information as possible).
The third term controls the sparsity of re-weighting parameters. For
the Structural Debiasing module in Fig. (2), A is optimized through:

min .7 +p3||A - All% + pal|All; st A=AT. 11)
A

where p3 and p4 are hyper-parameters. The second term ensures
the debiased result A is close to the original structure A. The third
term enforces the debiased network structure is also sparse, which
is aligned with the characteristics of real-world networks [23].

Optimization Strategy. To optimize function f, parameter O,
and A, we propose a gradient-based optimization approach for
alternatively training as Algorithm 1 in Appendix. First, for the
optimization of f w.r.t. Eq. (9), we directly utilize Stochastic Gra-
dient Descent (SGD). Second, for the optimization of parameter ©
w.r.t. Eq. (10), we adopt Proximal Gradient Descent (PGD). In the
projection operation in PGD, we clip the parameters in ® within
[0, 1]. Finally, to remove the most biased attribute channels, the z
smallest weights in the diagonal of © are masked with 0, where z
is a pre-assigned hyper-parameter for attribute debiasing. Third,
for the optimization of parameter A w.r.t. Eq. (11), we also adopt
PGD with similar clipping strategy as the optimization of ©. Finally,
Algorithm 1 outputs X and A after multiple epochs of optimization.
Edge Binarization. Here we introduce how we binarize the ele-
ments in A to indicate existence of edges. The basic intuition is to
set a numerical threshold to determine the edge existence based
on the entry-wise value change between A and A. Specifically, for
the "0" entries in A, if the corresponding weight of any entry in A
exceeds r - max(A — A), then we flip such entry from 0 to 1. Here
r is a pre-set threshold for binarization, and max(-) outputs the
largest entry of a matrix. Similarly, for the "1" entries in A, if the
corresponding weight of any entry in A is reduced by a number
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exceeding r - | min(A — A)|, then such entry should be flipped as
0. Here min(-) gives the smallest entry of a matrix. To summarize,
this operation aims to flip the entries with significant changes in
value directly, and maintain other entries as their original values.
Finally, the binarized matrix is assigned to A as the final outcome.

5 EXPERIMENTAL EVALUATIONS

In this section, we aim to answer the following research ques-
tions. RQ1: How well can EDITS mitigate the bias in attributed
networks together with the outcome of different GNN variants for
the downstream task? RQ2: How well can EDITS balance utility
maximization and bias mitigation compared with other debiasing
baselines tailored for a specific GNN?

5.1 Downstream Task and Datasets

Downstream Task. We choose the widely adopted node classifica-
tion task to assess the effectiveness of our proposed framework.

Datasets. We use two types of datasets in our experiments, includ-
ing six real-world datasets and two synthetic datasets. Statistics of
the real-world datasets can be found in Table 3 of Appendix. We
elaborate more details as follows: (1) Real-world Datasets. We use six
real-world datasets, namely Pokec-z, Pokec-n [10, 50], UCSD34 [53],
German Credit, Credit Defaulter, and Recidivism [2]. We first in-
troduce the three web-related networks. Pokec-z and Pokec-n are
collected from a popular social network in Slovakia. Here a node
represents a user, and an edge denotes the friendship relation be-
tween two users [50]. We take "region” as the sensitive attribute, and
the task is to predict the user working field. UCSD34 is a Facebook
friendship network of the University of California San Diego [53].
Each node denotes a user, and edges represent the friendship rela-
tions between nodes. We take "gender" as the sensitive attribute,
and the task is to predict whether a user belongs to a specific major.
Users with incomplete information (e.g., missing attribute values)
are filtered out from the three web networks above. Besides, we also
adopt three networks beyond web-related data. In German Credit,
nodes represent clients in a German bank, and edges are formed
between clients if their credit accounts are similar. With "gender"
being the sensitive attribute, the task is to classify the credit risk
of the clients as high or low. In Recidivism, nodes are defendants
released on bail during 1990-2009. Nodes are connected based on
the similarity of past criminal records and demographics. The task
is to classify defendants into bail vs. no bail, with "race" being the
sensitive attribute. In the Credit Defaulter, nodes are credit card
users, and they are connected based on the pattern similarity of
their purchases and payments. Here "age" is the sensitive attribute,
and the task is to predict whether a user will default on credit card
payment. (2) Synthetic Datasets. For the ablation study of EDITS, we
use the two datasets generated in Sec. 2. One network has biased
attributes and an unbiased structure, while the other network is on
the opposite. We add eight extra attribute dimensions besides the
two attribute dimensions for both datasets. The attribute values in
the extra attribute dimensions are generated uniformly between
0 and 1. For labels, we compute the sum of the first two extra at-
tribute dimensions. Then, we add Gaussian noise to the sum values,
and rank them by the values in descending order. Labels of the
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Table 1: Attribute and structural bias comparison between
original networks and debiased ones from EDITS (in scale of
x1073). The lower, the better. Best ones are marked in bold.

