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Accelerating Optimal Experimental Design for
Robust Synchronization of Uncertain Kuramoto
Oscillator Model Using Machine Learning

Hyun-Myung Woo

Abstract—Recent advances in objective-based uncertaintyquan-
tification (objective-UQ) have shown that such a goal-driven ap-
proach for quantifying model uncertainty is extremely usefulin
real-world problems that aim at achieving specific objectives based
on complex uncertain systems. Central to this objective-UQ is the
concept of mean objective cost of uncertainty (MOCU), which
provides effective means of quantifying the impact of uncertainty
on the operational goals at hand. MOCU is especially useful for
optimal experimental design (OED) as the potential efficacy of an
experimental (or data acquisition) campaign can be quantified by
estimating the MOCU that is expected to remain after the cam-
paign. However, MOCU-based OED tends to be computationally
expensive, which limits its practical applicability. In this paper, we
propose a novel machine learning (ML) scheme that can signifi-
cantly accelerate MOCU computation and expedite MOCU-based
experimental design. The main idea is to use an ML model to
efficiently search for the optimal robust operator under model
uncertainty, a necessary step for computing MOCU. We apply
the proposed ML-based OED acceleration scheme to design ex-
periments aimed at optimally enhancing the control performance
of uncertain Kuramoto oscillator models. Our results show that
the proposed scheme results in up to 154-fold speed improvement
without any degradation of the OED performance.

Index Terms—Approximate mean objective cost of
uncertainty (MOCU), Kuramoto model, machine learning
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I. INTRODUCTION

ANY real-world engineering applications involve math-
M ematical modeling of complex systems, where the con-
structed models are used for designing operators—such as
controllers, filters, classifiers, estimators—that can effectively
achieve engineering goals of interest. For example, one may
be interested in building a network model representing the
transcription regulations in micro-organisms that regulate their
metabolism [1]. The resulting model may be used to infer the
potential impacts of modifications in the transcription regulatory
network (TRN) on the metabolism of interest, for example,
predicting the metabolic flux changes that result from the dele-
tion of one or more transcription factors. In this example, the
engineering goal may be predicting the optimal genetic modifi-
cation in the TRN that will lead to maximizing the production
of a metabolite of interest. In fact, designing optimized strains
of micro-organisms for ethanol overproduction [2] is an active
area of research due to its implications in efficient bio-energy
production.

A fundamental challenge in the aforementioned application as
well as many other real-world engineering problems involving
complex systems is the difficulty of accurate model construction.
While one may have ample training data for model inference, the
data size may nevertheless pale in comparison to the complexity
of the system being modeled. Prior knowledge, if available, may
also aid in improving model construction, but the final model
is likely to still have substantial uncertainties. Consequently, a
critical question is how one may reliably and optimally achieve
the given engineering goals in the presence of model uncertainty.
Furthermore, when one has the experimental budget for the
acquisition of additional data or relevant knowledge (e.g., via
hypothesis testing), how should the experimental campaigns be
designed to maximize the expected “return on investment™?

While these are fundamental problems in modern engineering
with a long and rich history [3], [4], it has been recently shown
that a novel Bayesian paradigm for objective-based uncertainty
quantification (objective-UQ) based on the mean objective cost
of uncertainty (MOCU) [5], [6] can effectively address the opti-
mal design of operators and experiments for complex uncertain
systems [7]-[14]. The core idea underlying the MOCU-based

1053-587X © 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authonized licensed use limited to: Texas A M University. Downloaded on January 25,2022 at 18:06:42 UTC from IEEE Xplore. Restrictions apply.


https://orcid.org/0000-0002-5997-4059
https://orcid.org/0000-0001-9328-1101
mailto:larcwind@tamu.edu
mailto:hongyj@skku.edu
mailto:bkwon@unist.ac.kr
mailto:bjyoon@ece.tamu.edu
https://doi.org/10.1109/TSP.2021.3130967

6474

optimal experimental design (OED) is that, when dealing with
complex uncertain models, one should quantify the model uncer-
tainty in an objective-based manner and design experiments that
can reduce the uncertainty that impacts one’s operational goals.
By focusing on the uncertainty that matters to the operation
to be performed, the experimental budget can be efficiently
used for optimizing the operational performance. To date, the
efficacy of MOCU-based OED has been demonstrated in various
systems, including experimental design for robust intervention
in gene regulatory networks (GRNSs) [9], [10] and that for robust
synchronization of inter-coupled Kuramoto oscillators [7].

One practical challenge that limits the potential applicability
of the MOCU-based OED scheme is its high computational cost,
as discussed in [7], [9]. The computation of MOCU involves
identifying the optimal robust operator for an uncertainty class
that consists of all possible models (e.g., models with different
parameter values) as well as evaluating expectations based on
high-dimensional prior (or posterior) probability distributions.
Except for very simple cases, there is no closed-form expression
for the optimal robust operator and the expectations have to be
evaluated numerically [7]. As a result, the evaluation of MOCU
involves costly optimization to find the optimal robust operator
as well as extensive sampling of the uncertain model parameters
from the uncertainty class to obtain reliable estimates, which
may make the cost of MOCU computation formidably high in
many applications.

In this paper, we tackle this issue by adopting a machine learn-
ing (ML) approach for an efficient design of the optimal robust
operator, thereby significantly accelerating the computation of
MOCU as well as the MOCU-based experimental design. To
the best of our knowledge, this is the first study that investigates
adopting ML to accelerate MOCU-based OED. In order to
develop and validate this ML-based OED acceleration scheme,
we focus on designing experiments that can enhance the robust
control of uncertain Kuramoto models that was investigated
recently in [7]. A Kuramoto model [15] consists of a network
of interconnected oscillators, whose dynamics are described by
coupled ordinary differential equations (ODESs). The Kuramoto
oscillator model has been widely studied in various fields across
engineering, physics, chemistry, and biology, due to its capabil-
ity to model interesting collective behavior (e.g., global/partial
synchronization) that emerge in complex networks [16]-[27].
For example, a microgrid system with droop-controlled inverters
can be mathematically cast as a Kuramoto model, where the
synchronization failure of the model corresponds to a power
outage in the microgrid [22], [24], [27]-[31]. Another interesting
example is the application of the Kuramoto model for studying
brain dynamics [18], [19], [25], [26], where the synchroniza-
tion phenomena may be associated with neurodegenerative dis-
eases [25], [32]. We show that our proposed ML-based OED
acceleration scheme can improve the speed of MOCU-based
experimental design by 104 ~ 154 times without degrading the
OED performance.

The two major contributions of this paper are as fol-
lows. First, we propose an ML-based scheme for the ac-
celeration of MOCU-based OED, which leads to signifi-
cant speed improvement without performance degradation.
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Second, we present a comprehensive analysis of ML-based
MOCU estimation and validate its performance in the context
of OED.

The paper is organized as follows. In Section II, we provide a
brief review of the Kuramoto model and the MOCU-based OED
strategy for uncertain Kuramoto models. We propose the ML-
based OED acceleration strategy in Section IIL. In Section IV
and Section V, we evaluate the performance of the proposed
scheme for approximate MOCU computation and experimental
design, respectively. We conclude the paper in Section VI with
further discussions and potential future research directions.

