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In brief

Accurate estimation of classification error
is challenging in scientific domains,
where available data are limited. Although
transfer of data and knowledge from
relevant domains can alleviate this issue,
previous studies on transfer learning have
mostly focused on improving the learned
models rather than enhancing the
performance analysis. In this paper, we
propose a transfer learning scheme for
Bayesian error estimation that can
leverage data from relevant domains to
enhance the estimation of classification
error in the domain of interest.
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THE BIGGER PICTURE In scientific domains with limited data availability, accurate classification error esti-
mation is practically challenging. Although transfer learning (TL) may provide a promising solution under
such circumstances by learning from data available in other relevant domains, it has not been explored
for enhancing error estimation. Here, we place the problem of estimating the classification error in a
Bayesian paradigm and introduce a TL-based error estimator that can significantly enhance the accuracy
and robustness of error estimates under data scarcity. We demonstrate that our proposed TL-based
Bayesian error estimation framework effectively models and exploits the relatedness between different do-
mains to improve error estimation. Experimental results based on both synthetic data as well as real-world
data show that our proposed error estimator clearly outperforms existing error estimators, especially in a
small sample setting, by tapping into the data from other relevant domains.
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Development/Pre-production: Data science output has been
rolled out/validated across multiple domains/problems

SUMMARY

Classification has been a major task for building intelligent systems because it enables decision-making un-
der uncertainty. Classifier design aims at building models from training data for representing feature-label
distributions—either explicitly or implicitly. In many scientific or clinical settings, training data are typically
limited, which impedes the design and evaluation of accurate classifiers. Atlhough transfer learning can
improve the learning in target domains by incorporating data from relevant source domains, it has received
little attention for performance assessment, notably in error estimation. Here, we investigate knowledge
transferability in the context of classification error estimation within a Bayesian paradigm. We introduce a
class of Bayesian minimum mean-square error estimators for optimal Bayesian transfer learning, which en-
ables rigorous evaluation of classification error under uncertainty in small-sample settings. Using Monte
Carlo importance sampling, we illustrate the outstanding performance of the proposed estimator for a broad
family of classifiers that span diverse learning capabilities.

INTRODUCTION

Transfer learning (TL) provides promising means to repurpose
the data and/or scientific knowledge available in other relevant
domains for new applications in a given domain. The ability to
transfer relevant data’/knowledge across different domains prac-
tically enables learning effective models in target domains with
limited data. Classifier design can take advantage of TL to
address small-sample challenges we often face in various scien-
tific applications. However, rigorous error estimators that can
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leverage such transferred data/knowledge for better estimation
of classification error have been missing to date, which makes
the design framework epistemologically incomplete.” Generally,
the scientific validity of any predictive model is assessed by the
ability to generalize outside the observed training sample. How-
ever, the available sample is often too small in many scientific ap-
plications (e.g., bio-marker discovery) to hold out sufficient data
just for testing purpose, which makes the reuse of training data
for both classifier design and error estimation inevitable. While
various error estimation schemes exist to date, their accuracy
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and reliability in a small-sample setting are often questioned.”
For instance, in Dalton and Dougherty® many classification
studies of cancer gene expression data have been listed where
the performance was assessed by cross-validation (CV) based
on small-size training datasets. Analyses in Braga-Neto and
Dougherty* have shown that CV error estimators derived based
on small-size samples show large variance, which explains the
controversy across many biological studies that relied on data-
driven CV.° Model-based error estimation also faces practical
challenges as non-informative modeling assumptions may
mislead the error estimators in case of model mismatch.

The ability for accurate error estimation based on small sam-
ples is also critical in other contexts, an example being continual
learning,® where a series of labeled datasets are sequentially fed
to the learner as in realistic learning scenarios. In recent years,
continual learning regained attention as a promising strategy
for avoiding “catastrophic forgetting” that may arise when the
training data are split for a series of small learning operations
called tasks.” Such a continual learning setting is becoming
prevalent these days, where retaining the observed training
data is either undesirable (confidentiality) or intractable (high-
throughput systems), and developing reliable task-specific error
estimators is indispensable. For instance, an intuitive approach
to continual learning from a Bayesian perspective is to leverage
the posterior of the current task to update the prior of the next
task.® However, analysis in Farquhar and Gal® has shown that
evaluation approaches for this prior-focused setup suffer from
severe bias in realistic scenarios, particularly for finely parti-
tioned data. Recent work in Goodfellow et al.'® provided a solu-
tion for test data scarcity by reusing the same test set in the
context of a continuously evolving classification problem. To
avoid overfitting the test data, the authors employed a reusable
holdout mechanism based on the area under the receiver oper-
ating characteristic curve metric. Nevertheless, this approach
remains contingent on the availability of an independent test
set. For these reasons, there is a pressing need to develop novel
error estimators that can effectively overcome data scarcity lim-
itations. For assessing different classification models in the
context of small-size training datasets, having an accurate error
estimator with TL capabilities that can take advantage of relevant
datasets in other domains would be highly beneficial. Such an
estimator would be readily applicable to continual learning as
cross-task datasets can be seen as related source-target
samples.

In the next sections, we provide a brief review of the standard
error estimation techniques along with prevalent TL scenarios. A
more comprehensive review can be found in the supplemental
information, sections 3 and 5.

For unknown feature-label distributions, the classification er-
ror of a given classifier is typically estimated by leveraging a
large sample collected from the true distribution. However,
limiting factors, such as the excessive cost of large-scale
data acquisition, make it often infeasible to collect and hold
out large test sets. Consequently, the available small-size sam-
ple may have to be used for both training and evaluating the
classifier, and researchers have strived to devise practical
methods for accurate error estimation. Existing error estimation
schemes can be broadly categorized into parametric and non-
parametric methods. Non-parametric estimators compute the
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error rate by counting the misclassified points, where widely
used estimators include the resubstitution, CV, and bootstrap
estimators. Parametric methods include the popular plug-in
estimator that naively estimates the true error from an empirical
model. The Bayesian minimum mean-square error estimator
(BEE) proposed in Dalton and co-workers®'" is another bench-
mark parametric estimator that significantly enhances the
robustness by computing the expected true error with respect
to the posterior of the model parameters. The BEE has shown
notable improvements over standard estimators as it effectively
handles the uncertainty about the underlying feature-label
distribution.®""

Recently, TL has emerged as an alternative to provide rem-
edies for pitfalls caused by training data scarcity in a target
domain by utilizing available data from different yet relevant
source domains.'? Based on the properties of source and target
domains, two scenarios of TL may arise. The first one, commonly
known as “homogeneous TL,” occurs when the source and
target domains share the same feature space. The second sce-
nario is called “heterogeneous TL” and is considered when dif-
ferences exist between domains in terms of their feature space
or data dimensionality. In practice, the most common setting
for TL, known also as domain adaptation, assumes similar fam-
ilies of feature-label distributions across domains.