Attribute Bias

Structural Bias

Vanilla EDITS Vanilla EDITS
Pokec-z 0.43 0.33 (—23.3%) 0.83 0.75 (—9.64%)
Pokecn 0.54 0.42 (—22.2%) 1.03 0.89 (—13.6%)
UCSD34 0.53 0.48 (—9.43%) 0.68 0.63 (—7.35%)
German 6.33 2.38 (—62.4%) 10.4 3.54 (=66.0%)
Credit 2.46 0.56 (—77.2%) 445 2.36 (—47.0%)
Recidivism 0.95 0.39 (—58.9%) 1.10 0.52 (—52.7%)

top-ranked 50% individuals are set as 1, while the labels of the other
50% are set as 0. The task is to predict the labels.

5.2 Experimental settings

GNN Models. Here we adopt three popular GNN variants in our
experiments: GCN [28], GraphSAGE [19], and GIN [60].
Baselines. Since there is no existing work directly debiasing net-
work data for GNNs, here we choose two state-of-the-art GNN-
based debiasing approaches for comparison, namely FairGNN [10]
and NIFTY [2]. (1) FairGNN. 1t is a debiasing method based on
adversarial training. A discriminator is trained to distinguish the
representations between different demographic groups. The goal
of FairGNN is to train a GNN that fools the discriminator for bias
mitigation. (2) NIFTY. It is a recently proposed GNN-based debias-
ing framework. With counterfactual perturbation on the sensitive
attribute, bias is mitigated via learning node representations that
are invariant to the sensitive attribute. It should be noted that both
of them take GNNs as their backbones in the downstream task.
While on the other hand, EDITS attempts at debiasing attributed
networks without referring to the output of downstream GNN
models (i.e., EDITS is model-agnostic). The hyper-parameters of
EDITS are tuned only based on our proposed bias metrics. Obvi-
ously, the debiasing performed by EDITS generalizes better but is
more difficult compared with the model-oriented baselines.
Evaluation Metrics. We evaluate model performance from two
perspectives: model utility and bias mitigation. Good performance
means low bias and high model utility. We introduce the adopted
metrics for model utility and bias mitigation: (1) Model Utility Met-
rics. For node classification, we use the area under the receiver
operating characteristic curve (AUC) and F1 score as the indicator
of model utility; (2) Bias Mitigation Metrics. We use two widely-
adopted metrics Agp and Agp to show to what extent the bias in
the output of different GNNs are mitigated [5, 10, 38]. For both
metrics, a lower value means better bias mitigation performance.

5.3 Debiasing Attributed Network for GNNs

To answer RQ1, we first evaluate the effectiveness of EDITS in
reducing the bias measured by the two proposed metrics and tra-
ditional bias metrics with different GNN backbones. The attribute
and structural bias of the six real-world datasets before and after
being debiased by EDITS are shown in Table 1. The comparison on
Agp and Ago between GNNs trained on debiased networks from
EDITS and original networks is presented in Table 2. We make
the following observations: (1) From the perspective of bias miti-
gation in the attributed network, EDITS demonstrates significant
advantages over the vanilla approach as indicated by Table 1. This
verifies the effectiveness of EDITS in reducing the bias existing
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Table 2: Comparison on utility and bias mitigation between GNNs with original networks (denoted as Vanilla) and debiased
networks (denoted as EDITS) as input. T denotes the larger, the better; | denotes the opposite. Best ones are in bold.