II. OVERVIEW OF OPTIMAL EXPERIMENTAL DESIGN STRATEGY
FOR THE UNCERTAIN KURAMOTO MODEL

In this section, we provide a brief review of the OED strategy
for uncertain Kuramoto oscillator models, which we originally
proposed in our recent work [7]. We begin the section with
an introduction to the Kuramoto model, followed by a brief
description of the robust synchronization problem for uncertain
Kuramoto models. Given an uncertain Kuramoto model, we
describe how the MOCU can be used to quantify the impact
of the model uncertainty on the control synchronization perfor-
mance and how the MOCU-based OED strategy can be used to
effectively reduce the uncertainty that matters to the objective
at hand—i.e., optimal robust synchronization of the Kuramoto
model in the presence of uncertainty.

A. Uncertain Class of Kuramoto Models

Consider the Kuramoto model that consists of IV interacting
oscillators described by the following ODEs:

N
0ilt) =wi+ Y aiysim(0;(8) = 0u(1), (1)

j=1
fori=1,2,..., N, where 6;(t) is the instantaneous phase of

the ith oscillator at time £, w; is the natural frequency of the
ith oscillator, and a; ; is the coupling strength between the
ith and jth oscillators. Kuramoto models have been widely
studied to investigate the synchronization phenomena in various
biological, chemical, or engineered oscillator systems, whose
primary interest is whether the oscillators in a given Kuramoto
model will get frequency synchronized as follows:

lim 6,(¢) — 6;(t)| =0, )

for 1 < 4,5 < N. For example, it has been shown that modern
smart grid networks referred to as microgrids can be modeled as a
network of Kuramoto model oscillators, where the synchroniza-
tion phenomena of the Kuramoto model are closely tied with the
stability of the power grid network [28]-[31]. Furthermore, in
neuroscience studies, brain network synchronization has been
shown to be associated with various neurological disorders,
where excessive neuronal activities can be represented as a
global synchronization of the Kuramoto model [18], [25], [26],
[32], [33]. While conditions for synchronization have been
extensively studied for homogeneous Kuramoto models with
uniform coupling strength [34]-[36], there is yet no closed-form
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Fig. 1.

Tllustration of the original sampling-based mean objective cost of uncertainty (MOCU) computation scheme in [7]. For reliable MOCU estimation, a

relatively large sample size K is needed (step 1). The sampling-based estimation scheme takes advantage of GPU programming for massive parallelization of the

sampling operation. Specifically, we group the K sample points {a;},i=1,2,...

, K, into L blocks (step 2), and the GPU processes L sample points in different

processing blocks in J{)a.rallel Lgstep 3). Within block [, based on a sample point a; that specifies a Kuramoto model (sampled from the uncertainty class), we find a
valid search range [a +100N +1] that contains at least one valid solution that leads to global synchronization of the Kuramoto model (left bottom part). In the next

phase (right bottom part), we find the solution with the smallest cost £(a; ) through a binary search, reducing the search range by half in every iteration. Finally,

we compute the MOCU M (.A) of the uncertainty class .4 based on the K estimates {(a;),1=1,2,...

solution that can be used to predict the asymptotic synchroniza-
tion of a general heterogeneous Kuramoto model based on its
parameters.

In areal-world setting, the parameters of the Kuramoto model,
which represents a complex network of oscillators, may not be
completely known. For example, while it may be relatively easy
to accurately estimate the natural frequency of each oscillator, in
the absence of interactions with other oscillators, it will be prac-
tically challenging to accurately measure the coupling strengths
between all oscillators in a large network. This uncertainty
gives rise to an uncertainty class of Kuramoto models, which
contains all possible Kuramoto models that are consistent with
our prior knowledge regarding the true model and/or available
observation data. Under this setting, our primary interest is
how we can apply robust control to the uncertain Kuramoto
model, comprised of a network of oscillators whose natural
frequency w; is known but their coupling strength a; ; is only
knownuptoarangea; ; € [af;,af;]. We denote the uncertainty
class of all possible Kuramoto models as .4, which consists
of all parameter vector a = [a1 2,a1 3, ..., aN_l,N]T € A that
satisfies the given constraints. As in the previous study [7], we
assume that prior distribution P4(a) is uniformly distributed.
However, this is not necessary. Non-uniform priors may be
assumed, or custom priors may be constructed based on available
prior domain knowledge [37], [38].

B. Robust Control of Uncertain Kuramoto Models

Suppose that we are interested in synchronizing an uncer-
tain Kuramoto model that consists of IV interacting oscillators,
whose interaction strengths are only known up to a range, via
external control. We adopt the synchronization method proposed

K, (step 4).

in [7] that introduces an additional oscillator as a global “syn-
chronizer” to the original model. Let the natural frequency of this
(N + 1)thoscillatorbe wy 41 = %Eé‘;lwi, and we assume that
this control oscillator interacts with all oscillators in the origi-
nal model with a uniform coupling strength a; 11 = ay 1,
Vi, which is a control parameter. The addition of the control
oscillator augments the Kuramoto model as follows:

N
0i(t) = wi + ) ai;jsin(0;(t) — 6:(t))

j=1

tan 1 sin(On1(t) — 60:(t)), 3

fori =1,2,...,N + 1. Asthe increase of the coupling strength
apn 1 will in practice lead to an increase of the control cost, our
control objective is to find a minimum a4 ; that guarantees the
asymptotic frequency synchronization of the Kuramoto model
despite the uncertainty. If we had complete knowledge about
the coupling strength a, we would be able to find the optimal
(minimum) coupling strength a1 = £(a) that ensures syn-
chronization by gradually increasing the value of apy4; from
0 until synchronization is achieved. A more efficient approach
will be to perform a binary search as illustrated in Fig. 1 (see the
blow-up figure at the bottom). In the presence of uncertainty, we
have to ensure that the control oscillator will be able to achieve
synchronization for any a € .A. For this reason, we have chosen
£*(A) as follows:

£ (A)

a1 =

“

= gleafﬁ (a),

which is the smallest a)y; that guarantees global synchroniza-
tion of the uncertain Kuramoto oscillators.
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C. Objective-Based Quantification of the Uncertainty in the
Kuramoto Model

Given an uncertain Kuramoto model, the expected impact of
this model uncertainty on the operational goal—in this case, the
global frequency synchronization of the Kuramoto oscillators—
can be quantified by the MOCU [5]. For a given uncertainty
class A, MOCU M (.A) can be computed by:

M (A) = E4[¢" (A) — ¢ (a)], ©)

where £*(.A) is the cost of the optimal robust control and £(a) is
the cost of the optimal control for the specific model configured
with a specific parameter set a. As shown in (5), MOCU M (.A)
quantifies the expected cost increase for applying the optimal
robust control (which is inevitable to maintain robust control
performance in the presence of uncertainty) instead of the model-
specific optimal control (which cannot be applied in practice as
the true model is unknown). In this study, the optimal robust
interaction strength (cost) £*(.A), ensuring that the uncertain
Kuramoto model is synchronized by the added control oscillator
while keeping the control cost minimum, is given by (4).