In this study, we propose a TL framework for robust estima-
tion of classification error based on a rigorous Bayesian para-
digm. To the best of our knowledge, this study is the first
work on TL-based BEE, which can significantly enhance our
understanding of transferability across domains in the context
of error estimation. Building on the Bayesian transfer learning
framework proposed in Karbalayghareh et al.,'® we introduce
a TL-based BEE estimator that can enhance the error estima-
tion accuracy in the target domain by utilizing the data available
in a relevant source domain based on the joint prior of their
feature-label distributions. We present a rigorous study of error
estimation in the context of Bayesian TL and show that our pro-
posed TL-based BEE effectively represents and exploits the
relatedness (or dependency) between different domains to
improve error estimation in a challenging small-sample setting,
where the number of observed data points from the target
domain of interest is in the range of 5-50. For applicability of
the proposed TL-based BEE estimator in real-world problems
for arbitrary classifiers, we introduce an efficient and robust
importance sampling setup with control variates where the
importance density and the control variates function are care-
fully defined to reduce the variance of the estimator while keep-
ing the overall sampling process computationally feasible and
scalable. For this purpose, we utilize Laplace approximations
for fast evaluation of matrix-variate confluent and Gauss hyper-
geometric functions. The performance of the TL-based BEE
estimator is extensively evaluated using both synthetic data-
sets as well as real-world biological datasets. As our main
focus in this study is the estimation of classification error, we
consider a variety of existing classifiers with different levels of
learning capabilities to demonstrate the general applicability
of our TL-based BEE estimation scheme. We also show the
outstanding performance of the proposed estimator with
respect to standard error estimation techniques that are
commonly used.
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RESULTS AND DISCUSSION

Overview of the proposed Bayesian error estimation

via TL

We propose a class of Bayesian minimum mean-square error
(MMSE) estimators for TL where the observed sample is a
mixture of source and target data. The basic classification
setting and a brief review of the standard BEE estimator are pre-
sented in the supplemental information, sections 2 and 4. For
symbols and notations, see Table S1.

Rooted in signal estimation, the BEE has been motivated by
optimal filtering for functions of random variables.® For a function
of two random variables g(X,Y), the optimal estimator g(Y) of a
filter g(Y) after observing only Y in the mean-square sense is
given by

g(v) = Ex[g(X.v)|y]. (Equation 1)

Replacing X with the parameter vector 6 of the feature-
label distribution and Y by the sample S, (of size n), leads to
the standard BEE that has been introduced in Dalton and Dough-
erty® as

€(Sn) = Eolen(0,Sn|Sn)]- (Equation 2)

In TL, the sample S, is a mixture of source and target data
such that S, = (DsUDy),, with n = Ng+N;, and the classifier
¥, is designed either on Dy, Ds, or DsUD;. We note that Ds
and Dy are two labeled datasets from the source and target do-
mains with sizes Ng and N, respectively (see Bayesian TL frame-
work for binary classification, for generation details). This re-
quires close attention as the TL-based BEE is valid only for
fixed classifiers given the sample. This assumption carries limita-
tions. For instance, classifiers that are only fixed given D; but not
Ds, are not deterministic for every set of parameters estimated
based on Ds;UTD;. In this paper, we introduce the TL-based
BEE defined as

2((DsUDy),) = Eo[en (0, (DsUDy),)|(DsUDy),], (Equation 3)

where 6 = [6;, 6s] denotes the parameter vector of the joint model
formed by the target parameters 6; and the source parameters
0. For a fixed classifier given (Ds UDy),,, this estimator is optimal
on average in the mean-square sense and unbiased when aver-
aged over all parameters and samples. For classification in the
target domain, the posterior density 7*(6) reduces to the poste-
rior of the target parameters after observing the target and
source data and takes the form

7 (60¢) = 7 (6;|Ds, D), (Equation 4)
where #*(6;|Ds,D;) is obtained by marginalizing out the
source domain parameters. Ultimately, the BEE for TL takes
the form

2((DsUDy),) = Ee, [€n(0¢, (DsUDy),) |(DsUDy), |

Equation 5
"E. (o e (00 (D,UD), ). (Fquation 9

For the sake of simplicity we write

€ = Ex[en], (Equation 6)
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where 7* = 7*(0:| D¢, Ds) denotes the posterior of the target pa-
rameters after observing the hybrid sample D;UD;s.

Experiments and datasets
To evaluate the performance of the proposed error estimator, we
consider the mean-square error (MSE) as a performance mea-
sure to understand the joint behavior of the classification error
en and its estimate €. For the random vector (&5, €), the MSE is
defined as
MSE(?) = E[|§ - en|2]. (Equation 7)

In what follows, we present an overview of the experimental
setup for demonstrating the performance of the proposed TL-
based BEE based on three different types of classifiers (see
experimental procedures, sections 4.5 and 4.6 for more details)
applied to both synthetic data as well as real-world biological
datasets.

Bayesian TL framework for binary classification

We consider a binary classification problem in the context of su-
pervised TL where there are two common classes in each
domain. Let Dg and D; be two labeled datasets from the source
and target domains with sizes Ns; and N;, respectively. We
are interested in the scenario where N; < Ns. Let D% = {x}s’m
x5, -, X¢n. }, ye{0,1}, where n{ denotes the size of source
data in class y. Likewise, let D} = {x/;,x/,, ", x{,}, ye{0,1},
where n] denotes the size of target data in class y. We consider
a d-dimensional homogeneous transfer learning scenario where
Ds and Dy are normally distributed and separately sampled from
the source and target domains, respectively.

X~ N (1 (A2) ) ye {01}, (Equation 8)

where ze {s,t}, n} is a (d x1) mean vector in domain z for class y,
and AJ is a (d xd) precision matrix (inverse of covariance) in

y
X
domain z for label y. An augmented feature vector x¥ = { ;} is
xS
a joint sample point from two related source and target domains
given by

x ~/\/’<uy7 (Ay)’1>,ye {0,1}, (Equation 9)

with

y Ay A‘V
W= u; A= T (Equation 10)
(1A A As

where X7 denotes the transpose of matrix X. This sampling is
enabled through a joint prior distribution for AY and A} that mar-
ginalizes out the off-diagonal block matrix AJ. Using a
Gaussian-Wishart distribution as the joint prior for mean and pre-
cision matrices, the joint model factorizes as

p(us, uf, AL AY) = p(ns, my|AL, AY)p(AL, AY). (Equation 11)

For conditionally independent mean vectors given the covari-
ances, the joint prior in (Equation 11) further factorizes into
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Table 1. Independent schizophrenia RNA-seq datasets sampled
from two different brain tissues

Disease No. of samples Brain region Dataset
Case Control
Schizophrenia 53 53 frontal cortex ~ syn4590909'*
262 293 DLPFC syn2759792'°
Total 315 346

P (s, w, AL AY) = p(|AL)p(/|AY)P (AL, AY). (Equation 12)

