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ABSTRACT
Graph Neural Networks (GNNs) have shown superior performance

in analyzing attributed networks in various applications. Never-

theless, in high-stake decision-making scenarios such as online

fraud detection, there is an increasing societal concern that GNNs

could make discriminatory decisions towards certain demographic

groups. Despite recent explorations on fair GNNs, these works are

tailored for a specific GNN model. However, myriads of GNN vari-

ants have been proposed for different applications, and it is costly

to fine-tune existing debiasing algorithms for each specific GNN

architecture. Different from existing works that debias GNN mod-

els, we aim to debias the input attributed network to achieve fairer

GNNs through feeding GNNs with less biased data. Specifically, we

propose novel definitions and metrics to measure the bias in an

attributed network, which leads to the optimization objective to mit-

igate bias. We then develop a framework EDITS to mitigate the bias

in attributed networks while maintaining the performance of GNNs

in downstream tasks. EDITS works in a model-agnostic manner, i.e.,

it is independent of any specific GNN. Experiments demonstrate

the validity of the proposed bias metrics and the superiority of

EDITS on both bias mitigation and utility maintenance.
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1 INTRODUCTION
Attributed networks are ubiquitous in a plethora of web-related

applications including online social networking [51], web adver-

tising [61], and news recommendation [45]. To better understand
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these networks, various graph mining algorithms have been pro-

posed. In particular, the recently emerged Graph Neural Networks

(GNNs) have demonstrated superior capability of analyzing attrib-

uted networks in various tasks, such as node classification [28, 55]

and link prediction [29, 63]. Despite the superior performance of

GNNs, they usually do not consider fairness issues in the learn-

ing process [10]. Extensive research efforts have shown that many

recently proposed GNNs [10, 49, 59] could make biased decisions

towards certain demographic groups determined by sensitive at-

tributes such as gender [16] and political ideology [42]. For example,

e-commerce platforms generate a huge amount of user activity data,

and such data is often constructed as a large attributed network in

which entities (e.g., buyers, sellers, and products) are nodes while

activities between entities (e.g.., purchasing and reviewing) are

edges. To prevent potential losses, fraud entities (e.g., manipulated

reviews and fake buyers) need to be identified on these platforms,

and GNNs have become the prevalent solution to achieve such

goal [12, 37]. Nevertheless, GNNs may have the risk of using sen-

sitive information (e.g., race and gender) to identify fraud entities,

yielding inevitable discrimination. Therefore, it is a crucial problem

to mitigate bias in these network-based applications.

Various efforts have been made to mitigate the bias exhibited in

graph mining algorithms. For example, in online social networks,

random walk algorithms can be modified via improving the ap-

pearance rate of minorities [7, 47]; adversarial learning is another

popular approach, which aims to learn node embeddings that are

not distinguishable on sensitive attributes [6, 40]. Some recent ef-

forts have also been made to mitigate bias in the outcome of GNNs.

For example, adversarial learning can also be adapted to GNNs for

outcome bias mitigation [10]. Nevertheless, existing approaches to

debias GNN outcomes are tailored for a specific GNN model on a

certain downstream task. In practical scenarios, different applica-

tions could adopt different GNN variants [19, 28], and it is costly to

train and fine-tune the debiasing approaches based on diverse GNN

backbones. As a consequence, to mitigate bias more efficiently for

different GNNs and tasks, developing a one-size-fits-all approach

becomes highly desired. Then the question is: how can we per-

form debiasing regardless of specific GNNs and downstream tasks?

Considering that a model trained on biased datasets also tends to

be biased [5, 10, 62], directly debiasing the dataset itself can be a

straightforward solution. There are already debiasing approaches

modifying original datasets via perturbing data distributions or

reweighting the data points in the dataset [8, 25, 57]. These ap-

proaches obtain less biased datasets, which help to mitigate bias

in learning algorithms. In this regard, considering that debiasing

for different GNNs is costly, it is also desired to mitigate the bias in

attributed networks before they are fed into GNNs.
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In this paper, we make an initial investigation on debiasing attrib-

uted networks towards more fair GNNs. Specifically, we tackle the

following challenges. (1) Data Bias Modeling. Traditionally, bias
modeling is coupled with the outcome of a specific GNN [10]. Based

on the GNN outcome, bias can be modeled via different fairness

notions, e.g., Statistical Parity [14] and Equality of Opportunity [20],

to determine whether the outcome is discriminatory towards some

specific demographic groups. Nevertheless, if debiasing is carried

out directly based on the input attributed networks instead of the

GNN outcome, the first and foremost challenge is how to appro-

priately model such data bias. (2)Multi-Modality Debiasing. In
fact, attributed networks contain both graph structure and node

attribute information. Correspondingly, bias may exist with diverse

formats across different data modalities. In this regard, how to de-

bias attributed networks that have different data modalities is the

second challenge that needs to be tackled. (3) Model-Agnostic De-
biasing. Existing GNN debiasing approaches require the outcome

of a specific GNN for objective function optimization during train-

ing. Different from these approaches, model-agnostic debiasing for

GNNs should not rely on any specific GNN, as our goal is to develop

a one-size-fits-all data debiasing approach to benefit various GNNs.

Clearly, such model-agnostic debiasing could have better general-

ization capability but becomes much more difficult compared with

the model-oriented GNN debiasing approaches. Nevertheless, the

ultimate goal of debiasing is still to ensure the GNN outcome does

not exhibit any discrimination. Such a contradiction poses the chal-

lenge of how to properly formulate a debiasing objective that can

be universally applied to different GNNs in downstream tasks.

To tackle the challenges above, we present novel data bias model-

ing approaches and a principled debiasing framework named EDITS

(modEling anD mItigating daTa biaS) to achieve model-agnostic

attributed network debiasing for GNNs. Specifically, we first carry

out preliminary analysis to illustrate how bias exists in the two data

modalities of an attributed network (i.e., node attributes and net-

work structure) and affects each other in the information propaga-

tion of GNNs. Then, we formally define attribute bias and structural
bias, together with the corresponding metrics for data bias mod-

eling. Besides, we formulate the problem of debiasing attributed

networks for GNNs, and propose a novel framework named EDITS

for bias mitigation. It is worth mentioning that EDITS is model-

agnostic for GNNs. In other words, our goal is to obtain less biased

attributed networks for the input of any GNNs. Finally, empirical

evaluations on both synthetic and real-world datasets corroborate

the validity of the proposed bias metrics and the effectiveness of

EDITS. Our contributions are summarized as: (1) Problem Formu-
lation. We formulate and make an initial investigation on a novel

research problem: debiasing attributed networks for GNNs based on

the analysis of the information propagation mechanism; (2)Metric
and Algorithm Design.We design novel bias metrics for attrib-

uted networks, and propose a model-agnostic debiasing framework

named EDITS to mitigate the bias in attributed networks before

they are fed into GNNs; (3) Experimental Evaluation.We con-

duct comprehensive experiments on both synthetic and real-world

datasets to verify the validity of the proposed bias metrics and the

effectiveness of the proposed framework.

(a) Biased attributes (b) Unbiased structure (c) After propagation

(d) Unbiased attributes (e) Biased structure (f) After propagation

Figure 1: Two exemplary cases illustrating how bias in the
two data modalities of an attributed network introduce bias
in GNN information propagation. Here (c) is the node at-
tribute distribution after propagation with biased node at-
tributes (a) and unbiased network structure (b); while (f) is
the attribute distribution after propagation with unbiased
node attributes (d) and biased network structure (e).

2 PRELIMINARY ANALYSIS
We provide two cases to show how the two data modalities of

an attributed network (i.e., node attribute and network structure)

introduce bias in information propagation – the most common op-

eration in GNNs. These two cases also bring insights on tackling

the three challenges mentioned in Sec. 1. Specifically, two synthetic

datasets are generated with either biased node attribute or network

structure, and then attributes are propagated across the network

structure to show how bias is introduced in GNNs. Here we consider

the attribute distribution difference between different demographic

groups as the bias in attribute, while the group membership dis-

tribution difference of the neighbors for nodes between different

demographic groups is regarded as the bias in network structure.

Such bias in attribute and structure can be regarded as the bias that

existed in two data modalities in an attributed network. It should

be noted that using distribution difference to define the level of

bias is consistent with many algorithmic fairness studies [14, 62],

Now we explain how the synthetic datasets are generated. We as-

sume the sensitive attribute is gender, and 1,000 nodes are generated
with half males (blue) and half females (orange) for both cases.