D. Numerical Computation of Mean Objective
Cost of Uncertainty

In general, there is no closed-form expression of (5), as
a result of which the MOCU M (.A) for uncertainty class .4
computation requires a numerical approximation. One practical
way to compute the MOCU M (.A) is to take a sampling-based
approach to approximate it through the empirical expectation of
the differential cost based on samples drawn from the distribu-
tion Py(a).

Figure 1 illustrates the sampling-based MOCU computation
process. First, we draw K sample points {a;},7=1,2,..., K,
from P4(a). Then, for each sample point a;, which is a potential
true model parameter in the uncertainty class A, we estimate
the minimum coupling strength £(a;) of the control oscillator
that assures the asymptotic frequency synchronization of the
Kuramoto model under control. To this aim, we consider a
binary search to find the minimum coupling strength £(a;)
efficiently, as depicted in the dotted box at the bottom of Fig. 1.
Specifically, we start with a broad search space that contains
at least one coupling strength synchronizing the system. At
each iteration, we solve the ODEs of the Kuramoto model
augmented with the control oscillator whose coupling strength
apn41 i8 set to the median value c of the current search space:
an41 + ¢ = (a% ., + af,)/2.1f the system under control is
synchronized, we update the upper bound of the search space to
the median value: ¥, 41 ¢ c. Otherwise, we set the lower bound
of the search space to the median value: a’ 41 ¢ c. The binary
search continues until we find the minimum coupling strength
&(a;), for the given sample point a;, which is within a specified
tolerance level (set to 2.5 x 10~ in this study). Based on the K
sample points, we can obtain the MOCU M (.A) as follows:

K
M =3 (@) -¢@).  ©
i=1
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Note that the accuracy of this numerical approximation of
MOCU is dependent on the sample size K. In general, a larger
K generally leads to a more accurate MOCU estimation. How-
ever, at the same time, the computational cost increases as the
sample size increases. We can reduce the computational time
for numerical MOCU computation by exploiting parallelism.
For example, estimating the optimal cost £(a;) of a sample
point a; is an independent process to those of the other samples
a;, j # 1, which can be processed in a parallel manner with
powerful parallel processors. In fact, the sampling-based MOCU
computation in [7] takes advantage of GPU programming with
compute unified device architecture (CUDA), in which 200
sample points are processed in parallel at a given time—i.e.,
L = 200. However, for each sample point a;, the estimation
of the minimum cost £(a;) via binary search (step 3 in Fig. 1) is
a highly sequential process—which involves repeatedly solving
the ODE:s of the corresponding Kuramoto model and verifying
whether or not the model is globally synchronized (i.e., not
amenable to parallelization). In Section III, we present a novel
solution via ML that can effectively address this performance
bottleneck, and thereby accelerate the numerical computational
of MOCU by several orders of magnitude.

E. Designing Optimal Experiments for Effective
Uncertainty Reduction

The significance of objective-UQ using MOCU is that it
enables the design of experiments that focus on reducing the
model uncertainty that matters. More specifically, as MOCU
quantifies the expected cost increase (relevant to our operational
goal) due to model uncertainty, it can be used to quantify the
expected impact of a potential experiment on reducing the model
uncertainty that affects the operational performance, hence how
effective the experiment will be in reducing the operational cost.

The MOCU-based OED strategy for uncertain Kuramoto
models has been recently proposed in [7]. In this study, a realistic
experimental design space was considered, where an experiment
corresponds to selecting a pair (2, j) of oscillators and observing
whether they get spontaneously synchronized in isolation of
other oscillators and in the absence of external control. The
experimental outcome was a binary value—either synchronized
or non-synchronized—based on which the uncertainty of the
coupling strength a;; € [af’;, af/;] can be reduced. Theorem 1
in [7] reproduced below gives us the necessary and sufficient
condition for an oscillator pair to be frequency synchronized:

Theorem 1: Consider the Kuramoto model of two-oscillators:

01(t) = w1 + 0.5asin (f2(t) — 6:1(t)),
f2(t) = wy + 0.5asin (A1 (t) — 62(2)) (7

with the initial angles 61(0),62(0) € [0,27). Then, for any
solutions 6 (t) and f(t) to (7), there holds |6; (£) — f2(t)| — 0
as t — oo if and only if |w; — w2| < a. u

According to Theorem 1, the Kuramoto oscillator pair (i, j)
becomes frequency synchronized lim;_, |6;(t) — 6;(t)| = 0if
and only if M—;“’J—l < a;,;. As a result, if the two oscillators
are observed to be synchronized, we can decrease the upper
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bound agj to |w; — wj|/2. Otherwise, we can increase the lower
bound af; to |w; — w;|/2. Since the experimental outcome is
unknown in advance, we need to consider both possible out-
comes to quantify the expected impact of a given experiment on
reducing the objective uncertainty. To formalize this, let O; ; bea
binary random variable representing the outcome of the pairwise
synchronization experiment for the oscillator pair (7, 7). Then,
the expected remaining MOCU R(7, j) is given by:

R(E’J) = Eoi‘j [‘“"flr (‘A|Oi1j )]
= ¥ P(0i;=0)M(A0i;=0), ®

oe{0,1}

where M (A|O; ;) is the conditional MOCU given O; ;. The con-
ditional MOCU M (A|O; ; = o) givenan experimental outcome
O; ; = o can be computed by reducing the uncertainty class as
previously described and numerically computing the MOCU
of this reduced uncertainty class. The probability P(O; ; = o)
can be derived in a straightforward manner, based on P4(a)
(see [7] for further details). The R(z,7) in (8) quantifies the
MOCU that is expected to remain after performing the pairwise
synchronization experiment for the pair (z, j).

So, how should we prioritize the potential (gr) experiments?
Naturally, the optimal choice will be to choose the experiment
with the smallest F(z, j):

(i*,4") = arg min R(i, ), ©)

(i,7)€€

as experiment (z*, 7*) is expected to most effectively reduce the
objective uncertainty among all potential experiments. In prac-
tice, rather than performing a single best experiment, we may
perform a sequence of experiments prioritized by (9). In theory,
R(z, 7) needs to be re-estimated after performing the predicted
optimal experiment and observing its outcome, as it changes the
uncertainty class, hence the expected remaining MOCU for the
potential subsequent experiments. However, empirically, R(7, 7)
computed based on the original uncertainty class A is a robust
indicator of the efficacy of the potential experiments, which we
will demonstrate in Section V.

