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ABSTRACT n vertices n*:n edges Se
Transformer Neural Networks have demonstrated leading perfor- (1) = R
mance in many applications spanning over language understanding, 02 | 06 f015 005 ® »
image processing, and generative modeling. Despite the impressive 05| 005 [ 0.05 [ 015 84
performance, long-sequence Transformer processing is expensive oos| o1 RS 6
due to quadratic computation complexity and memory consumption Denee Attention 06 Ag;r‘;gt‘ion
of self-attention. In this paper, we present DOTA, an algorithm- Matrix
architecture co-design that effectively addresses the challenges of FastBAccurate @
scalable Transformer inference. Based on the insight that not all con- — @
nections in an attention graph are equally important, we propose é
to jointly optimize a lightweight Detector with the Transformer Sparse Attention Graph 5‘2:;::;?;:“

model to accurately detect and omit weak connections during run-
time. Furthermore, we design a specialized system architecture for
end-to-end Transformer acceleration using the proposed attention
detection mechanism. Experiments on a wide range of benchmarks
demonstrate the superior performance of DOTA over other solu-
tions. In summary, DOTA achieves 152.6x and 4.5X performance
speedup and orders of magnitude energy-efficiency improvements
over GPU and customized hardware, respectively.
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Figure 1: The graph perspective of self-attention.

1 INTRODUCTION

In recent years, Transformer Neural Networks have drawn a surge
of interests from the deep learning community. Lots of Transformer
models have been proposed and demonstrated superior perfor-
mance over traditional Deep Neural Networks (DNNs) [12, 52]. The
use of Transformers has spanned over a wide range of applica-
tion domains including language understanding [4, 41, 43], image
processing [5, 11, 38], and generative modeling [7, 42, 46].

The key to the stunning performance of Transformers is the self-
attention [52] mechanism. Self-attention relates different positions
of a sequence by evaluating the pair-wise importance between
the input tokens. This process can be understood as creating and
aggregating over an attention graph to compute the output feature
of each token. As shown in Figure 1, the dense 4x4 attention matrix
is interpreted as the Laplacian representation of a graph with each
vertex corresponding to one token. Therefore, the attention graph
is directed and complete, where the edge weights are assigned by
the attention weights, i.e., SoftMax probabilities. The output of self-
attention is one-step aggregation over the attention graph. Each
vertex collects features from its incoming vertices and performs
weighted sum to update its own feature vector.

Despite the significant representational power on sequence mod-
eling, standard self-attention mechanism cannot scale with long
sequences. As shown in Figure 1, using full attention graphs un-
avoidably incurs quadratic complexity in both computation and
memory consumption with regard to sequence length. Thus, deploy-
ing Transformers for long-sequence modeling tasks is challenging
for current hardware platforms.
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We observe that a significant portion of edges in attention graphs
are weak connections with negligible contributions to the output,
as illustrated in Figure 1. In other words, only a small portion of
connections are important to deliver long-range representations.
Therefore, instead of creating a full attention graph, we propose to
detect and omit weak connections and skip the unnecessary compu-
tations. Furthermore, after attention detection, feature aggregation
only need to be performed over the selected strong connections.

However, weak connection detection is difficult as inaccurately
omitting strong connections will not only disturb the immediate
attention output but also cascade to subsequent Transformer layers,
degrading the overall model performance. Unlike graph pruning or
weight sparsity commonly used in traditional DNNs, each attention
graph need to identify its unique strong connections at runtime
depending on the inputs. Therefore, the cost of the detection mech-
anism is critical to deliver overall performance speedup and energy
saving. Prior work fails to deliver a satisfying solution for weak
attention detection, as they either suffer from poor detection qual-
ity [18], or from hardware inefficiency [17, 22, 27, 48, 50].

To tackle the problem, we introduce DOTA, an algorithm-architecture

co-design that reduces the cost of self-attention and boosts the per-
formance and efficiency of long-sequence Transformer inference.
We first design and train a lightweight Detector along with the
Transformer model. The training process is formulated as a joint
optimization problem to minimize both attention detection loss and
model loss. We adopt low-rank transformation and low-precision
computation to reduce the overhead of attention detection, and
we rely on the joint optimization process to ensure the attention
detection quality.

Furthermore, we explore architecture support to translate the the-
oretical savings to real performance speedup and energy reduction.
We address three system-level challenges through our architecture
design. Firstly, to support large Transformer models with various
configurations, we need to effectively disassemble the algorithm
and identify the essential components. Prior work designs accel-
erators for specific component like self-attention block [17, 18].
Instead, DOTA provides an efficient abstraction of the model and
presents a unified architecture to support all components, achiev-
ing better area- and energy-efficiency. Besides, we further analyze
different levels of parallelism on top of the proposed abstraction
and present a scalable system architecture (Section 4.1). Secondly,
low-precision computation is essential to the cost of the attention
detection mechanism. To support multi-precision computations,
we design a Reconfigurable Matrix Multiplication Unit (RMMU)
that can be dynamically orchestrated to satisfy the throughput
requirements of different computation precision (Section 4.2). Fi-
nally, when computing the attention output with the sparse atten-
tion graph, DOTA outperforms prior work by adopting the Token-
Parallel dataflow with software-enabled workload balancing and
hardware-enabled out-of-order execution. These techniques can
further improve system performance and energy-efficiency.

In summary, our work makes the following contributions:
o We propose to detect sparse attention graphs to compute for

self-attention, which can significantly reduce both computation
complexity and memory consumption.
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e We present a trainable Detector to effectively select important
attention connections. The proposed method achieves both hard-
ware efficiency and detection accuracy, yielding an adequate
trade-off between computation savings and model quality.

o We design DOTA, a scalable inference system that addresses three
hardware challenges of executing long-sequence Transformer
models with attention detection.

e DOTA improves the performance and energy-efficiency of Trans-
former inference. On average, DOTA achieves 152.6x and 4.5X
performance speedup and orders of magnitude energy-efficiency
improvements over GPU and state-of-the-art customized acceler-
ator, respectively.

