INSPIRE: IN-Storage Private Information REtrieval via Protocol
and Architecture Co-design

Jilan Lin" Ling Liang" Zheng Qu
jilan@ucsb.edu lingliang@ucsb.edu zhengqu@ucsb.edu
UC Santa Barbara UC Santa Barbara UC Santa Barbara
Santa Barbara, California, USA Santa Barbara, California, USA Santa Barbara, California, USA
Ishtiyaque Ahmad Liu Liu Fengbin Tu
ishtiyaque@ucsb.edu liu_liu@ucsb.edu fengbintu@ucsb.edu
UC Santa Barbara UC Santa Barbara UC Santa Barbara

Santa Barbara, California, USA

Santa Barbara, California, USA

Santa Barbara, California, USA

Trinabh Gupta Yufei Ding Yuan Xie
trinabh@ucsb.edu yufeiding@cs.ucsb.edu yuanxie@gmail.com
UC Santa Barbara UC Santa Barbara UC Santa Barbara
Santa Barbara, California, USA Santa Barbara, California, USA Santa Barbara, California, USA
ABSTRACT ACM Reference Format:

Private Information Retrieval (PIR) plays a vital role in secure,
database-centric applications. However, existing PIR protocols ex-
plore a massive working space containing hundreds of GiBs of
query and database data. As a consequence, PIR performance is
severely bounded by storage communication, making it far from
practical for real-world deployment.

In this work, we describe INSPIRE, an accelerator for IN-Storage
Private Information REtrieval. INSPIRE follows a protocol and ar-
chitecture co-design approach. We first design the INSPIRE protocol
with a multi-stage filtering mechanism, which achieves a constant
PIR query size. For a 1-billion-entry database of size 288GiB, IN-
SPIRE’s protocol reduces the query size from 27GiB to 3.6MiB.
Further, we propose the INSPIRE hardware, a heterogeneous in-
storage architecture, which integrates our protocol across the SSD
hierarchy. Together with the INSPIRE protocol, the INSPIRE hard-
ware reduces the query time from 28.4min to 36s, relative to the
the state-of-the-art FastPIR scheme.

CCS CONCEPTS

« Hardware — Memory and dense storage; » Security and
privacy — Data anonymization and sanitization.

KEYWORDS

In-storage computing, private information retrieval (PIR)

“Both authors contributed equally to this research.

This work is licensed under a Creative Commons Attribution International 4.0 License.
ISCA 22, June 18-22, 2022, New York, NY, USA

© 2022 Copyright held by the owner/author(s).

ACM ISBN 978-1-4503-8610-4/22/06.

https://doi.org/10.1145/3470496.3527433

102

Jilan Lin, Ling Liang, Zheng Qu, Ishtiyaque Ahmad, Liu Liu, Fengbin Tu,
Trinabh Gupta, Yufei Ding, and Yuan Xie. 2022. INSPIRE: IN-Storage Private
Information REtrieval via Protocol and Architecture Co-design. In The
49th Annual International Symposium on Computer Architecture (ISCA °22),
June 18-22, 2022, New York, NY, USA. ACM, New York, NY, USA, 14 pages.
https://doi.org/10.1145/3470496.3527433

1 INTRODUCTION

With more data being moved to the cloud, database systems have
grown quickly to become the backbone of many daily applica-
tions [35, 35, 55]. As a result, the demand for user privacy has
turned into an increasingly concerning issue: when accessing the
database, can we prevent the server from knowing where parts of
the database the user is accessing? In 1995, Chor et al. introduced
Private Information Retrieval (PIR) to address this problem [13].
Subsequent research has extensively studied the broad applications
of PIR protocols, including anonymous communication [1, 5, 32, 44],
content sharing [23, 39, 60], and business services [21, 24].

The key insight behind PIR protocols is the all-for-one concept.
This means that to retrieve one record from a database oblivi-
ously, the server should necessarily must computation over all the
records in the database. This is necessary because otherwise the
server would learn which record the user is not interested in [8].

Recent breakthrough in fully homomorphic encryption (FHE) [20]
has greatly expedited the development of PIR, particularly, single-
server PIR that employs one server. (There is another variant of
PIR that requires multiple non-colluding servers.) Fig. 1 illustrates
the workflow of the state-of-the-art FastPIR protocol that is based
on FHE. FastPIR uses a one-hot query vector to perform the all-for-
one computation. Specifically, it encrypts the one-hot vector into
a ciphertext using FHE. The server then performs homomorphic
multiplications (namely vector convolutions) between the query
ciphertext and the entire database. In addition, FastPIR uses a reduc-
tion step to shrink the answer size, using a series of homomorphic
rotations and aggregations. Finally, the user derives the result using
the FHE decryption function.

ISCA 22, June 18-22, 2022, New York, NY, USA

[] 7]
Encrypt [0] One-hot Desired [0] Decrypt
] a1
. Query Record
Client i L] 5] “
Multiply §is
Q (Vector Conv) Ny
K :“ G
Server Query P
Ciphertext Rotate Aggregate
Record A
Record B Vectorize Raw Answer Rotated Answer
Record C |cl {c2{c3 > 2| [a3] Ciphertexts Ciphertexts
Record D L]
Database Database Vectors

Figure 1: Workflow illustration of the state-of-the-art PIR
protocol (called FastPIR [1]). To fetch the record ¢ from a
4-entry database (containing records A, B, C, and D), the
client encodes a one-hot vector into a ciphertext. The server
performs a reduction computation over the entire database
using homomorphic operations. Thus, record c is retrieved
obliviously, and the server does not know which record is
retrieved.

Despite the rigorous privacy guarantee of PIR, the all-for-one
computation brings significant overhead, especially in terms of
communication. The communication overhead lies in two aspects:
first, the performance is bounded at the storage I/O when PIR
conducts homomorphic multiplications over the entire database.
Since a database usually consumes hundreds of GiBs of storage,
performing computation on data from storage devices (such as SSD)
is slow. In particular, we find that FastPIR takes 28.4min to fetch a
288-byte record from a 288GiB database, where 50% of the time is
spent waiting for SSD accesses (Section 5.2). Second, the PIR query
ciphertext is too large for real-world deployment, as the query size
grows linearly with the size of the database. For the 288GiB database
above, the query generated by FastPIR will be 27GiB. Although
researchers have optimized PIR protocols significantly over the
years, the issue of an exceedingly large amount of communication
has not been well addressed.

To break the bandwidth wall in the traditional I/O and meet the
intensive storage access demands, in-storage processing (ISP) ap-
pears to be a promising solution. The ISP technique directly puts the
computation logic near or inside the storage device, such that the
application benefits from shorter access latency and higher internal
bandwidth. Prior work has broadly engaged ISP architecture with
various applications, including deep learning [31], recommenda-
tions [62], and graph analytics [34]. However, applying in-storage
processing to PIR is non-trivial, as naively attaching an FHE accel-
erator to a storage device results in sub-optimal performance.

First, the ISP technique cannot address the query size issue. In
particular, when processing a batch of queries, the query data can be
even larger than the database size. Even though the ISP architecture
can provide 4 — 8X higher bandwidth than external I/O, it hardly
meets the growing throughput demand of large query data.

Second, the heterogeneous computation pattern in PIR requires
dedicated hardware and dataflow design. Directly attaching a mono-
lithic FHE accelerator to the SSD device cannot fully leverage the

103

Jilan Lin, Ling Liang, Zheng Qu, Ishtiyaque Ahmad, Liu Liu, Fengbin Tu, Trinabh Gupta, Yufei Ding, and Yuan Xie

internal parallelism from multiple flash devices, because the accel-
erator can only gain limited bandwidth from the attached DRAM
buffer, which is not enough to satisfy the memory-bound problem.

This paper describes INSPIRE which leverages protocol and ar-
chitecture co-design to accelerate IN-Storage Private Information
REtrieval. At the protocol level, INSPIRE’s key insight is to use the
classical idea of recursion [53], but while making a better trade-off
between query size and computation overhead. The key trick is to
partition the database hierarchically and process smaller queries in
each hierarchy. Further, INSPIRE amortizes the computation over-
head with a multi-stage query process. At the lower stage, it uses
a block query to process the data from the entire database, which
avoids the heavy computation needed for rotations. At the higher
stage, it performs FastPIR-like column reductions, but while opti-
mizing the rotation flow to reduce the large memory consumption
in FastPIR. As a result, the INSPIRE protocol reduces the 27GiB
query size in FastPIR to 3.6MiB for the 288GiB database.

On the hardware side, the key insight of INSPIRE’s architecture
is to integrate the hierarchical query processing with the micro-
architecture hierarchy inside the SSD device, which can fully utilize
the internal bandwidth parallelism from multiple storage channels.
Specifically, we design INSPIRE as a heterogeneous architecture.
As a first step, we design a block collector to perform block-level
reduction and equip each flash channel with a block collector. There-
fore, the block collectors leverage the channel-level parallelism for
higher internal bandwidth. Next, we extend the original embed-
ded controller in SSD to support homomorphic computation, such
that the results from different channels are sent to this module
to perform the more complicated answer aggregation. Through a
customized dataflow that processes all data in a streaming manner,
the INSPIRE architecture achieves 22.9x speedup compared with
the vanilla CPU baseline.

We summarize the key contributions of this paper as follows:

e The INSPIRE protocol, which adopts a hierarchical database
partitioning and multi-stage answer reduction. The protocol
significantly reduces the query size and avoids the heavy
rotation overhead.

e The INSPIRE accelerator based on the ISP architecture. IN-
SPIRE explores a heterogeneous architecture, leveraging
both large internal bandwidth and customized accelerator
to accelerate PIR’s record retrievals.

e Animplementation of INSPIRE’s protocol on top of SEAL [52],
an open-source FHE library, that demonstrates 2.22X per-
formance speedup relative to FastPIR. We also build a cycle-
accurate simulator for the INSPIRE architecture based on
MQSim [56], a simulator for SSDs, which demonstrates a
22.9x speedup over CPU and 1.93x speedup over the state-
of-the-art FHE accelerator.