FE. Computational Complexity of Experimental Design

The overall computational complexity for predicting the op-
timal experiment is as follows:

O(TKN* L 'loge), (10)

where T is the time duration for solving the ODEs using the
Runge-Kutta method (to check for asymptotic global frequency
synchronization among the Kuramoto model oscillators), K is
the sample size for numerical computation of MOCU, N is the
number of oscillators in the Kuramoto model, L is the number of
parallel processing blocks in GPU, and ¢ is the tolerance level for
the binary search (setto e = 2.5 x 10~4 in this study). Note that
the complexity for computing MOCU is O(TKN? L loge),
where predicting the optimal experiment involves computing
MOCU 2 - (%) times to calculate R(i, ) given by (8) for all
oscillators pairs. As we can see in (10), the computational
cost for OED sharply increases as the size N of the Kuramoto
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model increases, which limits the practical applicability of the
OED scheme [7] for large models. For example, when 7" = 5,
K =20,480,and L = 128, respectively, identifying the optimal
experiment (¢*, j*) for the uncertain Kuramoto model operating
on five oscillators required 650 seconds on average. However, it
took 3, 171 seconds to determine the optimal experiment (z*, 7*)
for the uncertain Kuramoto model with seven oscillators.

ITI. ACCELERATING EXPERIMENTAL DESIGN
VIA MACHINE LEARNING

We propose an ML approach for accelerating the quantifi-
cation of the objective system uncertainty. As we discussed in
the previous section, in real-world applications that typically
involve the control consisting of highly non-linear sequential
operations, the effective computational complexity is critically
dependent on the computational complexity of the control rather
than the number of samples. The proposed approach learns a
surrogate model for (part of) the operations of the control for
estimation of the control cost for a system, thereby reducing
the effective computational complexity that cannot be further
reduced by parallelism. Recently, there has been an increasing
number of studies investigating the application of deep learning
(DL) methods to scientific computation, including approximat-
ing and solving differential equations (DEs) (e.g., see [39]-[41]
and references therein). However, it is worth noting that the
primary focus of our current study does not lie in solving ODE
systems via deep network models but in the accelerated design
of optimal experiments based on the objective-based UQ via
the concept of MOCU. Rather than aiming at a fast solution of
DEs, our goal is to efficiently design experiments that can most
effectively reduce model uncertainty, thereby optimally enhanc-
ing the control performance of uncertain Kuramoto oscillator
models.

As discussed in Section II-D, estimating the MOCU of the
uncertain Kuramoto model based on the sampling approach
involves a binary search for each sample a;, where at each
iteration solving the corresponding ODEs and determining if
the system under control is synchronized or not. From a broad
perspective, at each iteration, these operations, the gray box in
Fig. 1, are nothing but a binary classification problem. Hence,
if we collect enough samples to build an accurate classifier,
we replace such a process with the binary classifier, which is
computationally efficient. In this study, we considered a fully
connected neural network (fcNN) with only one hidden layer,
possibly the simplest ML structure that we can think of.

The proposed approach on the MOCU-based OED framework
is realized by replacing part of the operations of control with
the trained model for the estimation of the expected remain-
ing MOCU R(i,j) highlighted in gray in Fig. 2. Hence we
focus on the difference in quantifying the expected remaining
MOCU R(i, j) between the proposed ML-based approach and
the original approach that manually determines the synchro-
nization of the Kuramoto model. To compute the expected
remaining MOCU R(z,j) we first need to estimate condi-
tional MOCU M (A|O; ; = o) given the experimental outcome
O; j = 0 € {0,1} (i.e., synchronized or not) as derived in (8).
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Update of the uncertainty class Conduct of the predicted experiment
Fig. 2. TIllustration of the MOCU-based optimal experimental design (OED) loop. First, we compute the expected remaining MOCU R(%, j) for all possible

experiments (i, 7) in the experimental design space £ based on the current uncertainty class .4. Next, we identify the optimal experiment (i*, j*) that has the
smallest expected remaining MOCU such that (%, j*) = arg min; ;.- R(, j). In the second phase (right bottom), we conduct the selected experiment (i*, j*)
and remove the performed experiment from the experimental space £. Specifically, in this experiment, we isolate the selected oscillator pair (i*, 7*) and determine
whether or not they get synchronized without external control. Based on the experimental outcome, we update the uncertainty class accordingly [7]. Finally, we
evaluate the actual efficacy of the conducted experiment by computing the MOCU of the updated uncertainty class ,A. We iterate this experimental loop until the
experimental space becomes empty (i.e., there are no more experiments left to be performed).

(— E@a) iy € Yes
Binary search N
- aﬁﬂ - af{,H < 2.5e74
Y
ay al . +ak Is Kuramoto model
~Dyo, ;—o(a) [FPc e ) = with {a, c} AR €
L synchronized?
aN+1
a% No wl L
N+1 Ay C
. Solve Kuramoto model Check if the solution satisfies
. . via the fourth-order Runge-Kutta model. the synchronization condition.
Original approach 6.0 3 ausin (0 () - 0 9)
. i (t) = w; a; ;sin (0; (t) — 6; )
(Sampling-based) P ,max {1ré1_a<.xN Ab; (t)} < Ty
+esin (Onr (8) — 6 (8),i=1.... ,N+1 R AR
Proposed approach Extract features. Classity the sample based on features
(ML-based) £ =wi, [wi —wjl,a, ] > via the fully connected neural network.

Fig. 3.

Comparison between the original sampling-based estimation scheme adopted in [7] and the proposed machine learning-based (ML-based) estimation

scheme. The proposed scheme obviates the need for repeatedly solving the coupled ordinary differential equations (ODEs) within the binary search routine to find
the optimal robust coupling strength illustrated in Fig. 1. This significantly enhances the computational efficiency of MOCU estimation.

Specifically, as we described in Section II-D, we compute the
control cost{(a;) of allsamples a;,7 = 1,2, ..., K, drawn from
the posterior uncertainty class distribution Pyo, ,—(a) up-
dated according to the experimental outcome O; ; = o as shown
in Fig. 2. Figure 3 shows the difference in estimating the control
cost £(a; ) of sample a;, between the proposed approach and the
original approach. Both approaches find a numerical solution
through the binary search that is a sequential process. At each

iteration, the coupling strength a4 of the control oscillator is
set to the midpoint ¢ < (af,; + ajy)/2 of the search space.
The original approach solves the Kuramoto model determined by
the sample a; and midpoint ¢ and determines if the solutions are
synchronized or not according to criterion (2). On the other hand,
the proposed ML-based approach extracts features based on the
natural frequencies w;, sample a;, and midpoint ¢ and classifies
the feature vector. The search space is then halved according
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to the outcome. Note that the computational complexity of the
original approach is critically dependent on the time precision
and simulation time. Less time precision and shorter simulation
time can reduce the overall computational complexity, but such
parameters significantly affect the estimation accuracy of the
MOCU. On the other hand, MOCU-based OED with the pro-
posed approach is free from such a trade-off at the inference
phase as the features are independent of the parameters.