GCN GraphSAGE GIN
Vanilla EDITS Vanilla EDITS Vanilla EDITS
AUCT 67.83+0.7%  67.38 £ 0.3% 68.00 = 0.3% 6637 £ 0.7% 66.74 = 0.8% 6564 + 0.5%
Pokec-z F1] 6195+0.6% 6191%0.1% 61.58 = 1.3% _ 60.62 £ 0.6% 61.55 = 0.5% _ 60.65 * 1.2%
Asp 570 = 1.2% 274+ 0.9% 710 = 1.2%  2.89 = 0.4% 520 £ 1.0% _ 1.90 = 1.3%
AEo 488+ 13%  2.87 £ 1.0% 637 £08%  2.54 £ 0.7% 465+ 1.1%  2.09 * 1.1%
AUCT 63.24+0.5%  61.82£0.9% 64.07 = 0.4% 6205 £ 0.6% 62.53 = 1.4% 6160 + 1.4%
Pokec-n F1 5432+04% 5284 %03% 53.45 = 1.2% 5253 £ 0.1% 52.62 = 1.2% _ 52.56 + 1.0%
Asp | 336x04%  091%0.87% 385+02%  2.08 * 1.2% 590 +25% 096 + 0.5%
AEo 3.97 £ 1.6% 1.10 + 1.0% 264+03%  1.82 % 0.9% 147 £3.7% 047 £ 0.4%
AUC] 6333+0.3% 6243 %0.9% 62.62 = 1.0% _ 62.82 + 2.4% 62.57 = 0.7% _ 64.50 * 0.9%
UCsD34 F1 9416 £ 0.3% _ 94.69 £ 0.1% 94.00 £ 0.2% _ 94.55 + 0.1% 9224 1.6%  92.48 £ 0.5%
Asp 127 £04% _ 0.27 £ 0.1% 127 £05% _ 0.35 % 0.3% 211£13% 036 0.1%
AEo 140 £04% 039 % 0.1% 140 £0.4% _ 0.25 = 0.3% 232+ 1.6% 047  0.4%
AUCT 7446 +0.7% 7101 1.3% 75.28 £ 2.1% _ 73.21 = 0.5% 7135+ 1.7% 7151 0.6%
German F1T 8154%09% 82.43  0.69% 81.52 = 1.0% _ 80.62 * 1.5% 83.08 = 0.9% _ 83.78 * 0.4%
Asp| 43.14%25%  2.04* 1.3% 2683 £ 0.5% _ 8.30 * 3.1% 1855 = 2.0%  1.26 = 0.7%
AEo 3375+ 04% _ 0.63 £ 0.39% 20.66 = 3.0% __ 3.75 £ 3.3% 1127 £3.5%  2.87  14%
AUC ] 73.62%0.3%  70.16 £ 0.6% 74.99 £ 0.2% _ 75.28 + 0.5% 73.82 = 0.4% 7206 + 0.9%
Credit F1] 8186=0.1% 8144*02% 8231%0.7% 8339+ 0.3% 8211%0.1%  85.10 £ 0.7%
Asp 1293£0.1% _ 9.13  1.2% 17.03 £3.3% _ 12.25 + 0.2% 1218 £03% _ 8.79 % 5.6%
AEo 10.65 £ 0.0% _ 7.88 = 1.0% 1531 £ 4.0% _ 9.58 £ 0.1% 948+ 03% _ 7.19 + 3.8%
AUCT 86.91+0.4%  85.96 £ 0.3% 8812+ 1.4% _ 88.15 + 0.9% 82.40 £ 0.8% 8155 + 1.5%
- F1T 7830 + 1.0% _ 75.80 £ 0.5% 76.23 = 2.8% _ 76.30 £ 1.4% 7036 = 1.9%  71.09 * 2.3%
Recidivism
Asp| 789%03% _ 539%0.2% 242+ 12% _ 0.79 £ 0.5% 997 £0.7% __ 4.98 + 0.9%
Apo | 558%02% 336 +0.3% 298 +22%  1.010.5% 610 £ 1.2% 547 £0.7%
in the attributed network data. (2) From the perspective of bias 80
mitigation in the downstream task, we observe from Table 2 that O 60 1) 80
EDITS achieves desirable bias mitigation performance with little 2 40 2 60
utility sacrifice in all cases compared with GNNs with the original 40
network as input (i.e., the vanilla one). This verifies that attributed 20 b R 20 ey S Ry
networks debiased by EDITS can generally mitigate the bias in the P QI (P o e Re€
(a) AUC on web networks (b) AUC on other networks

