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Abstract
Applications of body-centered-cubic (BCC) refractory multicomponent alloys require their room-temperature ductility and high-temperature surface 
passivation. Using physics-informed surrogate models and thermodynamic modeling, we devised a hierarchical work"ow for the initial screening of 
promising refractory alloys in 13-element composition space (Ti–Zr–Hf–V–Nb–Ta–Mo–W–Re–Ru–Al–Cr–Si). Screening criteria included high intrinsic 
ductility according to Rice model of crack-tip deformation, pure BCC phase at 800◦ C, and suf#cient concentrations of Cr, Al or Si for surface passiva-
tion potency. 1184 Candidates were selected from 107 quaternary alloys. 10 Representative candidates were veri#ed by #rst-principles calculations 
of intrinsic ductility parameters and thermodynamic modeling of oxidation capability at 900◦C.

© The Author(s), under exclusive licence to The Materials Research Society, 2022

Introduction
Body-centered cubic (BCC) refractory multicomponent alloys, 
including BCC refractory high entropy alloys (HEAs), are 
promising for use as structural components in various sectors,[1] 
due to their high-temperature strength and stability. Although 
BCC alloys possess sufficient ductility at high temperatures, 
e.g., 800◦ C, brittle mechanical behavior at lower temperatures 
can hinder their formability.[2,3] In addition, extreme environ-
ments encountered in energy conversion cycles, such as high-
temperature and high-pressure gases,[4] and other applications 
can increase the risk of alloy corrosion or embrittlement. To 
address these materials challenges, two criteria are commonly 
considered for alloy selection. First, the BCC alloy must have 
sufficient room-temperature ductility to facilitate mechanical 
processing and fabrication.[1] Second, the alloy must be resist-
ant to high-temperature oxidation and corrosion, achieved by 
passive oxide film formations due to alloying elements such 
as Al, Cr, and Si in minor concentrations.[4,5] Thus, there is 
a need to design accurate and efficient screening methods to 
guide alloy selection from the complex chemical landscape of 
refractory elements, with a synergistic balance between intrin-
sic chemical (oxide passivation) and mechanical properties 
(strength and ductility).
Several recent studies have been conducted to elucidate 

the strengthening and ductility mechanisms in BCC HEAs, 
spanning  both multiscale  computational  simulations  and 

experimental measurement of mechanical properties.[3,6] The 
intrinsic ductility of alloys can be well captured via several 
criteria such as Pugh’s ratio of the bulk and shear moduli,[7] 
and the Rice–Thomson ratio of the stress intensities for fracture 
propagation and dislocation emission (so-called the Rice crite-
rion).[8,9] An exact formulation to determine the intrinsic ductil-
ity based on the Rice criterion depends on elastic constants cij , 
the surface energy γsurf  of the cleavage fracture plane, and the 
unstable stacking fault (USF) energy γusf  of the slip systems.[6] 
A simplified and efficient approach is to estimate the strength 
based on γusf  and the intrinsic ductility based on the intrinsic 
ductility parameter D = γsurf/γusf  . Approximately, the yield 
strength enhances as the γusf  increases, and a higher value of D 
corresponds to higher intrinsic ductility according to the Rice 
criterion. Both γusf  and D can be computed for multicompo-
nent solid-solution alloys based on density functional theory 
(DFT) calculations and special quasi-random structure (SQS) 
method.[10,11]

Recently, Hu  et  al.[12]  proposed  a  statistical  regression 
scheme for the rapid screening of DFT-calculated γsurf  , γusf  , 
and D values of BCC refractory multicomponent alloys con-
taining elements in Groups IV–VIII (Ti, Zr, Hf, V, Nb, Ta, Mo, 
W, Re, and Ru). Concisely, a model was developed to predict 
the composition-dependent alloy properties as a sum of indi-
vidual contributions from each type of first-nearest-neighbor 
interatomic bond in the alloys. Here, this formalism has been 
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modified and extended to a wider composition space, which 
includes the core refractory elements and other elements (Al, 
Cr, and Si) that aid in high-temperature corrosion resistance by 
surface oxide passivation. In the first step of our hierarchical 
model, the DFT–SQS dataset was used to construct a regression 
model and sweep over a 13-element composition space with 107 
quaternary alloy compositions to predict their γusf  and D val-
ues. Based on these screening results, more than half a million 
candidate compositions with potentially high intrinsic ductility 
and moderate strengths were identified. Next, high-throughput 
thermodynamic calculations based on the CALPHAD (CAL-
culation of PHAse Diagrams) method were applied to these 
candidates in order to determine whether it is thermodynami-
cally possible to synthesize the single-phase BCC solid solution 
alloys at annealing temperatures ( 800◦ C and lower).[13] These 
criteria lead to 1184 quaternary alloy candidates. Finally, 10 
representative candidates were selected for further verification 
from two aspects: the thermodynamic capability to form pas-
sive oxide films at service temperatures ( 900◦ C) using CAL-
PHAD calculations, and the accurate values of γusf/D using 
DFT–SQS calculations.