In addition to the sensitive attribute, each node is with an extra

two-dimensional attribute vector, which will be initialized and fed

as input for information propagation. To introduce bias to either

of the data modalities, different strategies are adopted to generate

the attribute vector and the network structure. To study how the

two data modalities introduce bias in information propagation, we

compare the distribution difference of attributes between groups

before and after the propagation in GCN [28].

Case 1: Biased attributes and unbiased structure. In this case,

we generate biased two-dimensional attribute vectors for nodes

from the two groups (i.e., males and females) and unbiased net-

work structure. Specifically, biased attributes at each dimension

is generated independently with Gaussian distribution N (-1.5, 1
2
)

for female and N (1.5, 1
2
) for male. The distributions are shown in
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Fig. (1a). We then introduce how an unbiased network structure

is generated. For each node in an unbiased network structure, the

expected membership ratio of any group in its neighbor node set

should be independent of the membership of the node itself. In

this regard, we generate unbiased network structure via random
graph model with edge formation probability as 2 × 10−3. The vi-
sualization of the network is presented in Fig. (1b). The attribute

distribution after information propagation according to the net-

work structure is shown in Fig. (1c). Comparing Fig. (1a) (attribute

distribution before propagation) with (1c) (attribute distribution

after propagation), we can see the unbiased structure helps mitigate

the original attribute bias after attributes are propagated according

to the network structure. This not only implies that the attribute

distribution difference between groups is a vital source of bias, but

also demonstrates that unbiased structure helps mitigate bias in

attributes after the information propagation process.

Case 2: Unbiased attributes and biased structure. In this case,

unbiased attributes are generated independently at each dimension

with N (0, 1
2
) for both males and females. The distributions are

shown in Fig. (1d). The biased network structure is generated as

follows. For each node, we sum up its attribute values. Then, we

rank all nodes in descending order according to the summation

of attribute values. After that, given a threshold integer 𝑡 , for the

top-ranked 𝑡 males and bottom-ranked 𝑡 females, we assume that

they form two separated communities. The two communities are

shown as the bottom right community (males) and the upper left

community (females) in Fig. (1e). We generate edges via random
graphmodel with edge formation probability as 5×10−2 within each
community. Similarly, the rest nodes form the third community

via random graph model with edge formation probability as 1 ×
10
−2
. We also generate edges between nodes from the male (or

female) community and the third community with the probability

of 2×10−4. In this way, we introduce bias in network structure. The

final network is presented in Fig. (1e). The attribute distribution

after propagation according to the network structure is shown in

Fig. (1f). Comparing Fig. (1d) with (1f), we find that even if the

original attributes are unbiased, the biased structure still turns the

attributes into biased ones after information propagation. Hence

the bias in the network structure is also a source of bias.

Here we draw three preliminary conclusions to help us tackle the

challenges in Sec. 1. (1) For Data Bias Modeling, bias in attributes

can be modeled based on the difference of attribute distribution

between two groups. Also, bias in network structure can bemodeled

based on the difference of attribute distribution between two groups

after information propagation. (2) For Multi-Modality Debiasing
in an attributed network, at least two debiasing processes should

be carried out targeting the two data modalities (i.e., attributes

and structure). (3) For Model-Agnostic Debiasing, if the attribute
distributions between groups can be less biased both before and

after information propagation, the learned node representations

tend to be indistinguishable between groups. Then GNNs trained

on such data could also be less biased.

3 MODELING DATA BIAS FOR GNNS
In this section, we define attribute bias and structural bias in attrib-

uted networks together with their metrics.

3.1 Preliminaries
In this paper, without further specification, bold uppercase letters

(e.g.,X), bold lowercase letters (e.g., x), and normal lowercase letters

(e.g., 𝑥) represent matrices, vectors, and scalars, respectively. For

any matrix, e.g., X, we use X𝑖 denote its 𝑖-th row.

Let G = (A, X) be an undirected attributed network. Here A ∈
R𝑁×𝑁 is the adjacency matrix, andX ∈ R𝑁×𝑀 is the node attribute

matrix, where 𝑁 is the number of nodes and 𝑀 is the attribute

dimension. Let a diagonal matrixD be the degree matrix ofA, where
its (𝑖 ,𝑖)-th entry D𝑖,𝑖 =

∑
𝑗 A𝑖, 𝑗 , and D𝑖, 𝑗 = 0 (𝑖 ≠ 𝑗 ). L = D−A is the

graph Laplacian matrix. Denote the normalized adjacency matrix

and the normalized Laplacian matrix as Anorm = D−
1

2AD−
1

2 and

Lnorm = D−
1

2 LD−
1

2 . |.| is the absolute value operator.

3.2 Definitions of Bias
We consider two types of bias on attributed networks, i.e., attribute

bias and structural bias. We first define attribute bias as follows.

Definition 1. Attribute bias. Given an undirected attributed
network G = (A, X) and the group indicator (w.r.t. the sensitive at-
tribute) for each node s = [𝑠1, 𝑠2, ..., 𝑠𝑁 ], where 𝑠𝑖 ∈ {0, 1} (1 ≤
𝑖 ≤ 𝑁 ). For any attribute, if its value distributions between different
demographic groups are different, then attribute bias exists in G.

Besides, as shown in the second example in Sec. 2, bias can

also emerge after attributes are propagated in the network even

when original attributes are unbiased. Therefore, an intuitive idea to

identify structural bias is to check whether information propagation

in the network introduces or exacerbates bias [22]. Formally, we

define structural bias on attributed networks as follows.

Definition 2. Structural bias. Given an undirected attributed
network G = (A, X) and the corresponding group indicator (w.r.t.
sensitive attribute) for each node s = [𝑠1, 𝑠2, ..., 𝑠𝑁 ], where 𝑠𝑖 ∈ {0, 1}
(1 ≤ 𝑖 ≤ 𝑁 ). For the attribute values propagated w.r.t. A, if their
distributions between different demographic groups are different at
any attribute dimension, then structural bias exists in G.

Apart from these definitions, it is also necessary to quantitatively

measure the attribute bias and structural bias. In the sequel, we

introduce our proposed metrics for the two types of bias.

3.3 Bias Metrics
Here we take the first step to define metrics for both attribute bias
and structural bias for an undirected attributed network G.
Attribute bias metric. Let Xnorm ∈ R𝑁×𝑀 be the normalized

attribute matrix. For the𝑚-th dimension (1 ≤ 𝑚 ≤ 𝑀) of Xnorm,

we use X0

𝑚 and X1

𝑚 to denote attribute value set for nodes with

𝑠𝑖 = 0 and 𝑠𝑖 = 1 (1 ≤ 𝑖 ≤ 𝑁 ). Then, attributes of all nodes can

be divided into tuples:X𝑡𝑜𝑡𝑎𝑙 = {(X0

1
,X1

1
), (X0

2
,X1

2
), ..., (X0

𝑀
,X1

𝑀
)}.

Wemeasure attribute bias withWasserstein-1 distance [54] between

the distributions of the two groups:

𝑏attr =
1

𝑀

∑︁
𝑚

𝑊 (𝑝𝑑 𝑓 (X0

𝑚), 𝑝𝑑 𝑓 (X1

𝑚)) . (1)

Here 𝑝𝑑 𝑓 (·) is the probability density function for a set of values,

and𝑊 (., .) is theWasserstein distance between two distributions. In-

tuitively,𝑏attr describes the averageWasserstein-1 distance between
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attribute distributions of different groups across all dimensions. It

should be noted that taking the distribution difference between

demographic groups as the indication of bias is in align with many

existing algorithmic fairness studies [6, 10, 62].

Structural bias metric.As illustrated in Sec. 2, the key mechanism

of GNNs is information propagation, during which the structural

bias could be introduced. Let Pnorm = 𝛼Anorm+(1−𝛼)I. Here Pnorm
can be regarded as a normalized adjacency matrix with re-weighted

self-loops, where 𝛼 ∈ [0, 1] is a hyper-parameter. Before measuring

structural bias, we define the propagation matrix M𝐻 ∈ R𝑁×𝑁 as:

M𝐻 = 𝛽1Pnorm + 𝛽2P2norm + ... + 𝛽𝐻P𝐻
norm

, (2)

where 𝛽ℎ (1 ≤ ℎ ≤ 𝐻 ) is re-weighting parameters. The rationale

behind the formulation above is to measure the aggregated reaching

likelihood from each node to other nodes within a distance of 𝐻 .