2 PRELIMINARIES

In this section we introduce preliminaries for further discussion,
including fully homomorphic encryption (FHE), private information
retrieval (PIR), the state-of-the-art FastPIR protocol [1], and in-
storage processing (ISP).

INSPIRE: IN-Storage Private Information REtrieval via Protocol and Architecture Co-design

2.1 Fully Homomorphic Encryption (FHE)

Modern PIR protocols rely on Fully Homomorphic Encryption
(FHE) to conceal the query information. FHE is a type of encryp-
tion scheme that allows generic operations on encrypted data (ci-
phertext). In the most popular FHE schemes, such as BFV [9, 18],
BGV [10] and CKKS [12], the raw data that is encrypted is a vec-
tor, and the ciphertext is a polynomial (represented as a vector of
polynomial coefficients). Therefore, FHE programs follow a vector
programming model, as most FHE operations involve element-wise
computation between vectors.

Algorithm 1: FHE Primitives — Client

1 Function VecEncrypt(V, pk):
/* Encrypt a vector V = [o1,05, 03] into ciphertext C with

public key pk. %/
2 return C
3 Function VecDecrypt (C, sk):
/* Decrypt a ciphertext C into a plain vector
V = vy, 02, 03] using the secret key sk. */

4 return V

Algorithm 1 and Algorithm 2 present the FHE primitives needed
for PIR, for a small example vector containing three elements. At
the client side, the function VecEncrypt encrypts a raw vector V =
[01,02,03] into a ciphertext C, where C is a polynomial of degree
3 (the same length as V). During encryption, the vector V is usually
termed a message. It is first encoded into a polynomial, called a
plaintext, and then encrypted to form the ciphertext. Conversely,
the function VecDecrypt decrypts a ciphertext to a plain message.
The decryption requires a secret key sk that is only known to the
client.

The server-side uses three types of FHE operations: Hom_Mul,
Hom_Add, and Hom_Rot. The Hom_Add and Hom_Mul take two cipher-
texts as input and return the encryption of element-wise addi-
tion/multiplication. Note that these two functions can also take a
plaintext W as inputs. Hom_Rot is a special operation that rotates
the elements in the plain vector according to step. The sign of step
denotes the direction of rotation. For example, with V' = [v1, v2, v3],
rotating V one step to the left (step = —1) will result in an en-
cryption of [vy, v3,01]. For different values of steps, FHE requires
different rotation keys rk; these keys are generated by the client.

FHE Computation Complexity: Adding two polynomials (ci-
phertexts) is simple, which causes O(M) time complexity with the
polynomial degree of M. Hom_Mul needs more complicated com-
putation, as multiplying two polynomials requires convolution.
Number Theory Transfer (NTT) is widely used to accelerate this
computation [51]. NTT is a variant of Discrete Fourier Transfer
(DFT), which can transfer the convolution (in the time domain) to
the element-wise multiplication (in the frequency domain). The
computation complexity of Hom_Mul is then O(NlogN) for NTT
and inverse NTT. When multiplying two ciphertexts, the resulting
ciphertext usually needs to be relinearlized with a sophisticated
key switching process [51], during which NTT is also the domi-
nant operation. Finally, Hom_Rot requires key switching and data
reordering/shuffling. We will discuss this in more detail in Sec-
tion 4.4.

104

ISCA 22, June 18-22, 2022, New York, NY, USA

Algorithm 2: FHE Primitives — Server

/* Ci=VecEncrypt(|ovy, v, v3]), Cz=VecEncrypt([wy, wy, ws]) */
1 Function Hom_Add(Cy, Cy):
| /% Cour=VecEncrypt([o; + wy, vz + wy, v3 + w3]) */
2 return Cyyr
3 Function Hom_Mul (Cy, C;):
| /% Cour=VecEncrypt([o; X wi, vy X Wy, 03 X ws]) */
4 return Cyy;
/% Ci=VecEncrypt([ov1, v2,v3]), Wa=[w1, wp, ws] */
5 Function Hom_Add(Cy, W,):
‘ /% Coyr=VecEncrypt([v; + wy, v + Wy, v3 + W3]) */
6 return Coyr
7 Function Hom_Mul (C;, W;):
‘ /% Coyr=VecEncrypt([ov; X wi, v2 X wy, 03 X ws|) */
8 return Cyyy
9 Function Hom_Rot(Cy, rk, step = —1):
/* Rotate Cj one step to the left:
Cour=VecEncrypt([vy, v3,01]) */
/* Distinct rotation key rk is needed for different steps
(the third input parameter). */

10 return Cyyy;

As a remark, we note that in PIR the database content is public
and encoded into plaintexts after the NTT computation. There-
fore, PIR performs more plaintext-ciphertext multiplications (the
ciphertext is the PIR query).

2.2 Private Information Retrieval (PIR)

Chor et al. [13] introduced private information retrieval (PIR) to
address the following problem: for a database with N records, how
can a client retrieve the k-th record without leaking k to the server?

There are two lines of PIR protocols: information theoretic PIR
(IT-PIR) [7, 13-15] and computational PIR (CPIR) [1, 4, 11, 17, 40]. IT-
PIR protocols replicate the database across multiple non-colluding
servers. The client sends different queries to these servers and
derives the answer (the desired database record) by combining the
responses. IT-PIR protocols achieve information-theoretic security
against adversarial attacks [13]. On the other hand, CPIR protocols
put the database onto a single server, while guaranteeing security
against computationally-bounded adversaries. In this work, we
focus on the single-server CPIR because it is more practical than
deploying non-colluding servers.

2.3 The state-of-the-art: FastPIR

Fig. 1 presents the dataflow overview of the FastPIR protocol [1],
which contains the following steps for an example database with 4
records [a, b, ¢, d|, where the client wants to fetch the 3" d record
c. @ The client generates a query g which is an FHE ciphertext
that encrypts a one-hot vector of length 4, where only the 3" 4 glot
in the vector is 1 and others are 0. @ The client then sends the
query ciphertext to the server. ® The server partitions the database
into multiple vectors (columns) to facilitate the vector program in
FHE. As a result, each record in the database is partitioned into 3
slices. @ The server performs 3 Hom_Mul operations between the

ISCA 22, June 18-22, 2022, New York, NY, USA

Vectorized
Database

alimici
E i
Enc hc ‘
o))

et

Multiply ?~ |
1 |
Query Enc :
Ciphertext ' ‘
c c i

a | — e ae— 1
Enc n 1 + Rot—')- %
o] Enc Answer :

Figure 2: The tree-based answer reduction in FastPIR protocol
to reduce the answer size using homomorphic rotations and
additions.

query ciphertext and database vectors, resulting in three ciphertexts.
® Through the Hom_Rot operation, the server shifts the record
slices into different slots in the ciphertexts, which are then added
together to achieve a single compact answer. ® The server returns
the answer to the client. @ The client derives the desired record
with VecDecrypt. Note that the record vector could be shuffled in
any order, but the client knows the beginning of the record based
on the index (three in this discussion).

A key aspect of FastPIR is a tree-based rotation scheme to per-
form the rotation operations efficiently. Fig. 2 shows a more de-
tailed example of this scheme for records with 4 slices each. During
the homomorphic multiplication step, a ciphertext is generated
for each database column ([0, 0, c1,0], [0, 0, ¢2, 0], [0, 0, ¢3, 0], and
[0,0,c4,0]). These ciphertexts are the leaves of a tree. Then the
scheme aggregates the first two leaves (ciphertexts) having the
same parent using a rotation with 1 step followed by an add op-
eration. That is, the scheme rotates the ciphertext of [0, 0, c2, 0]
into [0, 0,0, c2], and then aggregates it with the first ciphertext to
produce a ciphertext of [0, 0, c1, c2]. FastPIR follows this rotation-
and-addition recursively to generate the root of the tree, which is a
ciphertext of [¢3, ¢4, c1, c2] and contains all the slices of the desired

record.

S
8
o

32-Bit —a— 48-Bit |

‘/‘/‘/‘

| —a— 18-Bit

g
o

Stack Buffer (MB)
N
8
o

1000
—
0 .———.———.———-
256B IKB 4KB |6KB[256B IKB 4KB |6KB[256B IKB 4KB |6KB]
Batch - 32 Batch - 64 Batch - 128
Record Size

Figure 3: The size of stack used for the recursive tree-based
rotation in FastPIR. We slice the records in the database into
slices of 18/32/48-bits. We also vary the size of the records
and the size of the number of queries being processed simul-
taneously (batch size).

105

Jilan Lin, Ling Liang, Zheng Qu, Ishtiyaque Ahmad, Liu Liu, Fengbin Tu, Trinabh Gupta, Yufei Ding, and Yuan Xie

2.4 Inefficiencies in FastPIR

Even though FastPIR achieves the best performance among existing
PIR protocols, the scalability of FastPIR is still poor due to three
inefficiencies:

(a) Large Query: As shown in Fig. 1, the query length in FastPIR
grows linearly with the number of records. This results in an unac-
ceptably long query for a large database. Considering the message
box used in anonymous communication systems [5], the query can
be as large as 27GiB for 1B users, which results in a significant
query load time.

(b) Large Recursion Stack: The tree-based recursion in FastPIR
is not hardware-friendly for a large tree due to the large buffer
needed for the recursion stack. Fig. 3 illustrates the growth of stack
size with the batch size (the number of PIR queries being processed
simultaneously) and the number of database records. The database
records are partitioned into slices of the width of 18, 32, and 48
bits for each column. We find that the stack size is significantly
enlarged, e.g., over a GiB, for higher values of slice and record size.

= 250

‘€ 200 m CPU wSSD Stall
o 150

E 100

50

o 0

§ VCall Comm FSys [VCall Comm FSys | VCall Comm FSys
Q

o Batch-8 Batch-16 Batch-32

Figure 4: The execution time of FastPIR running on three
workloads: Vcall (Voice Calling), Comm (Communication),
and FSys (File System). The execution time is normalized by
the batch size. The breakdown of CPU time and SSD stall is
shown.