Methods
DFT calculations for the dataset of γ surf 
and γ usf

The supercells to approximate random solid solution alloys 
in DFT calculations were generated using the SQS method 
as  implemented  in  the Alloy Theoretic Automated Toolkit 
(ATAT).[10,14] The orthogonal unit vectors of  the supercell 
were oriented along 0.5[111] × [1̄10] × [112̄] to study γusf  of 
the (1̄10)[111] slip system and γsurf  of the (1̄10) plane. Binary 
(with the stoichiometry of A 7 B, A 3 B, A 2 B, AB), ternary (with 
the stoichiometry of ABC, A 2BC) and quaternary (with the 
stoichiometry of ABCD, A 2B2CD, A 3BCD) alloy properties 
were calculated using a 72-atom supercell, with basis vectors 
along 2[111] × 3[1̄10] × [112̄] . Ternary compositions with the 
stoichiometry of A 2B2 C were modelled using a 90-atom super-
cell, with basis vectors along 1.5[111] × 5[1̄10] × [112̄] . The 
left subfigure in Fig. 1(a) shows the schematics for representa-
tive 72-atom bulk supercells used in our calculations, where 
different colors are used to represent the types of chemical 
elements in a multicomponent alloy. The bulk supercell has 6 
interfaces between adjacent (11̄0) planes labeled as Interface 
1–6. The surface supercell in the center subfigure of Fig. 1(a) 

Figure 1.  Dataset and performances of the surrogate models to predict γusf and D = γsurf/γusf based on the RFR method. (a) Alloy 
supercells generated by the SQS  method[10] for DFT calculations to construct the dataset. The colors denote different types of chemical 
elements. Left sub!gure: a representative bulk supercell with 6 ( ̄110 ) planes (separated by Interface 1–6 plotted in dashed lines); center 
sub!gure: a supercell for the γsurf calculation generated by cutting the bulk supercell along Interface 1; right sub!gure: a supercell for the 
γusf calculation generated by displacing the atoms above Interface 1 in the bulk supercell along 0.5[111] on (1̄10) plane. The basis vec-
tor along [1̄10] of the supercell is titled by 0.5[111] to make sure there is only one USF in this supercell. (b) γusf vs. the averaged valence 
electron count (VEC) for all alloys in the DFT-based dataset. (c) D vs. the averaged VEC for all alloys in the DFT-based dataset. In (b) and 
(c), the blue and red circles correspond to alloys that include only d-block transition elements (Ti, Zr, Hf, V, Nb, Ta, Mo, W, Re, Ru, Cr). 
Green stars denote alloys including Al or Si. Part of the data was obtained from a previous publication by Hu et al.[12]. (d) and (e) Training 
(d) and testing (e) performances for the RFR model of γsurf . (f) and (g) Training (f) and testing (g) performance for the RFR model of γusf . 
The training sets in (d) and (f) include data from binary and ternary alloys (red dots). The testing sets in (e) and (g) include quaternary alloys 
(red circles). The vertical black lines in (e) and (g) denote the [15, 85] quantile from the RFR model.
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contains 2 (11̄0) surfaces generated by cutting along Interface 1. 
γsurf =

Esurf−Ebulk

2A
 is the surface energy for this particular surface 

configuration, where Esurf  , Ebulk , and A are the total energy of 
the surface supercell, the total energy of the bulk supercell, and 
the area of the (1̄10) plane in the supercell, respectively. The 
surface energy of an alloy was calculated as the average of all 
6 γsurf  values for 6 surface supercell configurations generated 
by cutting along Interfaces 1–6 in a bulk supercell, respectively.
Similarly, the USF energy of an alloy was calculated as the 

average of 12 γusf  values over all 6 interfaces between adjacent 
(1̄10) slip planes in the supercell of Fig. 1(a). 2 USF configura-
tions were generated for each interface using 2 opposite slip 
directions, [111] and [1̄1̄1̄] , respectively. One example supercell 
is plotted in the right subfigure of Fig. 1(a), which contains a 
stacking fault generated by a slip along [111] across Interface 
1 between two adjacent (11̄0) planes. The basis vector along 
[1̄10] is tilted along the slip direction to make sure there is only 
one stacking fault in this supercell. Thus, γusf = Eusf−Ebulk

A
 is the 

USF energy for a particular combination of the slip vector and 
slip plane, where Eusf  is the total energy of the supercell with 
a USF, approximated by a fixed displacement of ±0.25[111] 
across an interface between two adjacent (1̄10) slip planes. 
Details of the calculation setup can also be found in our previ-
ous publication.[12]

In this study, γsurf  , γusf  and D of 27 alloys (including binary, 
ternary and quaternary compositions) containing Al, Cr or Si in 
the 13-element composition space were obtained by DFT calcu-
lations. γsurf  , γusf and D for 106 alloys without Al, Cr or Si were 
directly taken from our previous publication.[12] So overall the 
dataset have 133 alloy compositions. All these compositions 
are listed in Section SI of the Supplementary Information (SI). 
All DFT calculations were implemented in Vienna Ab initio 
Simulation Package (VASP)[15] using the projected augmented 
wave (PAW) method.[16,17] The generalized gradient approxi-
mation was used to model the exchange-correlation energy in 
the formulation of Perdew, Burke, and Ernzerhof.[18] The Rk 
length of the automatic meshing was set to be 30 Å. The energy 
convergence criterion of the electronic self-consistency cycle 
was 10−6 eV for all the calculations. For the calculations of 
the USF and surface energies, the relaxation process was ter-
minated when the force on each atom is less than 0.02 eV/Å. 
Details regarding energy convergence with respect to supercell 
size can be found in our previous publication.[12]