outcome of different GNNs. (3) When comparing bias mitigation
performance indicated by Table 1 and Table 2, we can find that the
bias in the outcome of GNNs is also mitigated after EDITS miti-
gates attribute bias and structural bias in the attributed networks.
Such consistency verifies the validity of our proposed metrics on
measuring the bias that existed in the attributed networks.

5.4 Comparison with Other Debiasing Models

To answer RQ2, we then compare the balance between model util-
ity and bias mitigation with other baselines based on a given GNN.
Here we present the comparison of AUC and Agp based on GCN
in Fig. (3). Similar results can be obtained for other GNNs, which
are omitted due to space limit. Experimental results include the
performance of baselines and EDITS on the six real-world datasets.
The following observations can be made: (1) From the perspective
of model utility (indicated by Fig. (3a) and Fig. (3b)), EDITS and
baselines achieve comparable results with the vanilla GCN. This
implies that the debiasing process of EDITS preserves as much use-
ful information for the downstream task as the original attributed
network. (2) From the perspective of bias mitigation (indicated by
Fig. (3c) and Fig. (3d)), all baselines achieve effective bias mitigation.
Compared with debiasing in downstream tasks, debiasing the attrib-
uted network is more difficult due to the lack of supervision signals
from GNN prediction. Observation can be drawn that the debiasing
performance of EDITS is similar to or even better than that of the
adopted baselines. This verifies the superior performance of EDITS
on debiasing attributed networks for more fair GNNs. (3) From
the perspective of balancing the model utility and bias mitigation,
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Figure 3: Performance comparison between EDITS and base-
lines on utility (AUC) and bias mitigation (Agp).

EDITS achieves comparable model utility with alternatives but ex-
hibits better bias mitigation performance. Consequently, we argue
that EDITS achieves superior performance on balancing the model
utility and bias mitigation over other baselines.

5.5 Ablation Study

To evaluate the effectiveness of the two debiasing modules (i.e.,
attribute debiasing module and structural debiasing module) in ED-
ITS, here we investigate how each of them individually contributes
to bias mitigation under our proposed bias metrics and the tradi-
tional bias metrics in the downstream task. We choose GCN as the
GNN model in our downstream task. For better visualization pur-
poses, the two datasets showing large attribute bias and structural
bias (i.e., German and Credit) are selected for experiments. Besides,
to better demonstrate the functionality of the two debiasing mod-
ules, we also adopt the two synthetic datasets we mentioned in
Sec. 2 (i.e., the network with only biased attributes and the network
with only biased structure), which are further modified according to
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Figure 4: Performance EDITS and its variants on two real-world datasets and two synthetic datasets. EDITS denotes that both
debiasing modules are included; *w/0-SD means EDITS without structural debiasing module; *w/0-AD means EDITS is without
attribute debiasing module; Vanilla means applying GNN with the original attributed network as input.

