Data in Brief 42 (2022) 108113

Contents lists available at ScienceDirect

Data in Brief

journal homepage: www.elsevier.com/locate/dib

Data Article

Synthetic data for design and evaluation of
binary classifiers in the context of Bayesian

transfer learning

=

Omar Maddouri?, Xiaoning Qian®®, Francis J. Alexander®,
Edward R. Dougherty?, Byung-Jun Yoon®"*

2 Department of Electrical and Computer Engineering, Texas A&M University, College Station TX 77843, USA
b Computational Science Initiative, Brookhaven National Laboratory, Upton NY 11973, USA

ARTICLE INFO

ABSTRACT

Article history:

Received 7 December 2021
Revised 21 January 2022
Accepted 28 March 2022
Available online 2 April 2022

Dataset link: Synthetic Data for Design and
Evaluation of Binary Classifiers in the
Context of Bayesian Transfer Learning
(Original data)

Keywords:

Bayesian transfer learning
Binary classification
Classifier design

Error estimation

Transfer learning (TL) techniques can enable effective learn-
ing in data scarce domains by allowing one to re-purpose
data or scientific knowledge available in relevant source do-
mains for predictive tasks in a target domain of interest.
In this Data in Brief article, we present a synthetic dataset
for binary classification in the context of Bayesian transfer
learning, which can be used for the design and evaluation
of TL-based classifiers. For this purpose, we consider numer-
ous combinations of classification settings, based on which
we simulate a diverse set of feature-label distributions with
varying learning complexity. For each set of model param-
eters, we provide a pair of target and source datasets that
have been jointly sampled from the underlying feature-label
distributions in the target and source domains, respectively.
For both target and source domains, the data in a given
class and domain are normally distributed, where the dis-
tributions across domains are related to each other through
a joint prior. To ensure the consistency of the classification
complexity across the provided datasets, we have controlled
the Bayes error such that it is maintained within a range of
predefined values that mimic realistic classification scenar-
ios across different relatedness levels. The provided datasets

DOI of original article: 10.1016/j.patter.2021.100428

* Corresponding author.

E-mail address: bjyoon@ece.tamu.edu (B.-J. Yoon).

https://doi.org/ 10.1016/j.dib.2022.108113

2352-3409/© 2022 The Author(s). Published by Elsevier Inc. This is an open access article under the CC BY-NC-ND
license (http://creativecommons.org/licenses/by-nc-nd/4.0/)

https://doi.org/10.1016/j.dib.2022.108113
http://www.ScienceDirect.com
http://www.elsevier.com/locate/dib
http://crossmark.crossref.org/dialog/?doi=10.1016/j.dib.2022.108113&domain=pdf
https://data.mendeley.com/datasets/fn33cknmfx/1
https://doi.org/10.1016/j.patter.2021.100428
mailto:bjyoon@ece.tamu.edu
https://doi.org/10.1016/j.dib.2022.108113
http://creativecommons.org/licenses/by-nc-nd/4.0/

2 0. Maddouri, X. Qian and FJ. Alexander et al./ Data in Brief 42 (2022) 108113

may serve as useful resources for designing and benchmark-

ing transfer learning schemes for binary classification as well
as the estimation of classification error.

© 2022 The Author(s). Published by Elsevier Inc.

This is an open access article under the CC BY-NC-ND

license (http:[/creativecommons.org/licenses/by-nc-nd/4.0[)

Specifications Table

Subject Applied Machine Learning
Specific subject area Bayesian transfer learning
Type of data Binary Matlab files

Matlab source code
Shell script

How data were acquired Matlab simulations

Data format Binary Matlab files (*.mat)
Matlab scripts (*.m)

Shell script (*.sh)

Parameters for data collection Three feature dimensions (d = {2, 3, 5}) were considered for the studied
feature spaces. Four classification complexity levels (Bayes error
{01, 0.2, 0.3, 0.4}) were considered for each dimension. Six relatedness
levels (|| € {0.1, 0.3, 0.5, 0.7, 0.9, 0.99}) were used to model the
relatedness between source and target domains.