Surrogate models based on regression 
methods for composition screening
Surrogate models based on regression methods were imple-
mented using the Scikit-Learn package in Python to predict 
values of γusf  , γsurf  , and D of BCC refractory multicomponent 
alloys.[19] The final results presented in this study were gener-
ated using random forest regression (RFR) models implemented 
after the RFR hyperparameters were optimized by 10-fold cross-
validation.[19] The Scikit-garden package was used to compute 
regression quantiles for the RFR model predictions.[19] Concisely, 

RFR is an ensemble method that is useful with sparse datasets 
exhibiting non-linear trends. The final ensemble model in RFR 
is the averaged prediction of several individual classifiers, which 
are called trees. Each tree is constructed by randomly selecting 
various sub-samples from the dataset. The number of features is 
also randomly selected to build each tree. Results of γsurf and γusf  
in binary and ternary alloy supercells were used to train the RFR 
models, which were tested on the quaternary alloy data that were 
not included in the training data set. For screening purposes, the 
models of γsurf and γusf were retrained using the entire 133 alloy 
dataset with the same hyperparameters and features. The selec-
tion of features and the construction of descriptors of these RFR 
models are discussed in the following.
Physical properties of an alloy can be approximated by the 

collective contributions from certain characteristics and feature 
parameters of each interatomic bond in the alloy.[12] If only the 
first-nearest-neighbor interatomic bonds are considered in a 
random alloy, the probability of an i–j bond between elements i 
and j is equal to the product of their mole fractions. Building on 
this bond-counting scheme, general surrogate models to predict 
the physical properties of alloys can be formulated to consider 
information about the global alloy composition and the char-
acteristics of every i–j bond found in that alloy. Recently, Hu 
et al.[12] have shown the effectiveness of such surrogate models 
in predicting the γusf and D parameters of BCC alloys contain-
ing the core refractory elements in Groups IV–VIII. Here, we 
adopt those surrogate models with a new set of interatomic bond 
feature parameters and regression methods to accommodate the 
characteristics of p-block elements such as Al and Si. Then these 
surrogate models are applied to screen over a wider 13-element 
composition space.
The next few paragraphs discuss procedures to use these bond 

features to construct the descriptors as the inputs of surrogate 
models for composition-dependent alloy properties. For any bond 
feature parameter pij of the i–j bond between elements i and j, the 
corresponding alloy descriptor up and the corresponding weighted 
deviation uσ

p
 are defined as the follows

where xi denotes the mole fraction of element i among 13 ele-
ments in the alloy. The summations in Eqs. (1) and (2) include 
all i–j first-nearest-neighbor interatomic bonds between ele-
ments i and j in the alloy. All values of  pij can be written as 
a 13 × 13 matrix. The matrix elements  pij are obtained from 
DFT calculations of certain properties of pure metals in both 
BCC lattice and its corresponding ordered binary alloys in the 
B2 structure. So these bond feature parameters are denoted 
as pBCC/B2

ii
 . In addition, to consider the bond features in other 
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lattice structures that could be critical to certain elements such 
as Al, another group of pij values is also obtained from DFT 
calculations of properties of pure metals in both FCC lattice 
and its corresponding ordered binary alloys in the L10 structure. 
So these bond feature parameters are denoted as pFCC/L10

ij
.

Specifically, any property p of BCC pure metals is attributed 
to i–i bond features as pBCC/B2

ii
 . A 2-atom B2 supercell, which 

has one atom of element i and one atom of element j, contains 
only 8 i–j first-nearest-neighbor interatomic bonds so that its 
property p can be attributed to i–i bond features as  pBCC/B2

ij
 . 

Similarly, any property p of FCC pure metals can be attributed 
to i–i bond features as pFCC/L10

ii
 . However, a 4-atom L10 super-

cell contains effectively 4 i–i, 4 j–j and 16 i–j first-nearest-neigh-
bor bonds. For a rigorous attribution of any L10 property p into 
its bond constituents, the contributions of pFCC/L10

ii
 and pFCC/L10

jj
 

to p should be removed based on the simple linear relation as 
Eq. (1) to obtain the i–j bond feature as pFCC/L10

ij
 . Nevertheless, 

as an approximation (since two-thirds of the bonds in L10 are 
of type i–j), some pFCC/L10

ij
 here are directly obtained from the 

corresponding p value for the whole L10 supercell. Detailed 

descriptions for the calculation of feature parameter matrices 
and descriptors are provided in Sect. SII of the SI.
Table I lists the alloy descriptors (up) used in our model, 

along with their specific notations and their calculation meth-
ods from the corresponding feature parameter pij . Two of the 
descriptors are estimations of the surface energy and USF 
energy of multicomponent alloys based on their counterparts 
in pure BCC metals and ordered B2 alloys. These descrip-
tors have the notations γ BCC/B2

surf
 and γ BCC/B2

usf
 , respectively. 