IV. EVALUATION OF MACHINE LEARNING-BASED ESTIMATION
OF APPROXIMATE MEAN OBJECTIVE COST OF UNCERTAINTY

A. Configuration of the Simulation

In this section, we demonstrate the efficacy of the proposed
ML approach in accelerating the speed of objective-UQ, re-
sulting in a very efficient OED. As described in the previous
sections, we considered the OED for the Kuramoto model un-
der uncertainty, where one’s operational objective is to ensure
synchronization of the model by adding an oscillator for control.
For validation, we considered two experimental setups based on
uncertain Kuramoto models with five and seven oscillators, re-
spectively. As a reference ODE solver, we used the fourth-order
Runge-Kutta method to solve the Kuramoto model sampled
at the sampling frequency f. of 160Hz for five seconds. To
determine whether the Kuramoto model is synchronized or not,
we used the following criterion:

2%%5(1225 A0;(t)) < Ta,

(1)

where A;(t) £ 0:(t + (1/fs)) — 0:(t), 0i(t) is the instanta-
neous phase of the ith oscillator, and T is a threshold of
tolerance. We set T;; to 0.001. To estimate the MOCU of a given
uncertainty class, we randomly drew 20,480 sample points from
the uncertainty class (i.e., K = 20,480). We used a Lambda
workstation equipped with Infel i9-9960X, 128 GB memory,
and GeForce RTX 2080 Ti for the simulations.

At the core of the proposed method lies a binary classifier
that accurately classifies the global frequency synchronization
of the model when a control oscillator is introduced. To train
an accurate classifier, we used an fcNN model with one hidden
layer. In that regard, it is essential to extract representative fea-
tures from the parameters that define the Kuramoto model, such
as the number of oscillators, natural frequencies, initial phases,
or coupling strength values between oscillators. Inspired by
Theorem 1, which gives us the necessary and sufficient condition
for pairwise frequency synchronization of Kuramoto oscillators,
we used the natural frequencies, the absolute difference between
the frequencies, and the corresponding coupling strength values
as features. More specifically, given a parameter set that fully
determines the Kuramoto model operating on N + 1 oscillators,
we first sort all the natural frequencies in descending order and
rearrange the coupling strength accordingly. Then, we construct
the corresponding feature set that consists of the sorted natural
frequencies, the absolute difference of the natural frequencies of
all oscillator pairs, and their coupling strengths. Note that this
arrangement makes the feature set highly structured but does not
affect the characteristics of the Kuramoto model. To accurately

6479

label a given sample point (the feature set of a given Kuramoto
model), we used the fourth-order Runge-Kutta method with a
much longer simulation time 7" of 400 seconds to determine
whether the model reaches global frequency synchronization or
not. Besides, we rigorously determined the synchronization of
the Kuramoto model based on more stringent criteria. For the
labeling purpose, we consider that a Kuramoto model is synchro-
nized if both of the following two conditions are satisfied: First,
frequencies of all oscillators rounded to the sixth decimal place
are equal for the last 20 (T" = 0.95) seconds. Second, the sum of
absolute change in the coherence value r(¢) of the order param-
eter r(t)e??® = LN 3% s less than 10~ for the last
20 seconds. Note that if the results for the two conditions differ,
we excluded the sample point from the training dataset. Since
the detailed structure and the training process of the classifier
varies depending on the simulation scenario, we provide further
details in the corresponding subsections. The source code used
for the simulations whose results are presented in this study can
be found at https://github.com/bjyoontamu/Kuramoto-Model-
OED-acceleration.

B. Performance Evaluation

To assess the performance of the proposed approach and com-
pare it to other existing approaches, we performed a wide range
of evaluation experiments. First, we evaluated the efficacy of the
shallow fcNN model, which is adopted in this study, in predicting
the global synchronization of the Kuramoto model oscillators.
For this purpose, we examined the asymptotic behavior of the
fcNN model by estimating its prediction accuracy as a function
of increasing training data size. Next, we computed the Pear-
son’s correlation coefficient between the MOCU values com-
puted by the proposed scheme and the original sampling-based
scheme [7], respectively. Furthermore, the time complexity of
each scheme was assessed to compare efficiency. Finally, we
evaluated the efficacy of the proposed scheme in predicting
experiments that can effectively reduce model uncertainty. To
this aim, we compared the changes in the “objective uncertainty”
(estimated by MOCU) after conducting the experiment selected
by different experimental design schemes. We also examined
how accurately each scheme is able to predict the true opti-
mal experiment, and how it affects the overall experimental
performance.

C. Comparison Between Machine Learning-Based and
Sampling-Based Mean Objective Cost of Uncertainty
Estimation

In order to validate the efficacy of the proposed method
that incorporates ML-based predictions into MOCU estimation,
we directly compared the MOCU values from the ML-based
approach and the sampling-based approach that we considered
in the previous work [7].

1) Mean Objective Cost of Uncertainty Estimation for Un-
certain Kuramoto Model With Five Oscillators: As a first exper-
imental scenario, we considered an uncertain Kuramoto model
that consists of five oscillators that do not get spontaneously syn-
chronized in the absence of external control. In this experiment,
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we adopted the identical experimental setup in the previous
work [7] for direct comparison. Specifically, we assumed that the
five oscillators have the natural frequencies of —2.50, —0.6667,
1.1667, 2.0, and 5.8333, respectively. The natural frequency of
the additional (i.e., 6th) control oscillator was set to the average
frequency of the five oscillators (wg = 1.1667). Besides, we set
the initial phase of all the oscillators to zero. Finally, we used
the uncertainty class defined as follows:

v _ | 1.0541 0.6325 0.7762 1.4375 1.0542 r (12)
~ 10.6900 1.6819 0.4791 2.6833 2.2041 |’

| 0.7791 0.4675 0.5737 1.0625 0.7792 T 13
~ 10.5100 1.2431 0.3541 1.9833 1.6291 | 13

To train the classifier, we generated 40,000 sample points (a
set of 20,000 parameter values that result in synchronization
and another set of 20,000 parameter values that do not) from a
multivariate uniform distribution whose support completely cov-
ers the range of the parameters in the uncertainty class at hand.
Specifically, a parameter set has six real-values from the uniform
distribution with a range of (—2, 2m) as natural frequencies of
the six oscillators w;, ¢ = 1,2,. .., 6, and ten coupling strength
values a;j, 1 <1i < j < 6, between oscillators ranging from
0.25|w; — w;]102.35|w; — w;|. To build the classifier, we sorted
the six natural frequencies in descending order and rearranged
the coupling strength values accordingly. Then, we extracted the
following features: the sorted natural frequencies, the absolute
difference of the natural frequencies of all oscillator pairs, and
their coupling strengths. Finally, we trained an fcNN model with
a single hidden layer, whose width is three times the number of
features, until the model is capable of classifying all the 40,000
sample points in the training dataset perfectly. We validated the
trained model in terms of its asymptotic classification accuracy
by assessing the accuracy as a function of the training data size.
This result is shown in Fig. S1 in the supplemental material.