To achieve localized effect for each node, a desired choice is to let

𝛽1 ≥ 𝛽2 ≥ ... ≥ 𝛽𝐻 , i.e., emphasizing short-distance terms and

reducing the weights of long-distance terms. For example, assume

𝐻 = 3, then the value (M3)𝑖, 𝑗 is the aggregated reaching likelihood

from node 𝑖 to node 𝑗 within 3 hops with re-weighting parameters

being 𝛽1, 𝛽2 and 𝛽3. Also, given attributes Xnorm, we define the

reachability matrix R ∈ R𝑁×𝑀 as R = M𝐻Xnorm. Intuitively, R𝑖,𝑚
is the aggregated reachable attribute value for attribute𝑚 of node

𝑖 . We utilize R0𝑚 and R1𝑚 to represent the set of values of the𝑚-

th dimension in R for nodes with 𝑠𝑖 = 0 and 𝑠𝑖 = 1 (1 ≤ 𝑖 ≤
𝑁 ). The entries in R can also be divided into tuples according to

attribute dimensions: R𝑡𝑜𝑡𝑎𝑙 = {(R01,R
1

1
), (R0

2
,R1

2
), ..., (R0

𝑀
,R1

𝑀
)}.

We define structural bias as:

𝑏stru =
1

𝑀

∑︁
𝑚

𝑊 (𝑝𝑑 𝑓 (R0𝑚), 𝑝𝑑 𝑓 (R1𝑚)). (3)

Here 𝑏stru is defined in a similar way as 𝑏attr, except that the former

uses R0𝑚 and R1𝑚 instead of X0

𝑚 and X1

𝑚 . In this way, structural bias

𝑏stru describes the average difference between aggregated attribute

distributions of different groups after rounds of propagation.

3.4 Problem Statement
Based on the definitions and metrics in Sec. 3.2 and 3.3, we argue

that if both 𝑏𝑎𝑡𝑡𝑟 and 𝑏𝑠𝑡𝑟𝑢 are reduced, bias in an attributed net-

work can be mitigated. As a result, if GNNs are trained on such

data, the bias issues in downstream tasks could also be alleviated.

Formally, we define the debiasing problem as follows.

Problem 1. Debiasing attributed networks for GNNs. Given
an attributed network G = (A, X), our goal is to debias G by reducing
𝑏𝑎𝑡𝑡𝑟 and 𝑏𝑠𝑡𝑟𝑢 to obtain ˜G = (Ã, X̃), so that the bias of GNNs trained
on ˜G is mitigated. The debiasing is independent of any specific GNNs.

4 MITIGATING DATA BIAS FOR GNNS
In this section, we discuss how to tackle Problem 1 with our pro-

posed framework EDITS. We focus on the binary sensitive attribute

for the sake of simplicity and discuss the extension later. We first

present an overview of EDITS, followed by the formulation of the

objective function. Finally, we present the optimization process.

4.1 Framework Overview
An overview of the proposed framework EDITS is shown in Fig. (2).

Specifically, EDITS consists of three modules: (1) Attribute Debi-
asing. This module learns a debiasing function 𝑔𝜽 with learnable

parameter 𝜽 ∈ R𝑀 . The debiased version of X is obtained as output

where X̃ = 𝑔𝜽 (X); (2) Structural Debiasing. This module outputs

Ã as the debiased A. Specifically, Ã is initialized with A at the be-

ginning of the optimization process. The entries in Ã are optimized

via gradient descent with binarization; (3) Wasserstein Distance
Approximator. This module learns an 𝑓 for each attribute dimen-

sion. 𝑓 is utilized to estimate the Wasserstein distance between the

attribute distributions of different groups.

4.2 Objective Function
In this subsection, we introduce the details of our framework. Fol-

lowing the Definition 1 and Definition 2, our goal is to reduce 𝑏attr
and 𝑏stru simultaneously. For the ease of understanding, we first

consider the 𝑚-th attribute dimension as an example, and then

extend it to all𝑀 dimensions to obtain our objective function.

Let 𝑃0,𝑚 and 𝑃1,𝑚 be the value distribution at the𝑚-th attribute

dimension in X for nodes with sensitive attribute 𝑠 = 0 and 𝑠 = 1,

respectively. Denote 𝑥0,𝑚 ∼ 𝑃
(ℎ)
0,𝑚

and 𝑥1,𝑚 ∼ 𝑃
(ℎ)
1,𝑚

as two random

variables drawn from the two distributions. Assume that we have a

function 𝑔𝜃𝑚 : R→ R to mitigate attribute bias, where 1 ≤ 𝑚 ≤ 𝑀 .

For the𝑚-th dimension, we denote 𝑥
(0)
0,𝑚

= 𝑔𝜃𝑚 (𝑥0,𝑚) ∼ 𝑃
(0)
0,𝑚

and

𝑥
(0)
1,𝑚

= 𝑔𝜃𝑚 (𝑥1,𝑚) ∼ 𝑃
(0)
1,𝑚

as the debiasing results for 𝑥0,𝑚 and 𝑥1,𝑚 ,

respectively. Here the superscript (0) indicates that no information

propagation is performed in the debaising process. Correspondingly,

when such operation is extended to all𝑀 dimensions, we will have

the debiased attribute matrix X̃. Apart from the goal of mitigating

attribute bias, we also want to mitigate structural bias. Let Ã be the

adjacency matrix from the debiased network structure, and P̃norm
denotes the normalized Ã with re-weighted self-loops. Information

propagation with ℎ hops using the debiased adjacency matrix could

be expressed as P̃ℎ
norm

X̃, where 1 ≤ ℎ ≤ 𝐻 . Let 𝑃
(ℎ)
0,𝑚

and 𝑃
(ℎ)
1,𝑚

be

the value distribution at the𝑚-th column of P̃ℎ
norm

X̃ for nodes with

sensitive attribute 𝑠 = 0 and 𝑠 = 1, respectively. Denote 𝑥
(ℎ)
0,𝑚
∼ 𝑃
(ℎ)
0,𝑚

and 𝑥
(ℎ)
1,𝑚
∼ 𝑃

(ℎ)
1,𝑚

as two random variables drawn from the two

distributions. We hope that Ã could mitigate structural bias. We

combine attribute and structural debiasing as below.

Based on the random variables 𝑥
(0)
0,𝑚

to 𝑥
(𝐻 )
0,𝑚

and 𝑥
(0)
1,𝑚

to 𝑥
(𝐻 )
1,𝑚

,

we have (𝐻 + 1)-dimensional vectors x0,𝑚 = [𝑥 (0)
0,𝑚

, 𝑥
(1)
0,𝑚

, ..., 𝑥
(𝐻 )
0,𝑚
]

and x1,𝑚 = [𝑥 (0)
1,𝑚

, 𝑥
(1)
1,𝑚

, ..., 𝑥
(𝐻 )
1,𝑚
] following the joint distribution

𝑃
𝐽 𝑜𝑖𝑛𝑡
0,𝑚

and 𝑃
𝐽 𝑜𝑖𝑛𝑡
1,𝑚

, respectively. To reduce both 𝑏attr and 𝑏stru at

the𝑚-th dimension, our goal is to minimize the Wasserstein dis-

tance between 𝑃
𝐽 𝑜𝑖𝑛𝑡
0,𝑚

and 𝑃
𝐽 𝑜𝑖𝑛𝑡
1,𝑚

, i.e., min
𝜃𝑚,Ã𝑊 (𝑃

𝐽 𝑜𝑖𝑛𝑡
0,𝑚

, 𝑃
𝐽 𝑜𝑖𝑛𝑡
1,𝑚
).

𝑊 (𝑃 𝐽 𝑜𝑖𝑛𝑡
0,𝑚

, 𝑃
𝐽 𝑜𝑖𝑛𝑡
1,𝑚
) can be expressed as

𝑊 (𝑃 𝐽 𝑜𝑖𝑛𝑡
0,𝑚

,𝑃
𝐽 𝑜𝑖𝑛𝑡
1,𝑚
) = (4)

inf

𝛾 ∈Π (𝑃 𝐽 𝑜𝑖𝑛𝑡

0,𝑚
,𝑃

𝐽 𝑜𝑖𝑛𝑡

1,𝑚
)
E(x0,𝑚,x1,𝑚)∼𝛾 [∥x0,𝑚 − x1,𝑚 ∥1] .
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Figure 2: An illustration of EDITS with 𝐻 = 2: Wasserstein Distance Approximator yields the approximated Wasserstein
distance between 𝑃

𝐽 𝑜𝑖𝑛𝑡
0,𝑚

and 𝑃
𝐽 𝑜𝑖𝑛𝑡
1,𝑚

; Attribute Debiasing and Structural Debiasing are optimized towards less biased X̃ and Ã.