Diagonal elements in the corresponding feature parameter 
matrices of the 13 elements are denoted γ BCC/B2

surf,ii
 and γ BCC/B2

usf,ii
 , 

respectively, whose values are obtained from DFT calcula-
tions for unary BCC structures containing surface and USF 
configurations. The corresponding off-diagonal matrix ele-
ments γ BCC/B2

surf,ij
 and γ BCC/B2

usf,ij
 are obtained from DFT calcula-

tions for ordered B2 structures containing surface and USF 
configurations. The DFT supercells in these calculations are 
similar to the description in “DFT calculations for the dataset 
ofγsurf andγusf” section and illustration in Fig. 1(a), but with 
reduced multiplicity along [111] due to the higher symmetry 
of BCC/B2 structures. The corresponding weighted deviation 
associated with each descriptor is calculated using Eq. (2) 
and is also included as a descriptor in our model.
Another descriptor in Table I is the volume per atom cal-

culated for both BCC and FCC polymorphs. Their notations 
are VBCC/B2 and V FCC/L10 . The diagonal elements of the feature 
parameter matrix of the 13 elements VBCC/B2

ii
 are obtained from 

DFT calculations for a conventional 2-atom BCC supercell. 
The off-diagonal elements VBCC/B2

ij
 are obtained from DFT cal-

culations for a 2-atom ordered B2 supercell. Analogously, the 
diagonal elements V FCC/L10

ii
 are obtained from DFT calculations 

for a conventional 4-atom FCC supercell and the off-diagonal 
elements V FCC/L10

ij
 are obtained from DFT calculations for a con-

ventional 4-atom ordered L10 supercell. Totally, there are 4 vol-
ume descriptors as seen from Eqs. (1) and (2). These include the 
volume per atom for BCC/B2, the volume per atom for FCC/L10 
and their corresponding weighted deviations. Other structure-
specific descriptors include bond length for the BCC/B2 and 
FCC/L10 structures ( !BCC/B2 and !FCC/L10 , respectively) and 
cohesive energy per atom ( EBCC/B2

coh
 and EFCC/L10

coh
 , respectively). 

Cohesive energies are calculated with respect to the isolated 
atom reference states. Notations of their corresponding elements 
of the feature parameter matrices are tabulated in Table I.
Table I also shows descriptors constructed using the pro-

jected electronic density of states (PDOS) since our previous 
studies show the descriptors of local electronic structure can 
be used to predict  the defect properties  in BCC refractory 
metals.[20] The first, second, third and fourth moments of the 
PDOS are denoted as εBCC/B2

n
 and εFCC/L10

n
 , where n is the order 

number from 1 to 4. The PDOS includes contributions from 
individual s, p and d orbitals (note that the d contribution to Al 
and Si is zero), so the orbital resolved integrated PDOS is also 
included in our model, denoted as nBCC/B2

s/p/d  and nFCC/L10
s/p/d  . These 

quantities  are also calculated using  the 2-atom supercells 
for BCC/B2 and 4-atom supercells for FCC/L10 structures. 

Table I.  Feature parameters and descriptors of random forest regres-
sion (RFR) models of γsurf and γusf.

The table lists  the set of descriptors up based on alloy/metal proper-
ties p in its second column and the corresponding feature parameters 
in its third column, which include the feature parameters ( pBCC/B2ij  and 
p
FCC/L10
ij  ) of the first-nearest-neighbor bond between element i  and  j 

and the element properties ( pi  ). xi/xj  is  the mole fraction of element 
i/j in the alloys.

Descriptor name Descriptor 
notation (up )

Calculation from 
feature param-
eter p

Surface energy γ BCC/B2
surf

∑

i xi
∑

j xj γ
BCC/B2
surf,ij

Unstable stacking fault energy γ BCC/B2
usf

∑

i xi
∑

j xj γ
BCC/B2
usf,ij

Volume per atom V BCC/B2
∑

i xi
∑

j xj V
BCC/B2
ij

V FCC/L10
∑

i xi
∑

j xj V
FCC/L10
ij

Bond length !BCC/B2
∑

i xi
∑

j xj !
BCC/B2
ij

!FCC/L10
∑

i xi
∑

j xj !
FCC/L10
ij

Cohesive energy per atom E BCC/B2coh

∑

i xi
∑

j xjE
BCC/B2
coh,ij

E
FCC/L10
coh

∑

i xi
∑

j xj E
FCC/L10
coh,ij

Moments of the PDOS εBCC/B2n
∑

i xi
∑

j xj ε
BCC/B2
n,ij

ε
FCC/L10
n

∑

i xi
∑

j xj ε
FCC/L10
n,ij

Integrated PDOS nBCC/B2s/p/d

∑

i xi
∑

j xj n
BCC/B2
s/p/d ,ij

n
FCC/L10
s/p/d

∑

i xi
∑

j xj n
FCC/L10
s/p/d ,ij

Valence electron count from 
pseudopotential

VEC
∑

i xi VECi

Electronegativity χ
∑

i xiχi
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Detailed descriptions for the calculation of their feature param-
eter matrices are provided in Sect. SII of the SI.
In addition to the properties of pure metals and ordered 

alloys discussed in the above paragraph, element-specific prop-
erties, such as electronegativity (χ) and the valence electron 
count (VEC) of each element, were also used to construct the 
descriptors. For any multicomponent alloy, the correspond-
ing descriptors include the concentration averaged element-
specific properties and their weighted deviations defined as

Here pi is the χ or VEC of element i for each of 13 investigated 
elements.
With all the above descriptors, two separate RFR models were 

developed to fit the γsurf and γusf data, respectively. Overall, there 
are 23 types of descriptors considered for each RFR model list as 
follows: 1 descriptor based on the planar fault energy ( γ BCC/B2

surf
 

or γ BCC/B2

usf
 ), 2 descriptors based on the cohesive energy per atom 

( EBCC/B2

coh
 and EFCC/L10

coh
 ), 2 descriptors based on the volume per 

atom ( VBCC/B2 and V FCC/L10 ), 2 descriptors based on the bond 
length ( !FCC/L10 and !BCC/B2 ), 8 descriptors based on moments 
of the PDOS ( εBCC/B2