2 BACKGROUND AND MOTIVATION

Firstly, we introduce the preliminaries of Transformer model ar-
chitecture and the challenges of serving long sequences. Secondly,
we find that weak connections exist in attention graph and can be
omitted without hurting performance. Finally, we present the op-
portunity to detect weak connections for more computation savings
and the need for architecture support.
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Figure 2: Transformer model architecture.

2.1 Preliminaries of Transformer

A typical Transformer model is composed of stacked encoder (de-
coder) blocks as shown in Figure 2. At the beginning, the input
sentence with n tokens is first transformed into an embedding ma-
trix X € R™_ Then, the input embedding matrix is processed by
blocks of encoders. We split each encoder into three stages, namely
Linear Transformation, Multi-Head Attention, and Feed-Forward
Network (FFN). In the transformation stage, we multiply the input
with three weight matrices to obtain Query (Q), Key (K), and Value
(V) as

Q. K,V = XWo, X Wi, X Wy 1)
After linear transformation, the attention weights A € R™" ig
defined as
Q T
A =SoftMax(=— (2)

Vi
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Figure 3: Breakdown of attention operations vs. other opera-

tions when scaling sequence length.

where SoftMax(-) is computed row-wise. Finally, the output values
are generated by multiplying attention weights A with the projected
values V as

Z=AV. 3)

The output of the Multi-Head Attention is added with the en-
coder’s input through a residue connection, and a layer normaliza-
tion is applied afterwards. Finally, a Feed-Forward Network (FFN)
containing two fully-connected (FC) layers, followed by another
residual connection and layer normalization is applied to gener-
ate the output of the encoder. As presented in Figure 2, the same
encoder structure is repeated and stacked for multiple times in a
single Transformer. Usually, a classifier is added at the end to make
predictions.

2.2 Weak Connections in Attention

Transformer-based models equipped with the self-attention mecha-
nism are promising in a wide range of applications that need long
sequence modeling capabilities. However, the quadratic computa-
tional complexity of self-attention, w.r.t. sequence length, hinders
the deployment of Transformers. Hence, we are in need of scalable
acceleration for Transformers, especially for emerging sequence
modeling workloads.

To better illustrate the scaling challenge of Transformers, we
show the comparison of self-attention, as in Eq. 2 and Eq. 3, vs.
linear transformations as in Eq. 1 and FFN in terms of floating-point
operations (FLOPs). One characteristic of self-attention operations
is that these are parameter-free general matrix-matrix product
(GEMM), other than GEMM routines as in linear transformations
and FFN, where one matrix is parameterized and commonly referred
as the weight matrix. As shown in Figure 3, the parameter-free
attention GEMM operations become the bottleneck when scaling
sequence length.

The root cause of the quadratic complexity in self-attention is
the fully-connected attention graph, where all pairs of sources
and targets are computed. With that, we post the hypothesis that
not all connections in attention graphs are equally important and
contribute significantly to attention outputs. In other words, there
exist extremely sparse attention graphs with weak connections
omitted that can achieve performance on par with full attention
graphs.

To test our hypothesis, we experiment on a pre-trained Trans-
former model. Specifically, we regard small values in attention
graph (Eq. 2) as weak connections and remove these values while
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Table 1: Transformer evaluation accuracy results, i.e., SQuAD
F1 scores, when omitting different portion of attentions.

Retention l full l 20% l 15% l 10% l 5%
FiScore | 914 [ 914 [ 913 | 91.1 [ 902

keep the rest of the model intact. The remaining important connec-
tions are determined by row-wise top-k search after obtaining full
attention graphs. Retention ratio is used to indicate the portion of
preserved connections. We use BERT-large as the baseline model,
and evaluate it on the SQuUAD v1.0 dataset with a total number of
10,570 samples. Table 1 gives the performance results in terms of
F1 accuracy. As shown by the table, we can omit almost 90% of the
connections in the attention graphs with negligible performance
degradation.

2.3 Detect and Omit Weak Connections

Although omitting attention connections are effective, we still need
to compute all the attention scores and the follow-up SoftMax nor-
malization to obtain the attention weights for omission. Putting it
in another way, the parameter-free multiplications and the SoftMax
operations in Eq. 2 that result in weak connections in attention
graph A are wasted. Hence, we propose an efficient method to first
detect weak connections prior to the computations in Eq. 2, such
that we can save computations in the attention bottleneck. The
underlying principle is that the weak connections with small values
in attention weights A will also have small values in raw attention
scores S = QKT correspondingly.

The detection mechanism needs to be both efficient and accurate.
On the one hand, approximation methods such as angular distance
approximation [23] can be efficiently implemented in hardware
but cannot provide accurate detection of weak connections, espe-
cially when scaling sequence length. On the other hand, inefficient
detection could offset the computational saving. At last, although
omitting weak connections is straightforward, it can cause the
workload imbalance issue and irregular data accessing. Our DOTA
features an algorithm-architecture co-design to support efficient
and accurate detection for weak attention connections and provides
architecture support for computation saving from omission.

3 WEAK ATTENTIONS DETECTION

Given the challenge of efficient and accurate detection of weak
attentions, we propose a learning-based method that can effectively
detect the relative importance of connections in attention graphs.
As shown in Figure 4, our detection method uses low-rank linear
transformations to estimate attention scores. Then, from estimated
scores, we can use top-k selection to generate bit-masks with zeros
indicating the weak attentions. The low-rank transformations of
query and key are from the optimization of estimation loss. We
further propose model adaptation to improve performance from
degradation via jointly optimizing model loss and estimation loss
with weak connection omission enabled.