The block diagonal precision matrices A for ze {t, s} are ob-
tained after sampling A” from a predefined joint Wishart distribu-
tion as defined in Karbalayghareh et al."® such that AY ~ Way (MW,
), where ¥ is a hyperparameter for the degrees of freedom that
satisfies »¥ >2d and M is a (2d x2d) positive definite scale ma-
trix of the form

My — <M¥ w$>
M M

M{ and M{; are also positive definite scale matrices and M;s de-
notes the off-diagonal component that models the interaction
between source and target domains. Given A, and assuming
normally distributed mean vectors, we get

(Equation 13)

T4 ~N(m§, (KJZ/Aﬁ)q),ZE {s,t} and ye {0,1}, (Equation 14)

where my, is the (d X1) mean vector of the mean parameter p
and «J is a positive scalar hyperparameter. The joint prior distri-
bution p(AY, AY) as derived in Karbalayghareh et al.”® acts like a
channel through which the useful knowledge transfers from the
source to the target domain, causing the posterior of the target
parameters of the underlying feature-label distribution to be
distributed more narrowly around the true values.

Synthetic datasets

To simulate and verify the extent of knowledge transferability
across domains, we consider a wide range of joint prior densities
that model the different levels of relatedness between the source
and target domains. The proposed setup is as follows. We
consider a binary classification problem in the context of homo-
geneous TL with dimensions 2, 3, and 5. In the simulated data-
sets, the number of source data points per class varies between
10 and 500 and between 5 and 50 for target datasets. This
mimics realistic settings of small-size sample conditions (espe-
cially in the target domain) as reported in the literature.® We set
up the data distributions as follows. v = W = d+20, x; = K{ =
100, ks = 4 = 100, mQ = Oy, M} = ¥ x 15, M2 = md + 10 x
15, m! = m{ +10 x 14, where ¢ is an adjustable scalar used
to control the Bayes error in the target domain, and Oy and 14
are dx1 all-zero and all-one vectors, respectively. For the scale
matrices of Wishart distributions we set M{ = kilg, MJS’ = Ksly,
and M’t’S = kilg, where |y is the identity matrix of rank d. To

y My

ensure that the joint scale matrix M’ = ( tT ts) is positive
M, W
ts S

definite Vye{0,1}, we set ki = av/kiks with k>0, ks> 0, and
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|a|<1. As in Karbalayghareh et al.,”® the value of |«| controls
the amount of relatedness between the source and target do-
mains (see experimental procedures, section 4.6, for more de-
tails). To control the level of relatedness by adjusting only |«|
without involving other confounding factors, we set ki =ks=1
such that M}, = «ly. In this setting, the correlation between
the features across source and target domains are governed
by ||, where small values of |«| correspond to poor relatedness
between source and target domains while larger values imply
stronger relatedness. To sample from the joint prior, we first
sample from a non-singular Wishart distribution W»q(M”,») to

Ay Ay

get a block partitioned sample of the form AY = ( tT ts)
A A
ts S

from which we extract (A}, AY). Afterward, we sample
W~ N(m, (&AL) ") for ze {s,t} and ye{0,1}. In our simula-
tions we use two types of datasets: training datasets that contain
samples from both domains and testing datasets that contain only
samples from the target domain. In all the simulations we consider
testing datasets of 1,000 data points per class and we assume
equal prior probabilities for the classes.
RNA sequencing datasets
To evaluate the performance of the TL-based BEE on real-world
data, we consider classifying patients diagnosed with schizo-
phrenia using transcriptomic profiles collected from psychiatric
disorder studies.’ Based on two RNA sequencing (RNA-seq)
datasets listed in Table 1, we selected the transcriptomic profiles
of three genes, based on a stringent feature selection procedure
comprising the analysis of differential gene expression, clus-
tering of gene-gene interactions, and statistical testing for multi-
variate normality. More specifically, we focus on analyzing the
astrocyte-related cluster of differentiation 4, found to be signifi-
cantly upregulated in subjects with schizophrenia.'* We select
the top three hub genes that collectively satisfy the Royston’s
multivariate normality test applied to the full datasets for both
classes at a significance level of 99%. The identified genes satis-
fying all the aforementioned criteria include SOX9, AHCYL1, and
CLDN10, with an average module centrality of 0.86 measured by
genes’ module membership (kME).'* In addition to normalization
and quality control performed in Gandal et al.,'* the selected fea-
tures in both datasets have been further standardized to zero
means and unit variances across both classes as in Karbalay-
ghareh and co-workers.'®'®

We consider the dataset syn2759792, sampled from the brain
dorsolateral prefrontal cortex (DLPFC) area, as a target dataset
and syn4590909, sampled from the frontal cortex (FC) region,
as a source dataset. Among 555 postmortem brain samples in
syn2759792, we randomly draw 5 samples per class as training
data and we use the remaining samples to evaluate the classifi-
cation error. This process is repeated 10,000 times to estimate
the average MSE deviation of the TL-based BEE from the true er-
ror. To determine the model hyperparameters, we assume
shared values for case and control samples in source and target
domains and we setv = 10 X d = 30, n; = 5. As |«| represents a
cross-domain property, we employ the TL-based BEE to
conduct an exhaustive greedy search for |a|e {0.01,0.05,0.1,
0.15,0.2,0.25,0.3,0.35,0.4,0.45,0.5,0.55,0.6,0.65,0.7,0.75,
0.8,0.85,0.9, 0.95,0.99} in the task of estimating the true
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classification error by leveraging data points from a source
domain dataset. In our hyperparameter tuning experiments, we
consider source datasets of different sizes (nse{10,30,50})
and we retain the value of |«| that leads to the smallest MSE de-
viation from the true error across all the experiments. At each
iteration, we randomly permute the source samples for statistical
significance. The remaining parameters are set as follows: «; =
N, ks = Ng, and ky = ks = ‘; such that the mean of the Wishart
precision matrices will be equal to the identity matrix, which
matches the normal standardization. For mean vectors m; and
mg, we pool all case and control samples in each domain and
consider their means, respectively.

Performance on synthetic datasets

We start by evaluating the performance of the proposed TL-
based BEE in estimating the Bayes error, which corresponds
to the true error of the quadratic discriminant analysis (QDA)
(see experimental procedures, section 4.5) in the target domain,
for different levels of |«| and different size combinations of the
utilized source and target datasets.