n
 and εFCC/L10

n
 , n = 1, 2, 3, 4 ), 6 descrip-

tors based on integrated PDOS of individual s, p, and d orbitals 
( nBCC/B2

s/p/d  and nFCC/L10
s/p/d  ), 1 descriptor based on the electronegativ-

ity χ , and 1 descriptor based on VEC. For a given alloy, each 
descriptor [denoted as up in Eqs. (1) and (3)] is obtained by com-
puting the concentration-averaged feature parameters [denoted 
as  pij in Eqs. (1) and (3)]. In addition, there is one weighted 
deviation value for each descriptor, denoted as uσ

p
 in Eqs. (2) and 

(4). All the descriptors and their feature parameters are tabulated 
in Table I. The weighted deviations for the element-specific 
properties χ and VEC were found to reduce model accuracy 
and were not included in the final model. Thus, there are totally 
( 23 × 2 − 2 ) = 44 descriptors for each RFR model.

CALPHAD models for phase diagram 
calculations
The Thermo-Calc[21] software was used for thermodynamics cal-
culations as implemented in the CALPHAD method.[22] In brief, 
the Gibbs free energy of the total system is minimized to obtain 
phase amounts and compositions at equilibrium as a function 
of global thermodynamic variables (temperature, pressure, and 
composition).[22] Alloy phase diagrams were calculated using 
the Thermo-Calc Software TCHEA High Entropy Alloys data-
base version 4 (TCHEA4). To assess the phase equilibrium and 
thermodynamic driving force associated with surface oxidation, 
TCHEA4 was combined with Thermo-Calc Software SSUB Gen-
eral Alloys and Pure Substances version 6 (SSUB6).

(3)up =
∑

i

xipi,

(4)u
σ
p
=

√

√

√

√

(

1

1 −
∑

i
x
2

i

)

×

(

∑

i

xi

(

pi − up

)

2

)

.

Results and discussion
DFT calculations of surface energies 
and stacking fault energies
As outlined in “DFT calculations for the dataset ofγsurf andγusf” 
section, γsurf  and γusf  were calculated using  the DFT–SQS 
method  applied  to  supercells  illustrated  in  Fig.  1(a). As 
explained in “DFT calculations for the dataset ofγsurf andγusf” 
section, the value of γsurf/γusf  for each alloy are obtained from 
6/12 calculations of different surface/USF supercell configura-
tion. Section SIII of the SI show detailed results of γsurf /γusf  
for each supercell configurations of certain selected alloys 
that contain Al, Cr, or Si. Figure 1(b) and (c) show γusf  and 
D = γsurf/γusf of an alloy plotted against the composition aver-
aged VEC of this alloy for all cases calculated by the DFT–SQS 
method. The average VEC is given as 

∑

i
xiVECi , where xi is 

the molar composition of the alloy and VECi is the number 
of valence electrons per atom for the element type i. The data 
shows a general trend that the highest values of γusf  and the 
lowest values of D usually appear in the alloys with VEC ≈ 6, 
indicating general strength–ductility trade-off.[12] These trends 
are generally consistent with the facts that (1) Group VI metals 
(such as W and Mo) have the highest hardness but are brit-
tle, and (2) the intrinsic ductility of BCC refractory alloys is 
strongly correlated to the d-band filling.[23] However, there are 
still scattered distributions of γsurf  and D even for alloys with 
the same VEC values, suggesting the necessity to design accu-
rate predictive models based on feature parameters of chemical 
and electronic properties besides the VEC values.

Surrogate model performance
Ensemble methods such as RFR are useful when the target 
property shows linear and/or non-linear dependencies on the 
descriptors. For instance, in our study, the γsurf  property shows 
roughly linear dependence on the γ BCC/B2

surf
 descriptor (defined 

earlier in Table I). However, there are non-linear dependencies 
on other descriptors in Table I, such as VEC, !BCC/B2 , nBCC/B2

s/p/d  , 
etc. Similar observations are made for the γusf  property. These 
dependencies are shown in Sect. SIV of the SI. Using relatively 
simple regression models results in poor predictive accuracy, 
especially for γusf  . Therefore, the RFR method was chosen for 
the final model in this work.
The performances of RFR models for γsurf and γusf prediction 

are summarised in Fig. 1(d)–(g). Figure 1(d) shows the DFT cal-
culated γsurf plotted against the model output for samples in the 
training set. Here, the training set includes all binary and ternary 
alloy data. Figure 1(e) shows the performance of the trained 
RFR model of γsurf  for the testing set containing all quaternary 
compositions. Similarly, Fig. 1(f) and (g) show training (binary 
and ternary alloys) and testing (quaternary alloys) results for the 
RFR model of γusf  . The black vertical lines in Fig. 1(e) and (g) 
denote the [15, 85] prediction quantiles. Even though the models 
in Fig. 1(d) and (f) were trained on binary and ternary composi-
tions, the testing results in Fig. 1(e) and (g) show good accuracy 
with R2 = 0.96 and 0.94, respectively. Both the training and 
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testing datasets cover a similar range for γsurf/γusf  , with a lower 
bound of around 1.75/0.5 J/m2 and an upper bound of around 
3.25/1.65 J/m2 , respectively.
Comparing with the RFR model for γsurf  , the RFR model 

for γusf  is less accurate, with slightly larger values of R2 and 
quantiles. The root mean squared error for both γsurf  and γusf  
predictions is ∼ 0.07 J/m2 . However, lower absolute values for 
γusf  results in comparatively poor accuracy. One possible rea-
son could be the inaccurate approximation of i–j bond feature 
parameters in FCC structure as the properties for ordered alloys 
in the L10 structure as described previously in “Surrogate mod-
els based on regression methods for composition screening” 
section. In the future, this approximation will be addressed to 
develop more accurate feature parameters and descriptors. In 
addition, analyses of all the descriptors of the RFR models show 
that the γ BCC/B2

surf
/γ BCC/B2

usf
 , all the descriptors related to PDOS, 

and the composition averaged VEC and electronegativity χ are 
features with the highest importance and correlations. It indi-
cates that the first-nearest-neighbor bond model with electronic 
and energetic feature parameters developed in our previous 
 work[12,20] are generally accurate for the target alloy properties, 
which can possibly be extended to other properties in the future.