Description of data collection Source and target datasets have been generated by Matlab simulations. The
feature-label distributions in source and target domains were assumed to
be multivariate Gaussian distributions. Both domains were related to each
other through a joint prior: i.e., Wishart distribution of the precision
matrices of the underlying Gaussian feature-label distributions. The
classification complexity has been modeled by the Bayes error that has
been determined via the true classification error of an optimal quadratic
discriminant analysis (QDA) classifier.

Data source location Institution: Texas A&M University
City/Town/Region: College Station, TX 77843
Country: USA
Data accessibility Repository name: Synthetic Data for Design and Evaluation of Binary

Classifiers in the Context of Bayesian Transfer Learning [1]

DOI: 10.17632/Mm33cknmfx.1

Direct URL to data: https://data.mendeley.com datasets/fn33cknmfx; 1
Related research article 0. Maddouri, X. Qian, F.]. Alexander, E. R. Dougherty, B.-]. Yoon, Robust

importance sampling for error estimation in the context of optimal

Bayesian transfer learning, Patterns 3 (3) (2022) 100428.

https://doi.org/ 10.1016/j.patter.2021.100428.

Value of the Darta

» The data here provide useful resources for studying binary classification and error estima-
tion problems from a transfer learning perspective. The relatedness across domains has been
mathematically modeled as in [2] through a joint Wishart distribution over the model pa-
rameters. This enables rigorous quantification of the relevance across the source and target
domains. The selective sampling of the model parameters in the source and target domains
based on the classification complexity (Bayes error) makes the comparison of the evaluation
results across different dimensions and relatedness levels possible, as it preserves the sim-
ulation conditions across different experiments. Without these stringent conditions, drawing
statistically meaningful conclusions from empirical analysis would be practically difficult.

The provided data are of practical values to any data-driven machine learning approach
that employs transfer learning to solve binary classification problems. More specifically, the
dataset can be used to design novel classifiers in the target domain based on additional data

http://creativecommons.org/licenses/by-nc-nd/4.0/
https://doi.org/10.17632/fn33cknmfx.1
https://data.mendeley.com/datasets/fn33cknmfx/1
https://doi.org/10.1016/j.patter.2021.100428

0. Maddouri, X. Qian and FJ. Alexander et al./Data in Brief 42 (2022) 108113 3

from the source domain. The large size of the provided dataset (for each configuration, there
are 10° data points per class for each domain) will facilitate the design, validation, and eval-
uation of new algorithms. The wide range of values for the feature space dimensions, Bayes
errors, and relatedness levels will enable a comprehensive performance assessment of new
classification and error estimation methods under diverse classification settings.

In many scientific or clinical settings, training data are typically limited in the target domain
(e.g., due to high data acquisition cost), which impedes the design and evaluation of accu-
rate classifiers. Transfer learning can improve the learning outcome in the target domain by
incorporating data from relevant source domain(s). From this perspective, the optimal set-
ting to use the provided data is to consider only a few data points in the target domain to
develop new machine learning methods (e.g. classifier design [2], classification error estima-
tion [3]), and to leverage a relatively larger amount of source data to improve the machine
learning task in the target domain. The substantial part of the remaining target data that are
provided in the dataset should be mainly used to estimate the ground-truth metrics (i.e., true
classification error) and not as training data.

» The provided simulation source code can be used to simulate other classification scenarios
for higher feature space dimensions and/or different classification complexity levels.

The detailed description of the simulation setup that was used to generate the current
dataset can provide a solid guideline on how the experimental setup should be configured
to study classification problems from a transfer learning perspective. As the transfer learning
aspect involves various factors affecting the classification and error estimation performance,
especially due to the heterogeneity of the data characteristics across domains, it is critical
to maintain uniformity of the experimental conditions across all the simulations to enable
interpretations of the obtained results that are accurate, valid, and statistically meaningful.

1. Data Description

As illustrated in Fig. 1, the main folder Synthetic_Data_Classification_Bayesian_Transfer_
Learning contains three data sub-folders (d_2, d_3, and d_5) that correspond to dimensions
2, 3, and 5, respectively. The remaining sub-folder generation_source_code contains the Matlab
source code.