In Figure 1, we investigate the behavior of the TL-based BEE
when the target data are fixed while we vary the size of the
source data. We show the results for d =2 in the first column,
the results for d =3 in the second column, and the results for
d=5in the last column. The rows correspond to the results for
target datasets with different sizes: n; =20 on the top and n; =
50 on the bottom. The MSE curves show similar trends for all
three values of d, where we can see that the deviation of the error
estimate from the true error significantly decreases when highly
related source data are employed. This behavior diminishes as
the relatedness between the two domains decreases. Notably,
using large source datasets (ns >200) of moderate to small relat-
edness values (|a| <0.7) does not negatively impact the perfor-
mance of the estimator for low dimensions (de {2, 3}) as shown
in the first and second columns of Figure 1. As the dimensionality
further increases (d = 5), relying on large source datasets with

mance of the TL-based BEE for quadratic
classifiers
MSE deviation from true error for Gaussian distri-

10 100 200 300 400

10 100 200 300 400

butions with respect to source sample size. The
Bayes error is fixed at 0.2 in all subfigures. For direct
evaluation and higher dimensions, see Figures S2
and S3.

500
Ns
moderate or poor relatedness to the target
domain slightly increases the deviation of
the estimated error from the true error
(i.e., |«|=0.7 in the third column). This
tiny asymptotic deviation is explained by
potential undesirable effects of relying on
large source datasets of modest related-
ness. However, it is important to note
500 that the proposed TL-based BEE in the
ns context of the given Bayesian TL frame-
d=5,n; =50 work suppresses this behavior, as it does
not directly depend on the source data
but the information transfer occurs
through the joint prior. The joint prior acts like a bridge through
which the useful knowledge passes from the source to the target
domain. Effects of using source data in different TL settings
(especially, a non-Bayesian setting) may require further investi-
gation. Moreover, the simulation results in different columns
show that the MSE deviation decreases as we rely on larger
target datasets. However, the gain in performance as we use
additional source data is reduced when target data are more
abundant. This is illustrated by the slope of the MSE graphs
that flattens as n; increases. Finally, Figure 1 shows that, for
higher dimensions, the MSE deviation tends to increase. This
is expected as increasing the dimensionality generally leads to
a more difficult error estimation problem.

Next, Figure 2 shows the MSE deviation with respect to the
size of the target dataset for dimensions 2, 3, and 5. The first
row corresponds to the case of using source datasets of size
ns =50 and the second row shows the results for ng = 200.
The performance of the TL-based BEE estimator improves with
the increasing availability of target data. We can also clearly
see that the MSE deviation from the true error asymptotically
converges to comparable values for all relatedness levels.
When highly related source data are available, the TL-based esti-
mator yields accurate estimation results even when the target
dataset is small. These results consolidate the findings in Figure 1
about the redundancy of source data in the presence of abun-
dant target data. Across all graphs in Figure 2, we can see that
a relatedness coefficient |a| =0.95 results in a nearly constant
deviation from the true error as a function of target data size,
which suggests that highly related source data |«|>0.95 act
almost identically like the target data, regardless of the shift
across the domains in terms of their means. Similar to the trends
shown in Figure 1, results across different columns of Figure 2
demonstrate that the error estimation difficulty increases with
the increase of dimensionality. This is clearly reflected in the
MSE deviation from the true error in Figure 2, which shows
that, as the dimension increases from d=2 (first column) to

d=5n,=20
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Figure 2. Effect of target data on the perfor-
mance of the TL-based BEE for quadratic
classifiers

MSE deviation from true error for Gaussian distri-
butions with respect to target sample size. The
Bayes error is fixed at 0.2 in all subfigures.

Bayesian MMSE estimator performs best
when using source data of high related-
ness to the target domain as expected.
For Bayes error in the range [0.25, 0.35],
the MSE deviation from the true error is
very high, which makes this range of Bayes
error as the most challenging setting for er-
ror estimation. For a Bayes error of 0.2, the
MSE deviation is average across all the ex-
periments, which confirms the validity of
our previous assumption in selecting this
value to investigate classification prob-
lems of moderate difficulty. We note that
the TL-based BEE shifts the performance

d=5 (last column), the MSE increases by one order of
magnitude.

Now, we aim at investigating the effect of classification
complexity on the performance of the proposed TL-based
BEE. To this end, we conduct simulations, in which we vary
the Bayes error through a wide range of possible values and
evaluate the TL-based BEE at each given Bayes error for
different sizes of target data while using source datasets of a
fixed size ns = 200. In binary classification, the Bayes error has
an upper bound specified by the true error of random classifica-
tion, which is 0.5, as every data point can be randomly assigned
one of the class labels. Ideally, we would vary the Bayes error
across the interval [0,0.5] as in Dalton and Dougherty."" How-
ever, in our setup, we do not impose any structure on the covari-
ance matrices, nor do we assume that they are scaled identities.
This makes the control of the Bayes error much more difficult. In
addition, the joint sampling setup within our Bayesian TL frame-
work inhibits any modification of the randomized parameters.
Consequently, the only practical way to adjust the Bayes error
is to tune the mean vector parameters m{ that specify the means
for the class mean vectors ) with ye {0, 1}. In our experiments,
we were able to fully control the Bayes error for d=2 and we
considered the following values [0.05, 0.1, 0.15, 0.2, 0.25, 0.3,
0.35,0.4,0.45,0.5]. Achieving the same range of values for d =
3 and d =5 was more challenging, and our implemented heuristic
did not converge for high values of Bayes error as setting m{ =
m; did not help in increasing the Bayes error. However, we
were able to vary the Bayes error for d=3 within the range
[0.05,0.1,0.15,0.2,0.25,0.3,0.35,0.4,0.45], and for d = 5, within
[0.05,0.1,0.15,0.2,0.25,0.3,0.35,0.4], sufficient for observing the
trends.

Figure 3 shows the MSE deviation with respect to the Bayes er-
ror for dimensions 2, 3, and 5. Results in the first row are obtained
using target datasets of size 20 and those in the second row are
obtained using target datasets of size 50. We can see that the
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in favor of low and high Bayes error levels.

Indeed, the TL-based BEE performs well in
this case because the estimated target parameters are suffi-
ciently accurate, even with a small target sample.

In addition to investigating the effect of different relatedness
levels between source and target domains, in Figure 4 we have
examined the performance of the TL-based BEE for the case
when the source class means are swapped between the two
classes, such that they show opposite trends compared with
the class means in the target domain. For this purpose, we repro-
duced the experiments in Figure 1 after flipping the class means
of source datasets with respect to the target classes (i.e., m} =
m:_y, for ye {0,1}). In the first row of Figure 4, we use the
generated source datasets as observed samples from the source
domain. Interestingly, the obtained results match those observed
in Figure 1. This postulates that the knowledge transfer across
source and target domains in the context of the studied Bayesian
TL framework does not depend on the arrangement of the class
means in the source and target domains but only rests on the level
of relatedness between the two domains. For verification, we
have intentionally considered the same source datasets in the
previous experiment as target datasets for estimating the TL-
based BEE and we plotted the obtained results in the second
row of Figure 4. Clearly, the TL-based BEE veers away from the
true error as we consider additional source data points. This de-
viation is worse with poorly related source data (|ja| = 0.1). These
results confirm previous findings in Karbalayghareh et al.’® that
the joint prior model in the utilized Bayesian TL framework acts
like a bridge that distills the useful knowledge from the source
domain and effectively transfers it to the target domain.