Sec. 5.1. Based on the four selected datasets, four different variants
of EDITS are tested, namely EDITS with both debiasing modules,
EDITS without the structural debiasing module (i.e., *w/0-SD), ED-
ITS without the attribute debiasing module (i.e., *"w/0-AD), vanilla
GCN model without debiased input (i.e., Vanilla). We present their
performance of attribute bias, structural bias, AUC, and Agp on
the four datasets in Fig. (4). We make the following observations:
(1) The value of attribute bias can be reduced with the attribute
debiasing module of EDITS, which maintains the model utility (i.e.,
AUC) but reduces Agp in the downstream task. (2) The value of
structural bias can be reduced with both attribute debiasing and
structural debiasing modules. With only structural debiasing, ED-
ITS still maintains comparable model utility but reduces Agp in the
downstream task. (3) Although both attribute debiasing and struc-
tural debiasing module help mitigate structural bias, only debiasing
the network structure achieves better bias mitigation performance
on all four datasets compared with only debiasing the attributes as
implied by Fig. (4d). This demonstrates the indispensability of the
structural debiasing module in EDITS.

6 RELATED WORK

Mitigating Bias in Machine Learning. Bias can be defined from
a variety of perspectives in machine learning algorithms [4, 13,
20, 35, 39, 58]. Commonly used algorithmic bias notions can be
broadly categorized into group fairness and individual fairness [15].
Group fairness emphasizes that algorithms should not yield dis-
criminatory outcomes for any specific demographic groups [15].
Such groups are usually determined by sensitive attributes, e.g.,
gender or race [25]. Existing debiasing approaches work in one
of the three data flow stages, i.e., pre-processing, processing and
post-processing stage. In pre-processing stage, a common method
is to re-weight training samples from different groups to mitigate
bias before model training [25]. Perturbing data distributions be-
tween groups is another popular approach to debias the data in the
pre-processing stage [57]. In processing stage, a popular method
is to add regularization terms to disentangle the outcome from
sensitive attribute [36, 48] or minimize the outcome difference
between groups [1]. Besides, utilizing adversarial learning to re-
move sensitive information from representations is also widely
adopted [17]. In post-processing stage, bias in outcomes is usually
mitigated by constraining the outcome to follow a less biased distri-
bution [20, 30, 33, 44, 64]. Usually, all above-mentioned approaches
are evaluated via measuring how much certain fairness notion is
violated. Statistical Parity [15], Equality of Opportunity, Equality of
Odds [20] and Counterfactual Fairness [31] are commonly studied
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fairness notions. Different from group fairness, individual fairness
focuses on treating similar individuals similarly [15, 62]. The similar-
ity can be given by oracle similarity scores from domain experts [32].
Most existing debiasing methods based on individual fairness work
in the processing stage. For example, constraints can enforce simi-
lar predictions between similar instances [24, 32]. Consistency is a
popular metric for individual fairness evaluation [32, 34].
Mitigating Bias in Graph Mining. Efforts have been made to
mitigate bias in graph mining algorithms, where these works can
be broadly categorized into either focusing on group fairness or
individual fairness. For group fairness, adversarial learning can
be adopted to learn less biased node representations that fool the
discriminator [6, 10]. Rebalancing between groups is also a popular
approach to mitigate bias [7, 18, 35, 46, 52]. For example, Rahman
et al. mitigate bias via rebalancing the appearance rate of minority
groups in random walks [47]. Projecting the embeddings onto a
hyperplane orthogonal to the hyperplane of sensitive attributes
is another approach for bias mitigation [41]. Compared with the
vast amount of works on group fairness, only few works promote
individual fairness in graphs. To the best of our knowledge, Kang
et al. [26] first propose to systematically debias multiple graph
mining algorithms based on individual fairness. Dong et al. [11]
argue that for each individual, the similarity ranking of others in the
GNN outcome should follow the same order of an oracle ranking
from domain experts. Different from these approaches, this paper
proposes to debias attributed networks in a model-agnostic way.