(c) Long SSD Stall: The PIR processing has to access and manipu-
late the entire database stored in SSD storage, which causes a severe
performance bottleneck. Fig. 4 shows the breakdown of FastPIR’s
execution time by the CPU and SSD. We find that for the batch
size of 8, 16, and 32, an average of 55.4%, 57.3%, and 28.6% of the
execution is stalled on SSD. This indicates that SSD accessing is a
major bottleneck in large-scale PIR processing.

C \

Flash SSD

Flash

;’; Controller

‘T

2

£ Flash DIMs

b7

£ Embedded

Processor DRAM DRAM
Controller

- J

Figure 5: The architecture of flash SSD.

2.5 In-Storage Processing

The general architecture of modern SSD is shown in Fig. 5. The SSD
storage usually contains a host interface, an embedded processor,
DRAM, and flash memory DIMs. The host interface implements

INSPIRE: IN-Storage Private Information REtrieval via Protocol and Architecture Co-design

ISCA 22, June 18-22, 2022, New York, NY, USA

: (1) Block Reductiol \ 2) Group Reduction

(@) i (0) Database J—

group query block query : Chyp 0 Group | cmupz

/ i - - ! Column 0 | 2 3

®) ! ! o] o]l i
Generate | o {E’ P ‘ Enc‘l P E E E E e E © I’_)+_) (1)

i i H P rof

Client ————» | ciphertext-0 | :\ ciphertext— | ciphertext — 2/: ! J +
Fetch k-th? shared during shared during H E E E E Block | E O] I’ block group " (I)
group reduction block reduction i answer
! . answer
"""""""""""""""""""""""""""""""""""" - BBEgm B
Partition i D Di ----- E Group | § Block | E group query
—_— : h : |
DD; ! E EEE Col 0 c°|| Col2 Col3
Database Columns Groups : : Block 0 E
ﬂ ﬂ ; ! ro(1) v
= i
' ! Block |
Column Group Block 1 I ! I I I @ answer
Server Reduction ~ Reduction Reduction !
(b) ' Desired Record block rot(1) rot(l)
Answer ! query (3) Column Reduction

Figure 6: An illustration of the INSPIRE protocol. (a) On the client side, instead of generating a long query, the client generates
one group query and one block query that consist of multiple ciphertexts for the desired record. (b) The database is hierarchically
partitioned into columns, groups, and blocks. The server performs a multi-stage reduction process to derive the answer. (c) A
detailed illustration of block reduction, group reduction, and column reduction. The block reduction traverses all the blocks in
the database. The group reduction and column reduction shrink the answer with homomorphic rotation and addition.

the interface protocol, such as SATA or PCI express. When access
requests come from the host interface, the embedded processor
executes the Flash Translation Layer (FTL) to derive the physical
address of the request. The embedded processor can be a RISC
processor (such as ARM) that has limited computation capability.
The processor further schedules these requests to flash controllers,
which control multiple flash channels. The flash controller issues
specific commands to the corresponding flash DIM to access the
data. The DRAM can be used as a buffer to transfer the data from
flash channels to the host.

SSD storage has been widely used for applications that require
large memory capacity, such as industry-level neural network train-
ing [31] and large-scale graph processing [34]. However, accessing
the SSD storage is much slower than memory, and the bandwidth
of I/O is very limited. The latency of accessing flash SSD is about
50 ps, while the I/O bandwidth is up to 1.0 GiB/s per PCle 3.0 lane.
Therefore, in-storage processing emerges as a promising solution
to overcome this performance gap, which leverages higher (4-8x)
bandwidth and low latency internal to the SSD storage [59].

3 INSPIRE PROTOCOL

In this section, we introduce the INSPIRE protocol. We first intro-
duce our design approach, followed by the protocol overview and
optimizations.

3.1 Design Approach

Although the query in PIR can be extremely large, it contains many
encryptions of the same data. As shown in Fig. 1, FastPIR encodes
every unwanted record as a zero in the plaintext. However, naively
reusing encryptions of these zeros will leak the query information
to the server. Our INSPIRE protocol leverages the classical design
of recursion [53]. The key idea is to hierarchically partition the

database and reduce the query size by sharing the query in each
hierarchy. Meanwhile, we keep the ciphertexts within the query
independent from each other. Thus, the server cannot tell the dif-
ference between them, and the INSPIRE protocol can ensure the
security guarantee of PIR.

Specifically, as shown in Fig. 6(a) and (b), we partition the data-
base into columns, groups, and blocks. We design two types of
queries: block query and group query. The query consists of dif-
ferent ciphertexts, encrypting the location of the desired record in
the block/group. The ciphertexts within the query are not sharable,
and thus the index information remains private to the server. By
sharing the query at different data hierarchy, the server follows
a multi-stage reduction process. At the lowest level, the protocol
performs block reduction over the entire database, while using
multiple ciphertexts to avoid the heavy rotation operations. At the
middle level, the group reduction aggregates block answers with an
identical group query for each column. At the top level, the protocol
performs a standard FastPIR-like column reduction to derive the
final answer.

Second, we further optimize the rotation-heavy computation
pattern during the group reduction and column reduction. Instead of
utilizing the tree based rotation, INSPIRE uses a streaming approach
to facilitate the architecture design.

3.2 Protocol Overview

The INSPIRE protocol is composed by four functions at the client
and server side: DB_Partition, Query_Generate, Ans_Generate,
and Ans_Decrypt. These functions are described in detail in Alg. 3
and Alg. 4. First, DB_Partition is the initialization stage that
partitions the database. The partitioning parameters, including
block size and group size, are decided at the client-side using the
Param_Generate function. Second, the client uses Query_Generate

106

ISCA 22, June 18-22, 2022, New York, NY, USA

Jilan Lin, Ling Liang, Zheng Qu, Ishtiyaque Ahmad, Liu Liu, Fengbin Tu, Trinabh Gupta, Yufei Ding, and Yuan Xie

Algorithm 3: INSPIRE Protocol — Client

Algorithm 4: INSPIRE Protocol — Server

/* Generate partitioning parameters */

1 Function Param_Generate():
// lg — block length, wp — block width
// np — number of blocks in a group

// lg — group length, ng — number of groups in a column
2 return [g, wp, np, lg, ng

/* Generate query to fetch k-th record */
3 Function Query_Generate(k):

4 gp = Vector < Vector (Ig) > (ng) ;

5 qc = Vector(lg) ;

// Find which block has the k-th record

6 qB_k =k %lg;

// Block Query
// Group Query

7 fori=0:ngdo

8 for j=0:1Ig do

o | gslillj]l= (g k==ixIg+j)? 1:0;
10 end

1 gBli] = VecEncrypt(gg|[i])

12 end

// Find which group has the k-th record

13 block_idx =k % Ig ; // Index in
14 rot_of fset =ng —k/lG;; // Number of rotations
15 qc_k = (block_idx + rot_of fset) % Ip;

block answer

16 fori=0:Igdo
v || qolil= (g6 k==0)71:0;
18 end

19 qG = VecEncrypt(qg)
return gg, qG

/* Decrypt the answer returned from server */
Function Answer_Decrypt (ans):
22 msg = VecDecrypt(ans);; // Decrypt answer
/* Reorder the data in the msg vector */

23 return msg

with the assigned index to generate the query ciphertexts and send
them to the server. Third, when the server receives a query, it per-
forms the data retrieval using Answer_Generate and sends back the
result to the client. Finally, the client uses Ans_Decrypt to decrypt
and re-arrange the record in the received answer.

DB_Partition: INSPIRE adopts a hierarchical database parti-
tioning scheme by arranging the database into blocks, groups, and
columns. Specifically, on the server side, the database can be viewed
as a 2D matrix with the shape of N X nc. Each row in the database
stands for a record, and each record can be further divided into nc
pieces along the column direction. Suppose we have the cipher-
text with length Ig. Then, for each column in the database, every
continuous /g elements are considered as a block. There are N/Ig
blocks for each column. Further, several blocks are considered as a
group along the row direction. We denote the number of blocks in
a group as np and the number of groups in a column as ng, where
Ig X ng X ng = N. As the example shown in Fig. 6(c), the database
is reshaped as a 24 X 4 matrix. We use the blue label to indicate the
record the client is interested in. Here, 4 elements are encrypted
together as a plaintext, and this plaintext is considered as a block.
Each column in the database contains 6 blocks. Based on our leveled

107

/* Partition a database with certain params */
1 Function DB_Partition(db, Ig, wg, ng):
2 L, W = db.length, db.width;
3 nc =W/ wg;
4 ng =L/(lg X ng);
/* Three indices are needed to locate a block: column id,
group id, block id */
5 return ng, nc
/* Generate answer at the server side */
6 Function Answer_Generate(gB, qG):
7 Initialize ans, anspiock, ansgroup;
8 forc=0:nc do
9 forg=0:ngdo
10 forb=0:ngdo
// @ Block Reduction
11 dbprock = db[(gxnp+b)lp : (gxnp+b+1)lp, cl;
12 dbpiock =Hom_Mul(dbpiock, qB[b]);
13 anspjock = Hom_Add(anspiock> dbpiock);
14 end
// @ Group Reduction
15 ansgroup = Hom_Add(ansgroup, anspiock);
16 ansgroup = Hom_Rot (ansgroup, 1);
17 end

// ® Column Reduction
18 ansgroup = Hom_Mul(ansgroup, 4G);
19 ans = Hom_Add(ans, ansgroup);

20

ans = Hom_Rot (ans, 1);
21 end

22 return ans

database partition, each column in the database is divided into 3
groups and each group contains 2 blocks.