In every data sub-folder (d_2, d_3, or d_5) there are 24 binary Matlab files with names en-
coded as follows: Data_d_x_Bayes_x.x_n_t_x_n_s_x_alpha_x.x_nu_x.mat, where:

= d_x: refers to the dimension of the feature space where x takes values 2, 3, or 5.
- Bayes_x.x: designates the classification complexity level (0.1, 0.2, 0.3, or 0.4).
» n_t_x: indicates the number of target data points per class
(i.e.: for 10, this string is set to n_t_100000)
» n_s_x: indicates the number of source data points per class
(i.e.: for 105, this string is set to n_s_100000)

[i Synthetic_Data_Classification_Bayesian_Transfer_Learning
- d_z
.
s

- generation_source_code

Fig. 1. Hierarchy of the main data repository.

4 0. Maddouri, X. Qian and FJ. Alexander et al./ Data in Brief 42 (2022) 108113

- alpha_x.x: indicates the relatedness level (0.1, 0.3, 0.5, 0.7, 0.9, or 0.99).
= nu_x: specifies the value of a hyperparameter v that corresponds to the degrees of freedom
used to model the joint Wishart distribution (in our simulations, we set v = d + 20).

In every Matlab binary file among the aforementioned files, there are 4 indexed data con-
tainers called cell arrays that also contain, each, two cell containers. These data containers are
described as follows:

+ D_s: source dataset of dimension (10° x d) per class.

- D_t: target dataset of dimension (105 x d) per class.

« param_s: parameter vector of the source domain that specifies the means and the precision
matrices of the multivariate Gaussian distributions that underlie the data classes and has the
following cell parameters:

1. mu_s: contains a d-dimensional real-valued vector per class.
2. Lambda_s: contains a (d x d) positive definite precision matrix per class.

« param_t: parameter vector of the target domain that specifies the means and the precision
matrices of the multivariate Gaussian distributions that underlie the data classes and has the
following parameters:

1. mu_t: contains a d-dimensional real-valued vector per class.
2. Lambda_t: contains a (d x d) positive definite precision matrix per class.

The Matlab source code directory generation_source_code' is structured as illustrated in
Fig. 2. For each dimension (d € {2, 3, 5}), we include a list of sub-folders Bayes_x.x that cor-
respond to different classification complexity levels that have been used in the evaluation ex-
periments. Under each Bayes_x.x folder, we dedicate a sub-folder alpha_x.x for each relatedness
level.

Fig. 3 shows the content of each relatedness level directory. Under each relatedness level
folder, there is a main script file named simulate_Data.m that includes the simulation settings
relevant to the parameter values as specified by the architecture of the parent directories. The
remaining files (generate_Data.m, setup_parameters.m, test_error_QDA.m, and train_QDA.m)
are shared across all the experiments and are duplicated in the different folders for distributed
execution purposes.

2. Experimental Design Materials and Methods
2.1. Bayesian transfer learning framework for binary classification

To model the synthetic data we consider a binary classification problem in the context of
supervised transfer learning where there are two classes in each domain. Let D; and D; be
two labeled datasets from the source and target domains with sizes N; and N;, respectively.
Let DY = {x |, o, . % ns} y € {0, 1}, where n¥ = 10° denotes the size of source data in class

5,2’
y. leerse let DY = {xY,x},,--- ., %}, }. y € {0, 1}, where n} = 10° denotes the size of target

data in class y. With the assumpnon of disjoint datasets across classes, we have D; = D9 U D]
and Dy = PP U D] with Ny =n? +n! =2 x 10° and Ny =nQ +n} =2 x 10,

We consider a d-dimensional homogeneous transfer learning scenario where Ds and D: are
normally distributed and separately sampled from the source and target domains, respectively:

X~ N (2 (A7), yeto.1) m

! The submit_jobs.sh file is optional and is dedicated to submitting all the simulation scenarios as parallel jobs on
high performance computing resources.

2 The text_progress_bar.m file is optional and is used to show the progress when the heuristic search for the model
parameters is ongoing.

0. Maddouri, X. Qian and FJ. Alexander et al./Data in Brief 42 (2022) 108113

(@ generation_source_code
(a 4
[@F Bayes_oa
B ophaor
BB ophoos
Bl ophaos
B aphaos
BB aphaos
B apha oo
B 5ayes o2
B seyes o3
B siyes o4
[KR!
[
(&) submit_jobs.sh

Fig. 2. Structure of the Matlab source code repository.