Results from the second set of experiments that use a linear
discriminant analysis (LDA) classifier (see experimental proced-
ures, section 4.5) were similar to the ones obtained using the
QDA classifier except for some differences in the performance
of the TL-based BEE with respect to the Bayes error that we
report in Figure 5 (see supplemental information, section 8, for
additional results). The TL-based BEE performance has similar
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trends with respect to small and moderate Bayes errors when
compared with the presented results obtained using the QDA
classifier. A notable difference here is observed for large values
of Bayes error where the TL-based BEE shows decreased per-
formance in terms of MSE deviation from the true error, which
is due to the fact that the employed LDA classifier is sub-optimal
compared with the Bayes classifier. This is expected as linear
decision boundaries tend to be more sensitive to deviations
from true model parameters for highly overlapping class-condi-
tional distributions. In our final set of experiments using synthetic
datasets, we compare the performance of the proposed TL-
based BEE to standard error estimators for different dimensions
and various source datasets of relatedness level |a|= 0.9 to the
target domain for an optimal Bayesian transfer learning (OBTL)
classifier (see experimental procedures, section 4.5). In Figure 6,
we show the MSE deviation with respect to different target data-
set size. As clearly shown, our proposed TL-based BEE signifi-
cantly outperforms all other standard error estimators by a sub-
stantial margin. In agreement with previous findings in the
literature, the standard error estimators perform comparably
for low dimensions (i.e., d = 2), where the bootstrap may show
a slight advantage. As the dimensionality increases (i.e., d =
5), the performance shift of the studied estimators becomes
more apparent. For example, the resubstitution estimator per-
forms poorly in the small-sample regime while the bootstrap esti-
mator outperforms leave-one-out cross validation (LOO) and CV.
Furthermore, we noticed that increasing the size of the source
dataset does not lead to any apparent performance improve-
ment for the standard estimators. This is because these estima-
tors do not directly depend on the source data for error estima-
tion (as they are incapable of taking advantage of data from
different yet relevant domains). However, providing additional
source data to the TL-based BEE considerably reduces the
MSE deviation from the true error for all dimensions as shown
in Figure 6.

of source datasets, the FC brain region
showed high relatedness to the DLPFC
brain area where the optimal MSE devia-
tion from the true error was obtained for |«| = 0.99. Interest-
ingly, findings in Gandal et al.' also confirm that syn4590909
and syn2759792 are highly related, as independent gene
expression assays for both brain regions have consistently
replicated the gradient of transcriptomic severity observed for
three different types of psychiatric disorders, including bipolar
disorder and schizophrenia.'”* We note that the significant
decrease in the MSE deviation from the true error in Figure 7A
corresponds to the boost in performance caused by increasing
|| from 0.01 to larger values. This can be explained by the high
relatedness between the two studied domains. Indeed,
assuming very poor relatedness (i.e., |a| = 0.01) between the
domains, deviating from the ground truth of high relatedness
results in a very large MSE. We show in Figure 7B the
increasing gain in accuracy of the TL-based BEE in estimating
the classification error after using additional labeled observa-
tions from the source domain. These results again confirm
the efficacy and advantages of our TL-based error estimation
scheme, compared with other standard error estimation
methods, when additional data are available from different
source domains that are nevertheless relevant to the target
domain. From a practical perspective, our proposed TL-based
BEE has the potential to facilitate the analysis of real-world da-
tasets in the context of small-sample classification. Challenges
of designing and evaluating classifiers (e.g., for clinical diag-
nosis or prognosis) in a small-sample setting are prevalent in
scientific studies in life sciences and physical sciences due to
the formidable cost, time, and effort required for data acquisi-
tion. This is certainly the case for the example that we consider
in this section, where invasive brain biopsies would be needed
to get the data.

Insights gained
In this section, we summarize the insights gained from our ana-
lyses, which demonstrate the potential advantages of applying
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Figure 4. Effect of the arrangement of the
class means in the source and target do-
mains on the performance of the TL-based
BEE

MSE deviation from true error with respect to
source sample size. The source class means are
flipped with respect to target classes (m% = m] 7,
for ye {0, 1}). In the first row, the source datasets
are correctly considered as source samples. In the
second row, the source datasets are intentionally
considered as target samples. The Bayes error is
fixed at 0.2 and d = 5.

modestly relevant to the target domain
of interest are available, knowledge trans-
fer to the target domain by appropriate
modeling of the joint prior could enhance
both the accuracy and the reliability of the
error estimation. This was validated in our
current study, where the joint prior acts
like a “channel” as well as a “filter,”
through which useful relevant knowledge

TL to the estimation of classification errors. Our results have
shown that incorporating data and knowledge from relevant
source domains is helpful to significantly enhance the classifi-
cation error estimation accuracy. When an appropriate source
domain is identified, the efficiency of the knowledge transfer
process depends on the correlation of the features across do-
mains, rather than the class-conditional mean values of the fea-
tures, with our problem setups. From an error estimation
perspective, our investigation has revealed that, unlike classi-
fier design, the most challenging setting for error estimation
arises in classification problems of moderate complexity in
terms of Bayes error. When source datasets that are at least

is passed from the source domain to the target domain. Our re-
sults have shown that using at least 200 data points from a
relevant source domain, whose relatedness level is above
0.7, enables an accurate error estimation even with small target
data (less than 50 sample points). Using real-world biological
data (RNA-seq data), we have shown that the relatedness level
can be empirically determined by exploring the range of
possible values.

Limitations of the study
This section discusses the limitations of our current work in
modeling assumptions, computational cost, and scalability to

Figure 5. Effect of the classification

complexity on the performance of the TL-
based BEE for linear classifiers

1074 MSE deviation from LDA true error for Gaussian
distributions with respect to Bayes error. Source
sample size is set to ns =200 in all subfigures. See
also Figures S4 and S5.
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higher dimensions. Despite the precise mathematical definition
of our error estimator, accurate estimation of the classification
error is contingent on whether predictive posterior densities
are available in closed forms or can be approximated in an effec-
tive manner. While such densities are available for Gaussian
models (e.g., assuming joint Wishart priors), one may need to
derive them for different priors for non-Gaussian distributions.
The computational complexity to accurately estimate the pro-
posed TL-based BEE through direct sampling methods can be
excessive and may scale poorly for higher dimensions. However,
we efficiently overcame this limitation by developing a robust
importance sampling setup that has shifted all the computational
overhead related to the TL process from Monte Carlo sampling
to the numerical evaluation of the importance likelihood. Devel-
oping similar statistical methods for TL-based BEE would be
needed for different modeling assumptions. While the definition
of the TL-based BEE and the proposed robust importance sam-
pling scheme are general and applicable to higher dimensions,
controlling the Bayes error for synthetic datasets for dimensions
higher than 5 can be challenging, which was the main reason
for choosing the dimensions d=2, ..., 5 in this study. However,
this is not an issue in practice, as the classification complexity
in real-world applications (reflected by the Bayes error) is an
inherent property of a given classification problem governed by
the underlying feature-label distribution, and not a design
choice. Technically, the proposed TL-based BEE can be applied
to classification problems based on high-dimensional features
as long as the required computational resources are available.
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Figure 6. Comparative analysis of the per-
formance of the TL-based BEE with respect
to standard error estimators

MSE deviation from true error with respect to target

data size. The proposed TL-based BEE is
compared with other widely used estimators. In all
subfigures, the Bayes error is fixed at 0.2, and
la| = 0.9.