Here Π(𝑃 𝐽 𝑜𝑖𝑛𝑡
0,𝑚

, 𝑃
𝐽 𝑜𝑖𝑛𝑡
1,𝑚
) represents the set of all joint distributions

𝛾 (x0,𝑚, x1,𝑚) whose marginals are 𝑃
𝐽 𝑜𝑖𝑛𝑡
0,𝑚

and 𝑃
𝐽 𝑜𝑖𝑛𝑡
1,𝑚

, respectively.

After considering all the𝑀 dimensions, the overall objective is

min

𝜽 ,Ã

1

𝑀

∑︁
1≤𝑚≤𝑀

𝑊 (𝑃 𝐽 𝑜𝑖𝑛𝑡
0,𝑚

, 𝑃
𝐽 𝑜𝑖𝑛𝑡
1,𝑚
) . (5)

It is non-trivial to optimize Eq. (5) as the infimum is intractable.

Therefore, in the next subsection, we show how to convert it into

a tractable optimization problem through approximation, which

enables end-to-end gradient-based optimization.

4.3 Framework Optimization
In this subsection, we introduce our optimization algorithm. For

simplicity, first we still use the𝑚-th attribute dimension in X to

illustrate the idea. Considering the infimum inWasserstein distance

computation is intractable, we apply the Kantorovich-Rubinstein

duality [56] to convert the problem of Eq. (4) as:

𝑊 (𝑃 𝐽 𝑜𝑖𝑛𝑡
0,𝑚

, 𝑃
𝐽 𝑜𝑖𝑛𝑡
1,𝑚
) = (6)

sup

∥𝑓 ∥𝐿≤1
Ex0,𝑚∼𝑃 𝐽 𝑜𝑖𝑛𝑡

0,𝑚

[𝑓 (x0,𝑚)] − Ex1,𝑚∼𝑃 𝐽 𝑜𝑖𝑛𝑡

1,𝑚

[𝑓 (x1,𝑚)] .

Here ∥ 𝑓 ∥𝐿 ≤ 1 denotes that the supremum is taken over all 1-

Lipschitz functions 𝑓 : R𝐻+1 → R. The problem can be solved by

learning a neural network as 𝑓 . Nevertheless, it is worth noting that

the 1-Lipschitz function is difficult to obtain during optimization.

Therefore, here we relax ∥ 𝑓 ∥𝐿 ≤ 1 to ∥ 𝑓 ∥𝐿 ≤ 𝑘 (𝑘 is a constant). In

this case, the left side of Eq. (6) also changes to 𝑘𝑊 (𝑃 𝐽 𝑜𝑖𝑛𝑡
0,𝑚

, 𝑃
𝐽 𝑜𝑖𝑛𝑡
1,𝑚
).

Then, the Wasserstein distance between 𝑃
𝐽 𝑜𝑖𝑛𝑡
0,𝑚

and 𝑃
𝐽 𝑜𝑖𝑛𝑡
1,𝑚

up to a

multiplicative constant can be attained via:

max

𝑓𝑚 ∈F
Ex0,𝑚∼𝑃 𝐽 𝑜𝑖𝑛𝑡

0,𝑚

[𝑓𝑚 (x0,𝑚)] − Ex1,𝑚∼𝑃 𝐽 𝑜𝑖𝑛𝑡

1,𝑚

[𝑓𝑚 (x1,𝑚)], (7)

where F denotes the set of all 𝑘-Lipschitz functions (i.e., ∥ 𝑓𝑚 ∥𝐿 ≤ 𝑘 ,

𝑓𝑚 ∈ F ). Then, extending Eq. (7) to all𝑀 dimensions leads to our

final objective function as:

L1 =
∑︁

1≤𝑚≤𝑀
{Ex0,𝑚∼𝑃 𝐽 𝑜𝑖𝑛𝑡

0,𝑚

[𝑓𝑚 (x0,𝑚)] − Ex1,𝑚∼𝑃 𝐽 𝑜𝑖𝑛𝑡

1,𝑚

[𝑓𝑚 (x1,𝑚)]},

(8)

where {𝑓𝑚 : 1 ≤ 𝑚 ≤ 𝑀} ⊂ F . To model the function 𝑓 in Eq. (8),

a single-layered neural network serves as the Wasserstein Distance
Approximators in Fig. (2) to approximate each 𝑓𝑚 (1 ≤ 𝑚 ≤ 𝑀),

where the objective can be formulated as:

max

{𝑓𝑚 :1≤𝑚≤𝑀 }⊂F
L1 . (9)

The weights of neural networks are clipped within [−𝑐, 𝑐] (𝑐 is a
pre-defined constant), which has been proved to be a simple but

effective way to enforce the Lipschitz constraint for every 𝑓𝑚 [3].

For the Attribute Debiasing module in Fig. (2), we choose a linear

function, i.e., 𝑔𝜃𝑚 (𝑥𝑠,𝑚) = 𝜃𝑚𝑥𝑠,𝑚 (𝑠 ∈ {0, 1}). One advantage is
that it acts as the role of feature re-weighting by assigning a feature

weight for each attribute, which enables better interpretability for

the debiased result. In matrix form, assume 𝚯 is a diagonal matrix

with the𝑚-th diagonal entry being 𝜃𝑚 , we have X̃ = 𝑔𝜽 (X) = X𝚯.
Then the optimization goal for attribute debiasing is:

min

𝚯

L1 + 𝜇1∥X̃ − X∥2𝐹 + 𝜇2∥𝚯∥1, (10)

where 𝜇1 and 𝜇2 are hyper-parameters. The second term ensures

that the debiased attributes after feature re-weighting are close to

the original ones (i.e., preserve as much information as possible).

The third term controls the sparsity of re-weighting parameters. For

the Structural Debiasing module in Fig. (2), Ã is optimized through:

min

Ã
L1 + 𝜇3∥Ã − A∥2𝐹 + 𝜇4∥Ã∥1 𝑠 .𝑡 ., Ã = Ã⊤ . (11)

where 𝜇3 and 𝜇4 are hyper-parameters. The second term ensures

the debiased result Ã is close to the original structure A. The third
term enforces the debiased network structure is also sparse, which

is aligned with the characteristics of real-world networks [23].

Optimization Strategy. To optimize function 𝑓 , parameter 𝚯,

and Ã, we propose a gradient-based optimization approach for

alternatively training as Algorithm 1 in Appendix. First, for the

optimization of 𝑓 w.r.t. Eq. (9), we directly utilize Stochastic Gra-

dient Descent (SGD). Second, for the optimization of parameter 𝚯

w.r.t. Eq. (10), we adopt Proximal Gradient Descent (PGD). In the

projection operation in PGD, we clip the parameters in 𝚯 within

[0, 1]. Finally, to remove the most biased attribute channels, the 𝑧

smallest weights in the diagonal of 𝚯 are masked with 0, where 𝑧

is a pre-assigned hyper-parameter for attribute debiasing. Third,

for the optimization of parameter Ã w.r.t. Eq. (11), we also adopt

PGD with similar clipping strategy as the optimization of𝚯. Finally,

Algorithm 1 outputs X̃ and Ã after multiple epochs of optimization.

Edge Binarization. Here we introduce how we binarize the ele-

ments in Ã to indicate existence of edges. The basic intuition is to

set a numerical threshold to determine the edge existence based

on the entry-wise value change between Ã and A. Specifically, for
the "0" entries in A, if the corresponding weight of any entry in Ã
exceeds 𝑟 ·max(Ã − A), then we flip such entry from 0 to 1. Here

𝑟 is a pre-set threshold for binarization, and max(·) outputs the
largest entry of a matrix. Similarly, for the "1" entries in A, if the
corresponding weight of any entry in Ã is reduced by a number
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exceeding 𝑟 · |min(Ã − A) |, then such entry should be flipped as

0. Here min(·) gives the smallest entry of a matrix. To summarize,

this operation aims to flip the entries with significant changes in

value directly, and maintain other entries as their original values.