3.1 Low-Rank Linear Transformation

We introduce a pair of low-rank linear transformations for query
and key as in

Q.K = XPWo, XPWk 4
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Figure 4: Weak attention detection from estimated attention
scores computed by low-rank linear transformations.

,where P € \/% {-1,0, l}ka is a sparse random projection matrix

[1] to reduce the dimensions of input feature X. Therefore, WQ
and Wy both contain k x k parameters, where k is much smaller
than d. Since the estimated attention scores, as in S = QI% T, are
only used to select weak attentions based on relative importance,
the low-rank transformations can afford low-precision computa-
tions, such as INT4 fixed-point arithmetic. The quality of low-rank
transformation is determined by reduced rank k and the compute
precision.

We use the mean squared error (MSE) as the estimation loss to
optimize low-rank transformation parameters, as in

Lus = 5115 = 3113 = £II0KT - OKTI2 ©)
, where B is the mini-batch size. Here we omit the scaling factor
for simplicity.

With estimated scores S = QNI%T, we can select the important
connections by comparing the scores with thresholds. An atten-
tion connection can only be preserved if the score is larger than
the threshold. The threshold value can be determined by top-k
searching or tuning from the validation set.

3.2 Model Adaptation with Joint Optimization

When attention scores are masked out to generate sparse attention
graphs, the remaining important attention weights are scaled up as
the denominator in SoftMax becomes small. The disturbed atten-
tion weights will degrade model quality. As a countermeasure, we
propose to fine-tune model parameters with constraints of weak
attention omission, referred as model adaptation. With adaptation,
the model evaluation accuracy can recover to be on par with full
attention baselines, while the computational costs are significantly
reduced.

Given a pre-trained model, our method jointly optimize the
model parameters and the low-rank transformation parameters by
minimizing the loss function as

(6)

L = Lytoder + ALMSE-

After joint optimization, the low-rank transformation parame-
ters are adjusted to capture the relatively important attention con-
nections. Besides, the original model parameters are also adapted to
the sparse attention graph to compute for outputs. Therefore, we are
able to recover the model performance after introducing aggressive
weak attention omission. During inference, the sparse attention
graph can benefit all three sub-layers of the self-attention block,
reducing the computational costs of attention weights, softmax
function, and attention outputs.
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3.3 Intuitive Explanation

Our method estimates attention scores with a low-rank matrix .
When training the model with loss function in Eq. 5, the gradient
from Lyssg will be passed to both the low-rank S and the original
attention score S. Intuitively, this loss function not only makes $
a better estimation of S, but also makes S easier to be estimated
by a low-rank matrix, i.e., by reducing the rank of S. On the other
hand, the loss Ly,q; guarantees the rank of S to be high enough to
preserve the model accuracy. In other words, the joint optimization
of Lyjoder and Lyssg implicitly learns a low-rank S with the rank
learned depending on the difficulty of the task.

Our design brings two advantages. First, the rank of S will be
automatically adjusted to tasks with different difficulty. Hence, our
method can potentially achieve higher accuracy on difficult tasks
compared with fixed-rank approximation methods. Second, as the
rank of S only implicitly influences the rank of S, the final result is
less sensitive to the hyper-parameter k.

4 DOTA SYSTEM DESIGN

We present DOTA’s hardware system, which is capable of per-
forming scalable Transformer inference by efficiently utilizing the
detected attention graph. We specifically address three system-level
challenges. First, long-sequence Transformer models involve large
GEMM/GEMV computations with configurable hidden dimensions.
Therefore, to effectively execute different Transformer models, we
need to disassemble the algorithm and identify the essential com-
ponents. We provide abstraction of the model that helps us to
design a scalable and unified architecture for different Transformer
layers, achieving good area- and power-efficiency. (Section 4.1).
Second, apart from implementing normal precision arithmetics,
DOTA also needs to support low-precision computations required
by the attention detection. Instead of separately implementing all
the arithmetics, a reconfigurable design would be preferred as it can
dynamically balance the computation throughput of multi-precision
computations. (Section 4.2). Finally, to efficiently compute over the
detected attention graph, we should tackle the workload imbal-
ance and irregular memory access caused by attention sparsity
(Section 4.3).

4.1 Overall System Architecture

We use Figure 5 to illustrate the overall system architecture of
DOTA, and explain how it execute a single encoder block. Running
decoders can be considered as a special case of encoder with strict
token dependency. As depicted by the figure, DOTA processes
one input sequence at a time. Different input sequences share the
same weights while requiring duplicated hardware resources to be
processed in parallel. Therefore, we can scale-out multiple DOTA
accelerators to improve sequence-level parallelism.

For each encoder, we split it into three GEMM stages namely
Linear Transformation, Multi-Head attention, and FFN. The GEMM
operations in different stages need to be computed sequentially
due to data dependency, while each GEMM can be cut into mul-
tiple chunks and processed in parallel. Therefore, as shown by
Figure 5, we locate 4 compute Lanes in the DOTA accelerator and
dedicate each Lane to the computation of one chunk. For exam-
ple, during Transformation stage, each Lane contains a fraction of
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Figure 5: DOTA system design. (a) The abstraction of a single encoder block. We divide each encoder into three sequential
stages. Each stage contains multiple GEMM operations that can be further cut into chunks (represented by different colors)
and mapped to different compute Lanes. (b) Overall system design of DOTA. Each compute Lane communicates with off-chip
DRAM for input feature. The intermediate results are summed up in the Accumulator. (c) Computation mapping between the
algorithm and hardware. Each DOTA accelerator processes one input sequence, and each Lane computes for one chunk (color).

weight W, Wk, Wy and generates a chunk of QKV. We make the
chunk’s size equal to the attention head size hy. Thus, for Multi-
Head Attention, each Lane can directly use the chunks previously
generated by itself to compute for self-attention, keeping the data
local during execution. Finally, the FC layers in the FFN stage can
be orchestrated in a similar way.