Query_Generate: The query in INSPIRE also follows the hierar-
chical scheme and is composed of a block query and a group query.
The block query includes np ciphertexts, where one of them en-
crypts a one-hot vector and others independently encrypt all-zero
vectors. The group query includes a single ciphertext that indicates
which group holds the desired record. The block query traverses
the entire database with relatively simple operations, and INSPIRE
streams all the blocks in the database with minimal hardware. The
query size of INSPIRE is much smaller than FastPIR because both
the block query and group query are shared, unlike FastPIR which
has a separate ciphertext for every block in a column.

Ans_Generate: During the data retrieval, the server takes the
encrypted query from the client and generates an encrypted answer.
INSPIRE adopts a three-stage processing method to compute the
answer on the server: block reduction, group reduction, and column
reduction. We explain the process flow of these stages in detail next.

3.3 Multi-Stage Answer Generation

Block Reduction: Each group performs the block reduction with
the shared block query. During the reduction, each block in the
database performs Hom_Mul with the corresponding ciphertext in
the block query. Then the resulting ciphertexts within a group are

INSPIRE: IN-Storage Private Information REtrieval via Protocol and Architecture Co-design

aggregated through Hom_Add to get the block answer. As shown
in Fig. 6(c), each group has two blocks, and these two blocks are
multiplied by the two ciphertexts in the block query. Therefore,
the shared block query has to traverse the entire database, but the
resulting homomorphic operations are relatively simple with only
one multiplication and addition for each block.

Group Reduction: Through block reduction, we already de-
rive the desired record in Group 1. But we still have unnecessary
data in Group 0 and Group 2. Thus, group reduction aggregates
and eliminates this data. As shown in Fig. 6(c), the protocol has
three block results shifted by different steps via Hom_Rot operations.
Then, it adds them together using Hom_Add. The group query then
multiplies with this aggregated answer, which produces the group
answer. The group answer keeps only a piece c; of the desired
record in the i-th column.

Column Reduction: The reduction process in the column re-
duction phase is very similar to the group reduction. We shift the
ciphertexts with different steps, and the final answer is the aggre-
gation of the group answers. In this example, we have the same
number of columns as ciphertext length (Ig = n¢), and the record
C exactly fills the result ciphertext. In case we have more columns
than ciphertext length, we can simply use longer ciphertext or
multiple ciphertexts.

Optimized Rotation Flow: As shown in Fig. 6(c), our rotation
flow is different than the tree based reduction in FastPIR. Instead,
we use an answer ciphertext and perform in-place computation.
When we need to aggregate the answer ciphertext with the next
block/group result, we rotate the answer ciphertext by 1 and directly
add the new ciphertext to it. We call this the RNA (rotation and add)
scheme. It has two benefits: first, it eliminates the large recursion
stack used for the tree traversal, and we only need a small buffer
to store the answer ciphertext on-chip. Second, all the rotation
operations are performed with step = 1. Therefore, we use only
one rotation key and avoid a large buffer for storing different keys.

3.4 Complexity Analysis
Query Complexity: Our INSPIRE query consists of a block query

and a group query. The block query has the size of ng X Ig X M,
where np is the number of blocks per group, Ip is the block length,
and M is the size of the polynomial coefficient. The group query
has the size of Ig X M. Thus, the total query size is (ng+1) X Ig X M.
Compared with FastPIR whose query size is N X M, we reduce the
query size by a factor approximately equal to the number of groups

nG.

Table 1: Computation Complexity of different reduction
stages in INSPIRE, with comparison to FastPIR

Hom_Add Hom_Mul Hom_Rot
Block Reduction | neng(ng — 1) ncnGng 0
Group Reduction nc(ng — 1) ne nc(ng — 1)
Column Reduction ne—1 0 nec—1
INSPIRE nchgng —1 nengng+nc neng —1
FastPIR nchgng — 1 nchgng nc—1

Computation Complexity: In Tab. 1, we show the number of

Hom_Mul, Hom_Rot, and Hom_Add operations in different reduction

108

ISCA 22, June 18-22, 2022, New York, NY, USA

phases. The total operations in FastPIR are also shown as a compar-
ison. We find that our INSPIRE has the same number of homomor-
phic additions and slightly increases nc homomorphic multiplica-
tions. On the other hand, we increase homomorphic rotations by
ng times. However, although the total rotations are increased, the
rotation operation in INSPIRE is cheaper than FastPIR. Importantly,
all rotations in INSPIRE are processed in a streaming fashion, and
thus we avoid the expensive recursion stack of FastPIR (Fig. 3).

4 INSPIRE ARCHITECTURE

Although our INSPIRE protocol significantly reduces the size of
the query, we still expect a large amount of accesses to database
blocks. In order to overcome the bandwidth bottleneck at the stor-
age I/O, we further design the INSPIRE architecture, an in-storage
processing accelerator. In this section, we first present the design
overview of INSPIRE architecture. Then, we present the imple-
mentation details and dataflow design in the different hardware
units.

4.1 Architecture Overview

The overall architecture of INSPIRE is shown in Fig. 7, which is
based on the original flash SSD. During the data retrieving, both the
block query and blocks of database records are loaded sequentially
from the Flash DIMs. The block reduction is performed at the block
collector, leveraging the channel-level parallelism to generate block
answers. Further at the answer accelerator, block answers are aggre-
gated together to generate the group answer with the group query.
And finally, we use column reduction to derive the final answer and
send it back through the host interface. Therefore, INSPIRE adopts
a heterogeneous architecture. This subsection details how INSPIRE
architecture handles the memory-bounded block reduction and
computation-bounded group/column reduction.

The Block Collector is located beside each flash controller.
Because block reduction needs to traverse the entire database, we
locate it near memory to leverage the internal memory bandwidth.
All the groups are interleaved in different flash channels, such
that each block collector processes blocks in a group without inter-
channel communication. In the Block Collector, the block query and
block answer are stored in the global buffer (GLB), and database
blocks are streamed in from the flash DIM. The required homo-
morphic operations for block reduction can be realized through a
number theory transform (NTT) unit and a MAC array. We will
detail the NTT units in the following subsections. After aggregat-
ing block answers in a group, the Block Collector sends the group
answer to the DRAM.

The Answer Accelerator is located beside the SSD controller to
execute the computation-bounded group/column reduction stages,
which contain complex homomorphic rotation. During the group
reduction stage, the block answers from different flash channels
are loaded from DRAM to the GLB in Answer Accelerator. Then,
the RNA (Hom_Rot and Hom_Add) based combination is achieved
through the permutation unit, NTT unit, and MAC array. After
the group answer is acquired from group reduction, all the group
answers in the same column are combined into the final answer
with RNA, which follows the same computation scheme as the
RNA in group reduction.

ISCA 22, June 18-22, 2022, New York, NY, USA Jilan Lin, Ling Liang, Zheng Qu, Ishtiyaque Ahmad, Liu Liu, Fengbin Tu, Trinabh Gupta, Yufei Ding, and Yuan Xie

~

INSPIRE Flash SSD , Flash DIMs
I
o 9 DRAM f :
2 $ SSD _Crl T [I —
T 2 Answer |—{ DRAM Flash Block
Accelerator Controller Controller | Collector [—
.
Answer Accelerator group . group Block Collector
answer ; query : answer block [H]
0]
Permutation - - query
- Recursive o Recursive
i— oty B 8 ol —
| I—'—|_ — database [TTT]1 [[N]
Mac Array Mac Array o
= = blocks [TTT1 [OIO o1
Answer Group and Column Reduction Block Reduction Encrypted Queries and Database

Figure 7: Architecture of INSPIRE. Queries and database are stored on Flash DIMs. INSPIRE adopts a heterogeneous architecture
to execute block reduction and group/column reduction on block collectors and answer accelerator respectively. The encrypted
answer is finally exported to host through the host interface.

4.2 MAC Array specifically, the 2D NTT has the following steps: @ Reshape the
The MAC array in both the Block Collectors and the Answer Accel- length-L vector into an mxn matrix. @ Pe%rform m-input NTT for
erator is a SIMD unit consisting of a group of MACs, and the MAC every column, and multiply the result with a known parameter

(called twiddle factor). ® Perform n-input NTT unit for every row.
® Finally, reshape the matrix back to length-L vector.

Fig. 8(b) shows an example of this algorithm. Suppose we need
to do a 32-input NTT on a vector X. First, X is reshaped into a 4x8
matrix. Then, we feed each column into a 4-input NTT unit and

performs modular addition and multiplication. Different from other
applications, the data (such as polynomial coefficients) are bounded
by a modulus p, i.e., an integer modulo p. p can be a large prime
number or a product of multiple prime numbers [51, 52]. There-
fore, modular adder and multiplier are needed when we perform
computations such as (a - b) mod p and (a + b) mod p.

We follow the design in F1 [51] for modular arithmetic. In partic- tinput NTT Recursive NTT Unit
ular, F1 adopted the Montgomery multiplier [45] for fast modular (@ (Butterfly Implementation)

multiplications. It also reduced the total number of stages in the % y __L| N':::TM |—'| - Norpoe N ’l’ T
‘widdle Unit Transpose

multiplier by choosing an appropriate modulus p.

4.3 Recursive NTT Unit

(b)

NTT operations are the dominant operations in Hom_Mul and Hom_Rot [51]. X= |X° XG0 XX X g e e a5 Xas X7 s a5 a0 o)

The NTT computation is the same as Discrete Fourier Transform d/—o Reshape

(DFT) but over a polynomial ring. As shown in Fig. 8(a), we de- v v =

sign the recursive NTT unit to compute the NTT transform of an X9 || %25 8|

input vector X with arbitrary length. The recursive NTT unit is 30 || X2 & E

composed of a fixed input NTT unit, a twiddle unit, and a transpose ol | Raci i z

unit. Specifically, the fixed NTT unit is implemented as a customized 5

butterfly hardware which takes a length-N input and computes the

length-N NTT result. The twiddle unit scales the results from the L |

NTT unit using MACs. The transpose unit transposes the results hape

through a crossbar. We put register buffers at each level of the but- o

terfly hierarchy such that the NTT unit is pipelined for streaming (@ X ¢ .

the input. As shown in Figure 7, both the Block Collector and the :2 §T| %‘ %E

Answer Accelerator contain an NTT unit, but with different sizes X3 || X'1s =

to facilitate unique throughput requirements. I
Break down Long-Sequence NTT: Since the ciphertext poly-

nomial is usually quite large, with length from 4K to 16K, it is

infeasible to directly implement an NTT unit at this scale. Thus, we
need to efficiently map a long polynomial onto smaller NTT units.