7 CONCLUSION

GNN s are increasingly critical in various applications. Neverthe-
less, there is an increasing societal concern that GNNs could yield
discriminatory decisions towards certain demographic groups. Ex-
isting debiasing approaches are mainly tailored for a specific GNN.
Adapting these methods to different GNNs can be costly, as they
need to be fine-tuned. Different from them, in this paper, we pro-
pose to debias the attributed network for GNNs. With analysis of
the source of bias existing in different data modalities, we define
two kinds of bias with corresponding metrics, and formulate a novel
problem of debiasing attributed networks for GNNs. To tackle this
problem, we propose a principled framework EDITS for model-
agnostic debiasing. Experiments demonstrate the effectiveness of
EDITS in mitigating bias and maintaining model utility.
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A APPENDIX
A.1 Datasets Statistics

The detailed statistics of six real-world datasets (i.e., German Credit,
Recidivism and Credit Defaulter) can be found in Table 3.

A.2 Algorithm
We present the optimization algorithm for EDITS in Algorithm 1.

Algorithm 1 The Optimization Algorithm for EDITS

Input:
A: Adjacency matrix; X: Attribute matrix; &, f11 to j14: Hyper-parameters in objectives; c: Thresh-
old enforcing Lipschitz; z: Threshold for attribute masking; r: Threshold factor for adjacency
matrix binarization;

Output:

Debiased adjacency matrix A and attribute matrix X;
A—AOL

: while epoch < epoch_max do

Compute Z; following Eq. (8);

Update the weights of f by SGD following Eq. (9);
Clip the weights of f within [-c, c];

Update © by PGD following Eq. (10), X « X©;
Update A by PGD following Eq. (11), A « % (A+AT);
: end while

Mask the z smallest entries with 0 in diag(©), X XO;
Binarize A w.rt. the threshold r;

return A and )~(;

WO N wne

_
_= o

A.3 Theoretical Analysis

Here we present theoretical analysis for the two proposed metrics
to gain a deeper understanding of debiasing attributed networks for
GNNGs. For attribute bias, it is straightforward that if the Wasserstein
distance of the attribute value distribution between the two groups
is zero for every dimension, then there would be no clue to distin-
guish between the two groups. Consequently, here we mainly focus
on the theoretical analysis of the structural bias metric. Specifically,
we perform theoretical analysis from the perspective of Spectral
Graph Theory [9]. Usually, an undirected attributed network is
regarded as a signal composed of different frequency components
in Graph Signal Processing (GSP). If an operation preserves lower
frequency components more than higher ones of a graph signal,
this operation low-pass filters the input graph signal.

Theorem 1. Let Apqx be the largest eigenvalue of Lporm. Multi-
plying X by the propagation matrix My can be regarded as low-pass
filtering X when a = 5 L andfi >0(1<i<H)

max

ProoOF. We present the proof based on Laplacian graph spectrum.
By replacing « with %, we have

L
M=1- =200 (12)

Prorm = —— Anorm + (1 —
ot max norm Amax /lmax
Then, by combining Eq. (2) and Eq. (12), we get
Mg = o (1= 20 4 (1= T2 g (r - B
Amax Amax /lmax

Considering that Lyorm is a symmetric real matrix, it can be decom-
posed as Lyorm = UAUT, then Eq. (13) can be rewritten as

M = U(fu(I= 550+ fall= 550k (1= ) H)UT.
19

Here A is the diagonal eigenvalue matrix of Lyorm, and the h-th term
(1 < h < H) in Eq. (14) indicates a frequency response function of

(1- ﬁ)h. Forany 4; (1 <i < N), ﬁ < 1 holds. Consequently,
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the frequency response of each term in Eq. (14) monotonically
decreases w.r.t. A;. This indicates that, for each term, when it is
multiplied by a graph signal, the higher frequency components
of the graph signal are more weakened compared with the lower
frequency components. Therefore, according to Eq. (14), My can be
regarded as a graph filter whose frequency response is composed
of H low-pass filters. In conclusion, multiplying the propagation
matrix Mg with any graph signal equals to the operation of low-
pass filtering when o = A:.T and all ; > 0. The graph signal is the
attribute matrix X in the proposed structural bias metric. O

Based on Theorem 1, we propose the corollary below to build
connections between attribute bias and structural bias.

Corollary 1. The attribute bias contained in the low frequency
components of an attributed network is equivalent to structural bias.