Finally, the binarized matrix is assigned to Ã as the final outcome.

5 EXPERIMENTAL EVALUATIONS
In this section, we aim to answer the following research ques-

tions. RQ1: How well can EDITS mitigate the bias in attributed

networks together with the outcome of different GNN variants for

the downstream task? RQ2: How well can EDITS balance utility

maximization and bias mitigation compared with other debiasing

baselines tailored for a specific GNN?

5.1 Downstream Task and Datasets
Downstream Task. We choose the widely adopted node classifica-
tion task to assess the effectiveness of our proposed framework.

Datasets. We use two types of datasets in our experiments, includ-

ing six real-world datasets and two synthetic datasets. Statistics of

the real-world datasets can be found in Table 3 of Appendix. We

elaborate more details as follows: (1) Real-world Datasets.We use six

real-world datasets, namely Pokec-z, Pokec-n [10, 50], UCSD34 [53],

German Credit, Credit Defaulter, and Recidivism [2]. We first in-

troduce the three web-related networks. Pokec-z and Pokec-n are

collected from a popular social network in Slovakia. Here a node

represents a user, and an edge denotes the friendship relation be-

tween two users [50].We take "region" as the sensitive attribute, and

the task is to predict the user working field. UCSD34 is a Facebook

friendship network of the University of California San Diego [53].

Each node denotes a user, and edges represent the friendship rela-

tions between nodes. We take "gender" as the sensitive attribute,

and the task is to predict whether a user belongs to a specific major.

Users with incomplete information (e.g., missing attribute values)

are filtered out from the three web networks above. Besides, we also

adopt three networks beyond web-related data. In German Credit,
nodes represent clients in a German bank, and edges are formed

between clients if their credit accounts are similar. With "gender"

being the sensitive attribute, the task is to classify the credit risk

of the clients as high or low. In Recidivism, nodes are defendants

released on bail during 1990-2009. Nodes are connected based on

the similarity of past criminal records and demographics. The task

is to classify defendants into bail vs. no bail, with "race" being the

sensitive attribute. In the Credit Defaulter, nodes are credit card
users, and they are connected based on the pattern similarity of

their purchases and payments. Here "age" is the sensitive attribute,

and the task is to predict whether a user will default on credit card

payment. (2) Synthetic Datasets. For the ablation study of EDITS, we

use the two datasets generated in Sec. 2. One network has biased

attributes and an unbiased structure, while the other network is on

the opposite. We add eight extra attribute dimensions besides the

two attribute dimensions for both datasets. The attribute values in

the extra attribute dimensions are generated uniformly between

0 and 1. For labels, we compute the sum of the first two extra at-

tribute dimensions. Then, we add Gaussian noise to the sum values,

and rank them by the values in descending order. Labels of the

Table 1: Attribute and structural bias comparison between
original networks and debiased ones from EDITS (in scale of
×10−3). The lower, the better. Best ones are marked in bold.

Attribute Bias Structural Bias
Vanilla EDITS Vanilla EDITS

Pokec-z 0.43 0.33 (−23.3%) 0.83 0.75 (−9.64%)
Pokec-n 0.54 0.42 (−22.2%) 1.03 0.89 (−13.6%)
UCSD34 0.53 0.48 (−9.43%) 0.68 0.63 (−7.35%)
German 6.33 2.38 (−62.4%) 10.4 3.54 (−66.0%)
Credit 2.46 0.56 (−77.2%) 4.45 2.36 (−47.0%)

Recidivism 0.95 0.39 (−58.9%) 1.10 0.52 (−52.7%)

top-ranked 50% individuals are set as 1, while the labels of the other

50% are set as 0. The task is to predict the labels.

5.2 Experimental settings
GNN Models. Here we adopt three popular GNN variants in our

experiments: GCN [28], GraphSAGE [19], and GIN [60].

Baselines. Since there is no existing work directly debiasing net-

work data for GNNs, here we choose two state-of-the-art GNN-

based debiasing approaches for comparison, namely FairGNN [10]

and NIFTY [2]. (1) FairGNN. It is a debiasing method based on

adversarial training. A discriminator is trained to distinguish the

representations between different demographic groups. The goal

of FairGNN is to train a GNN that fools the discriminator for bias

mitigation. (2) NIFTY. It is a recently proposed GNN-based debias-

ing framework. With counterfactual perturbation on the sensitive

attribute, bias is mitigated via learning node representations that

are invariant to the sensitive attribute. It should be noted that both

of them take GNNs as their backbones in the downstream task.

While on the other hand, EDITS attempts at debiasing attributed

networks without referring to the output of downstream GNN

models (i.e., EDITS is model-agnostic). The hyper-parameters of

EDITS are tuned only based on our proposed bias metrics. Obvi-

ously, the debiasing performed by EDITS generalizes better but is

more difficult compared with the model-oriented baselines.

Evaluation Metrics. We evaluate model performance from two

perspectives: model utility and bias mitigation. Good performance

means low bias and high model utility. We introduce the adopted

metrics for model utility and bias mitigation: (1) Model Utility Met-
rics. For node classification, we use the area under the receiver

operating characteristic curve (AUC) and F1 score as the indicator

of model utility; (2) Bias Mitigation Metrics. We use two widely-

adopted metrics Δ𝑆𝑃 and Δ𝐸𝑂 to show to what extent the bias in

the output of different GNNs are mitigated [5, 10, 38]. For both

metrics, a lower value means better bias mitigation performance.

5.3 Debiasing Attributed Network for GNNs
To answer RQ1, we first evaluate the effectiveness of EDITS in

reducing the bias measured by the two proposed metrics and tra-

ditional bias metrics with different GNN backbones. The attribute

and structural bias of the six real-world datasets before and after

being debiased by EDITS are shown in Table 1. The comparison on

Δ𝑆𝑃 and Δ𝐸𝑂 between GNNs trained on debiased networks from

EDITS and original networks is presented in Table 2. We make

the following observations: (1) From the perspective of bias miti-

gation in the attributed network, EDITS demonstrates significant

advantages over the vanilla approach as indicated by Table 1. This

verifies the effectiveness of EDITS in reducing the bias existing
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Table 2: Comparison on utility and bias mitigation between GNNs with original networks (denoted as Vanilla) and debiased
networks (denoted as EDITS) as input. ↑ denotes the larger, the better; ↓ denotes the opposite. Best ones are in bold.

GCN GraphSAGE GIN
Vanilla EDITS Vanilla EDITS Vanilla EDITS

Pokec-z

AUC ↑ 67.83 ± 0.7% 67.38 ± 0.3% 68.00 ± 0.3% 66.37 ± 0.7% 66.74 ± 0.8% 65.64 ± 0.5%

F1 ↑ 61.95 ± 0.6% 61.91 ± 0.1% 61.58 ± 1.3% 60.62 ± 0.6% 61.55 ± 0.5% 60.65 ± 1.2%

𝚫𝑺𝑷 ↓ 5.70 ± 1.2% 2.74 ± 0.9% 7.10 ± 1.2% 2.89 ± 0.4% 5.20 ± 1.0% 1.90 ± 1.3%
𝚫𝑬𝑶 ↓ 4.88 ± 1.3% 2.87 ± 1.0% 6.37 ± 0.8% 2.54 ± 0.7% 4.65 ± 1.1% 2.09 ± 1.1%

Pokec-n

AUC ↑ 63.24 ± 0.5% 61.82 ± 0.9% 64.07 ± 0.4% 62.05 ± 0.6% 62.53 ± 1.4% 61.60 ± 1.4%

F1 ↑ 54.32 ± 0.4% 52.84 ± 0.3% 53.45 ± 1.2% 52.53 ± 0.1% 52.62 ± 1.2% 52.56 ± 1.0%

𝚫𝑺𝑷 ↓ 3.36 ± 0.4% 0.91 ± 0.87% 3.85 ± 0.2% 2.08 ± 1.2% 5.90 ± 2.5% 0.96 ± 0.5%
𝚫𝑬𝑶 ↓ 3.97 ± 1.6% 1.10 ± 1.0% 2.64 ± 0.3% 1.82 ± 0.9% 4.47 ± 3.7% 0.47 ± 0.4%