INSPIRE recursively adopts a 2D NTT algorithm to achieve such Figure 8: (a) The architecture of block collector that imple-
mapping [41]. The key idea of 2D NTT is that we can break down ments butterfly computation. (b) The dataflow of breaking
alength-L = m X n NTT into smaller length NTTs, by performing down long-sequence NTT to 2D NTT. (c) We further conduct

length-m NTT n times and performing length-n NTT m times. More the 2D NTT recursively.

109

INSPIRE: IN-Storage Private Information REtrieval via Protocol and Architecture Co-design

have them go through the twiddle unit. Finally, we transpose the
matrix and perform 8-input NTT for each column (with length 8).
Recursive Processing: The naive 2D NTT still suffers from in-
flexibility, as the length of the input ciphertext may vary in different
applications. To address this problem, INSPIRE further supports a
recursive NTT scheme to perform NTT computation with arbitrary
vector length. The key idea is to apply the 2D reshaping recursively
for each dimension until the NTT size can fit into our hardware
NTT unit. We reshape the length-L NTT as a N¢ tensor (instead of
a matrix), where N is the length of our hardware butterfly. Thus,
we apply the 2D algorithm recursively for a long sequence NTT
computation. We show an example of our recursive NTT in Fig. 8(c).
For the 8-input NTT desired in Fig. 8(b), we keep reshaping this
vector into a 4X2 matrix. Then we can apply another 2D NTT to
compute the result with the same 4-input NTT unit. Note that we
can still use the 4-input NTT unit to compute a 2-input NTT, since
the data in the butterfly is decouplable. Our NTT hardware can be
programmed to compute two 2-input NTTs simultaneously.

4.4 Permutation Unit

Permutation Operation: The permutation unit is essentially a
switch to reorder the data in the Hom_Rot operation. The permuta-
tion step in Hom_RoT is to map all the polynomial coefficients to
different positions. For example, we can permute the polynomial
2x3+5x2 +7x+1 into 5x3 +7x% +x+2. A more formal way to describe
the permutation is as follows: Suppose the length of the ciphertext
vector is N, and we use i and i’ to indicate the old and new index of
a coefficient before and after permutation. To rotate the plain vector
by r steps, the permutation is performed as i’ = (i X k") mod N,
where k is co-prime with 2N.

@ Before After (b) . .
Per i Per i Permutation Implementation
Old Index | BankID | NewIndex | Bank ID (Input index, Bank ID) (Output index, Bank ID)
0 0 0 0 4x4
I | 3 3
2 2 6 > Crossbar
3 3 ! | 4.0 (.0 40 (00
4 0 4 0 G (L) 73 (.3
z : 4 3 62 @2 " 22 62
7.3) (3.3
7 3 P | 73 (33 [(A

Figure 9: Data mapping of the permutation in Hom_RoT.
Here, N = 4096, B= 8,k = 3.

It is guaranteed that each coefficient will go to a unique position.
Thus, a crossbar switch is enough to route all the data in one cycle
(because there is no destination conflicts). However, since the ci-
phertext can be as large as 4K-16K (Sec. 4.3), it is infeasible to have
such a large crossbar.

Key Insight: Our key finding is that such destination conflicts
do not exist for every continuous power of 2 coefficients. Fig. 9
shows an example of this interesting property. Assume that we
have 8 coefficients stored in 4 (=2%) banks. After permutation, the
data in position (0,1,2,3,4,5,6,7) now goes to position (0,3,6,1,4,7,2,3).
For the 4 coefficients located in bank (0,1,2,3), the new bank ID is
(0,3,2,1). There is no bank conflict to relocate these 4 data elements.
Therefore, we use a small crossbar with a size of 4 to process a long
permutation. To permute a 4096-length polynomial, we can directly

110

ISCA 22, June 18-22, 2022, New York, NY, USA

permute (relocate) the data 0-3, 4-7, ..., 4092-4095 in a sequential
order, where each permutation is done in one cycle.

5 EVALUATION

In this section, we evaluate the performance of the INSPIRE protocol
and architecture. We first introduce our evaluation methodology.
Then, we show the performance gain from INSPIRE. Then, we
evaluate the scalability and sensitivity of our design. Finally, we
present the area and power overhead of INSPIRE.

Table 2: INSPIRE Architecture Configurations

SSD Device
Read/Program/Erase Latency 75/750/3800 ns
Channel-Chip-Die-Plane 16-4-2-2
Blocks/Plane 2048 Pages/Block 512
Channel Width 1B Channel Rate 1033MT/s
Page Size 8KiB Capacity 2TiB
Host Interface PClIe 3.0 x4 | Flash Protocol NVDDR3
Answer Accelerator (AA) and Block Collector (BC)

Tech Node 28nm Frequency 400MHz
Xbar Switch (AA) 4x4 Operand 32b
NTT input size (AA) | 32 NTT input size (BC) | 8
Total mMuls (AA) 160 Total mMuls (BC) 24
Total mAdds (AA) 224 Total mAdds (BC) 32
Transpose unit (AA) | 32x32 Transpose unit (BC) | 8x8
GLB (AA) 2MiB GLB (BC) 1.25MiB

5.1 Methodology

Software Implementation: We implemented the INSPIRE pro-
tocol using the Microsoft SEAL library [52]. We choose the BFV
encryption scheme [9, 18] and selected the BFV parameters to
provide the highest security level according to the Homomorphic
Encryption Standard [3]. We stress that our protocol also works
with other FHE schemes such as BGV [10] and CKKS [12]. Our
implementation uses multiple threads for answer generation using
OpenMP, to fully leverage the data-level parallelism.

Hardware Implementation: We implemented the INSPIRE ar-
chitecture logic in RTL and synthesized it with Design Compiler
and 28 nm technology node to derive the hardware parameters,
including timing, power, and area. We built a cycle-accurate simula-
tor on top of MQSim [56], an NVMe/SATA SSD simulator, to model
the performance of software-hardware co-optimized INSPIRE.

Configurations: We configured the SSD device similar to our
CPU baseline, as shown in Table 2. The hierarchy in the SSD is
organized as channel-chip-die-plane-block-page. With a page size of
8KiB, the total capacity of SSD is 2TiB. The page read and program
latency for LSB/CSB/MSB are 75 and 750 ns, respectively. The block
erase latency is 3800 ns. Each flash channel is equipped with the
NVDDR3 protocol, providing a channel width of 1B and a transfer
rate of 1033MT/s. The host communicates with the SSD using PCle
3.0 x4, with an ideal bandwidth of 4GiB/s.

For the INSPIRE architecture configurations, we set the input
size of NTT units to 32 and 8 for the answer accelerator (AA)
and each block collector (BC), respectively. An X input NTT unit
is realized through X (log2X — 1)/2 modular multiplications and
XlogoX modular additions (mAdds). The answer accelerator has

ISCA 22, June 18-22, 2022, New York, NY, USA

Jilan Lin, Ling Liang, Zheng Qu, Ishtiyaque Ahmad, Liu Liu, Fengbin Tu, Trinabh Gupta, Yufei Ding, and Yuan Xie

26.3 50.8
100 8.02 ‘

10 222

\
|
0.1

Vcall Comm Fsys Syn-1 Syn-2 Vcall Comm Fsys Syn-1 Syn-2 Vcall Comm Fsys Syn-1 Syn-2
Batch Size = 8 Batch Size = 16 Batch Size = 32 eomean
m CPU+FastPIR CPU+INSPIRE (SW) m Fl-ISP+FastPIR B FI-ISP+INSPIRE(SW) B INSPIRE (SW&HW)

Figure 10: The overall performance of INSPIRE compared against FastPIR and F1. We evaluate our protocol and FastPIR on
both CPU and F1-ISP platforms. The results are normalized to the FastPIR on CPU baseline. Five workloads and three batch

sizes are used.

Table 3: Database Workloads

Record Length | Num. Records | Database Size
Voice Calling (VCall) 96B 232 384GB
Communication (Comm) 288B 230 288GB
File System (FSys) 10MB 217 1.25TB
Synthetic DB 1 (Syn-1) 1KB 2% 512GB
Synthetic DB 2 (Syn-2) 18KB 226 1.13TB

160 mMuls and 224 mAdds in total (in the twiddle unit and MAC
array). Each block collector involves 24 mMuls and 32 mAdds. The
transpose unit sizes for the answer accelerator and block collector
are 32 X 32 and 8 X 8, respectively. The answer accelerator needs an
additional 4 x 4 Xbar switch to realize the homomorphic rotation.
The global buffers for the answer accelerator and block collector
are 512KiB and 64KiB, respectively. For homomorphic parameters,
we set the element in plain vector to 18bits and the coefficient in
the ciphertext to 109bits. After the RNS decomposition [19], each
coefficient in ciphertext is composed of 4 32-bit numbers. Moreover,
the mMul is realized through optimized Montgomery multiplier
[42, 51] which simplifies the complex modular multiplication.

FHE Parameters: We set the polynomial degree as 4096 (Ig =
4096 in Algorithm 4). We use the security level of A = 128 bits and
109-bit ciphertext coefficient, which follows the same setting as in
FastPIR. The plain message to be encrypted is set to 18-bits. The
INSPIRE protocol has a multiplication depth of 2 in total.

Workloads: Table 3 summarizes the characteristics of the data-
base workloads we evaluate. We run the PIR protocol for three
applications: voice calling [1], anonymous communication [4, 5],
and file system [40]. The main difference between these workloads
is the record type, which determines the record length. We scale
the number of records to evaluate the storage-based database. In
addition, we have two synthetic databases, Syn-1 and Syn-2, to
enhance the workload diversity.