From the proof of Theorem 1, we can observe that My Xnorm is
equivalent to low-pass filtering the attribute matrix Xporm. Then
Corollary 1 is self-evident based on Definition 2. At the same time,
considering that the frequencies and the corresponding basis of
a network data changes when A is optimized to be A. The basic
goal of EDITS can also be interpreted as: debiasing the full spectrum
of a graph signal, and learning better frequencies together with the
corresponding basis to further mitigate the bias existed in the lower
frequency components of the graph signal.

A.4 Implementation Details

EDITS is implemented using Pytorch [43] and optimized via RM-
Sprop optimizer [21]. In the training of EDITS, we set the training
epochs as 100 for Recidivism and 500 for other datasets. The learn-
ing rate is set as 3x 1073 for epochs under 400 and 1x 103 for those
above. « is set as 0.5 considering that Amax = 2 [9]. To train GNNs,
we fix the training epochs to be 1,000 based on Adam optimizer [27],
with the learning rate of 1 x 107>,

A.5 Extension to Non-Binary Sensitive
Attributes

Here, we show how our proposed framework EDITS can be gener-
alized to handle non-binary sensitive attributes. More specifically,
we use a synthetic dataset to showcase the extension.

Synthetic Dataset Generation. Our goal here is to generate a
synthetic attributed network with both biased node attributes and
network structure, where nodes should come from at least three
different groups based on the sensitive attribute. We elaborate more
details from three perspectives: biased network structure genera-
tion, biased node attribute generation, and node label generation. (1)
Biased Network Structure Generation. We adopt a similar approach
as presented in Fig. (1) to generate three communities with dense
intra-community links but sparse inter-community links. (2) Biased
Node Attributes Generation. We generate a ten-dimensional attribute
vector for each node. The values at the first two dimensions are
generated independently with Gaussian distribution N(-1, 12), N(0,
12), and N(1, 12) for the nodes in the three communities, respec-
tively. The attribute values for all other dimensions are generated
with independent Gaussian Distribution A(0, 12). Besides, We gen-
erate a ternary variable s € {0, 1, 2} based on the node community
membership for all nodes as an extra attribute dimension. Here the
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Table 3: The statistics and basic information about the six real-world datasets adopted for experimental evaluation. Sens.

represents the semantic meaning of sensitive attribute.

Dataset Pokec-z Pokec-n UCSD34 German Credit  Recidivism  Credit Defaulter
# Nodes 7,659 6,185 4,132 1,000 18,876 30,000

# Edges 29,476 21,844 108,383 22,242 321,308 1,436,858

# Attributes 59 59 7 27 18 13

Avg. degree 7.70 7.06 52.5 44.5 34.0 95.8

Sens. Region Region Gender Gender Race Age

Label Working field ~ Working field ~ Student major Credit status Bail decision Future default

community membership is regarded as the sensitive attribute of
nodes in this network. (3) Node Label Generation. We sum up the
values at the first two unbiased attribute dimensions for all nodes,
and then add Gaussian noise to the summation. The summation
values with noise are ranked in descending order. Labels of the
top-ranked 50% nodes are set as 1, while the labels of the other 50%
nodes are set as 0. The task is to predict the labels.

Framework Extension. To extend the proposed framework EDITS
to handle non-binary sensitive attributes, the basic rationale is
to encourage the function f;, introduced in Section 4.3 to help
approximate the squared Wasserstein distance sum between all
group pairs based on ternary sensitive attribute. Therefore, we
modify the 7] in Eq. (8) as

A= 3 By [fon(Kim)] = By [ () 1V (15)

ij m
Here 1 <m < M, and i, j € {0,1,2} (i < j). Xim and xj ,,, follows
Joint oint . .
Pim and Pj{m , respectively. The .7} in Eq. (9), (10), and (11) are

repalced with . This enables EDITS to minimize the squared
Wasserstein distance sum between all group pairs.