Hierarchical screening framework
Using the RFR-trained surrogate models, a 5-step hierarchical 
screening framework is designed to identify candidate alloys 
with targeted strength, ductility, and corrosion resistance prop-
erties. The screening method is summarised in Fig. 2(a). Details 
for each screening step are discussed in the following.
First, the surrogate models described in “Surrogate models 

based on regression methods for composition screening” and 
“Surrogate model performance” sections are used to screen all 
possible quaternary alloys within the 13-element composition 
space under the following constraints. The maximum composi-
tion of any element is restricted to less than 60%. The screen-
ing search is implemented in composition steps of 1/72, since 
most DFT supercells in our setup have 72 atoms. However, it 
is technically possible to make predictions for any arbitrary 
composition and then validate results using appropriate DFT 
supercell setups. Initially, the average alloy descriptors [ up, uσ

p
 

from Eqs. (1) to (4)] for each composition are generated fol-
lowing the method discussed in “Surrogate models based on 
regression methods for composition screening” section. Next, 
γsurf  and γusf  predictions are made using the surrogate models 
with up and uσ

p
 as inputs. These screening results are summa-

rised in Fig. 2(b), where γusf is plotted against D for 10,376,496 
quaternary compositions. These compositions are obtained with 
the constraints that (1) the composition x of every element is 
varied in a step of 100

72
 %, (2) xRu < 5% , (3) xAl < 15% , (4) 

xSi < 5% , and (5) the maximum concentration of any element 
in an alloy is 60% (all percentages are for the mole fraction). 
The red reference markers in Fig. 2(b) are the DFT calculated 
values for pure refractory metals in the BCC structure. Group 
VI elements (Cr, Mo, W) are the strongest with the highest 

γusf ∼ 1.4–1.6 J/m2 but brittle with D ∼ 2 . Group V elements 
(V, Nb, Ta) are relatively soft with the reduced γusf ∼ 0.7–0.8 
J/m2 but more ductile with D ∼ 3–3.5. Pure metals of other 
elements have dynamical structural instabilities in the BCC 
phase, so their γusf  and D are not plotted here.
Second,  compositions  are  selected with  relatively high 

values of  the  intrinsic ductility parameter D. The general 
strength–ductility trade-off in Fig. 2(b) indicates it is difficult 
to find a single BCC phase with both high values of γusf  and 
D. So our strategy is to discover some single BCC phase can-
didates with high intrinsic ductility and moderate strengths. 
These single-BCC-phase alloys can serve as the matrix, and the 
alloys can be further strengthened by the addition of primary or 
secondary precipitate phases to the BCC matrix.[1] Our previous 
calculations of D values of many experimentally synthesized 
BCC refractory multicomponent alloys suggest that the high 
room-temperature ductility is more likely to be achieved in 
alloys with D values larger than 3,[12] which are consistent with 
D values of Group V elements. In addition, the values of γusf  
can not be too low for structural applications. These require-
ments constrain our selection region in a rectangle highlighted 
in Fig. 2(b), where 3.0 < D < 3.5 and 0.6 < γusf < 0.8 J/m2 . 
Furthermore, we require the total mole fraction of all Group V 
and VI elements in these alloys to be at least 50% in order to 
increase the likelihood of the synthesis of single-BCC-phase 
alloys. Under these requirements, a total of 587,184 candidate 
alloys are selected in this step for further CALPHAD analyses 
on phase stability.
Third, high-throughput CALPHAD calculations of 587,184 

alloy candidates are performed to search alloy compositions 
that can be in a single BCC phase at  the typical annealing 
temperatures of refractory metals,[13] using  the TC-Python 
API.[21,24] We remark here that phase diagram data are suc-
cessfully computed for ∼ 540, 000 alloys or ∼ 92 % of the com-
positions screened after the second step. Errors for the remain-
ing 8% compositions could arise from database calibration or 
the TC-Python API timeout. Phase diagrams for these specific 
compositions will be generated manually in the future. Then 
these candidate alloys are selected based on the following two 
criteria: (i) there is greater than 99.99% BCC phase purity at 
800