Baselines: We use FastPIR [1] as our software baseline, since it
demonstrates the best performance among existing PIR schemes
including XPIR [40] and SealPIR [4]. For a fair comparison, both
FastPIR and INSPIRE use the BFV encryption scheme with the same
security level. We also optimize and parallelize the source code of
FastPIR with OpenMP.

We use both CPU and FHE accelerator as our hardware baseline.
The CPU platform is a 64-thread Ryzen Threadripper 3970X @
2.2GHz (3.7GHz with turbo boost). The storage is a 2TiB Intel 660p

111

NVMe SSD interfaced with PCIe 3.0 x4. The measured bandwidth
of the SSD is 1.8GiB/s. We also include F1 [51], the state-of-the-art
FHE accelerator as an additional baseline. We implemented F1 with
the ISP architecture, where we attach F1 to the DRAM buffer inside
the SSD. The DDR4 DRAM has an ideal bandwidth of 12.8GiB/s.

5.2 Performance

In this section, we present key results of INSPIRE, including the
overall performance, network bandwidth reduction, noise growth,
and query size.

Overall Performance: Fig. 10 shows the overall performance of
INSPIRE, alongside a comparison with FastPIR and F1. The results
are shown across three batch sizes: 8, 16, and 32. As an intuitive
example, FastPIR spends 28.4min on average to process a Comm
query (Fig. 4). Our INSPIRE protocol only takes 13.3min for the
same query, and our INSPIRE architecture further reduces the time
to 36s.

At the software level, the INSPIRE protocol achieves 2.22X per-
formance speedups against FastPIR on CPU, with 3.28x speedup
on in-storage F1 (F1-ISP). The performance gain of INSPIRE pro-
tocol mainly comes from the reduced memory access for queries.
Also, INSPIRE simplifies the dataflow in rotations, which avoids the
memory overhead caused by the large recursion stack. Moreover,
the INSPIRE protocol demonstrates better performance in the ISP
architecture of F1-ISP. The key reason is that the small query and
rotation buffer required by INSPIRE are more friendly to accelerator
architectures, which usually have limited on-chip resources. For
FastPIR, it is much more time-consuming to wait for tiled queries
from the host.

At the hardware level, the INSPIRE architecture shows 22.9x
speedup against the CPU baseline, with 1.93X speedup compared
with F1-ISP. The performance gain of INSPIRE mainly lies in two
aspects: first, we leverage much higher aggregated bandwidth to
process the memory-bound workloads. While F1-ISP utilizes the
bandwidth from the DRAM buffer, the heterogeneous architecture
of INSPIRE better leverages the channel-level parallelism via the
block collectors in the flash channels. Second, the INSPIRE archi-
tecture is tightly coupled with and specialized for the protocol.
Different reduction stages are pipelined across block collectors
and the query accelerator. Thus, we avoid the sophisticated data
mapping and communication in an F1-like architecture.

Network Bandwidth: The network bandwidth directly shows
the communication efficiency with compact queries. Fig. 11 shows

INSPIRE: IN-Storage Private Information REtrieval via Protocol and Architecture Co-design

=
k=] |E+8 .
3 |E+6 .
G =
< é‘ \E44 l//
8 5 Y— _____ a-—---
2T == - ==t
& R —
o 0 IS S =
o = ===
=) 1E-2 —

2I0 2I2 2I4 2I6 2I8 220

Num. Users

~—a&— FastPIR Comm
~ # = INSPIRE Comm

~—m— FastPIR VCall
~ m -~ INSPIRE VCall

~——o— FastPIR FSys
~ 4 —INSPIRE FSys

Figure 11: The upload traffis of INSPIRE and FastPIR, which
depends on the query size and query frequency.

the upload traffic of the INSPIRE protocol, with a comparison to
FastPIR. The x-axis shows the number of users scaling from 2! to
220 We find that INSPIRE reduces the upload bandwidth by 41943x,
13706%, and 3.56X for VCall, Comm, and FSys, respectively. The
significant bandwidth reduction for VCall and Comm is because
these two workloads have a very large number of records, and
our hierarchical query substantially decreases the total query size.
Also, we find that VCall requires much higher (52—333X%) upload
bandwidth than the other two applications. The reason is that users
in VCall have to frequently query the database to fetch the newest
message, leading to more simultaneous uploads. Finally, since PIR
protocol does not share query data across users, the upload traffic
increases linearly as the number of users grow for both FastPIR and
INSPIRE.

5.3 Sensitivity Study

In this section, we study the scalability of INSPIRE, along with the
performance sensitivity to different security levels.

m FastPIR m INSPIRE Protocol INSPIRE Protocol & Architecture
= 100
c
E 1o
g
£
= ol
c
Ag 001
] 512M 1B 2B 4B 8B | 256M 5I12M 1B 2B 4B
O
o VCall Comm

Num. Records

Figure 12: The scalability of FastPIR and INSPIRE when the
number of records (i.e., the size of database) increases. Two
workloads, VCall and Comm, are used for evaluation. The
batch size is set to 32.

Scalability: We analyze the scalability of FastPIR and INSPIRE
with the variants of VCall and Comm workloads. As shown in
Fig. 12, the number of records in the database scales from 512M
to 8B for VCall, and 256M to 4B for Comm. A large batch size of
32 is used, and the absolute execution latency is presented. Com-
pared to FastPIR, we find that the INSPIRE protocol demonstrates
2.08x better performance. The INSPIRE architecture offers an addi-
tional performance gain of 49.8%. Further, the scaling of INSPIRE is
approximately linear. This is because PIR applications are memory-
bound. When the size of the database grows, the accessed data and
the number of compute operations increase accordingly. Also, we
observe that FastPIR spends tens of minutes processing a query.
In comparison, our INSPIRE architecture considerably reduces the

112

ISCA 22, June 18-22, 2022, New York, NY, USA

processing time to the second-level. This makes it possible to deploy
PIR in real database systems.

WA-128 WA-192 ®WA-256

VCall Comm

Execution Time (sec)

FSys Syn-1 Syn-2
Figure 13: The performance of INSPIRE as a function of dif-
ferent security levels, where 1 = 256 denotes the highest

security level and A = 128 denotes the lowest security level.

Sensitivity to Security Level: We study how different security
parameters impact the performance of INSPIRE. As shown in Fig. 13,
we choose three security levels that are provided by SEAL: 1 =
128 — bit, A = 192 — bit, and A = 256 — bit. The A = 256 — bit
gives the strongest security guarantee [3]. We find that by applying
a higher security level of A = 192 — bit and A = 256 — bit, the
performance will be downgraded by 1.40x and 1.89X%, respectively.
This is because with larger A, the coefficient size in the plaintext
is reduced, and thus the message that can be encrypted is smaller.
Therefore, the database has to be partitioned at a finer granularity
and thus takes more time to process.

5.4 Area and Power Overhead

Table 4 presents the area and power overhead of the INSPIRE ar-
chitecture, broken down into each hardware component. We find
that computation logics, including the NTT engine and MAC array,
take 14.44% of the area and 19.08% of the power. The buffer and
routing units, including the transpose unit, GLB, and the crossbar
switch occupy 85.56% and 80.92% of the total area and power, re-
spectively. Most of the area and power consumption is taken by the
GLB which is used to store the block query in block collector and
the temporal answers in the answer accelerator. Note that in the
INSPIRE architecture there are 8 block collectors, and the results in
Tab. 4 accumulate the resource consumption for all block collectors.

Table 4: Area and Power Estimation.

Area (mm?)|Power (mW) Area (mm?)|Power (mW)
NTT Engine 2.745 1183.59 |Transpose Unit 0.122 115.87
mMAC Array 2.954 1393.74 |Global Buffer 31.592 12385.56
Xbar Switch 0.001 0.40 Control&Others 0.055 52.25
Block Collector| 33.722 13509.07 |Answer Accelerator 5.838 2438.29

‘ Total Area 39.56mm?; Total Power 15.947W

6 DISCUSSION

Compatibility with non-private queries. While INSPIRE uti-
lizes specialized hardware to process the PIR queries, normal SSD
accessing commands (such as read and write) can still be executed.
Therefore, traditional non-private queries are also compatible with
INSPIRE. In real-world applications, a small portion of queries may
contain sensitive information and thus require to be processed pri-
vately. For these queries, INSPIRE offers a significantly improved
performance than existing PIR schemes.

ISCA 22, June 18-22, 2022, New York, NY, USA

Endurance of SSD. SSD devices have finite endurance, meaning
that the total number of writes to the device is fixed [25]. Traditional
ISP architectures usually introduce more writes to SSD devices and
thus could suffer from the endurance issue [27]. In comparison, the
database in INSPIRE remains static in the protocol, and we avoid
massive SSD writes by reducing the query size and buffering the
query on-chip.

7 RELATED WORK

PIR Protocol Design. A long line of research papers have reduced
the communication overhead in PIR schemes. Stern proposed re-
cursion to reorganize the database [53], and this scheme has been
broadly used in XPIR [40] and other works [29, 37]. SealPIR also re-
duces the answer size by directly splitting the database into columns
and combining the answer from different columns [4].

However, directly applying recursion introduces s significant
overhead, which comes from rapid noise growth and massive re-
duction operations. INSPIRE provides a scalable multi-stage pro-
cessing solution to reduce query size and atomize computation
overhead. INSPIRE also optimizes rotation operations during the an-
swer reduction stage. Finally, INSPIRE engages a hardware-friendly
dataflow, where different reduction stages are pipelined to facilitate
the architecture design.

In-Storage Processing. Previous studies leverage in-storage
processing architecture to accelerate applications that explore large
memory capacity and have memory-bound characteristics [16, 26,
31, 34, 50, 58, 62]. Different from prior work that tends to put the
accelerator near the storage, the INSPIRE architecture takes a more
intrusive approach that fully customizes the SSD system. INSPIRE
directly integrates lightweight processors (block collector) at each
flash channel and thus enjoys much higher aggregated bandwidth.