E alpha_o.1

&

generate_Data.m

L

setup_parameters.m

simulate_Data.m

test_error_QDA.m

text_progress_bar.m

(& (& (& (8 (¥

train_QDA.m

. Matlab script files.

er}
ﬁ.
w

6 0. Maddouri, X. Qian and FJ. Alexander et al./ Data in Brief 42 (2022) 108113

where z € {s,t}, i} is a (d x 1) mean vector in domain z for class y, A} is a (d x d) matrix that
denotes the precision matrix (inverse of covariance) in domain z for label y, and A (-, -) denotes

y
the multivariate normal distribution. An augmented feature vector x¥ = I:’;;:I is a joint sample
5

point from two related source and target domains given by

xwa(,uy.(Ay)_l), ye{0,1}, (2)
with
¥y A A
y_ | ¥ y_ T ts
el) ?

where XT denotes the transpose of matrix X. Using a Gaussian-Wishart distribution as the joint
prior for mean and precision matrices, the joint model factorizes as

p(i. i A%, AY) = p(1, 1} 1AY, AY) p(A3, AY). @)

For conditionally independent mean vectors given the covariances, the joint prior in (4) further
expands to

Pl 2. A%,) = p(121A%) B(12IAY) (AL A7) ®)

The block diagonal precision matrices A for z € {t, s} are obtained after sampling AY from a
predefined joint Wishart distribution as defined in [2] such that AY ~ W5;(MY, 1Y), where Y is
a hyperparameter for the degrees of freedom that satisfies ¥ = 2d and MV is a (2d x 2d) posi-

w M
tive definite scale matrix of the form MY = (My[T “). M and M! are also positive definite
ts 5

scale matrices and M;s denotes the off-diagonal component that models the interaction between
source and target domains, Given AY, and assuming normally distributed mean vectors we get

u§~N(m§,(x§ A{)“), ze (st} andy < (0,1}, (6)

where m} is the (d x 1) mean vector of the mean parameter u} and «7 is a positive scalar
hyperparameter.

2.2. Synthetic datasets

In order to generate the synthetic data, we consider feature space dimensions 2, 3, and 5. In
the simulated datasets, we set up the data distributions as follows:

v=1w=d+20, kg =k) =100, ks =k =100, m? =0;, m! =8 x 1, m? =m? + 10 x 1,
m! = 111[l + 10 x 14, where @ is an adjustable scalar used to control the Bayes error in the target
domain, and 04 and 1, are d x 1 all-zero and all-one vectors, respectively.

For the scale matrices of Wishart distributions we set MY = keI, M} = ksly, and MY, = kisly
where 1; is the identity matrix of rank d.

w W
To ensure that the joint scale matrix MY = (“) is positive definite Yy < {0, 1}, we

L
AN
set ks = at/keks with k; > 0, ks > 0, and || < 1. As in [2], the value of |«| controls the amount
of relatedness between the source and target domains.

To fully control the level of relatedness by adjusting only |x| and without involving other
confounding factors, we set k; = k; = 1 such that MY, = & 1. In this setting, the correlation be-
tween the features across source and target domains are governed by |a|, where small values
of |a| correspond to poor relatedness between source and target domains while larger values
imply stronger relatedness.

0. Maddouri, X. Qian and FJ. Alexander et al./Data in Brief 42 (2022) 108113 7

Hyperparameters
d, Y, mg, &z, v, M, |al
Nh N.Tv T

Update m] ()

Derive
.PQIM (Ju:s Ay)

Fig. 4. Flow chart illustrating the simulation set-up for generating the synthetic datasets in this paper.

To sample from the joint prior, we first sample from a non-singular Wishart distribution

A A
W,; (M, v) to get a block partitioned sample of the form AY = (Ay[r A?) from which we
Is 5

extract (A}, AY). Afterwards, we sample 4} NN'(mg (KQ’A{)_]) for ze {s,t} and y < {0, 1}.

