

RAPID COMMUNICATION

CRISPER

www.biotechnology-journal.com

CRISPR-Mediated Genome Editing and Gene Repression in Scheffersomyces stipitis

Mingfeng Cao, Meirong Gao, Deon Ploessl, Cunjiang Song, and Zengyi Shao*

Scheffersomyces stipitis, renowned for its native xylose-utilizing capacity, has recently demonstrated its potential in producing health-promoting shikimate pathway derivatives. However, its broader application is hampered by the low transformation efficiency and the lack of genetic engineering tools to enable sophisticated genomic manipulations. S. stipitis employs the predominant nonhomologous end joining (NHEJ) mechanism for repairing DNA double-strand breaks (DSB), which is less desired due to its incompetence in achieving precise genome editing. Using CRISPR technology, here a ku70∆ku80∆ deficient strain in which homologous recombination (HR)-based genome editing appeared dominant for the first time in S. stipitis is constructed. To build all essential tools for efficiently manipulating this highly promising nonconventional microbial host, the gene knockdown tool is also established, and repression efficiency is improved by incorporating a transcriptional repressor Mxi1 into the CRISPR-dCas9 platform. All these results are obtained with the improved transformation efficiency, which is 191-fold higher than that obtained with the traditional parameters used in yeast transformation. This work paves the way for advancing a new microbial chassis and provides a guideline for developing efficient CRISPR tools in other nonconventional yeasts.

1. Introduction

Scheffersomyces stipitis is recognized as an important yeast species in the field of biorenewables due to its desired capacity for utilizing xylose,[1] the second most abundant sugar in lignocellulosic biomass. While its previous applications were mainly demonstrated as a repository for isolating genes involved in xylose assimilation and transport, its potential as a better-suited microbial host than Saccharomyces cerevisiae for producing compounds derived from the shikimate pathway was recently proposed.[2] The much more active pentose phosphate pathway associated with the native xylose assimilating ability in S. stipitis renders a higher availability of the precursor erythrose 4-phosphate (E4P), which was identified as the rate-limiting precursor of the shikimate pathway in S. cerevisiae.[3] Considering that in plants the downstream products of the shikimate pathway include many kinds of flavonoids and alkaloids with important pharmaceutical and nutraceutical proper-