We started with the original uncertainty class defined in (12)
and (13) and estimated the expected remaining MOCU of
random oscillator pairs through both approaches one hundred
times while randomly changing the true model (assumed to be
unknown). Figure 4 is a scatter plot that shows the comparison
between the expected remaining MOCU values computed by
different methods. As shown in Fig. 4, the expected remaining
MOCU values computed by the proposed ML-based method
and the original sampling-based method display a strong linear
relationship. The Pearson’s correlation coefficient was 0.9849
with a p-value of 1.90 x 10~76. This plot shows that the ML-
based computational scheme has the potential to effectively
replace the costly sampling-based scheme without affecting the
MOCU-based OED performance, as it will likely not affect
the ranking of potential experiments. In terms of computational
cost, the ML-based approach was able to compute the expected
remaining MOCU in 0.1110 seconds (on average) for a given
uncertainty class, while it took 818.7 seconds (on average) for
the sampling-based approach. These results clearly show the
advantages of the proposed approach in efficiently quantifying
the objective uncertainty.
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Fig. 4. The scatter plot shows the expected remaining MOCU values for the
uncertain five-oscillator Kuramoto model estimated using the proposed ML-
based approach and the original sampling-based approach in [7]. As shown, the
estimated values are highly correlated to each other.

2) Mean Objective Cost of Uncertainty Estimation for Un-
certain Kuramoto Model With Seven Oscillators: Some major
disadvantages of the original sampling-based method are its high
computational cost and the practical difficulty of scaling the
method for large models with many oscillators. To examine the
computational cost increase and scalability for larger models, we
next considered an uncertainty class of Kuramoto models with
seven oscillators. This increases the time for solving the ODEs
and the number of possible experiments also increases from
(3) = 10 to (%) = 21. Here we set the natural frequency of the
oscillators to —3.4600, —1.9611, —0.6754, —0.3806, —0.3675,
6.1161, and 8.3287, respectively. We assumed that the natural
frequency of the control oscillator (i.e., 8th oscillator) is the
average frequency of the seven oscillators (ws = 1.0857). We
considered the uncertainty class shown below:

[0.848 0.988 1.446 1.607 3.820 0.915 0.400 |
a” = | 0.850 0.419 4.162 1.090 0.122 0.039 2.124
| 0.872 0.007 2.737 1.804 1.360 0.744 1.174 |

» (14)

T

. (15)

[0.073 0.172 0.153 0.054 0.501 0.463 0.043
al = 10.015 0.096 0.501 0.103 0.007 0.009 0.139
| 0.408 0.000 0.131 0.119 0.300 0.286 0.131 |

As in the previous experiment for the Kuramoto model with five
oscillators, we set the initial phase of all oscillators to zero.

As the size of the parameter set is much greater for this
Kuramoto model, we generated the training data in a more
tailored way. Rather than generating the sample points (i.e.,
Kuramoto model parameter sets) with random natural frequen-
cies within a specific range as we did for the five oscillator
model, we fixed the natural frequencies to —3.4600, —1.9611,
—0.6754, —0.3806, —0.3675, 6.1161, 8.3287, and 1.0857 in
this example. For the coupling strength values, we drew them
from the uniform distribution for the uncertainty class, whose
support is defined in (14) and (15). In this manner, we collected
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Fig. 5. The scatter plot shows the expected remaining MOCU values for the
uncertain seven-oscillator Kuramoto model estimated using the proposed ML-
based approach and the original sampling-based approach in [7]. As before, the
estimated values show a high correlation.

50,000 sample points per label according to the same criteria we
used for the five oscillator case. Then, we extracted the feature
values as described previously for the five oscillator case and
trained the classifier using an fcNN with a single hidden layer,
whose width is four times the number of features. Figure S1 in
the supplemental material shows that this model quickly learns
the classification boundary, where the classification accuracy
rapidly converges to 100% as the size of the training data
increases.

As before, we started with the original uncertainty class
defined in (14) and (15) and computed the expected remaining
MOCU of random oscillator pairs using the ML-based method
and the sampling-based method. We repeated this until we col-
lected a hundred expected remaining MOCU values per method.
Figure 5 shows the scatter plot that compares the expected
remaining MOCU values computed by the two methods. Again,
we can see that there is a strong linear relationship between
the computed values. The Person’s correlation coefficient was
0.9606 with a p-value of 2.62 x 10756, In terms of computa-
tional cost, it took 0.6953 seconds (on average) for the ML-based
method to compute the expected remaining MOCU, which was
still less than a second although the experimental design space
has grown from % = 10 experiments to @ = 21. It took
the sampling-based approach 3,684.9 seconds (on average) to
compute the expected remaining MOCU values, which shows
that our proposed method makes the computation 5,298 times
faster at practically identical accuracy. These results clearly
show the advantages of the proposed ML-based approach in
quantifying the objective model uncertainty.

V. PERFORMANCE OF EXPERIMENTAL DESIGN USING
MACHINE LEARNING-BASED MEAN OBJECTIVE COST OF
UNCERTAINTY ESTIMATION

We compared the OED performance of the proposed ML-

based method against three existing approaches:
® Sampling-based approach: the original approach proposed
in [7] based on the MOCU framework, where a fourth-order
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Runge-Kutta method is to solve the Kuramoto model to
determine synchronization.

® Entropy-based approach: the experiment is chosen for the

oscillator pair whose coupling strength value has the largest
entropy to reduce this uncertainty.

® Random approach: the experiment is randomly selected

from the experimental design space.

As shown, the proposed ML-based estimation clearly outper-
forms the original sampling-based estimation [7] in terms of
efficiency, where their costs differ by two orders of magnitude.
For both ML-based/sampling-based schemes, iterative estima-
tion requires further computations, as the uncertainty class is
updated after each experiment, based on which the remaining
expected MOCU values are assessed again.

For the MOCU-based OED schemes (i.e., ML-based and
sampling-based computations), we considered the follow-
ing OED strategies. In the first approach (marked as ifera-
tive in the figures), we re-estimated the expected remaining
MOCU for the remaining experiments in each iteration, after
performing the predicted optimal experiment and updating the
uncertainty class based on the observed experimental outcome.
In the second approach, we estimated the expected remaining
MOCU only based on the initial uncertainty class and pri-
oritized all experiments based on this result. While this ap-
proach is theoretically suboptimal, it significantly reduced the
overall computational cost and empirically showed comparable
performance to the iterative scheme, as we will show in this
section.

1) Optimal Experimental Design for Uncertain Kuramoto
Models With Five Oscillators: First, we conducted OED sim-
ulations for the same five-oscillator Kuramoto model consid-
ered in the previous study [7] for direct comparison. We used
identical model parameters described in Section IV-C1. The true
(unknown) model a was assumed to be as follows:

_ | 0.9166 0.55 0.675 1.25 0.9167 T

A= o6 1.4625 0.4166 2.3333 1.9166 | (16)

Figure 6 shows the experimental design performance of the
different algorithms, where the objective uncertainty (quantified
by MOCU) is shown as a function of the number of experimental
updates (iterations). As shown in Fig. 6, the proposed ML-based
approach with iterative re-estimation (red dotted line with as-
terisks) showed the nearly identical performance to sampling-
based methods (both iterative and non-iterative schemes, shown
in yellow lines). All three schemes reached the near mini-
mum MOCU within only three experimental updates. The non-
iterative ML-based scheme (red dashed line with squares) also
identified the first optimal experiment accurately and showed
comparable performance in the later updates with the other
three MOCU-based OED schemes. All four MOCU-based OED
schemes (both ML-based and sampling-based) significantly out-
performed the entropy-based and random approaches, resulting
in much sharper uncertainty reduction within fewer experimen-
tal updates.
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Fig. 6. Performance comparison of various experimental design strategies for
the uncertain five-oscillator Kuramoto model considered in [7]. The results show
that the three MOCU-based OED schemes perform similarly, regardless of how

MOCU was estimated. The MOCU-based schemes clearly outperform other
schemes as reported in [7].
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Fig.7. Cumulative computational cost (in seconds) for identifying the optimal
experiment.