Oblivious RAM (ORAM). Both PIR and ORAM are two cryp-
tographic primitives to hide the access pattern while accessing
cloud data. ORAM assumes a setting where a client owns the data,
outsources it, and then later queries it. In contrast, PIR works in a
setting where the data is public, and the query has to be hidden.
Thus, these schemes target different scenarios: private data versus
public data.

Homomorphic Encryption Accelerators. Fully homomor-
phic encryption (FHE) is a core primitive for private computing.
Many works using FHE focus on deep learning applications that
are dominated by multiplications [43, 47-49, 51, 54, 57, 61]. These
works design efficient hardware for specific operators in FHE, such
as NTT transform and polynomial multiplication. INSPIRE distin-
guishes itself from these works with two unique features. First,
the PIR application exhibits memory-bound characteristics caused
by the need to traverse the entire database. INSPIRE leverages the
in-storage processing architecture for higher throughput. Second,
INSPIRE pays particular attention to a heterogeneous architecture
that is customized for PIR’s dataflow.

In-Memory Processing. In-memory processing technique is an-
other approach to solve the memory-bound problem, which instead
puts the computation logic inside the main memory [2, 6, 22, 28, 30,
33, 36, 38, 46, 63]. Compared with in-storage processing, it explores
higher bandwidth provided by DRAM/HBM devices. However, we
design the INSPIRE architecture based on the processing-in-storage

113

Jilan Lin, Ling Liang, Zheng Qu, Ishtiyaque Ahmad, Liu Liu, Fengbin Tu, Trinabh Gupta, Yufei Ding, and Yuan Xie

technique due to the smaller capacity concern of memory. As a
database usually scales to the order of TB~PB, SSD storage with a
larger capacity is more suitable for PIR applications.

8 CONCLUSION

This work follows a software-hardware co-design approach to ad-
dress the performance bottleneck in existing PIR schemes. We first
present the INSPIRE protocol that leverages hierarchical database
partitioning and multi-stage answer reduction to reduce the com-
munication overhead in PIR. Based on the protocol, we present the
INSPIRE architecture, an in-storage processing architecture that
utilizes the large internal bandwidth and a specialized accelerator to
boost the performance of query processing. The INSPIRE protocol
achieves 2.22X performance speedup compared to the state-of-the-
art FastPIR scheme. Meanwhile, the INSPIRE architecture further
brings 22.9x performance speedup over CPU and 1.93x speedup
over F1, the state-of-the-art FHE accelerator.

ACKNOWLEDGEMENT

We thank the anonymous reviewers for their deep insights and our
shepherd Dr. Mithuna Thottethodi for their constructive comments
that helped us improve the paper. This work is supported by the
National Science Foundation under Grant No. 2124039. Any opin-
ions, findings, conclusions, or recommendations expressed in this
material are those of the authors and do not necessarily reflect the
views of the National Science Foundation.

REFERENCES

[1] Ishtiyaque Ahmad, Yuntian Yang, Divyakant Agrawal, Amr El Abbadi, and Trin-
abh Gupta. 2021. Addra: Metadata-private voice communication over fully
untrusted infrastructure. In USENIX Symposium on Operating Systems Design and
Implementation (OSDI).

[2] Junwhan Ahn, Sungpack Hong, Sungjoo Yoo, Onur Mutlu, and Kiyoung Choi.

2015. A scalable processing-in-memory accelerator for parallel graph processing.

In Annual International Symposium on Computer Architecture. 105-117.

Martin R Albrecht, Melissa Chase, Hao Chen, Jintai Ding, Shafi Goldwasser,

Sergey Gorbunov, Shai Halevi, Jeffrey Hoffstein, Kim Laine, Kristin E Lauter, et al.

2019. Homomorphic Encryption Standard. IACR Cryptol. ePrint Arch. 2019 (2019),

939.

Sebastian Angel, Hao Chen, Kim Laine, and Srinath Setty. 2018. PIR with com-

pressed queries and amortized query processing. In IEEE symposium on security

and privacy (SP). 962-979.

Sebastian Angel and Srinath Setty. 2016. Unobservable communication over fully

untrusted infrastructure. In USENIX Symposium on Operating Systems Design and

Implementation (OSDI). 551-569.

Hadi Asghari-Moghaddam, Young Hoon Son, Jung Ho Ahn, and Nam Sung Kim.

2016. Chameleon: Versatile and practical near-DRAM acceleration architecture

for large memory systems. In IEEE/ACM international symposium on Microarchi-

tecture (MICRO). IEEE, 1-13.

Amos Beimel, Yuval Ishai, Eyal Kushilevitz, and J-F Raymond. 2002. Breaking the

O (n/sup 1/(2k-1)/) barrier for information-theoretic private information retrieval.

In IEEE Symposium on Foundations of Computer Science. IEEE, 261-270.

Amos Beimel, Yuval Ishai, and Tal Malkin. 2000. Reducing the servers com-

putation in private information retrieval: PIR with preprocessing. In Annual

International Cryptology Conference. Springer, 55-73.

Zvika Brakerski. 2012. Fully homomorphic encryption without modulus switch-

ing from classical GapSVP. In Annual Cryptology Conference. Springer, 868—886.

Zvika Brakerski, Craig Gentry, and Vinod Vaikuntanathan. 2014. (Leveled)

fully homomorphic encryption without bootstrapping. ACM Transactions on

Computation Theory (TOCT) 6, 3 (2014), 1-36.

Yan-Cheng Chang. 2004. Single database private information retrieval with

logarithmic communication. In Australasian Conference on Information Security

and Privacy. Springer, 50-61.

[12] Jung Hee Cheon, Andrey Kim, Miran Kim, and Yongsoo Song. 2017. Homo-
morphic encryption for arithmetic of approximate numbers. In International
Conference on the Theory and Application of Cryptology and Information Security.
Springer, 409-437.

[3]

INSPIRE: IN-Storage Private Information REtrieval via Protocol and Architecture Co-design

Benny Chor, Oded Goldreich, Eyal Kushilevitz, and Madhu Sudan. 1995. Private
information retrieval. In IEEE Annual Foundations of Computer Science. 41-50.
Daniel Demmler, Amir Herzberg, and Thomas Schneider. 2014. RAID-PIR: Prac-
tical multi-server pir. In ACM Workshop on Cloud Computing Security. 45-56.
Casey Devet, Ian Goldberg, and Nadia Heninger. 2012. Optimally robust private
information retrieval. In USENIX Security Symposium (SEC). 269-283.

Jaeyoung Do, Yang-Suk Kee, Jignesh M Patel, Chanik Park, Kwanghyun Park,
and David] DeWitt. 2013. Query processing on smart SSDs: Opportunities and
challenges. In ACM SIGMOD International Conference on Management of Data.
1221-1230.

Changyu Dong and Liqun Chen. 2014. A fast single server private information
retrieval protocol with low communication cost. In European symposium on
research in computer security. Springer, 380-399.

Junfeng Fan and Frederik Vercauteren. 2012. Somewhat practical fully homomor-
phic encryption. IACR Cryptol. ePrint Arch. (2012).

Harvey L Garner. 1959. The residue number system. In Papers presented at the
the March 3-5, 1959, western joint computer conference. 146—153.

Craig Gentry. 2009. A fully homomorphic encryption scheme. Stanford university.
Matthew Green, Watson Ladd, and Ian Miers. 2016. A protocol for privately
reporting ad impressions at scale. In ACM SIGSAC Conference on Computer and
Communications Security (CCS). 1591-1601.

Peng Gu, Xinfeng Xie, Shuangchen Li, Dimin Niu, Hongzhong Zheng, Krishna T
Malladi, and Yuan Xie. 2020. DLUX: a LUT-based Near-Bank Accelerator for Data
Center Deep Learning Training Workloads. IEEE Transactions on Computer-Aided
Design of Integrated Circuits and Systems (2020).

Trinabh Gupta, Natacha Crooks, Whitney Mulhern, Srinath Setty, Lorenzo Alvisi,
and Michael Walfish. 2016. Scalable and private media consumption with Popcorn.
In USENIX Symposium on Networked Systems Design and Implementation (NSDI).
91-107.

Ryan Henry, Femi Olumofin, and Ian Goldberg. 2011. Practical PIR for electronic
commerce. In ACM SIGSAC Conference on Computer and communications security
(CCS). 677-690.

Jonmichael Hands 2021. Endurance of NVMe, SAS, and SATA SSDs. snia.org/
sites/default/files/SSSI/NVMe_SAS_SATA_Endurance_White_Paper.pdf.
Yangwook Kang, Yang-suk Kee, Ethan L Miller, and Chanik Park. 2013. Enabling
cost-effective data processing with smart SSD. In 2013 IEEE 29th symposium on
mass storage systems and technologies (MSST). IEEE, 1-12.

Roman Kaplan, Leonid Yavits, and Ran Ginosar. 2018. Prins: Processing-in-storage
acceleration of machine learning. IEEE Transactions on Nanotechnology 17, 5
(2018), 839-896.

Chad D Kersey, Hyesoon Kim, and Sudhakar Yalamanchili. 2017. Lightweight
SIMT core designs for intelligent 3D stacked DRAM. In Proceedings of the Inter-
national Symposium on Memory Systems. 49-59.

Aggelos Kiayias, Nikos Leonardos, Helger Lipmaa, Kateryna Pavlyk, and Qiang
Tang. 2015. Optimal Rate Private Information Retrieval from Homomorphic
Encryption. Privacy Enhancing Technologies 2015, 2 (2015), 222-243.
Gwangsun Kim, Niladrish Chatterjee, Mike O’Connor, and Kevin Hsieh. 2017.
Toward standardized near-data processing with unrestricted data placement
for GPUs. In Proceedings of the International Conference for High Performance
Computing, Networking, Storage and Analysis. 1-12.