◦ C, a typical annealing temperature of refractory metals,[13] 
and (ii) 10% ≤ xAl + xCr + xSi ≤ 20% . The constraint on Al, 
Cr, and Si concentrations increases the likelihood of thermo-
dynamic surface oxide formation capability. These results are 
shown in Fig. 2(c). Cumulative bar plots at each temperature 
show the total number of selected composition candidates. 
At 800◦ C, 1184 alloy compositions are identified within the 
imposed two constraints, but none of them contain Si. We can 
further explore whether it is possible to keep the single BCC 
phase at lower annealing temperatures. Results show that there 
are still hundreds of alloy candidates in almost single BCC 
phase and with at least 10% of Al and Cr in the temperature 
range of 550 to 750◦ C. Finally, at 500◦ C, none of the alloys 
have the BCC phase purity due to the appearance of precipitate 
phases such as the Laves phase. Alternatively, Fig. 2(d) plot 
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Figure 2.  Illustration of the hierarchical screening model and its results. (a) A multi-level pyramid to explain the 5-step model based on 
DFT calculations, RFR models, and CALPHAD method. Each level of the pyramid summarises the corresponding screening procedure. 
Detailed descriptions are provided in “Hierarchical screening framework” section. Input arrows denote the number of input composi-
tions. Output arrows denote the number of screened/!ltered output compositions. The partial periodic table and accompanying text on 
the left depict the RFR models of γusf , γsurf, and D, which are used to screen alloys in Step 1. (b) Screening results of γusf and D of over 
107 quaternary compositions in the 13-element composition space (Step 1). The black rectangle borders the region of interest (587,184 
compositions from 10,376,496 candidates from Step 2). (c) Results from the CALPHAD-based phase diagram calculations (Step 3). 1184 
Compositions from 587,184 candidates have > 99.99% BCC at 800◦ C with 10% < xAl + xCr < 20% , where x denotes the mole fraction. 
No alloys with Si elements are found in this step. (d) The distributions of γusf and D for 1184 alloy compositions from (c), with the color 
scale corresponding to the total mole fraction of Al, Cr and Si of each alloy candidate. (e)–(h) CALPHAD calculations for representative 
alloy candidates. (e) Equilibrium phase fractions for Ti25V16Nb23Cr8 at different temperatures. (f) Equilibrium phase fractions of oxides 
formed from Ti25V16Nb23Cr8 at 900◦ C under different oxygen partial pressures. (g) Equilibrium phase fractions or Ti27V35Mo2Al8 at differ-
ent temperatures. (h) Equilibrium phase fractions of oxides formed from Ti27V35Mo2Al8 at 900◦ C under different oxygen partial pressures. 
Data in (e) and (g) was obtained using the TCHEA4 database. Data in (f) and (h) was obtained using the TCHEA4 + SSUB6 databases. In 
plots (e)–(h), the left axis is mole fraction.
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both the distributions of γusf  and D of 1184 alloy candidates 
with the pure BCC phase at 800◦ C and the color scale corre-
sponding to the total mole fraction of Al, Cr, and Si.
At  the  final  two  steps,  10  representative  candidates  are 

selected from the above 1184 alloy compositions for further veri-
fication from two aspects: the thermodynamic capability to form 
passive oxide films at possible service temperatures ( 900◦ C used 
here) using CALPHAD calculations, and the accurate values of 
γusf/D using the DFT–SQS method. The compositions of 10 
representative candidates are listed in Table II. These alloys are 
selected from different regions of the screened plot in Fig. 2(d). 
Eight of the ten alloys are selected from the dense cluster near 
the top left region in Fig. 2(d), where 3.0 < D < 3.1 . One alloy 
is selected from the intermediate region where 3.1 < D < 3.2 , 
and one from the bottom right region with 3.2 < D < 3.3 . Alloys 
1, 2, 3 and 8 in Table II include core elements from Groups IV 
and V, along with the oxide-forming elements Cr or Al. Alloys 
4, 5, 7 and 9 in Table II include core elements from Groups IV, 
V and VI, along with Cr or Al. Alloy 6 has a small amount of 
Re, which is useful to enhance ductility but added in minor con-
centrations due to its high economic costs. Alloy 10 includes Al 
and Cr in equal amounts. Overall, five of these alloys contain Al, 
four contain Cr, and one contains both Cr and Al. No composi-
tions with Si are found after the multiple screening steps. All 
these alloys are rich in Group IV, V, and VI elements (significant 
concentrations of Ti, V, and Nb), and contain varying amounts 
of Nb, Mo, and Re.
Table II also lists the ML-predicted and DFT–SQS-computed 

parameters of γsurf  , γusf and D for the 10 representative candidates. 
Detailed DFT–SQS results of the 10 representative candidates are 
shown in Sect. SV of the SI. Generally, the DFT results are consist-
ent with our RFR model predictions with the accuracy on the same 
level shown in Fig. 1(d)–(g). Meanwhile, the model for γusf is less 
accurate than the model for γsurf  , especially for alloys containing 
Al. It suggests that we can improve the predictions by more accu-
rate descriptions of bond feature parameters that involve elements 
with FCC and other non-BCC stable structures.

Phase fractions at varying temperatures for two alloys of 
these 10 representative candidates (Ti25V20Nb19Cr8 as Alloy 1 
and Ti27V35Mo2Al8 as Alloy 9 in Table II) are shown by phase 
diagrams in Fig. 2(e) and (h). These phase diagrams confirm 
that these alloys have more than 99.99% BCC phase at 800◦ C. 
At lower temperatures, other precipitate phases, such as Laves 
or AlTi3 , can be thermodynamically stable. In addition, adopt-
ing the method used in recent literature,[25] phase fractions of 
these two alloys in oxidation environments were illustrated by 
phase diagrams at 900◦ C by varying the oxygen partial pres-
sure in Fig. 2(f) and (h), which show that several oxides can be 
thermodynamically stable at 900◦ C, including titania, alumina, 
chromia, and vanadia, covering multiple stoichiometries.
We also calculate  the  thermodynamic driving  force  for 