As illustrated in Fig. 4, we use in our simulations two types of datasets. Training datasets
that contain samples from both domains and testing datasets that contain only samples from
the target domain. While the training datasets are saved and stored in our data repository, the
testing datasets are only aimed for simulation purposes to specify a desired level of classifica-
tion complexity. In all the simulations we consider testing datasets of 10% data points per class
and we assume equal prior probabilities for the classes. We note that for normally distributed
data, the optimal classifier for the the feature-label distributions, called also Bayes classifier, is a
quadratic classifier that can be determined through quadratic discriminant analysis (QDA). This
Bayes classifier is defined as: Wopa (x) = xTAx + b'x + ¢, where

A=—3(AL-AD). b=Alul —AD, -
T T A
c=~3(n" Al - u"Auf) - 11 (13]).

Its true error is called Bayes error.

To draw data for a specific Bayes error, we start by drawing a joint sample (Ay, AY) for
each class y € {0, 1}. Next, we iterate over the values of the hyperparameter ¢ to control m, (%)
through a dichotomic search to get a desired value t of the Bayes error. This is achieved by

8 0. Maddouri, X. Qian and FJ. Alexander et al./ Data in Brief 42 (2022) 108113

drawing a sample u! ~ N (m[@), (i AY)_l) and then generating a test set based on the joint

sample (,u,{ LAY) Using this test set, we determine the true error of the optimal QDA derived
from (,u’rJ LAY) If the desired Bayes error (true error of the designed QDA) is attained then the
iteration stops, otherwise we update ¥ and reiterate.,

2.3. Matlab script files

2.3.1. simulate_Data.m:

This is the main simulation file that generates and saves the data into binary Matlab
files (*.mat). First, the constants and the model hyperparameters are set. In this exam-
ple we show configurations for d = 2, Bayes_error=0.1, and a relatedness level || = 0.1.

1 %% Defi

2 d=2;

3 L = 2;

4 nt = 10°(5);

5 n_.s = 107 (5); %¢

6 N_test = 107 (4); (drawn from target domain)
7 alpha = 0.1; %Relatedn

H

9 complexity Bayes_error = 0.1; %Desired classification complexity
1 eps_error = 10" (-6); %Error tolerance

1 nu = 22; %Degrees of freedom

12 meanshift = 1; %$Intitial shift between the means of target domain

Next, we draw from the joint model an initial sample for the model parameters in the source
and target domains to initiate the heuristic search for the model parameters that correspond to
the desired Bayes_error.

1 %% Sample New Parameters
2 param = setup_parameters(d, L, mean_shift, nu, alpha);
3 mu_t = cell(l, L);

4 mu_s = cell(l, L);

5 Lambda = cell(l, L);

6 Lambda-t = cell(l, L);

7 Lambda_.s = cell(l, L);

& Sigma_t = cell(l, L);

g9 for 1 = 1:L

10 Lambda{l} = wishrnd(param.M{1},param.nu{l});
1 Lambda_t{1l} = Lambda{l}(1l:d,1:d);

12 Sigma-t{l} = Lambda t{1}"(-1);

13 Lambda-s{1} = Lambda{l}((d+1) :2+d, (d+1):2d);
14 end

Afterwards, we loop over different realizations of model parameters until we obtain the
desired Bayes_error. To do so, we start with the joint sample (Af,AY) for each class
y € {0, 1}. Next, we iterate over the values of the hyperparameter i, referred to in the source
code by mean_shift, to control m; (%) through a dichotomic search to get a desired value
T (complexity_Bayes_error in the code) of the Bayes error. This is achieved by drawing

a sample p ~ N (mr(ﬁ), (xf AJ[‘)—1) and then generating a test set based on the joint sam-

ple (12}, AY). Using this test set, we determine the true error of the optimal QDA derived from

(11, A) (lines 16 and 19). If the desired Bayes error (true error of the designed QDA) is attained
then the iteration stops, otherwise we update the mean_shift variable and reiterate.

0. Maddouri, X. Qian and FJ. Alexander et al./Data in Brief 42 (2022) 108113 9

1 %% Heuristic search for the model parameters that correspond to the
desired classification complexity level.