Furthermore, we can also consider classifier design and error
estimation based on a lower-dimensional representation of
the original feature space—e.g., using principal-component
analysis or auto-encoders—to make the computational cost
manageable.

Conclusions

In this study, we have introduced a Bayesian MMSE estimator
that draws from concepts and theories in TL to enable accu-
rate estimation of classification error in the (target) domain of
interest by utilizing samples from other closely related (source)
domains. We have developed an efficient and robust impor-
tance sampling setup that can be used for accurate error
estimation in small-sample scenarios that often arise in
many real-world scientific problems. Extensive performance
analysis based on both synthetic and real-world biological
data demonstrates the outstanding performance of the pro-
posed TL-based BEE clearly outperforming conventional
estimators.

In our proposed framework, Laplace approximations were
used to alleviate the complexity associated with the exact eval-
uation of generalized hypergeometric functions that appear in
the posterior distribution of the target parameters. Beyond the
Gaussian model assumed in the validation experiments, we
also provide a general mathematical definition for the TL-based
BEE that can directly be extended to applications with non-
Gaussian distributions where the model parameters can be in-
ferred through Markov chain Monte Carlo (MCMC) methods. In

Figure 7. Performance of the TL-based BEE
on real-world RNA-seq datasets
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from source domain significantly reduces the MSE
of the TL-based BEE in the target domain.
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this study, target and source domains were related through the
joint prior of the model parameters that transfers useful knowl-
edge across domains. A key property of the proposed TL-based
BEE is its elegant ability to handle the uncertainty about the
model parameters by integrating this prior with data, deducing
robust estimates by accounting for all possible parameter
values.

Paramount practical challenges for the TL-based BEE include
the identification of suitable source domains that share similar
families of distributions as the target domain of interest. This is
crucial as the relatedness across domains is mathematically
modeled assuming the similarity of the feature-label distributions
across domains. Furthermore, learning the joint prior for the dis-
tributions and modeling the relatedness between different
domains may also present an engineering challenge. While tech-
niques for knowledge-driven prior construction have been devel-
oped,'”"® such techniques have yet to be developed for joint
prior construction for relevant domains, which is an important
future research direction.

An important aspect enabled by the proposed TL-based BEE
is optimal data acquisition from multiple domains that aims at
maximally enhancing the error estimation capability based on
a finite budget for data acquisition. For example, if one has a
fixed budget to acquire additional data from either the source
or target domain, what would be the most cost-effective strat-
egy for data acquisition? In typical TL scenarios, data acquisi-
tion cost may be relatively cheaper in the source domain than in
the target domain, although the data acquired in the target
domain might be more impactful. A natural question is how
one can maximize the “return-on-investment” for data acquisi-
tion given the available budget. Such strategies for optimal
experimental design'®?* and active learning®> >’ have been
actively studied in a Bayesian paradigm that enables objec-
tive-based uncertainty quantification via mean objective cost
of uncertainty.?®?° While this is beyond the scope of this
current study, it opens up interesting directions for future
research.

EXPERIMENTAL PROCEDURES

Resource availability

Lead contact

Dr. Byung-Jun Yoon is the lead contact for this study and can be reached at
bjyoon@ece.tamu.edu.

Materials availability

This study did not generate any physical materials.

Data and code availability

All RNA-seq datasets that have been utilized in this study are publically
available. All original code has been deposited at https://github.com/
omarmaddouri/TL_BEE, archived in Zenodo under the https://doi.org/10.
5281/zenodo.5594476, and are publicly available as of the date of publication.
In addition to the proposed importance sampling estimate, we also provide im-
plementation of the direct evaluation using the predictive posterior density of
target parameters.

Bayesian TL for error estimation

The advantage of the mathematical formulation that underlies the proposed
TL-based BEE (and also the original TL Bayesian framework in Karbalayghareh
et al.’®) is that it articulates a unified Bayesian inference model that assumes a
specified prior distribution governing the parameter vector 6; and acting like a
bridge to help update =*(¢;) after observing D; and Ds. From this standpoint,
the derivation of the TL-based BEE for TL depends on determining =*(6;). To
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determine the TL-based BEE in the context of the presented Bayesian transfer
learning framework we evoke the following theorem.

Theorem 1:'° given the target D; and source Ds data, the posterior distribu-
tion of target mean 1) and the target precision matrix A} for the classes
ye {0, 1} has Gaussian-hypergeometric function distribution given by

1 K
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where A” is a constant of proportionality given by
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and sample means and covariances for ze {s, t} given by

a
bi
variate hypergeometric functions reviewed in the supplemental information,
section 6. Now, using Theorem 1 and assuming that the class-0 prior probabil-
ity c, 0?, and 02 are independent prior to observing D; and Ds, the BEE for TL is
given by

1F1

X] and »F4 {i" b ; X] are, respectively, the confluent and Gauss matrix-

€ =Ep[ClEx [65] + (1 — Ex[C])Ex [€1],

n

(Equation 18)
where

E.[e] = / & (8)) 7 (8)) e, (Equation 19)
@Y

with ®) being the parameter space that contains all possible values for 6.

Computing TL-based BEE for arbitrary classifiers

Computing the TL-based BEE for an arbitrary classifier y,, involves the evalu-
ation of the integral in (Equation 19). Even when we have an analytic expression
for the true error of the studied classifier, the closed-form expression for the
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TL-based BEE cannot be easily derived due to the complex expression of the
target posterior in the presence of the matrix-variate hypergeometric func-
tions. With non-linear classifiers, this becomes practically impossible as no
closed-form expression exists for the true error itself. The standard way to
approximate the true error in this case is to consider the test error. For a spec-
ified parameter 6;, a large test set is generated from f;,(x,y), and the perfor-
mance of v, is evaluated on that test set. This requires sampling from 7*(6})
so that the integral in (Equation 19) can be approximated by a finite sum. Sup-
pose we have N posterior sample points 9{, ~m*(#),i= 1---N. Then the
approximation is given by

(Equation 20)

Because of the generalized confluent and Gauss hypergeometric functions
in the expression of n*, sampling directly from the posterior is very laborious
and the computational cost of applying MCMC methods is exorbitant
as the execution may take several weeks even on high-performance
computing clusters. To address this issue, in the next section we propose
an efficient self-normalized importance sampling setup with control
variates that provides accurate estimates for the TL-based BEE and signifi-
cantly reduces the computation time to make the proposed TL-based BEE
feasible.