Figure 7 compares the overall computational cost between the
ML-based OED schemes and the sampling-based OED schemes.
The entropy-based approach and the random approach are not
shown, as their computational cost is fixed and negligible. As
we can see in Fig. 7, the proposed ML-based OED approaches,
marked as red, showed significantly lower time complexity
compared to the sampling-based OED approaches. Note that the
ML-based methods (red dotted lines) were significantly faster
compared to the sampling-based methods, despite maintaining
equivalent OED performance. We did not include the time for
training the fcNN model as the model training only needs to be
performed once before the beginning of OED. In fact, the trained

model can be reused for different uncertainty classes and any true
model therein. Besides, the training time is negligible thanks to
the shallow structure of the fcNN model considered in this study.
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Fig. 8.

Average performance of various experimental design strategies for
uncertain Kuramoto models with five oscillators. The experiments have been re-
peated one hundred times by sampling potential true models from the uncertainty
class. As shown, all three MOCU-based methods lead to the best performance.
Random selection results in linear uncertainty reduction as expected.
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Fig. 9. Average cumulative computational cost (in seconds) for identifying
the optimal experiment based on different experimental design strategies for
uncertain Kuramoto models with five oscillators.

Specifically, the model learned the training dataset for making a
decision for the uncertain Kuramoto model with five oscillators
within 90 seconds.

Next, we repeated the experiment based on one hundred
different true models randomly drawn from the uncertainty
class (i.e., different coupling strength values were drawn from
the prior distribution of the uncertainty class). The results
of these large-scale experiments are shown in Fig. 8 and
Fig. 9. Note that we excluded the iterative sampling-based
OED method due to its excessive requirement of computa-
tional time. As shown in these figures, the proposed ML-based
method without iterative re-estimation of the expected remaining
MOCU showed identical performance to other best performers.
Random experimental selection (blue dotted line) yielded a
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Fig. 10. Comparison between the optimal sequence of experiments predicted
by different OED strategies for uncertain Kuramoto models with seven oscilla-
tors. The y-axis shows the number of common experiments within the first &
experiments predicted by two different methods.

linearly decreasing MOCU curve, as we would expect on aver-
age. The entropy-based method showed similar performance as
before (see Fig. 6). Computational cost in Fig. 9 shows a similar
trend as before (see Fig. 7). As before, the time for training the
ML model is not included in this plot. Furthermore, Fig. S2 in
the supplemental material shows the RainCloud plot [42] that
depicts the instantaneous performance of the different methods
measured in terms of the remaining uncertainty (measured by
MOCU) after performing the first experiment selected by the
respective methods. As we can see from Fig. S2, all three
MOCU-based OED schemes consistently yield the best overall
performance.

Finally, we compared the experimental sequences determined
by the ML-based method and the sampling-based methods,
respectively, to further investigate if the proposed ML approach
can practically replace the sampling-based method for prioritiz-
ing the experiments in the experimental design space. The verti-
cal axis corresponds to the number of intersecting experiments
in the first k experiments predicted by two different methods.
If two methods predict the identical experimental sequence,
the resulting curve will be a straight line (with unit slope).
For example, the black line in Fig. 10 compares the ML-based
method and the sampling-based method. From Fig. 10, we can
see that the proposed ML-based method (without re-estimation)
always identified the same first experiment as the sampling-
based method in all one hundred evaluations. By comparing
the true optimal experimental sequence (i.e., predicted by an
“oracle”) and the sequences predicted by the ML-based method,
we can see that the first optimal experiment was always ac-
curately predicted. In fact, results in Fig. 8 show that the first
experiment leads to the most significant drop in model uncer-
tainty, and all MOCU-based OED schemes (both ML-based and
sampling-based) accurately predict this critical experiment. We
also note that the entropy-based/random approaches tended to
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Fig. 11.  Average performance of various experimental design strategies for

uncertain Kuramoto models with seven oscillators based on one hundred exper-
iments. All MOCU-based methods lead to the best performance, and random
selection results in linear uncertainty reduction.

mispredict the best first experiment, resulting in a substantial per-
formance gap when compared to the MOCU-based approaches.
Figure 10 also shows that the predicted experimental sequences
diverge in later iterations. However, this did not impact the
OED performance on average, as later experiments did not
reduce the model uncertainty as significantly as the earlier
experiments.

2) Optimal Experimental Design for Uncertain Kuramoto
Models With Seven Oscillators: We also repeated the exper-
iments for uncertain Kuramoto models that consist of seven
oscillators. As before, true (unknown) models were randomly
sampled from the uncertainty class one hundred times to evaluate
average performance. We used the same parameters and model
described in Section IV-C2.

Figure 11 shows the OED performance assessment results for
the various experimental design methods based on the seven-
oscillator Kuramoto model. As we can see from Fig. 11, the
performance trends were very similar to those seen in Fig. 8
for the Kuramoto model with five oscillators. The proposed
ML-based methods again accurately identified the first optimal
experiment that maximally reduces MOCU on average. All four
MOCU-based OED schemes (both ML-based and sampling-
based), regardless of whether or not the remaining expected
MOCU values were re-estimated after each experimental update,
showed almost identical performance on average. Figure S3
compares the performance of different methods, where we
measured the MOCU that remains after performing the first
experiment selected by each method. The results are again shown
for one hundred evaluations based on different true models. As
shown in Fig. S3, the efficacy of the first experiment varies
depending on the underlying true model, which is expected. As
before, the results in Fig. S3 clearly show that the proposed
ML-based OED scheme can effectively replicate the perfor-
mance of the original sampling-based approach [7], the primary
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Fig. 12.  Average cumulative computational cost (in seconds) for identifying
the optimal experiment based on different experimental design strategies for
uncertain Kuramoto models with seven oscillators.

goal of this study. The computational time is shown in Fig. 12,
which clearly shows that the ML-based scheme (especially,
the non-iterative scheme) is significantly faster compared to
the original sampling-based approach. As before, the plot only
shows the time for OED and does not include the training time for
the ML model. Furthermore, even the ML-based method with the
iterative update was considerably faster than the sampling-based
that does not iteratively re-estimate the expected remaining
MOCU.