As we can see, different compute Lanes share the same input at
the beginning of a encoder, whereas the weights and intermediate
results are unique to each Lane. Therefore, we avoid data exchang-
ing as well as intermediate matrix split and concatenation among
the Lanes. An exception of the above discussion is that, at the end
of Multi-Head attention and each FC layers in FFN, we need to
accumulate the results generated by each Lane. In DOTA, this is
handled by a standalone Accumulator. We locate four Lanes in one
DOTA accelerator because 4 is the least common multiple of the
attention head numbers across all the benchmarks we evaluated.
More Lanes can be implemented for higher chunk-level parallelism.

Inside each Lane, as shown in Figure 6, there is an SRAM buffer, a
Reconfigurable Matrix Multiplication Unit (RMMU), a Detector for
attention selection, and a Multi-Function Unit for special operations
such as Softmax and (De)Quantization. As discussed above, one
large RMMU is utilized to execute all different-precision GEMM
operations in each stage. Specifically, RMMU first computes low-
precision (IN2/4) estimated attention score. The low-precision re-
sults are sent to the Detector to be compared with preset threshold
values for attention selection. Besides selecting important atten-
tions to be calculated later, the Detector also contains a Scheduler
to rearrange the computation order of these important attention
values. We incorporate this reordering scheme to achieve balanced
computation and efficient memory access (Section 4.3).
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Figure 6: Architecture of each compute Lane.

After obtaining the reordered attention selection results, RMMU
starts to compute the attention output under FX16 precision (equa-
tion 2, 3). In order to avoid overflow during the computation, we
need to dequantize the FX16 computation results of Q * K into
floating-point numbers before applying the softmax function. This
is done in the Multi-Function Unit, and scaling factors are stored
in the global SRAM buffer, which is accessible to the MFU. Thus,
the exponent and division are done using floating-point arithmetic.
The softmax results are quantized again to keep the consecutive
computation (A * V) still in fixed-point format.

4.2 Reconfigurable Matrix Multiplication Unit

As presented in Figure 6, each compute Lane contains a Reconfig-
urable Matrix Multiplication Unit (RMMU) which supports MAC
operation in different precision. Low-precision computation occurs
during the attention detection. Naively, we can support this feature
with separate low-precision arithmetic units, but with the cost of
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Figure 7: Design of the Reconfigurable Matrix Multiplication Unit. (a) RMMU is composed of a 2D PE array, where each
row can be configured to a specific computation precision. (b) Each PE is a multi-precision MAC unit. (c) A sample FX4/IN2
multi-precision multiplier. The key is to build up high precision multiplication data path with low precision multipliers. In
low precision mode, we split and multiply the input operands with pre-stored weights and perform in-multiplier accumulation.
Therefore, the computation throughput is quadratically improved while input/output bit-width are kept the same as high

precision mode.

extra resources to implement all supported precision levels. Be-
sides, the decoupled design can only provide constant computation
throughput for each precision, but the ratio of attention detection
with respect to the other parts of the model varies from benchmark
to benchmark. Thus, we need to dynamically control the computa-
tion throughput of attention detection and computation to achieve
better resource utilization and energy-efficiency.

To tackle this problem, we present RMMU as shown in Figure 7.
The key idea is to design computation engine with configurable
precision. As we can see from Figure 7, RMMU is composed of a 32X
16 2-D PE array, where each PE is a fixed-point (FX) MAC unit. The
PE supports FX16, INT8,INT4, and INT2 computations. FX16 is used
for important attention computation and the rest are for attention
detection. The RMMU can be configured to different precision at a
row-wise granularity. Therefore, we can flexibly control how many
rows of PE use FX16 for computation and how many rows adopt
low precision to balance the computation throughput.

We design the multi-precision multiplier based on two common
knowledge of computing arithmetic. Firstly, a fixed-point multi-
plier is essentially an integer multiplier, only with a different logical
explanation of the data. Secondly, we can use low-precision multi-
pliers as building blocks to construct high-precision multipliers [49].
Without loss of generality, we present the implementation of an
FX4/INT2 multiplier in Figure 7 (c). As we can see, each operand is
divided into MSBs and LSBs and then sent to an INT2 multiplier. A
INT2 multiplier takes one fraction from each operands and gener-
ates a 4-bit partial sum. Therefore, we need four INT2 multipliers
to generate all the required partial sums. The four partial sums
are shifted and accumulated to give the final 8-bit result. On the
other hand, if the multiplier is in INT2 computation mode, the four
INT2 multipliers is able to provide four times higher computation
throughput. Note that, we need 16-bit input and 16-bit output each
cycle to facilitate all the INT2 multipliers. However, an FX4 multi-
plication only requires half the bit-width (8-bit for input/output).

19

We address this problem by keeping half the input stationary in the
multiplier, and accumulate the INT2 multiplication results before
sending them out. Therefore, the input bit-width is the same as FX4
computation while the output consumes 6-bit instead of 16-bit. In
other words, when working on INT2 data, we utilize the multiplier
as a tiny input-stationary MAC unit which can perform 4 INT2
multiplications and accumulations each cycle.

To summarize, we implement multi-precision PEs in the RMMU
and ensure a scalable computation throughput when using the low-
precision data. Our final design implements FX-16 multiplier built
up from low-precision INT multipliers as discussed above.