: text_progress bar(sprintf('Search model parameters for complexity(Bayes ...
error = %g), d=%1d, alpha=%g:', complexity Bayes_error, d, alpha));

3 Bayes_error=0;

4 i=0;

5

6 while true

7 text_progress_bar (i);

& i=i+1;

9

10 for 1 = 1:L

1 mu-t {1} = mvnrnd(param.mt{1l}, (param.kappa t{l} «

Lambda_t{1}) "~ (-1));
12 mu_s{1l} = mvnrnd(param.m_s{1}, (param.kappa-s{l} * ...
Lambda_s{1}) " (-1));

13 end

14

15 %% Determine the optimal QDA classifier (Bayves classifier)

16 QDA Bayes = train QDA (mu_t, Lambda_t, L);

17

18 %% Compute Bayes Error

19 Bayes_ error = test_error QDA (QDA_Bayes, param, mu-t, Lambda_-t, N_test);

20

21 if abs(Bayes_error - complexity Bayes_ error) < eps_error

2 break

23 end

24 if Bayes_error > complexity Bayes_error

25 mean_shift = (mean_shift +« 2) + (1 + rand);

26 elseif Bayes_error < complexity Bayes error

27 mean-shift = (mean_shift / 2) * rand;

b1 end

29

30 if mean_shift==0 && Bayes_error < complexity Bayes_error

31 for 1 = 1:L

R Lambda{l} = wishrnd(param.M{1l},param.nu{l});

3 Lambda-t{1} = Lambda{l}(1:d,1:d);

£ Sigma_t{l} = Lambda_t{1}"(-1);

35 Lambda_s{1} = Lambda{l} ((d+1):2+d, (d+1):2xd);

36 end

37 mean_shift = rand;

i elseif mean_shift==0 && Bayes_error > complexity Bayes_ error

£ mean_shift = rand;

40 end

41

42 param = setup_parameters(d, L, mean-shift, nu, alpha);

4 end

44

45 text progress bar (sprintf('\nSearch for model parameters converged
(Bayes error = %g}\n', Bayes_error));

Once a realization of model parameters satisfies the desired Bayes_error, target and source
datasets are generated and stored into binary Matlab files.

10 0. Maddouri, X. Qian and FJ. Alexander et al./ Data in Brief 42 (2022) 108113

1 %% Generate source and target datasets

> [D-full, ~, ~] = generate Data(mu-t, mu.s, Lambda_t, Lambda.s, L, n-t,
n-s, N_test);

3 %% Target dataset + True model parameters

4 Dt = D_full.t;
5 param-t.Lambda.t = Lambda_t;

6 paramt.mu_.t = mu_t;

7 %% Source dataset True model parameters
8 D.s = D_full.s;

9 param.s.Lambda.s = Lambda.s;

10 param-s.mu.s = mu.-s;

11 %% Save datasets

12 save.name =
sprintf('Data_d_%1d_ Bayes_%g_n_t_%ld_n_s_%ld_alpha_%g_nu_%ld.mat’',
d, complexity Bayes_error, n_t, n_s, alpha, nu);

13 save(save_name, 'D.t', 'paramt', 'D.s3', 'param.s');

2.3.2. setup_parameters.m:
This function takes as input the model hyperparameters that change their values across the

simulated datasets, and uses the shared values of the remaining hyperparameters to fully char-
acterize the feature-label distributions in source and target domains.

1 function param = setup.-parameters(d, L, mean_shift, nu, alpha)

2 param.d = d;

3 param.L = L;

4 for i = 1:L

E $Distance between the means of the target classes to fix the
P::je:—; error

6 dist_class_means = mean-shift;

7 $ nu:

5 param.nu{i} = nu;

9 % kappa:

10 param.kappa_t{i} = 100;

1 param.kappa-s{i} = 100;

12 % m:

13 param.m-t{i} = dist_class_means * (i-1) =* ones(1l,d);

14 param.m-s{i} = param.m_t{i} + 10«ones(1,d);

15 $ M:

16 k.t = 1;

17 ks = 1;

18 param.k_.t = k_t;

19 param.k_.s = k_s;

20 param.alpha = alpha;

2 param.M-t{i} = k_t » diag(ones(1,d));

2 param.M_s{i} = k_s diag(ones(1,d));

5 param.M ts{i} = param.alpha = sqgrt(k-t = k_s) * eye(d);

2 param.M{i} = [param.M t{i} param.M ts{i}; param.Mts{i}' ...
param.M_s{i}];

25 param.Sigma{i} = param.M{i}"-1;

% param.M_t_inv{i} = param.Mt{i}"-1;

27 end

% end

0. Maddouri, X. Qian and FJ. Alexander et al./Data in Brief 42 (2022) 108113 1

2.3.3. generate_Data.m:
As indicated by its name, this function takes as input a specified set of model parameters of
source and target domains and generates synthetic training and testing datasets.