Finally, we compared the experimental sequences identified
by the different methods, including the true optimal experimen-
tal selection (i.e., predicted by an “oracle”). Note that due to
the excessive computational cost of the optimal experimental
selection (as it requires exhaustive search), we identified the op-
timal experimental sequences only for the first thirty evaluations
based on randomly sampled true models from the uncertainty
class. For this reason, Fig. 13 shows the comparison results
based on the first thirty experimental sequences (out of one
hundred). As shown in the figure, both the ML-based and the
sampling-based methods were able to accurately identify the
first optimal experiment. The predicted sequences tended to
diverge in later iterations. However, considering the simulation
results shown in Fig. 11, it is likely that this was because
many experiments in later updates did not significantly reduce
the objective uncertainty, once the best experiment has been
performed in the earlier iterations (especially, the first iteration).
Also, we can see that the entropy-based and the random selection
approaches tended to miss the best experiment, which resulted
in a significant degradation in the overall experimental design
performance. These comprehensive simulation results clearly
showed that our proposed ML-based OED approach effectively
quantifies the objective model uncertainty at a small fraction of
the computational cost of the sampling-based method, thereby
remarkably accelerating the OED process while maintaining
excellent performance.
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Fig. 13. Comparison between the optimal sequence of experiments predicted
by different OED strategies for uncertain Kuramoto model with seven oscil-
lators. The y-axis shows the number of common experiments within the first
k experiments predicted by two different methods. The results are shown for
uncertain Kuramoto models with seven oscillators.

VI. CONCLUSION

In this paper, we proposed an ML approach that can signif-
icantly accelerate the objective-based quantification of model
uncertainty via MOCU. A major bottleneck in applying MOCU
for designing/prioritizing optimal experiments that can opti-
mally reduce the uncertainty in models that represent real-world
complex uncertain systems has been the high computational
cost for accurately estimating MOCU. The proposed approach
effectively addresses this issue in the context of OED for un-
certain Kuramoto models by replacing the computational costly
DE solver with an ML model, which remarkably speeds up the
process of predicting the optimal controller (i.e., the oscillator
that guarantees global frequency synchronization at minimum
cost). The trained ML model predicts the asymptotic behav-
ior of a given Kuramoto model, namely, whether all oscilla-
tors in the model will be eventually frequency synchronized
or not.

Note that there may be an outward similarity between the
proposed ML-based approach in the context of the uncertain
Kuramoto model with other earlier studies [39]-[41] whose
main interest is to efficiently solve DEs via ML models, as
the prediction result of our trained ML model includes the
process of solving Kuramoto model equations, albeit implicitly.
However, more precisely, the trained ML model in the current
study makes a ‘““decision” based on the scientific knowledge
regarding the underlying Kuramoto model for the purpose of
identifying the optimal experiment that is expected to be most
effective in reducing model uncertainty, which pertains to a
broader issue rather than solving DEs as in other previous
studies.

The results shown in Section IV and Section V clearly
demonstrate that the ML-based MOCU calculations are highly
correlated with those computed by the sampling-based scheme
originally proposed in [7]. Furthermore, the OED performance
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of the ML-based scheme is practically equivalent to that of the
original sampling-based OED scheme. However, despite achiev-
ing equivalent OED performance, our proposed ML-based OED
scheme accelerates the experimental design process by at least
two orders of magnitude, resulting in significant computational
gains. The remarkably enhanced computational efficiency en-
ables more reliable MOCU calculation by further increasing the
sample size (i.e., K) as needed. Furthermore, it allows us to
iteratively recompute the remaining MOCU R(z, j) after per-
forming the predicted optimal experiment at each experimental
update (see Fig. 9 and Fig. 12), which can—in theory—lead to
a more accurate prediction of the optimal experiment, although
the actual gain will depend on the underlying model uncertainty.
Such iterative update is practically infeasible for the original
sampling-based OED scheme without resorting to HPC (high-
performance computing).

As shown in Section IV and Section V, our ML-based MOCU
estimation and OED approach remarkably enhance the compu-
tational efficiency by refraining from repeatedly solving the DEs
for the uncertain Kuramoto models for the sake of finding the op-
timal robust operator (which is required in the original sampling-
based approach) but instead adopting ML for decision making.
However, as training the ML model requires the generation of
sufficient training data, which also requires solving the coupled
ODE:s for different Kuramoto models in the uncertainty class, it
will be interesting to compare the proposed ML-based approach
with the sampling-based approach from the perspective of “data
efficiency”. For this purpose, we quantitatively compare the
proposed approach with the sampling-based approach in terms
of data requirements. For the uncertain Kuramoto model with
five oscillators, we trained the ML model (an fcNN with a
single hidden layer) with 40,000 labeled sample points. Each
sample point corresponds to the Kuramoto model with a different
parameter, and labeling the sample point (i.e., synchronized vs
non-synchronized) requires solving the corresponding ODEs.
The trained model is used throughout the entire experimental
design process without the need for generating additional sample
points. On the other hand, the sampling-based method requires
generating approximately 2.2 x 107 labeled sample points (i.e.,
by solving the DEs for different Kuramoto model parameters).
Similarly, for the uncertain Kuramoto model with seven oscil-
lators, we trained an fcNN model based on 100,000 labeled
sample points, and the trained model is used throughout the
experimental design process. In comparison, the sampling-based
approach requires the generation of around 9.4 x 107 labeled
sample points. These comparisons clearly show that our pro-
posed ML-based OED acceleration scheme not only improves
the computational efficiency but also drastically improves the
data efficiency.

It is worth noting that the proposed approach, applying ML
models to the estimation of the (remaining expected) MOCU
can be generalized, extended, and applied to other MOCU-based
OED problems concerning real-world applications that do not
possess closed-form (remaining expected) MOCU. For example,
in the case of OED for robust intervention in gene regulatory net-
works (GRN) [9], [10], an ML model may be used to predict the
efficacy of an intervention scheme in reducing the steady-state
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mass of the GRN in undesirable (e.g., pathological) states. This
will obviate the need for estimating the steady-state probabilities
of the underlying Markov chain, thereby significantly accelerate
the estimation of MOCU and enhance the scalability of the
MOCU-based OED scheme.

In such cases, based on the applications and the data types,
one may consider different ML models including convolu-
tional neural networks (CNN) [43], recurrent neural networks
(RNN) [44], long short term memory networks (LSTM) [45],
and graph convolutional networks (GCN) [46]. While we have
focused on accelerating the experimental design for uncertain
Kuramoto models using ML, the proposed ML-based OED
acceleration scheme is fairly general and its applicability goes
beyond the Kuramoto models. For example, the proposed
scheme may be used to accelerate the design of effective ex-
periments to reduce uncertainty and improve the control perfor-
mance of various other engineering models in the presence of
uncertainty [47]-[50].

An interesting direction for future research is to utilize ML
models to learn scientific knowledge from data. In this paper,
we considered pairwise synchronization experiments, whose
result can be used to reduce model uncertainty using Theo-
rem 1 that gives us the necessary and sufficient condition for
frequency synchronization of an oscillator pair. In the absence
of such knowledge, one cannot design experiments for effective
uncertainty reduction. As mentioned before, similar theorems
do not exist in general for non-homogeneous Kuramoto models
that consist of more than two oscillators. Discovering useful
relational knowledge regarding the model parameters via ML
can lead to the design of more effective experiments as well
as a significant expansion of the potential experimental design
space. We are currently investigating the potential utilization of
deep neural network (DNN) models for knowledge discovery in
non-homogeneous Kuramoto models with multiple oscillators.
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