4.3 Token-Parallel Dataflow for Sparse
Attention Computation

After RMMU generates estimated attention scores, we use the De-
tector unit to select important attention connections. Specifically,
as depicted in Figure 6, the Detector loads estimated attention
scores from SRAM and compare them with preset thresholds. A
binary mask is generated after the comparison, with 1s represent-
ing the selected connections. The Scheduler further processes the
binary mask to rearrange the computation order for each token,
and stores the reordered connection IDs in the Queue. Later, RMMU
will load Key and Value vectors according to these IDs to compute
the attention output. Multiple tokens are processed in parallel, each
corresponding to one row of the attention matrix. We name this
Token-parallel dataflow, which can improve Key/Value data reuse
and reduce total memory access. In this subsection, we use three
different examples to demonstrate the benefits, challenges, and
our solutions to compute the attention output with the detected
attention graph and Token parallelism.

Token-Parallel Dataflow. As shown by the example in Figure 8,
the 45 matrix is the sparse attention graph with important connec-
tions marked with crosses. Prior work process each Query (Token)
one by one, meaning that the attention weights and output are
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Figure 8: Token-level parallelism reduces key/value vector
memory access.

computed row by row. As a result, we need to load ten keys from
the memory, even though only four different keys are required. On
the contrary, processing all four queries in parallel, as shown in
Figure 8, significantly reduces the total memory accesses because
some key vectors can be loaded once and shared by multiple rows.
This example shows that exploring token-level parallelism benefits
memory accessing when attention weight matrix has such row-wise
localities. We observe similar locality in real attention graphs. On
one hand, there are usually some important tokens in one sentence
that attend to multiple tokens. On the other hand, a token is likely
to attend to its neighbor tokens within a certain window size. We
perform design space exploration (see Section 5.5) and find that
processing four queries in parallel is a good trade-off point for hard-
ware resources consumption and memory access savings. Thus, in
DOTA, each Header processes four query vectors in parallel.
Workload Balancing. One challenge of parallel token processing is
the workload imbalance issue among different rows. Figure 8 shows
that different queries may have various numbers of important key
vector pairs, which may further cause resource under-utilization
and performance degradation. One solution is to let early-finished
PEs switch to the processing of other queries. However, this will
generate extra inter-PE communications as well as query reloading.
Therefore, we tackle this problem directly from algorithm perspec-
tive without affecting the underlying hardware. Specifically, we
add a constraint to force all the rows in the attention matrix to
have the same number of selected attention connections. This con-
straint ensures that each vertex in the selected sparse attention
graph have same number of incoming edges. We will further prove
in Section 5.2 that the added constraint has negligible influence on
model accuracy.
Out-of-Order Execution. Finally, we propose hardware-enabled
out-of-order execution to further improve key/value reuse and
reduce total memory access. As shown in Figure 9, suppose all
four queries have balanced workload and are processed in paral-
lel. With left-to-right computation order, we first compute (g1, k1),
(92, k2), (g3, k3), (94, k3), and then (q1, k2), (g2, k3), (93, ks), (g4, ka),
and finally (q1, k3), (q2, k4), (g3, k¢), (g4, k5). Consequently, some
originally shared keys will have to be reloaded and the locality
is broken. In this example, the required total memory access is 11
vectors, which is only one vector less compared with no parallelism.
To address this problem, we design a locality-aware scheduling
algorithm to reorder the computation of each query. As shown
in Figure 9 and 10, we start with issuing the keys that are shared
by most queries. When scheduling partially shared keys like k2,
we also need to schedule computations for the unassigned query,
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Figure 9: Even with token parallelism, the computation order
of each row still matters and affects total memory access.

which is g4. To do so, we first look for keys that belong to g4 alone.
If not found, we move on to keys shared by g4 and another query,
and so on. In this example, there are no key vectors that are owned
by g4. Therefore, we go to the second best choice, which is k5. Thus,
in the first round, we schedule k3 for q1,23 and ks for g4. Although
this breaks the locality of g¢s, the greedy search ensures overall
minimal memory access. Besides, since each query is scheduled for
exactly one connection at each round, and they have same total
connections, this ensures the synchronization of each rows and
maximizes resource utilization and performance. The complete
scheduling algorithm is presented in Algorithm 1. Note that, the
scheduling only needs to be performed once, and the generated
computation order is reused for computing attention output using
attention weights A and Value matrix V.

Algorithm 1 Locality-Aware Scheduling Algorithm.

Require: A set of buffers B that store the selected connection IDs
for query q1, q2, g3, q4. €.g., Bo11o stores IDs that are required
by g2 and g3.

Ensure: A computation order that achieves optimal Key and Value
data reuse.

1: Issue all the IDs in Bjj11 (required by all 4 queries)
2: while Bji1g is not empty do
3 Issue an ID in B1110

4 if Booo1 is not empty then

5 Issue an ID in Bygo1

6: else

7 Search and Issue an ID in Byxx1

8 Move the issued ID from Byxx1 t0 Bxxx0

9. endif

end while

: Repeat 2-10 for all the other buffers.

=
-

We design a Scheduler to implement the scheduling algorithm.
As shown in Figure 10, the Scheduler first stores each connection
ID in the corresponding buffer according to the 4-bit binary mask
generated after threshold comparison. For example, according to
Figure 9, ’1’ is stored in buff-1000, ’2’ is stored in buff-1110. Then,
the Scheduler starts issuing computations from buff-1111. Besides,
when ks is scheduled for g4 during the step-1, ’5” will be moved
to buff-0010, meaning that now it only belongs to g3. We use a
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Figure 10: Design of the Scheduler and the scheduling process
of Figure 9.

Finite-State Machine to implement the condition statements and
control logic.

In summary, we explore token-level parallelism with software-
enabled workload-balancing and hardware-enabled out-of-order
execution to efficiently compute the attention output. The proposed
strategy can be generalized and used in other applications with the
same two-step matrix multiplication chain as shown in equation 7.
(SoftMax is optional.)