UCSD34

AUC ↑ 63.33 ± 0.3% 62.43 ± 0.9% 62.62 ± 1.0% 62.82 ± 2.4% 62.57 ± 0.7% 64.50 ± 0.9%
F1 ↑ 94.16 ± 0.3% 94.69 ± 0.1% 94.00 ± 0.2% 94.55 ± 0.1% 92.24 ± 1.6% 92.48 ± 0.5%

𝚫𝑺𝑷 ↓ 1.27 ± 0.4% 0.27 ± 0.1% 1.27 ± 0.5% 0.35 ± 0.3% 2.11 ± 1.3% 0.36 ± 0.1%
𝚫𝑬𝑶 ↓ 1.40 ± 0.4% 0.39 ± 0.1% 1.40 ± 0.4% 0.25 ± 0.3% 2.32 ± 1.6% 0.47 ± 0.4%

German

AUC ↑ 74.46 ± 0.7% 71.01 ± 1.3% 75.28 ± 2.1% 73.21 ± 0.5% 71.35 ± 1.7% 71.51 ± 0.6%
F1 ↑ 81.54 ± 0.9% 82.43 ± 0.69% 81.52 ± 1.0% 80.62 ± 1.5% 83.08 ± 0.9% 83.78 ± 0.4%

𝚫𝑺𝑷 ↓ 43.14 ± 2.5% 2.04 ± 1.3% 26.83 ± 0.5% 8.30 ± 3.1% 18.55 ± 2.0% 1.26 ± 0.7%
𝚫𝑬𝑶 ↓ 33.75 ± 0.4% 0.63 ± 0.39% 20.66 ± 3.0% 3.75 ± 3.3% 11.27 ± 3.5% 2.87 ± 1.4%

Credit

AUC ↑ 73.62 ± 0.3% 70.16 ± 0.6% 74.99 ± 0.2% 75.28 ± 0.5% 73.82 ± 0.4% 72.06 ± 0.9%

F1 ↑ 81.86 ± 0.1% 81.44 ± 0.2% 82.31 ± 0.7% 83.39 ± 0.3% 82.11 ± 0.1% 85.10 ± 0.7%
𝚫𝑺𝑷 ↓ 12.93 ± 0.1% 9.13 ± 1.2% 17.03 ± 3.3% 12.25 ± 0.2% 12.18 ± 0.3% 8.79 ± 5.6%
𝚫𝑬𝑶 ↓ 10.65 ± 0.0% 7.88 ± 1.0% 15.31 ± 4.0% 9.58 ± 0.1% 9.48 ± 0.3% 7.19 ± 3.8%

Recidivism

AUC ↑ 86.91 ± 0.4% 85.96 ± 0.3% 88.12 ± 1.4% 88.15 ± 0.9% 82.40 ± 0.8% 81.55 ± 1.5%

F1 ↑ 78.30 ± 1.0% 75.80 ± 0.5% 76.23 ± 2.8% 76.30 ± 1.4% 70.36 ± 1.9% 71.09 ± 2.3%
𝚫𝑺𝑷 ↓ 7.89 ± 0.3% 5.39 ± 0.2% 2.42 ± 1.2% 0.79 ± 0.5% 9.97 ± 0.7% 4.98 ± 0.9%
𝚫𝑬𝑶 ↓ 5.58 ± 0.2% 3.36 ± 0.3% 2.98 ± 2.2% 1.01 ± 0.5% 6.10 ± 1.2% 5.47 ± 0.7%

in the attributed network data. (2) From the perspective of bias

mitigation in the downstream task, we observe from Table 2 that

EDITS achieves desirable bias mitigation performance with little

utility sacrifice in all cases compared with GNNs with the original

network as input (i.e., the vanilla one). This verifies that attributed

networks debiased by EDITS can generally mitigate the bias in the

outcome of different GNNs. (3) When comparing bias mitigation

performance indicated by Table 1 and Table 2, we can find that the

bias in the outcome of GNNs is also mitigated after EDITS miti-

gates attribute bias and structural bias in the attributed networks.

Such consistency verifies the validity of our proposed metrics on

measuring the bias that existed in the attributed networks.

5.4 Comparison with Other Debiasing Models
To answer RQ2, we then compare the balance between model util-

ity and bias mitigation with other baselines based on a given GNN.

Here we present the comparison of AUC and Δ𝑆𝑃 based on GCN

in Fig. (3). Similar results can be obtained for other GNNs, which

are omitted due to space limit. Experimental results include the

performance of baselines and EDITS on the six real-world datasets.

The following observations can be made: (1) From the perspective

of model utility (indicated by Fig. (3a) and Fig. (3b)), EDITS and

baselines achieve comparable results with the vanilla GCN. This

implies that the debiasing process of EDITS preserves as much use-

ful information for the downstream task as the original attributed

network. (2) From the perspective of bias mitigation (indicated by

Fig. (3c) and Fig. (3d)), all baselines achieve effective bias mitigation.

Compared with debiasing in downstream tasks, debiasing the attrib-

uted network is more difficult due to the lack of supervision signals

from GNN prediction. Observation can be drawn that the debiasing

performance of EDITS is similar to or even better than that of the

adopted baselines. This verifies the superior performance of EDITS

on debiasing attributed networks for more fair GNNs. (3) From

the perspective of balancing the model utility and bias mitigation,
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Figure 3: Performance comparison between EDITS and base-
lines on utility (AUC) and bias mitigation (𝚫𝑺𝑷 ).

EDITS achieves comparable model utility with alternatives but ex-

hibits better bias mitigation performance. Consequently, we argue

that EDITS achieves superior performance on balancing the model

utility and bias mitigation over other baselines.

5.5 Ablation Study
To evaluate the effectiveness of the two debiasing modules (i.e.,

attribute debiasing module and structural debiasing module) in ED-

ITS, here we investigate how each of them individually contributes

to bias mitigation under our proposed bias metrics and the tradi-

tional bias metrics in the downstream task. We choose GCN as the

GNN model in our downstream task. For better visualization pur-

poses, the two datasets showing large attribute bias and structural

bias (i.e., German and Credit) are selected for experiments. Besides,

to better demonstrate the functionality of the two debiasing mod-

ules, we also adopt the two synthetic datasets we mentioned in

Sec. 2 (i.e., the network with only biased attributes and the network

with only biased structure), which are further modified according to
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Figure 4: Performance EDITS and its variants on two real-world datasets and two synthetic datasets. EDITS denotes that both
debiasing modules are included; *w/o-SD means EDITS without structural debiasing module; *w/o-AD means EDITS is without
attribute debiasing module; Vanilla means applying GNN with the original attributed network as input.

Sec. 5.1. Based on the four selected datasets, four different variants

of EDITS are tested, namely EDITS with both debiasing modules,

EDITS without the structural debiasing module (i.e., *w/o-SD), ED-

ITS without the attribute debiasing module (i.e., *w/o-AD), vanilla

GCN model without debiased input (i.e., Vanilla). We present their

performance of attribute bias, structural bias, AUC, and Δ𝑆𝑃 on

the four datasets in Fig. (4). We make the following observations:

(1) The value of attribute bias can be reduced with the attribute

debiasing module of EDITS, which maintains the model utility (i.e.,

AUC) but reduces Δ𝑆𝑃 in the downstream task. (2) The value of

structural bias can be reduced with both attribute debiasing and

structural debiasing modules. With only structural debiasing, ED-

ITS still maintains comparable model utility but reduces Δ𝑆𝑃 in the

downstream task. (3) Although both attribute debiasing and struc-

tural debiasing module help mitigate structural bias, only debiasing
the network structure achieves better bias mitigation performance

on all four datasets compared with only debiasing the attributes as

implied by Fig. (4d). This demonstrates the indispensability of the

structural debiasing module in EDITS.

6 RELATEDWORK
Mitigating Bias in Machine Learning. Bias can be defined from

a variety of perspectives in machine learning algorithms [4, 13,

20, 35, 39, 58]. Commonly used algorithmic bias notions can be

broadly categorized into group fairness and individual fairness [15].
Group fairness emphasizes that algorithms should not yield dis-

criminatory outcomes for any specific demographic groups [15].