Self-normalized importance sampling with control variates
Importance sampling

Importance sampling (IS) is a variance reduction technique that provides a
remedy to sampling from complex distributions.*’ To estimate E,-[}], IS
makes a multiplicative adjustment to &}, to compensate for sampling from an
alternative importance distribution ®* instead of =*. If ®* is a positive probabil-
ity density function on ®/, we can write

(Equation 21)

Achieving an accurate IS estimation is contingent on selecting an appro-
priate importance density that is nearly proportional to ¢ (¢/)7*(¢/). By anal-
ogy to Gordon and co-workers,*'*? a plausible and cogent candidate for &*
emanates as the posterior of target parameters upon observation of target-
only data. Obviously, both distributions are tracking the same model parame-
ters in the target domain upon observation of data. To determine @*(¢/) =
p(uf, AY|DY) we require the following lemma:

Lemma1:*%if D ={x4,---,X,} where x; is a dx 1 vector and x; ~ A (u,(A)™"),
fori= 1,---,n, and (u,A) has a Gaussian-Wishart prior, such that u|A ~
N(m, (xkA)~") and A ~ W4(M,v), then the posterior of (1, A) upon observing
D is also a Gaussian-Wishart distribution such that

u‘A,D~N(mn, (an)*‘); A‘D ~ Wa(M,, 1), (Equation 22)

where
Kn=K+N, vp=v+n,
m _ km+nX and
= ern (Equation 23)
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K+n
depending on the sample mean and covariance matrix

n n
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Using Lemma 1 we now get the expression of the importance density ®*
given by
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with sample mean and covariance given by
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After simplifications, the expression of the TL-based BEE in (Equation 21)
takes the form

Er [e4] = Ea [ (67)L(8))], (Equation 27)

where ¢/ = (u), AY) and L(¢/) is the likelihood ratio given by
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(Equation 28)

Although the likelihood ratio has a simplified expression, computing
the hypergeometric functions involves the computation of series of
zonal polynomials, which is computationally expensive and not scalable to
high dimensions. To mitigate this limitation, we use the Laplace
approximations of these functions (see Figure S1 and supplemental informa-
tion, section 6). To rectify possible disproportionalities in likelihood
ratios due to approximations, we consider the self-normalized IS estimate
given by

Z:{Vﬂfﬁ (9{/) L‘(ﬂ{i)

(Equation 29)
Sic(e)

Evlef] =

with ¢/, ~ @*(¢/),i = 1---N.

Control variates

For more stable and efficient estimates, we further combine IS with control var-
iates. Using control variates in conjunction with IS is a variance reduction tech-
nique, in particular when a significant portion of a model for estimating the
expectation can be solved explicitly. In our case, a useful control variates func-
tion (CVF) V(¢/) satisfies
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(Equation 30)

where 3 is a constant. Under such circumstances, a more stable estimate for
the TL-based BEE can be derived as

o Shel) )
Eule] = Z,‘N:J(”{i) e @*((,\{/.)

(Equation 31)

where 6/, ~ ®*(6/),i=1---N and B is a weighting coefficient tuned to reduce
the variance of the estimate. The optimal value of B is given by

Bopt = varV(@)] (Equation 32)
with
o) = w (Equation 33)
kZi=1L(ﬁ{f)

and cov|+, ] and var| -] denote covariance and variance, respectively (see
supplemental information, section 7.3, for more details). In practice, it is not
likely that we know §,,; beforehand, but it is estimated from the Monte Carlo
sample. It turns out that I::q,~ has lower variance than E@' by a factor of (1 —
corr[4(#), V(6%)]), where corr[a,b] denotes the correlation coefficient be-
tween a and b and given by

cov[a,b]

var[a] \/var[b]

To select an appropriate CVF we need to consider two criteria. First, its
expectation with respect to ®* should have an exact evaluation. Second, it
has to be correlated with the estimated error. A favorable candidate is the an-
alytic true error of linear classifiers. In this study, we consider a CVF given by
the true error of an LDA classifier defined by g, (x) :a[,tx+bN, where ay, =
S (X! — X{), by, = — 1a’ (X] +i?)+|n%§,, and the pooled covariance S; is
given by

corr[a,b] = (Equation 34)

()8 (ol - 1)s]

S; = N2 (Equation 35)

X/ and S} are the empirical estimates utilized in (Equation 26). Thus, the CVF is
given by

(=1 gm (1)

/ - ’
al(l, (A{) ay,

with @ denoting the standard normal Gaussian cumulative distribution func-
tion. Now it remains only to determine Eq- [V(1), AY)] in closed-form to fully
define the estimation setup. We can show after simplifications and using re-
sults from'" that

V(i ,A))=® (Equation 36)

1 sgn(A) A?

Ven —d+1
Eo W/, A))] = 5+ 5T it
A2 +ap,T [M{n] ay,

1
2 2

2 2

(Equation 37)

where sgn( +) is the sign function,

A= (_1)ygNt (m)t/n)

X E ti
T, (Equation 38)

and Z( +; -, +) denotes the regularized incomplete beta function given by
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I(x;a,b) = % /0 i 21—t at, (Equation 39)

with T'( +) being the regular univariate gamma function. Details for simplifying
Eq V(1) , AY)] are covered in supplemental information, section 7.4.

The complete specification of the CVF concludes our IS setup. We enumerate
some advantages of the proposed setup over direct sampling methods. First, the
importance density ®* is much simpler than the nominal density 7, which in-
volves matrix-variate hypergeometric functions. Second, our setup successfully
combines two variance reduction techniques that enable accurate estimation.
Last, and most importantly, the independence of the generated Monte Carlo
samples w.r.t source data permits the reuse of the sampled parameters with
various source datasets for fixed models. This reusability significantly reduces
the computational cost of sampling from ®* and makes the utilization of
advanced MCMC methods amenable as the whole process could be accelerated
by afactor of 10-20, which also grows with the dimensionality and the number of
used source datasets (see supplemental information, sections 7.5 and 7.6, for
more details). For efficient sampling from ®*, we use Hamiltonian Monte Carlo
(HMC), proven to have a superior performance to standard MCMC samplers.**
For this purpose, we utilize the STAN software, which offers a full Bayesian sta-
tistical inference framework with HMC.>*

Classifier design
For a comprehensive evaluation of our TL-based error estimator, we design
and perform a set of experiments. The proposed TL-based estimator is applied
to a collection of classifiers with different levels of learning capacities and
tested under various scenarios. To separate error estimation from classifier
design, we start by analyzing the performance of the TL-based BEE estimator
for fixed classifiers that do not depend on training data. This setup distinctly
reveals the major characteristics of the TL-based BEE, excluding any con-
founding factors that may stem from classifier design and the performance
of the resulting classifier.