O=(Q*K)«V=AxV 7)
More importantly, even with out-of-order execution, the final result
is automatically generated in a regular order. Because the irregular
computation only affects the intermediate matrix A, which is com-
pletely consumed during the computation. In contrast, exploring
same reordering in CNN would require a crossbar-like design to
correctly store the output result [31].

4.4 System Design Completeness

Decoder Processing For decoders, since the input tokens have
to be processed sequentially, the core operation would be GEMV
and the performance is memory-bounded. DOTA reduces total
memory access by efficiently filtering out majority of the attention
connections.

Memory Modules The on-chip memory is implemented as banked
SRAM module that can be configured to store different types of
data. We implement a custom simulator to obtain the capacity and
bandwidth requirement of the SRAM module. We facilitate each
Lane with a 640KB SRAM (10 64KB banks). Therefore, DOTA has
a total on-chip SRAM capacity of 2.5MB. The bandwidth require-
ments of embedding layer and decoders are significantly higher
than other layers. Therefore, we make sure the SRAM bandwidth
meets the need of the computation-bounded layers, while leaving
embedding and decoder to be memory-bounded.
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Table 2: Configurations, Power, and Area of DOTA under
22nm Technology and 1GHz Frequency.

Hardware . 2
Module Configuration |Power(mW)|Area(mm®)
Lane 4 Lanes 2878.33 2.701
per accelerator
RMMU| 32*16 FX-16 645.98 0.609
Filter | Token Paral. = 4 9.13 0.003
Lane 16 Exp, 16 Div
MFU 1616 Adder Tree 60.73 0.060
Accumulator| 512 accu/cycle 139.21 0.045
DOTA
(wioSRAM)|  ZTOPS 3017.54 2.746
SRAM 2.5MB 0.51(Leakage) 1.690

5 EVALUATION

In this section we present the evaluation results of DOTA.

5.1 Evaluation Methodology

Benchmarks. Our experiments include series of representative
Transformer benchmarks with challenging long-sequence tasks. We
first run BERT (large) [12] on question answering task (QA) using
the Stanford Question Answering Dataset (SQuAD) [45] v1.1 with a
sequence length of 384. To scale our evaluation to longer sequences,
we further select three tasks from Long-Range-Arena [51] (LRA),
which is a benchmark suite tailored for long-sequence modeling
workloads using Transformer-based models. Specifically, the first
benchmark performs image classification on CIFAR10 [28], where
each image is processed as a sequence length of 1K. The second
task is a text classification problem built on the IMDb reviews
dataset [33] with a sequence length of 2k. The third task aims to
identify if two papers in the ACL Anthology Network [40] contain
a citation link. The papers are modeled as 4k input sequences to the
Transformer model. Finally, we use GPT-2 [42] to evaluate causal
language modeling (LM) on Wikitext-103 [34] using sequences of
4K length.

Software Experiment Methodology. We implement our atten-
tion detection mechanism on top of each baseline Transformer,
and jointly optimize the model with attention selection enabled.
We study the effectiveness of our method by evaluating the model
performance in terms of accuracy or perplexity with respect to
the retention ratio of the sparse attention graph. Besides, we fur-
ther compare DOTA’s accuracy with state-of-the-art algorithm-
hardware co-design (ELSA [18]) and pure software Transformer
models presented in LRA [51].

Hardware Experiment Methodology. The system configuration
and consumption of DOTA is shown in Table 2. We implement
DOTA in RTL, and synthesize it with Synopsys Design Compiler
using TSMC 22nm standard cell library to obtain power and area
statistics. The power and area of SRAM module are simulated by
CACTI [35]. We implement a custom simulator for performance and
energy-efficiency evaluation. The simulator is integrated with the
software implementations of the Transformer models. We further
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Figure 11: Model accuracy of DOTA comparing with dense baseline and ELSA under different retention ratios across the
benchmarks. The performance metric of GPT-2 is perplexity score, the lower the better. The other dataset uses accuracy, the
higher the better. The purple line indicates the best results provided by the LRA benchmark.

conduct design space exploration to search for optimal system
design choices.

Hardware Baselines We quantitatively compare DOTA with NVIDIA

V100 GPU and ELSA [18], while qualitatively discuss the difference
between DOTA and other customized hardware (See Section 6).
When comparing with GPU, we scale up DOTA’s hardware resource
to have a comparable peak throughput (12 TOPS) as V100 GPU (14
TFLOPS). The energy consumption of DOTA is also re-simulated
for fair comparison. When comparing with ELSA’s performance,
we extend and validate our simulator to support ELSA’s dataflow.
Then, we re-synthesize DOTA with the same data representation,
computation resources and technology node as ELSA to compare
the energy-efficiency.

5.2 Algorithm Performance

We present the model accuracy of DOTA in Figure 11, and com-
pare it with dense Transformer model as well as other software
baselines. For DOTA, we first add the row-wise attention connec-
tion constraint and then select optimal quantization precision and
dimension reduction factor (o) based on design space exploration
(Section 5.5). For ELSA, our implementation delivers aligned results
on QA compared with the original paper, and we extend it to other
datasets.

As we can see, across all the tested benchmarks, DOTA is able
to achieve comparable or slightly higher model accuracy compared
with the dense baseline, while selecting only 3 ~ 10% of the atten-
tion connections. Furthermore, DOTA significantly outperforms
ELSA in accuracy-retention trade-offs. For example, on QA task
with 1.5% of accuracy degradation interval, DOTA delivers 3.3x
higher reduction ratio by keeping 6% of the connections, while
ELSA needs to keep 20%. The gap becomes even larger on long-
sequence benchmarks, which indicates that our detection method
is more scalable with long sequence. Furthermore, we also provide
leading results given by the LRA [51] benchmarks on image classi-
fication, text classification, and document retrieval tasks. As shown
in the figure, DOTA achieves on-par or better accuracy than LRA’s
leading results with 5% to 10% of retention ratio.