Such groups are usually determined by sensitive attributes, e.g.,

gender or race [25]. Existing debiasing approaches work in one

of the three data flow stages, i.e., pre-processing, processing and

post-processing stage. In pre-processing stage, a common method

is to re-weight training samples from different groups to mitigate

bias before model training [25]. Perturbing data distributions be-

tween groups is another popular approach to debias the data in the

pre-processing stage [57]. In processing stage, a popular method

is to add regularization terms to disentangle the outcome from

sensitive attribute [36, 48] or minimize the outcome difference

between groups [1]. Besides, utilizing adversarial learning to re-

move sensitive information from representations is also widely

adopted [17]. In post-processing stage, bias in outcomes is usually

mitigated by constraining the outcome to follow a less biased distri-

bution [20, 30, 33, 44, 64]. Usually, all above-mentioned approaches

are evaluated via measuring how much certain fairness notion is

violated. Statistical Parity [15], Equality of Opportunity, Equality of
Odds [20] and Counterfactual Fairness [31] are commonly studied

fairness notions. Different from group fairness, individual fairness

focuses on treating similar individuals similarly [15, 62]. The similar-

ity can be given by oracle similarity scores from domain experts [32].

Most existing debiasing methods based on individual fairness work

in the processing stage. For example, constraints can enforce simi-

lar predictions between similar instances [24, 32]. Consistency is a

popular metric for individual fairness evaluation [32, 34].

Mitigating Bias in Graph Mining. Efforts have been made to

mitigate bias in graph mining algorithms, where these works can

be broadly categorized into either focusing on group fairness or
individual fairness. For group fairness, adversarial learning can

be adopted to learn less biased node representations that fool the

discriminator [6, 10]. Rebalancing between groups is also a popular

approach to mitigate bias [7, 18, 35, 46, 52]. For example, Rahman

et al. mitigate bias via rebalancing the appearance rate of minority

groups in random walks [47]. Projecting the embeddings onto a

hyperplane orthogonal to the hyperplane of sensitive attributes

is another approach for bias mitigation [41]. Compared with the

vast amount of works on group fairness, only few works promote

individual fairness in graphs. To the best of our knowledge, Kang

et al. [26] first propose to systematically debias multiple graph

mining algorithms based on individual fairness. Dong et al. [11]

argue that for each individual, the similarity ranking of others in the

GNN outcome should follow the same order of an oracle ranking

from domain experts. Different from these approaches, this paper

proposes to debias attributed networks in a model-agnostic way.

7 CONCLUSION
GNNs are increasingly critical in various applications. Neverthe-

less, there is an increasing societal concern that GNNs could yield

discriminatory decisions towards certain demographic groups. Ex-

isting debiasing approaches are mainly tailored for a specific GNN.

Adapting these methods to different GNNs can be costly, as they

need to be fine-tuned. Different from them, in this paper, we pro-

pose to debias the attributed network for GNNs. With analysis of

the source of bias existing in different data modalities, we define

two kinds of bias with corresponding metrics, and formulate a novel

problem of debiasing attributed networks for GNNs. To tackle this

problem, we propose a principled framework EDITS for model-

agnostic debiasing. Experiments demonstrate the effectiveness of

EDITS in mitigating bias and maintaining model utility.
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A APPENDIX
A.1 Datasets Statistics
The detailed statistics of six real-world datasets (i.e., German Credit,

Recidivism and Credit Defaulter) can be found in Table 3.

A.2 Algorithm
We present the optimization algorithm for EDITS in Algorithm 1.

Algorithm 1 The Optimization Algorithm for EDITS

Input:
A: Adjacency matrix;X: Attribute matrix;𝛼 , 𝜇1 to 𝜇4 : Hyper-parameters in objectives; 𝑐 : Thresh-
old enforcing Lipschitz; 𝑧: Threshold for attribute masking; 𝑟 : Threshold factor for adjacency

matrix binarization;

Output:
Debiased adjacency matrix Ã and attribute matrix X̃;

1: Ã← A; 𝚯← I;
2: while epoch ≤ epoch_max do
3: Compute L1 following Eq. (8);

4: Update the weights of 𝑓 by SGD following Eq. (9);

5: Clip the weights of 𝑓 within [-𝑐 , 𝑐];

6: Update 𝚯 by PGD following Eq. (10), X̃← X𝚯;

7: Update Ã by PGD following Eq. (11), Ã← 1

2
(Ã + Ã⊤) ;

8: end while
9: Mask the 𝑧 smallest entries with 0 in 𝑑𝑖𝑎𝑔 (𝚯) , X̃← X𝚯;

10: Binarize Ã w.r.t. the threshold 𝑟 ;

11: return Ã and X̃;

A.3 Theoretical Analysis
Here we present theoretical analysis for the two proposed metrics

to gain a deeper understanding of debiasing attributed networks for

GNNs. For attribute bias, it is straightforward that if theWasserstein

distance of the attribute value distribution between the two groups

is zero for every dimension, then there would be no clue to distin-

guish between the two groups. Consequently, here we mainly focus

on the theoretical analysis of the structural bias metric. Specifically,

we perform theoretical analysis from the perspective of Spectral

Graph Theory [9]. Usually, an undirected attributed network is

regarded as a signal composed of different frequency components

in Graph Signal Processing (GSP). If an operation preserves lower

frequency components more than higher ones of a graph signal,

this operation low-pass filters the input graph signal.

Theorem 1. Let 𝜆max be the largest eigenvalue of Lnorm. Multi-
plying X by the propagation matrix M𝐻 can be regarded as low-pass
filtering X when 𝛼 = 1

𝜆𝑚𝑎𝑥
and 𝛽𝑖 > 0 (1 ≤ 𝑖 ≤ 𝐻 ).

Proof. We present the proof based on Laplacian graph spectrum.

By replacing 𝛼 with
1

𝜆max

, we have

Pnorm =
1

𝜆max

Anorm + (1 −
1

𝜆max

)I = I − Lnorm
𝜆max

. (12)

Then, by combining Eq. (2) and Eq. (12), we get

M𝐻 = 𝛽1 (I −
Lnorm
𝜆max

) + 𝛽2 (I −
Lnorm
𝜆max

)2 + ... + 𝛽𝐻 (I −
Lnorm
𝜆max

)𝐻 . (13)

Considering that Lnorm is a symmetric real matrix, it can be decom-

posed as Lnorm = UΛU⊤, then Eq. (13) can be rewritten as

M𝐻 = U
(
𝛽1 (I −

Λ
𝜆max

) + 𝛽2 (I −
Λ

𝜆max

)2 + ... + 𝛽𝐻 (I −
Λ

𝜆max

)𝐻
)
U⊤ .

(14)

HereΛ is the diagonal eigenvalue matrix of Lnorm, and theℎ-th term
(1 ≤ ℎ ≤ 𝐻 ) in Eq. (14) indicates a frequency response function of

(1 − 𝜆i
𝜆max

)ℎ . For any 𝜆𝑖 (1 ≤ 𝑖 ≤ 𝑁 ),
𝜆𝑖

𝜆max

≤ 1 holds. Consequently,

the frequency response of each term in Eq. (14) monotonically

decreases w.r.t. 𝜆𝑖 . This indicates that, for each term, when it is

multiplied by a graph signal, the higher frequency components

of the graph signal are more weakened compared with the lower

frequency components. Therefore, according to Eq. (14),M𝐻 can be

regarded as a graph filter whose frequency response is composed

of 𝐻 low-pass filters. In conclusion, multiplying the propagation

matrixM𝐻 with any graph signal equals to the operation of low-

pass filtering when 𝛼 = 1

𝜆max

and all 𝛽𝑖 > 0. The graph signal is the

attribute matrix X in the proposed structural bias metric. □

Based on Theorem 1, we propose the corollary below to build

connections between attribute bias and structural bias.

Corollary 1. The attribute bias contained in the low frequency
components of an attributed network is equivalent to structural bias.

From the proof of Theorem 1, we can observe that M𝐻Xnorm is

equivalent to low-pass filtering the attribute matrix Xnorm. Then

Corollary 1 is self-evident based on Definition 2. At the same time,

considering that the frequencies and the corresponding basis of

a network data changes when A is optimized to be Ã. The basic
goal of EDITS can also be interpreted as: debiasing the full spectrum
of a graph signal, and learning better frequencies together with the
corresponding basis to further mitigate the bias existed in the lower
frequency components of the graph signal.

A.4 Implementation Details
EDITS is implemented using Pytorch [43] and optimized via RM-

Sprop optimizer [21]. In the training of EDITS, we set the training

epochs as 100 for Recidivism and 500 for other datasets. The learn-

ing rate is set as 3×10−3 for epochs under 400 and 1×10−3 for those
above. 𝛼 is set as 0.5 considering that 𝜆max = 2 [9]. To train GNNs,

we fix the training epochs to be 1,000 based on Adam optimizer [27],

with the learning rate of 1 × 10−3.