1 function [X, S, Label] = generate_Data(mu-t, mu_-s, Lambda_t, Lambda_s,
nec, nt, n_s, n_test)

]

3 X.test = cell(l, nc);

4 X.t = cell(l, nc);

5 ¥X.5 = cell(l, nc);

[¥.tmean = cell(l, nc);

7 X.smean = cell(l, nc);

8 S.t = cell(l, nc);

9 S.s = cell(l, nc);

10 ¥.test_all = [];

1 Label.test_all = [];

12

13 for i = 1l:nc

14 % Test (for target)

15 X.test{i} = mvnrnd(mu-t{i}, Lambda_t{i}" (-1),n_test);

16 X.test_all = [X.test_all; X.test{i}];

17 Label.test{i} = i + ones(l,n_test);

18 Label.test_all = [Label.test.-all Label.test{i}];

19

0 % Train (for both target and source)

21 if nt >0

n X.t{i} = mvnrnd(mu_t{i}, Lambda_t{i}" (-1),n_t);

23 else

2 X.t{i} = 0;

25 end

6 Label.t{i} = i * ones(l,n_t);

t1] if ns >0

28 X.s{i} = mvnrnd(mu_s{i}, Lambda_s{i}" (-1),n_s);

9 else

30 X.s{i} = 0;

3 end

32 Label.s{i} = i * ones(l,n-s);

33

34 % Sample mean and covariance

35 if nt ~=1

36 ¥.tmean{i} = mean(X.t{i});

37 else

38 X.tmean{i} = X.t{i};

k] end

40 if n.s ~=1

41 X.smean{i} = mean(X.s{i});

42 else

4 X.smean{i} = X.s{i};

44 end

45

46 s.t{i} = (X.t{i} - repmat(X.tmean{i},n_t,1))"' » (X.t{i} - ...
repmat (X.tmean{i}, n_t,1));

I S.s{i} = (X.s{i} - repmat(X.smean{i},n_s,1))' * (X.s{i} - ...
repmat (X.smean{i},n_s,1));

48 end

4 end

12

0. Maddouri, X. Qian and FJ. Alexander et al./ Data in Brief 42 (2022) 108113

24. train_QDA.m:

This function permits to identify the Bayes classifier in the target domain. It implements the
definition of a QDA classifier designed based on a predefined set of model parameters for a
binary classification problem when the two classes are a-priori equally likely.

17 end

function QDA = train_QDA (mu, Lambda, L)

for 11 =

1:L
mu{ll} =

reshape (mu{11}, [1,1);
end

= 1/2;%Class-0 prior probability
= (-1/2) + (Lambda{2} - Lambda{l});
= (Lambda{2} * mu{2} - Lambda{l} * mu{1});

onoE o
|

mu{l}))...
- (1/2) = log(det (Lambda{l}) /det (Lambda{2})) ...
- leg((l-c)/c);

QDA.R = A;
QDA.a = a;
QDA.b = b;

= —(1/2) = ((mu{2}' + Lambda{2} * mu{2}) - (mu{1}' * Lambda{l} =

2.5. test_error_QDA.m:

This function allows to approximate the true classification error of a QDA classifier based on
a given test set. In our simulations, this function is called to determine the Bayes_error that
corresponds to the true classification error of a QDA classifier that has been designed based on
the true model parameters in the target domain.

21 end

L = param.L;
[X, ~, Label] = generateData(mu-t, 0, Lambdat, 0, L, O,

X test = X.test_all;
Label test = Label.test_all;
n_-test = length(Label_test);

Label pred = zeros(l,n_test);
for i = l:n-test
x = X test(i,:);
x = reshape(x, [],1);
Label pred(i) = x' * QDA.A » X + X' » QDA.a + QDA.b;

end

Label pred(Label pred>0) = 2;

Label pred (Label_pred<=0) = 1;

accuracy = sum(Label_pred == Label_test)/n_test;
error = 1 - ACCUracy;

function error = test_error QDA (QDA, param, mu-t, Lambda_t, MN_test)

0,

N_test);

Ethics Statement

The work did not involve any human or animal subjects, nor data from social media plat-

forms.