Next, we also conduct a comparative study of the TL-based BEE performance
with respect to other widely used error estimators, which include resubstitution,
CV, LOO, and the 0.632-bootstrap estimators. As these popular data-driven es-
timators involve classifier design on the training data, we will also consider a TL-
based classifier designed on target and source data that operates in the target
domain for comparison. For this, we employ the OBTL classifier introduced in
Karbalayghareh et al.,'® which shares the same Bayesian framework on which
our TL-based BEE is developed. In what follows, we recall the definition of
each classifier considered in our evaluations and also present the details of
the evaluation experiments performed in this study.

In the first set of experiments, we employ a fixed quadratic classifier
assuming we know beforehand the true target parameters. For normally
distributed data, this quadratic classifier corresponds also to the Bayes clas-
sifier that is optimal for the given feature-label distributions. Using QDA, we
define Wqpa(x) = X" Ax+b’x+c, where

A= — 2 (A} - A7), b=Adp — Alwg,
A7l

o=
ALl

Nl = o=

1 (Equation 40)
T u
(- 2) - o )

The error estimation problem turns out to be an estimation of the Bayes error
that coincides here with the true error of the designed QDA. Obviously, this
classifier is independent from any observed sample as it is fixed assuming
known true model parameters. Without loss of generality, we apply the TL-
based BEE using labeled observations from a compound dataset compiled
from target and source domains.

In the second set of experiments we investigate the behavior of the TL-
based BEE within the class of sub-optimal classifiers. To this end, we consider
a linear classifier derived through LDA and we define W, pa(x) = a’x+b where
a= 8" (u — ), b= —1a (4 +uf), and the average covariance S; is
given by

(a9 "+ (A

S = 3

(Equation 41)
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Figure 8. Simulation diagram using synthetic data
Flow chart illustrating the simulation setup based on synthetic datasets.

Our goal is then to approximate the true error of this sub-optimal classifier
using TL.

Next, we evaluate the performance of the TL-based BEE for the OBTL clas-
sifier that can take advantage of both source and target domain data. The
OBTL classifier is defined by

Wopr (x) = arg maxOosre (X|y), (Equation 42)
ye{0,1}

where the objective function Opgr (X|y) denotes the effective class-condi-
tional density p(x|y) given by the following theorem:

Theorem 2:'° the effective class-conditional density, denoted by p(xly) =
Oogr(X|y), in the target domain is given by

d
Qosn )= 4 (%) o (“5) 12t () w0
Wanl ¥ +n! +1
2 2

wWanl wW+n!
2 72
v
2

x oF; STPTE | LF, TP |
2

(Equation 43)
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where
K=k, + 1=k +n +1,
’C{ﬂ

KL+ 1

(Equation 44)

(T) "= (m) "+ (Y, —x) (mf, —x)".

Simulation setup

Figure 8 provides a combined illustration of the simulation setup for all three
classifiers. For rigorous evaluation of the performance of the proposed TL-
based BEE, we primarily focus our experiments on assessing the impact of us-
ing different types and amounts of source data. This is enabled by the joint
prior imposed over the model parameters and controlled by the relatedness
coefficient |«| that dictates the extent of interaction between the features in
the two domains. For this purpose, we repeatedly conducted experiments
following the flow chart in Figure 8 with different relatedness values (|ja| =
[0.1,0.3,0.5,0.7,0.9,0.95]), where |a| = 0.1 corresponds to the lowest related-
ness between the two domains and |«| = 0.95 reflects the highest relatedness
within the range of studied values.

In the first set of experiments, we start by drawing a joint sample (A, AY) for
eachclassye {0, 1}, as described previously. Next, we iterate over the values of
the hyperparameter ¢ to control m;(¥) through a dichotomic search to get a
desired value T of the Bayes error. This is achieved by drawing a sample
w o~ N(mg(9), (K{A{)’1 ) and then generating a test set based on the joint sam-
ple (1} ,AY). Using this test set, we determine the true error of the optimal QDA
derived from (u),AY). If the desired Bayes error (true error of the designed QDA)
is attained then the iteration stops, otherwise we update ¥ and reiterate. In our
experiments, unless otherwise specified, we set 7=0.2 to mimic a moderate
level of classification complexity. This step is indeed crucial as it maintains
the same level of complexity across the experiments and guarantees a fair
comparison across different levels of relatedness. We note that this procedure
is valid for general covariances as it acts only on updating the value of the mean
parameter without altering the structure of the covariances nor the random
mean vectors. Obviously, this approach to specify the Bayes error maintains
the Bayesian TL framework intact. However, it is not guaranteed to find values
of target parameters that correspond to the desired Bayes error, especially for
high dimensions and complex classification (large Bayes error) as we discuss in
Performance on synthetic datasets. Once the problem complexity is set and the
classifier is fixed, we generate Ny =10,000 training datasets that we use to
evaluate the MSE of the TL-based BEE as depicted in Figure 8. To estimate
the TL-based BEE, we employ the IS setup described previously and we
draw 1,000 MC samples from the importance density using HMC sampler.

In the second set of experiments, we follow a similar setup using an LDA
classifier designed based on the true model parameters. As before, we employ
QDA to determine the Bayes error to maintain the same complexity level
across different experiments. As in the first set of experiments, we use the
TL-based BEE to estimate the true error of the designed LDA classifier.

In the last set of experiments on synthetic datasets, we conduct a compar-
ative analysis study using an OBTL classifier designed using training datasets
generated from the model parameters specified by the Bayes error. The error
estimation task, in this scenario, aims at approximating the true error of the de-
signed OBTL classifier determined using a large test set generated from the
true feature-label distributions. As illustrated in Figure 8, QDA and LDA classi-
fiers are fixed and derived from the true model parameters while the OBTL
classifier is designed based on training datasets collected from the underlying
feature-label distributions that correspond to the specified Bayes error. In all
simulations, the designed classifiers are fixed given the observed samples
and the TL-based BEE estimator is safely applied. Finally, regarding synthetic
datasets, we note that the flow chart in Figure 8 is valid for all classifiers (QDA,
LDA, and OBTL) and the notation ¥ designates the classifier of interest in the
corresponding set of experiments. For instance, in the second set of experi-
ments, W refers to W, pa.

In addition to this in-depth analysis of the performance, behavior, and char-
acteristics of our proposed TL-based BEE based on synthetic datasets, we
also performed additional validation based on real-world biological datasets.
By using RNA-seq datasets syn2759792 and syn4590909 taken from different
brain regions for studying brain disorders, we train a QDA classifier using the
target data from the RNA-seq dataset syn2759792, and we leverage the
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source data from syn4590909 to evaluate the performance of the proposed
TL-based BEE.

SUPPLEMENTAL INFORMATION

Supplemental information can be found online at https://doi.org/10.1016/j.
patter.2021.100428.
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