5.3 Speedup

Figure 12 presents the speedup of DOTA over the baselines. We
evaluate both stand along attention block as well as the end-to-end
performance improvements. We provide two versions of DOTA by
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setting the accuracy degradation of DOTA-C (Conservative) to be
less than 0.5%, and limiting the degradation of DOTA-A (Aggres-
sive) within 1.5%. As for ELSA, although it fails to reach the above
accuracy requirement, we follow the original setting [18] and set
the retention ratio to be 20% for performance evaluation.

As we can see, comparing with GPU, DOTA-C achieves 152.6x
and 9.2X average speedup on attention computation and Trans-
former inference, respectively. On the other hand, DOTA-A achieves
on average 341.8X and 9.5% speedups at the cost of a slightly higher
accuracy degradation. The speedup mainly comes from three as-
pects. Firstly, DOTA benefits from highly specialized and pipelined
datapath. Secondly, the attention detection mechanism significantly
reduces the total computations. Finally, the Token-parallel dataflow
with workload balancing and out-of-order execution further im-
proves resource utilization.

The end-to-end speedup is lower than that of attention com-
putation, since the proposed detection method is tailored to the
cost reduction of self-attention blocks. We add another baseline
by assuming the accelerator always works at its peak throughput,
and the attention computation has a ignorable cost. Combining
this peak throughput assumption and Amdahl’s law [3], we can
derive the theoretical speedup upper bound for DOTA. As we can
see, the real performance of DOTA is relatively close to the upper
bound by virtue of the extremely small retention ratio and hard-
ware specialization. We only compare DOTA and ELSA on attention
computation performance, because ELSA does not support end-to-
end Transformer execution. As we can see from Figure 12 (b), on
average, DOTA-C is 4.5% faster than ELSA and DOTA-A is 10.6X
faster. This improvements mainly come from lower retention ratio
and Token-parallel dataflow.

The latency breakdown in Figure 12 (c) delivers two key mes-
sages. Firstly, the latency of attention estimation is negligible com-
pared with the overall consumption. Therefore, the Detector is both
accurate and hardware efficient as we expected. Secondly, with the
proposed detection method and system architecture, the cost of
attention has been significantly reduced. The new performance
bottleneck is Linear computation, which can be optimized with
weight pruning and quantization. These classic NN optimization
techniques can be fluently transplanted on DOTA, because our sys-
tem is designed on top a GEMM accelerator with multi-precision
arithmetic support and sparse computation dataflow. Overall, DOTA
delivers scalable Transformer inference acceleration.
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Figure 13: Energy-efficiency comparisons.

5.4 Energy-Efficiency

As shown in Table 2, each DOTA accelerator consumes a total power
of 3.02W. RMMU and Accumulator are the two major contributing
factors to the dynamic power consumption, whereas SRAM and
RMMU together occupies the most chip area. We compare DOTA’s
energy-efficiency with GPU and ELSA. The results are shown
in Figure 13. As we can see, DOTA-C achieves 618~5185X and
1.97~5.14Xenergy-efficiency improvements over GPU and ELSA,
while DOTA-A achieves 1236~8642x and 3.29~12.20X improve-
ments over these two baselines. The energy saving mainly comes
from two parts. Firstly, despite the attention estimation overhead,
the proposed attention detection largely reduces overall cost of
attention computation and memory access. Secondly, both external
memory access and on-chip SRAM access are saved to a large extent.
On one hand, the hardware specialization helps improve interme-
diate data reuse between the pipeline stages. On the other hand,
Token-parallel dataflow effectively utilizes attention connection
locality to improve Key/Value data reuse. The energy breakdown
of DOTA exhibits similar pattern as the latency breakdown. That
is, with effective attention reduction, FC-layer consumes around
84.9~99.3% of the total energy cost, while attention detection only
consumes 0.11~0.34%. This further illustrates the efficiency of the
proposed algorithm-hardware co-design.

5.5 Design Space Exploration

We search and select optimal architectural settings for DOTA through
design space exploration.

Dimension Reduction Scale As discussed above, the dimension
reduction scale o directly affects the size of the input and weight
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matrices involved in attention detection. Therefore, a small o can
effectively control the overhead of attention estimation, but the
Detector’s performance will also be limited. We experiment on
the Text classification benchmark, fixing the retention ratio and
quantization precision while only adjusting the scale values. The
results are shown in Figure 14 (a).

As we can see, for Text classification, the scale factor can be as
small as 0.2 without affecting the overall model accuracy. There-
fore, the hidden dimension in approximation is floor(64*0.2)=12,
compared with the original dimension 64. Besides, ¢ is a hyper-
parameter which does not influence the underlying hardware. There-
fore, each benchmark can use its own optimal o value.

66 6527 6546 6563 66
65.08 : 65.69
65.56 65.63  65.63

@
iy

65.12
62.82

Accuracy
@
&

o
S

64.45

@
&

60 64

010 016 020 0.25 0.33 Baseline INT2 INT4 INT8 INT16 FP32 Baseline
Figure 14: Influence of (a) dimension reduction factor o and
(b) quantization precision on overall model accuracy using

Text classification benchmark. Retention ratio = 10%.

Precision of Attention Detection Another factor that affects
the attention detection cost is the choice of quantization precision.
Furthermore, the precision also influences the design complexity
of RMMU. For each benchmark, we fix o and retention ratio and
sweep over different quantization precision. Figure 14 (b) presents
the experiment results on Text classification benchmark. As we
can see, the quantization precision could be as low as 2-bit with
negligible accuracy degradation. After our experiments, we found
that INT4 is a safe precision for all the benchmarks, while some
can tolerate INT2 computations. Therefore, our final RMMU design
supports INT2, INT4, and INT8 apart from FX16. INT8 computation
is required when X, WQ, and WK are INT4 data. As the estimated
O and K will be in INT8 precision.