Shine Kim, Yunho Jin, Gina Sohn, Jonghyun Bae, Tae Jun Ham, and Jae W Lee.
2021. Behemoth: A Flash-centric Training Accelerator for Extreme-scale DNNs.
In USENIX Conference on File and Storage Technologies (FAST). 371-385.

Albert Hyukjae Kwon, David Lazar, Srinivas Devadas, and Bryan Ford. 2015.
Riffle: An efficient communication system with strong anonymity. (2015).
Young-Cheon Kwon, Suk Han Lee, Jaehoon Lee, Sang-Hyuk Kwon, Je Min Ryu,
Jong-Pil Son, O Seongil, Hak-Soo Yu, Haesuk Lee, Soo Young Kim, Youngmin
Cho, Jin Guk Kim, Jongyoon Choi, Hyun-Sung Shin, Jin Kim, BengSeng Phuah,
HyoungMin Kim, Myeong Jun Song, Ahn Choi, Daeho Kim, SooYoung Kim, Eun-
Bong Kim, David Wang, Shinhaeng Kang, Yuhwan Ro, Seungwoo Seo, JoonHo
Song, Jaeyoun Youn, Kyomin Sohn, and Nam Sung Kim. 2021. 25.4 A 20nm 6GB
Function-In-Memory DRAM, Based on HBM2 with a 1.2TFLOPS Programmable
Computing Unit Using Bank-Level Parallelism, for Machine Learning Appli-
cations. In IEEE International Solid- State Circuits Conference (ISSCC), Vol. 64.
350-352. https://doi.org/10.1109/ISSCC42613.2021.9365862

Jinho Lee, Heesu Kim, Sungjoo Yoo, Kiyoung Choi, H Peter Hofstee, Gi-Joon
Nam, Mark R Nutter, and Damir Jamsek. 2017. Extrav: boosting graph processing
near storage with a coherent accelerator. Proceedings of the VLDB Endowment 10,
12 (2017), 1706-1717.

Feifei Li. 2019. Cloud-Native Database Systems at Alibaba: Opportunities and
Challenges. Proc. VLDB Endow. 12, 12 (Aug. 2019), 2263-2272.

Jilan Lin, Shuangchen Li, Yufei Ding, and Yuan Xie. 2021. Overcoming the
Memory Hierarchy Inefficiencies in Graph Processing Applications. In 2021
IEEE/ACM International Conference On Computer Aided Design (ICCAD). IEEE,
1-9.

Helger Lipmaa. 2005. An oblivious transfer protocol with log-squared communi-
cation. In International Conference on Information Security. Springer, 314-328.

[38

[39

[40

[41

[42]

[43

[44

[45

[46

N
)

[48

[49

[50

a
=

[52

[53

[54

[56

[57

[58

[62

ISCA 22, June 18-22, 2022, New York, NY, USA

Liu Liu, Jilan Lin, Zheng Qu, Yufei Ding, and Yuan Xie. 2021. ENMC: Extreme
Near-Memory Classification via Approximate Screening. In MICRO-54: 54th
Annual IEEE/ACM International Symposium on Microarchitecture. 1309-1322.
Travis Mayberry, Erik-Oliver Blass, and Agnes Hui Chan. 2014. Efficient Private
File Retrieval by Combining ORAM and PIR.. In NDSS. Citeseer.

Carlos Aguilar Melchor, Joris Barrier, Laurent Fousse, and Marc-Olivier Killijian.
2016. XPIR: Private information retrieval for everyone. Proceedings on Privacy
Enhancing Technologies 2016 (2016), 155-174.

Coskun Mermer, Donglok Kim, and Yongmin Kim. 2003. Efficient 2D FFT imple-
mentation on mediaprocessors. Parallel Comput. 29, 6 (2003), 691-709.

Ahmet Can Mert, Erding Oztiirk, and Erkay Savas. 2019. Design and implemen-
tation of a fast and scalable NTT-based polynomial multiplier architecture. In
2019 22nd Euromicro Conference on Digital System Design (DSD). IEEE, 253-260.
Vincent Migliore, Maria Mendez Real, Vianney Lapotre, Arnaud Tisserand, Car-
oline Fontaine, and Guy Gogniat. 2016. Hardware/software co-design of an
accelerator for FV homomorphic encryption scheme using Karatsuba algorithm.
IEEE Trans. Comput. 67, 3 (2016), 335-347.

Prateek Mittal, Femi G Olumofin, Carmela Troncoso, Nikita Borisov, and Ian
Goldberg. 2011. PIR-Tor: Scalable Anonymous Communication Using Private
Information Retrieval. In USENIX Security Symposium (SEC).

Peter L Montgomery. 1985. Modular multiplication without trial division. Math-
ematics of computation 44, 170 (1985), 519-521.

Lifeng Nai, Ramyad Hadidi, He Xiao, Hyojong Kim, Jaewoong Sim, and Hyesoon
Kim. 2018. CoolPIM: Thermal-aware source throttling for efficient PIM instruc-
tion offloading. In 2018 IEEE International Parallel and Distributed Processing
Symposium (IPDPS). IEEE, 680-689.

Erding Oztiirk, Yarkin Dordz, Erkay Savas, and Berk Sunar. 2016. A custom
accelerator for homomorphic encryption applications. IEEE Trans. Comput. 66, 1
(2016), 3-16.

Brandon Reagen, Wooseok Choi, Yeongil Ko, Vincent Lee, Gu-Yeon Wei, Hsien-
Hsin S Lee, and David Brooks. 2020. Cheetah: Optimizations and methods for
PrivacyPreserving inference via homomorphic encryption. arXiv e-prints (2020),
arXiv-2006.

Dayane Reis, Jonathan Takeshita, Taeho Jung, Michael Niemier, and Xi-
aobo Sharon Hu. 2020. Computing-in-Memory for Performance and Energy-
Efficient Homomorphic Encryption. IEEE Transactions on Very Large Scale Inte-
gration (VLSI) Systems 28, 11 (2020), 2300-2313.

Sahand Salamat, Armin Haj Aboutalebi, Behnam Khaleghi, Joo Hwan Lee,
Yang Seok Ki, and Tajana Rosing. 2021. NASCENT: Near-Storage Acceleration
of Database Sort on SmartSSD. In The 2021 ACM/SIGDA International Symposium
on Field-Programmable Gate Arrays. 262-272.

Nikola Samardzic, Axel Feldmann, Aleksandar Krastev, Srinivas Devadas, Ronald
Dreslinski, Christopher Peikert, and Daniel Sanchez. 2021. F1: A Fast and Pro-
grammable Accelerator for Fully Homomorphic Encryption. In IEEE/ACM Inter-
national Symposium on Microarchitecture (MICRO). 238-252.

SEAL 2020. Microsoft SEAL (release 3.6). https://github.com/Microsoft/SEAL.
Microsoft Research, Redmond, WA.

Julien P Stern. 1998. A new and efficient all-or-nothing disclosure of secrets
protocol. In International conference on the theory and application of cryptology
and information security. Springer, 357-371.

Yang Su, Bailong Yang, Chen Yang, and Luogeng Tian. 2020. FPGA-based hard-
ware accelerator for leveled Ring-LWE fully homomorphic encryption. IEEE
Access 8 (2020), 168008—168025.

Muhammad Talha, Mishal Sohail, and Hajar Hajji. 2020. Analysis of research
on amazon AWS cloud computing seller data security. International Journal of
Research in Engineering and Innovation 4, 3 (2020), 131-136.

Arash Tavakkol, Juan Gémez-Luna, Mohammad Sadrosadati, Saugata Ghose, and
Onur Mutlu. 2018. Mgsim: A framework for enabling realistic studies of modern
multi-queue SSD devices. In USENIX Conference on File and Storage Technologies
(FAST). 49-66.

Furkan Turan, Sujoy Sinha Roy, and Ingrid Verbauwhede. 2020. Heaws: An
accelerator for homomorphic encryption on the Amazon AWS FPGA. IEEE Trans.
Comput. 69, 8 (2020), 1185-1196.

Jianguo Wang, Dongchul Park, Yang-Suk Kee, Yannis Papakonstantinou, and
Steven Swanson. 2016. SSD in-storage computing for list intersection. In Proceed-
ings of the 12th International Workshop on Data Management on New Hardware.
1-7.

Jianguo Wang, Dongchul Park, Yannis Papakonstantinou, and Steven Swanson.
2016. Ssd in-storage computing for search engines. IEEE Trans. Comput. (2016).
Shiyuan Wang, Divyakant Agrawal, and Amr El Abbadi. 2010. Generalizing PIR
for practical private retrieval of public data. In IFIP Annual Conference on Data
and Applications Security and Privacy. Springer, 1-16.

Wei Wang, Xinming Huang, Niall Emmart, and Charles Weems. 2013. VLSI
design of a large-number multiplier for fully homomorphic encryption. IEEE
Transactions on Very Large Scale Integration (VLSI) Systems 22, 9 (2013), 1879—
1887.

Mark Wilkening, Udit Gupta, Samuel Hsia, Caroline Trippel, Carole-Jean Wu,
David Brooks, and Gu-Yeon Wei. 2021. RecSSD: near data processing for solid

ISCA 22, June 18-22, 2022, New York, NY, USA Jilan Lin, Ling Liang, Zheng Qu, Ishtiyaque Ahmad, Liu Liu, Fengbin Tu, Trinabh Gupta, Yufei Ding, and Yuan Xie

state drive based recommendation inference. In Proceedings of the 26th ACM [63] Amir Yazdanbakhsh, Choungki Song, Jacob Sacks, Pejman Lotfi-Kamran, Hadi

International Conference on Architectural Support for Programming Languages and Esmaeilzadeh, and Nam Sung Kim. 2018. In-dram near-data approximate ac-

Operating Systems. 717-729. celeration for GPUs. In International Conference on Parallel Architectures and
Compilation Techniques. 1-14.

115