the oxidation of each metallic element in the alloys at 900◦ C 
(details in Sect. SVI of the SI), adopting the method used in 
recent literature.[26] The results show that, among all metallic 
elements in each alloy of Alloys 1–4 in Table II, Ti has the larg-
est thermodynamic driving force for its oxidation by forming 
TiO2 , followed by Nb2O5 , V 2O4 and Cr2O3 . For Alloys 5–10 
in Table 2II, Ti and Al have the largest and the second largest 
thermodynamic driving force for oxidation, forming TiO2 and 
Al2O3 , respectively. Since both Ti and Al alloying elements 
can form effective passive oxide films for refractory alloys,[5] 
these results suggest that these candidate alloys possibly have 
strong oxidation and corrosion resistance. However, the chemi-
cal compositions and other properties of real passive oxide lay-
ers will also be determined by kinetic factors, which can not be 
obtained from equilibrium phase diagrams alone.

Conclusion
In summary, we have proposed a hierarchical screening work-
flow to identify BCC refractory multicomponent alloys poten-
tially with synergistic mechanical properties and chemical sta-
bility. A regression model developed using a sparse DFT-based 
dataset was used  to predict  the surface energy γsurf  and  the 

Table II.  DFT validations for representative alloy candidates.

The tabulated values show RFR-model-predicted and DFT-calculated γsurf , γusf , and D parameters for 10 representative alloy candidates. This 
set includes 4 alloys with Cr, 5 with Al and 1 with both Cr and Al.

ID Alloy γsurf (J/m2) γusf (J/m2) D =

γsurf
γusf

DFT Model DFT Model DFT Model

Cr 1 Ti25V16Nb23Cr8 2.034 1.996 0.628 0.651 3.241 3.067
2 Ti25V20Nb19Cr8 2.036 2.003 0.647 0.664 3.149 3.017
3 Ti32V10Nb22Cr8 1.967 1.978 0.643 0.603 3.060 3.278
4 Ti35V24Mo5Cr8 2.067 2.062 0.673 0.686 3.071 3.007

Al 5 Ti27V24Mo13Al8 2.071 2.091 0.752 0.686 2.754 3.048
6 Ti18V41Re3Al10 2.102 2.103 0.708 0.689 2.971 3.054
7 Ti26V31Mo6Al9 2.069 2.053 0.716 0.675 2.891 3.042
8 Ti9V31Nb22Al10 2.040 1.999 0.710 0.665 2.873 3.007
9 Ti27V35Mo2Al8 2.051 2.024 0.642 0.667 3.195 3.035

Al + Cr 10 Ti30V32Al5Cr5 2.036 2.012 0.703 0.636 2.897 3.161
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USF energy γusf  for quaternary alloys in 13-element composi-
tion space (Ti–Zr–Hf–V–Nb–Ta–Mo–W–Re–Ru–Al–Cr–Si). 
Further screening was performed to discover candidate alloys 
satisfying the following criteria: (1) the strength parameter γusf  
and the intrinsic ductility parameter D =

γsurf
γusf
 are comparable to 

Group V metals (V, Nb, and Ta) for moderate strengths and high 
room-temperature ductility/formability, (2) there is more than 
99.99% BCC phase at 800◦ C, and (3) there are 10–20 mole% 
of oxide-forming elements (Cr, Al and Si) for high-temperature 
surface passivation. CALPHAD-based thermodynamics calcula-
tions were used to confirm BCC phase stability at 800◦ C. After a 
multiple-step screen, we found 1184 alloy compositions that sat-
isfy all these criteria. 10 representative candidates were chosen 
from these alloys for further investigations. CALPHAD-based 
thermodynamics calculations were then applied to calculate the 
thermodynamic oxide formation capability at 900◦ C, suggesting 
the possibility of passive oxide layer formations on these repre-
sentative candidates. DFT validations for γsurf  , γusf and D fur-
ther confirmed that the representative candidates have D >∼ 3 , 
which is the targeted value for BCC refractory multicomponent 
alloys to possibly reach high room-temperature ductility.[12]

It is important to remark here that the strength and ductility 
of alloys are strongly influenced by other factors such as addi-
tional deformation systems,[6] interstitial impurities, second-
ary precipitate phases and other microstructural constituents 
(grain size, morphology, etc.).[27] Additional considerations 
are also crucial to study the stability of passive oxides. While 
CALPHAD-based calculations used in  this work show the 
thermodynamic capability of passive oxide formation, several 
other factors can influence oxide stability in reactive environ-
ments. These include elemental diffusion in the metal matrix 
and oxide, lattice mismatch between the metallic alloys and 
oxide,[28] thermal expansion mismatch between the metallic 
matrix and the oxide film,[29] etc. In addition, brittle inclusions 
such as carbides within the matrix especially close to the oxide 
layers can also promote crack initiation on the metal–oxide 
interface and result in oxide layer spallation.[29] Within these 
broad challenges of alloy design, the workflow devised in this 
paper is intended to enable the initial selection of promising 
high-ductility single-phase compositions based on relatively 
simple but rapid screening criteria. Additional thermomechani-
cal properties, such as elastic constants, grain boundary ener-
getics, impacts of interstitial segregation on fracture mecha-
nisms, Pilling–Bedworth ratio, thermal expansion coefficients 
and other microstructural descriptors can then be computed 
using multiscale methods,[6,30]  to develop a more  rigorous 
description of the intrinsic mechanical and chemical proper-
ties in multicomponent refractory alloys.
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