Research Questions. Here we aim to answer two research ques-
tions. RQ1: Can EDITS mitigate the bias in the network dataset
with ternary sensitive attributes? RQ2: Can EDITS achieve a good
balance between mitigating bias and maintaining utility for GNN
predictions with ternary sensitive attributes?

Evaluation Metrics. We introduce the metrics following the two
research questions above. (1) For RQ1, to measure the bias in the
network dataset, we adopt the bty and bgtry introduced in Sec. 3.3.
(2) For RQ2, to measure the bias exhibited in GNN predictions, we
adopt two traditional fairness metrics: Agp and Agp. Consider-
ing that these two metrics are designed only for binary sensitive
attributes, Agp and Ago for each pair of groups are utilized to eval-
uate the fairness level of GNN predictions. Besides, AUC and F1 are
adopted to evaluate the utility of GNN predictions.

Results Analysis. Results based on GCN are presented in Fig. (5)
and Table 5, and similar observations can also be found on other
GNN backbones. We evaluate the performance of EDITS from two
perspectives. (1) RQ1: the fairness level of the network dataset. As
presented in Table 5, batty and bgiry of the dataset are clearly reduced
with EDITS. This verifies the effectiveness of EDITS on debiasing
the attributed network data. (2) RQ2: the balance between fairness
and utility for GNN predictions. As presented in Fig. (5), Asp and Ago
for every group pair are reduced. This corroborates the effectiveness
of EDITS on achieving more fair GNN predictions. At the same
time, Table 5 indicates that the GNN with debiased input data still
maintains similar utility performance compared with the GNN with
vanilla input. This indicates that EDITS achieves a good balance
between fairness and utility for GNN predictions.
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Figure 5: Comparison of Agp and Agp between vanilla and

EDITS based on GCN for ternary sensitive attributes.

Table 4: Parameter study for y; and p3. The values of batir
and bty are in scale of x1073.

H1 bartr  F1(%)  Asp(%) H3 bstru  F1(%)  Asp(%)
le2 6.33 81.69 35.3 le2 10.2 82.26 34.2
lel 5.02 80.69 19.9 lel 9.97 80.89 25.0
1e0 3.74 80.28 7.76 1e0 9.81 79.77 14.1
le-1 2.38 80.00 4.58 le-1 4.89 79.46 3.96
le-2 2.34 79.95 4.08 le-2 3.53 78.93 3.26
1le-3 2.35 79.46 3.96 1le-3 3.34 78.89 2.76
le-4 2.34 79.03 3.29 le-4 3.29 78.37 2.06
le-5 2.34 76.22 2.86 le-5 3.22 78.06 2.00

Table 5: Comparison of fairness level and utility between the
original synthetic network and the debiased one based on
the ternary sensitive attributes. The values of b,ttr and bstru
are in scale of x1073. Best ones are marked in bold.

Attribute Bias & Structural Bias Comparison

Group O v.s. 1 Group 0 v.s. 2 Group 1v.s. 2

battr bstru battr bstru battr bstru
Vanilla 137 25.5 26.5 48.8 11.0 20.4
EDITS 5.33 9.63 13.4 24.1 4.73 8.73

Utility Comparison
AUC F1

Vanilla 67.09 + 0.3% 64.50 + 0.6%
EDITS 67.05 £ 0.2% 62.91 £ 0.8%

A.6 Parameter Study

Here we aim to study the sensitivity of EDITS. Specifically, we
show the parameter study of y; and p3 on German dataset, but
similar observations can also be found on other datasets. Here yq
and p3 control how much original information should be preserved
from the original attributes and graph structure, respectively. We
first vary py in the range of {le2, lel, 1e0, le-1, le-2, le-3, le-4,
1le-5} while fix other parameters as py=1e-4, yz=1e-1, puy=1e-4; then
we vary pp in the same range with pj=1e-3, pp=1e-4, py=1e-4. The
results in Table 4 indicate that the trade-off between debiasing and
utility performance is stable when y; and y3 are in a wide range
between 1le-3 and le-1. Therefore, it is safe to say that we can tune
these parameters in a wide range without greatly affecting the
fairness and model utility.
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