A.5 Extension to Non-Binary Sensitive
Attributes

Here, we show how our proposed framework EDITS can be gener-

alized to handle non-binary sensitive attributes. More specifically,

we use a synthetic dataset to showcase the extension.

Synthetic Dataset Generation. Our goal here is to generate a

synthetic attributed network with both biased node attributes and

network structure, where nodes should come from at least three

different groups based on the sensitive attribute. We elaborate more

details from three perspectives: biased network structure genera-

tion, biased node attribute generation, and node label generation. (1)

Biased Network Structure Generation. We adopt a similar approach

as presented in Fig. (1) to generate three communities with dense

intra-community links but sparse inter-community links. (2) Biased
Node Attributes Generation.We generate a ten-dimensional attribute

vector for each node. The values at the first two dimensions are

generated independently with Gaussian distributionN (-1, 1
2
),N (0,

1
2
), and N (1, 1

2
) for the nodes in the three communities, respec-

tively. The attribute values for all other dimensions are generated

with independent Gaussian Distribution N (0, 1
2
). Besides, We gen-

erate a ternary variable 𝑠 ∈ {0, 1, 2} based on the node community

membership for all nodes as an extra attribute dimension. Here the
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Table 3: The statistics and basic information about the six real-world datasets adopted for experimental evaluation. Sens.
represents the semantic meaning of sensitive attribute.

Dataset Pokec-z Pokec-n UCSD34 German Credit Recidivism Credit Defaulter
# Nodes 7,659 6,185 4,132 1,000 18,876 30,000

# Edges 29,476 21,844 108,383 22,242 321,308 1,436,858

# Attributes 59 59 7 27 18 13

Avg. degree 7.70 7.06 52.5 44.5 34.0 95.8

Sens. Region Region Gender Gender Race Age

Label Working field Working field Student major Credit status Bail decision Future default

community membership is regarded as the sensitive attribute of

nodes in this network. (3) Node Label Generation.We sum up the

values at the first two unbiased attribute dimensions for all nodes,

and then add Gaussian noise to the summation. The summation

values with noise are ranked in descending order. Labels of the

top-ranked 50% nodes are set as 1, while the labels of the other 50%

nodes are set as 0. The task is to predict the labels.

Framework Extension. To extend the proposed framework EDITS

to handle non-binary sensitive attributes, the basic rationale is

to encourage the function 𝑓𝑚 introduced in Section 4.3 to help

approximate the squared Wasserstein distance sum between all

group pairs based on ternary sensitive attribute. Therefore, we

modify the L1 in Eq. (8) as

˜L1 =
∑︁
𝑖, 𝑗

∑︁
𝑚

{Ex𝑖,𝑚 [𝑓𝑚 (x𝑖,𝑚)] − Ex𝑗,𝑚 [𝑓𝑚 (x𝑗,𝑚)]}2 . (15)

Here 1 ≤ 𝑚 ≤ 𝑀 , and 𝑖, 𝑗 ∈ {0, 1, 2} (𝑖 < 𝑗 ). x𝑖,𝑚 and x𝑗,𝑚 follows

𝑃
𝐽 𝑜𝑖𝑛𝑡
𝑖,𝑚

and 𝑃
𝐽 𝑜𝑖𝑛𝑡
𝑗,𝑚

, respectively. The L1 in Eq. (9), (10), and (11) are

repalced with
˜L1. This enables EDITS to minimize the squared

Wasserstein distance sum between all group pairs.

Research Questions. Here we aim to answer two research ques-

tions. RQ1: Can EDITS mitigate the bias in the network dataset

with ternary sensitive attributes? RQ2: Can EDITS achieve a good

balance between mitigating bias and maintaining utility for GNN

predictions with ternary sensitive attributes?

Evaluation Metrics.We introduce the metrics following the two

research questions above. (1) For RQ1, to measure the bias in the

network dataset, we adopt the 𝑏attr and 𝑏stru introduced in Sec. 3.3.

(2) For RQ2, to measure the bias exhibited in GNN predictions, we

adopt two traditional fairness metrics: Δ𝑆𝑃 and Δ𝐸𝑂 . Consider-

ing that these two metrics are designed only for binary sensitive

attributes, Δ𝑆𝑃 and Δ𝐸𝑂 for each pair of groups are utilized to eval-

uate the fairness level of GNN predictions. Besides, AUC and F1 are

adopted to evaluate the utility of GNN predictions.

Results Analysis. Results based on GCN are presented in Fig. (5)

and Table 5, and similar observations can also be found on other

GNN backbones. We evaluate the performance of EDITS from two

perspectives. (1) RQ1: the fairness level of the network dataset. As
presented in Table 5,𝑏attr and𝑏stru of the dataset are clearly reduced

with EDITS. This verifies the effectiveness of EDITS on debiasing

the attributed network data. (2) RQ2: the balance between fairness
and utility for GNN predictions. As presented in Fig. (5),Δ𝑆𝑃 andΔ𝐸𝑂

for every group pair are reduced. This corroborates the effectiveness

of EDITS on achieving more fair GNN predictions. At the same

time, Table 5 indicates that the GNN with debiased input data still

maintains similar utility performance compared with the GNNwith

vanilla input. This indicates that EDITS achieves a good balance

between fairness and utility for GNN predictions.
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Figure 5: Comparison of 𝚫𝑺𝑷 and 𝚫𝑬𝑶 between vanilla and
EDITS based on GCN for ternary sensitive attributes.

Table 4: Parameter study for 𝜇1 and 𝜇3. The values of 𝑏attr
and 𝑏stru are in scale of ×10−3.

𝜇1 𝑏𝑎𝑡𝑡𝑟 F1(%) Δ𝑆𝑃 (%) 𝜇3 𝑏𝑠𝑡𝑟𝑢 F1(%) Δ𝑆𝑃 (%)

1e2 6.33 81.69 35.3 1e2 10.2 82.26 34.2

1e1 5.02 80.69 19.9 1e1 9.97 80.89 25.0

1e0 3.74 80.28 7.76 1e0 9.81 79.77 14.1

1e-1 2.38 80.00 4.58 1e-1 4.89 79.46 3.96

1e-2 2.34 79.95 4.08 1e-2 3.53 78.93 3.26

1e-3 2.35 79.46 3.96 1e-3 3.34 78.89 2.76

1e-4 2.34 79.03 3.29 1e-4 3.29 78.37 2.06

1e-5 2.34 76.22 2.86 1e-5 3.22 78.06 2.00

Table 5: Comparison of fairness level and utility between the
original synthetic network and the debiased one based on
the ternary sensitive attributes. The values of 𝑏attr and 𝑏stru
are in scale of ×10−3. Best ones are marked in bold.

Attribute Bias & Structural Bias Comparison
Group 0 v.s. 1 Group 0 v.s. 2 Group 1 v.s. 2
𝑏attr 𝑏stru 𝑏attr 𝑏stru 𝑏attr 𝑏stru

Vanilla 13.7 25.5 26.5 48.8 11.0 20.4

EDITS 5.33 9.63 13.4 24.1 4.73 8.73
Utility Comparison

AUC F1
Vanilla 67.09 ± 0.3% 64.50 ± 0.6%
EDITS 67.05 ± 0.2% 62.91 ± 0.8%

A.6 Parameter Study
Here we aim to study the sensitivity of EDITS. Specifically, we

show the parameter study of 𝜇1 and 𝜇3 on German dataset, but

similar observations can also be found on other datasets. Here 𝜇1
and 𝜇3 control how much original information should be preserved

from the original attributes and graph structure, respectively. We

first vary 𝜇1 in the range of {1e2, 1e1, 1e0, 1e-1, 1e-2, 1e-3, 1e-4,

1e-5} while fix other parameters as 𝜇2=1e-4, 𝜇3=1e-1, 𝜇4=1e-4; then

we vary 𝜇1 in the same range with 𝜇1=1e-3, 𝜇2=1e-4, 𝜇4=1e-4. The

results in Table 4 indicate that the trade-off between debiasing and

utility performance is stable when 𝜇1 and 𝜇3 are in a wide range

between 1e-3 and 1e-1. Therefore, it is safe to say that we can tune

these parameters in a wide range without greatly affecting the

fairness and model utility.
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