0. Maddouri, X. Qian and FJ. Alexander et al./Data in Brief 42 (2022) 108113 13

Declaration of Competing Interest

The authors declare that they have no known competing financial interests or personal rela-
tionships which have, or could be perceived to have, influenced the work reported in this article.

Data Availability

Synthetic Data for Design and Evaluation of Binary Classifiers in the Context of Bayesian
Transfer Learning (Original data) (Mendeley Data).

CRediT Author Statement

Omar Maddouri: Conceptualization, Data curation, Formal analysis, Investigation, Method-
ology, Software, Validation, Visualization, Writing - original draft, Writing - review & editing;
Xiaoning Qian: Conceptualization, Formal analysis, Supervision, Validation, Writing - review &
editing; Francis J. Alexander: Conceptualization, Formal analysis, Validation, Writing - review &
editing; Edward R. Dougherty: Conceptualization, Formal analysis, Funding acquisition, Project
administration, Supervision, Validation, Writing - review & editing; Byung-Jun Yoon: Conceptu-
alization, Formal analysis, Funding acquisition, Methodology, Project administration, Resources,
Supervision, Validation, Writing - review & editing.

Acknowledgments

This work was supported in part by the Department of Energy (DOE) under Award DE-
SC0019303 and the National Science Foundation (NSF) award 1835690.

Portions of the simulations were conducted with the advanced computing resources provided
by Texas A&M High Performance Research Computing.

Supplementary Materials

Supplementary material associated with this article can be found in the online version at
doi: 10.1016/j.dib.2022.108113.

References

[1] O. Maddouri, X. Qian, FJ. Alexander, ER. Dougherty, B.-]. Yoon, Synthetic data for design and evaluation of binary
classifiers in the context of Bayesian transfer learning, Mendeley Data v1 (2021). https://data.mendeley.com/datasets|
fn33cknmifx /1

[2] A. Karbalayghareh, X. Qian, E.R. Dougherty, Optimal Bayesian transfer learning, IEEE Trans. Signal Process 66 (14)
(2018) 3724-3739.

[3] O. Maddouri, X. Qian, FJ. Alexander, E.R. Dougherty, B-]. Yoon, Robust importance sampling for error estimation in
the context of optimal Bayesian transfer learning, Patterns 3 (3) (2022) 100428.

https://data.mendeley.com/datasets/fn33cknmfx/1
https://doi.org/10.1016/j.dib.2022.108113
https://data.mendeley.com/datasets/fn33cknmfx/1
http://refhub.elsevier.com/S2352-3409(22)00323-7/sbref0002
http://refhub.elsevier.com/S2352-3409(22)00323-7/sbref0002
http://refhub.elsevier.com/S2352-3409(22)00323-7/sbref0002
http://refhub.elsevier.com/S2352-3409(22)00323-7/sbref0002
http://refhub.elsevier.com/S2352-3409(22)00323-7/sbref0003
http://refhub.elsevier.com/S2352-3409(22)00323-7/sbref0003
http://refhub.elsevier.com/S2352-3409(22)00323-7/sbref0003
http://refhub.elsevier.com/S2352-3409(22)00323-7/sbref0003
http://refhub.elsevier.com/S2352-3409(22)00323-7/sbref0003
http://refhub.elsevier.com/S2352-3409(22)00323-7/sbref0003

	Synthetic data for design and evaluation of binary classifiers in the context of Bayesian transfer learning
	Specifications Table
	Value of the Data
	1 Data Description
	2 Experimental Design Materials and Methods
	2.1 Bayesian transfer learning framework for binary classification
	2.2 Synthetic datasets
	2.3 Matlab script files
	2.3.1 simulate_Data.m:
	2.3.2 setup_parameters.m:
	2.3.3 generate_Data.m:
	2.4 train_QDA.m:
	2.5 test_error_QDA.m:

	Ethics Statement
	Declaration of Competing Interest
	Data Availability
	CRediT Author Statement
	Acknowledgments
	Supplementary Materials

	References