Token Parallelism Our token-parallel dataflow leverages locality
among important attention distribution to improve memory access.
Higher parallelism increases data reuse and reduces total mem-
ory access, but also results in growing size of the Scheduler unit.
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Therefore, we aim to find an optimal trade-off point that achieves
lowest overall energy consumption. Figure 15 shows the case on
Text classification benchmark with Retention ratio to be 10%. The
left axis indicates the normalized memory access cost of Key and
Value, while the right axis is the required number of buffers in
the Scheduler. Figure 15 mainly delivers two key messages. Firstly,
as shown by the solid blue bar, leveraging row-parallelism does
help reduce memory accesses, but increasing the parallelism has
diminishing returns. This is because attention distribution exhibits
certain but only a limited degree of locality. Secondly, increasing
row-parallelism causes exponential growth in scheduling overhead.
In Figure 15, this is shown by the red line (buffer requirement)
and the dotted blue bar (scheduling energy consumption). After
summing up the memory cost (solid blue bar) and scheduling cost
(dotted blue bar) together, we choose the shortest one because it
represents the sweetest spot with the lowest total energy consump-
tion. As we can see, parallelism 4 has the lowest total height, which
means 4 is the best setting for Text classification. We also evaluate
on other benchmarks and most benchmarks have an optimal paral-
lelism to be or around 4. Therefore, we choose 4 as the final setting
in DOTA.
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Figure 15: Key/Value memory access (left axis) and Scheduler
buffer requirement (right axis) with different Token paral-
lelism. The hatched area is the projected cost of Scheduler.

6 RELATED WORK

In this Section, we mainly discuss related work on efficient Trans-
former models from the algorithm perspective and hardware ac-
celerators for Transformers and Self-Attention. For general DNNS,
quantization and low-precision support have been proposed [16, 19-
21, 36]. While sharing the high-level similarity, our method focuses
on attention operations that are not parameterized. Hence, those
methods applied on model parameters are not applicable to our
scenario. Our work is in the scope of dynamic pruning on atten-
tions as we discussed and compared with other related work. Ap-
proximation for DNNS is also a line of related work [2, 29, 32, 44].
Finally, hardware accelerators for DNNs are related to executing
the non-attention components of Transformers [6, 8-10, 13-15, 24—
26, 30, 47, 55].

6.1 Efficient Transformer Models

Recent studies propose efficient variants of Transformer models to
mitigate the quadratic memory complexity of long sequence model-
ing [27, 48, 50]. However, these methods are impractical for efficient
inference as they focus on training memory footprint reduction
while trading off more computations for clustering or grouping.
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Another line of work exploit static or fixed sparse patterns in
attention, such as local windows, block-wise, dilated, or a combina-
tion of static patterns [11, 39, 54]. However, as discussed in Section
2, the sparse attention graphs are inherently dynamic depending
on input sequences. Hence, these approaches lack the capability of
capturing dynamic sparse attentions.

6.2 Attention and Transformer Accelerators

There have been a few recently proposed work targeting the ac-
celeration of attention and Transformer. MnnFast [22] skips the
computation of specific value vectors if its attention weights is
lower than the threshold. This method can only benefit the at-
tention output computation rather than attention weights com-
putation. A3 [17] is the first work to apply approximation to the
attention weights for computation reduction. However, A® involves
a sorting-based preprocessing phase that needs to be done outside
the accelerator, causing inevitable performance and energy over-
head. ELSA [18] improves the approximation method by directly
using sign random projection to estimate the angle between query
and key vectors. Although the approximation becomes much more
hardware friendly, the detection accuracy and model quality is hurt.
DOTA addresses all of the above limitations by simultaneously
concerning detection accuracy and efficiency. In terms of hardware
design, prior work only implements attention block with no token
parallelism, while DOTA supports end-to-end inference accelera-
tion with Token-parallel dataflow to improve system performance.

SpAtten [53] proposes cascade token pruning and head pruning
to reduce the cost of both self-attention block and subsequent layers
in the Transformer model. The proposed method can be regarded
as adding structured sparsity constraints to the attention matrix,
as it directly removes several rows and columns. Based on our
visualization and experiments, we believe that despite a certain
degree of locality, such constraint is not flexible enough to capture
the irregularly distributed attention connections. As for hardware
design, SpAtten supports both decoder and encoder processing, but
it is also mostly tailored to attention acceleration with very few
discussions on end-to-end execution.

Finally, OPTIMUS [37] proposes a GEMM architecture to accel-
erate Transformer inference. It focuses on accelerating sequential
decoding process and proposes technique to maintain resource
utilization. Although OPTIMUS avoids computing redundant at-
tention weights, such redundancy is due to naturally existed token
dependency, rather than the weak connections we discussed in this
work. Thus, the self-attention still has quadratic cost and OPTIMUS
does not scale on longer sequences.

7 CONCLUSION

In this work, we address the challenge of scalable Transformer
inference. Specifically, we first propose algorithm optimization to
reduce the quadratic cost of self-attention mechanism. Our method
efficiently detects and omits weak connections in attention graphs
to skip the corresponding computations and memory accesses. Fur-
thermore, we provide system-level support for end-to-end large
Transformer model inference. We first effectively abstract the Trans-
former model to design a scalable and unified architecture. Then,
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we implement the proposed attention detection method with ef-
ficient hardware specialization techniques. Our final evaluation
results sufficiently demonstrate the effectiveness of the proposed
algorithm and system design.
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