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Abstract— This paper presents an online walking synthe-
sis methodology to enable dynamic and stable walking on
constrained footholds for underactuated bipedal robots. Our
approach modulates the change of angular momentum about
the foot-ground contact pivot at discrete impact using pre-
impact vertical center of mass (COM) velocity. To this end,
we utilize the underactuated Linear Inverted Pendulum (LIP)
model for approximating the underactuated walking dynamics
to provide the desired post-impact angular momentum for each
step. Desired outputs are constructed via online optimization
combined with closed-form polynomials and tracked via a
quadratic program (QP) based controller. This method is
demonstrated on two robots, AMBER and 3D Cassie, for which
stable walking behaviors with constrained footholds are realized
on flat ground, stairs, and randomly located stepping stones.

I. INTRODUCTION

Humans can traverse a variety of terrain types with ease,

including: flat surfaces, ascending and descending stairs, and

discrete stepping stones with height variations. One of the

central goals of the bipedal walking robot community is to

develop humanoid robots that can locomote on these diverse

terrain types with the ease and dynamic stability displayed

by humans—this requires locomoting in environments with

constrained footholds. In the context of fully-actuated hu-

manoids, such problem can be realized by specifying de-

sired center of pressure (COP) trajectories utilizing reduced

order zero-moment-point models [1], [2], [3], [4] under the

assumption of ankle actuation. However, these methods do

not generalize to walking with limited contact area [5] on

the ground, where the COP cannot be changed even in the

presence of the ankle actuation. The result is that the robot

becomes underactuated [6], [7], [8], thus motivating the

study of underactuated walking with constrained footholds.

Underactuated walking is primarily described as a periodic

motion where orbital stability is characterized by the eigen-

values of Poincaré map [9], [10] associated with the limit

cycle. Using this definition of stability, many approaches

for generating stable walking behaviors have used offline

optimization [11], [12]. One example is the hybrid zero dy-

namics (HZD) framework [9], [7], [13] where the “stepping

stones” problem has been studied. Previous work with a

gait library [14], and control barrier function (CBF) [15],

[16], [17] and learning [18] to modulate the foot placement

[19] has had some success. However, these methods work

favorably for small perturbations of the nominal periodic

orbits that are designed to be exponentially stable within their
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Fig. 1. 3D robot Cassie walking upstairs, downstairs, and on random
stepping stones.

regions of attraction. Despite interpolating among gait library

and implementing CBF constraints improved the success rate

notably, it perturbs the system away from the HZD manifold

and thus breaks the formal guarantee of stability.

A philosophically different approach to generate underac-

tuated walking is based on the approximation of the under-

actuated dynamics with reduced order models (ROMs) [20],

[21], [22], [23], [24], [25], which stabilize the robot COM

dynamics largely using foot placement planning. For in-

stance, [24], [26] apply Linear Inverted Pendulum (LIP) [27]

model to approximate the underactuated robot dynamics.

Stepping controllers [23], [28], [26] that change the desired

step sizes are then synthesized in closed-form to stabilize the

horizontal COM states. However, these approaches can not

be applied for walking with constrained footholds.

The non-periodic nature of walking on constrained

footholds, and the need to precisely place the feet on these

footholds in a dynamic fashion, prevents the application of

existing methods. The goal is to develop a new methodology

that enables dynamic constrained-foothold locomotion, with

reactive online planning, by combining the strengths of the

two aforementioned approaches into a unified framework.

The key idea in achieving this goal is to stabilize the

underactuated dynamics of the robot—expressed in the COM

horizontal coordinates—and control the hybrid dynamics via

the discrete dynamics corresponding to the footstrike.

To embed the walking behaviors generated on the under-

actuated dynamics, we use the underactuated LIP model to

approximate the continuous dynamics of the robot during

stance, which determines the step duration and desired mo-

mentum at the beginning of each step. The desired vertical

COM velocity is then realized via online recursive optimiza-

tion on the vertical COM trajectory. Other desired trajectories
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are constructed with closed-form polynomials. Finally, a

task-space quadratic program based feedback controller is

formulated for tracking the desired trajectory. To demonstrate

the generality of the proposed approach, it is realized on two

robots with different morphology—AMBER and Cassie—

wherein both robots can walk stability in various scenarios

with constrained footholds.

II. PRELIMINARIES ON DYNAMICS OF WALKING

Hybrid Dynamics. Let Q be the n-dimensional configura-

tion space for a robot in the floating-base convention where n
is the unconstrained degree of freedom. A set of generalized

coordinates is given by q = [pb;φb; qb] ∈ Q = SE(3)×Qb,

where pb and φb is the position and orientation in Cartesian

coordinates of the body frame attached to a fixed location

on the robot, and qb is a set of body coordinates.

Bipedal walking considered in this work is characterized

as a single-domain hybrid control system [3], [7]. The

continuous swing phase is modeled as a single support

phase (SSP), assuming that the robot is subject to contact

holonomic constraints with the stance foot and the ground.

The Lagrangian dynamics of the robot can be written as:

D(q)q̈ +H(q, q̇) = Bτ + Jc(q)
TF (1)

Jc(q)q̈ + J̇c(q, q̇)q̇ = 0 (2)

where D(q) ∈ R
n×n, H(q, q̇) ∈ R

n, B ∈ R
n×m are the

inertia matrix, the collection of centrifugal, Coriolis and

gravitational forces, and the actuation matrix, respectively.

τ ∈ R
m is the input torque, Jc(q) ∈ R

n×h is the Jacobian

matrix of the holonomic constraint associated with contact,

and F ∈ R
h is the corresponding constraint wrench.

Let x = [qT , q̇T ]T ∈ T Q, we define the domain (where

the continuous dynamics evolve) and guard for the robot as:

D = {x = [qT , q̇T ]T ∈ T Q : zsw(q)− zground ≥ 0} (3)

S = {x = [qT , q̇T ]T ∈ T Q : zsw(q)− zground = 0} (4)

where zsw denotes the vertical swing foot position and zground

is the height of the ground. As a notation clarification, we

use x and z to denote the position of a frame relative to the
stance foot in the corresponding coordinate. The subscripts

represent the referred coordinate frames, i.e. (·)com for COM

and (·)sw for swing foot. The robot state then undergoes a

discrete change given by an impact equation [29]:

x+ = Δ(x−) if x− ∈ S (5)

where superscripts (·)−, (·)+ are used to indicate pre- and

post-impact states, respectively. The impact is assumed to be

instantaneous and plastic [7].

Underactuated Dynamics. We develop a model of the un-

deractuated dynamics associated with the sagittal dynamics,

i.e., for 2D walking models, with one degree of underactua-

tion at the foot-ground contact —this will be later embedded

into 3D models of walking. The underactuated coordinates,

ζ, are selected to be orthogonal to the actuation vector [24],

[9], e.g., ζ(q, q̇) = [xcom(q), Ly(q, q̇)]
T , where Ly(q, q̇) is the

y-component of mass-normalized angular momentum about

the stance foot as the walking is in x− z plane. Ly can be

calculated using angular momentum transfer formula:

Ly = zcom(q)ẋcom(q, q̇)− xcom(q)żcom(q, q̇) + Ly
com, (6)

where Ly
com is the y-component of robot’s mass-normalized

centroidal momentum [30]. Given the lack of actuation at

the stance foot, the angular momentum about the stance leg

end is only affected by gravity. Using Newton’s second law,

the continuous evolution is given by L̇y = gxcom.

The impact model assumes instantaneous lift-off of the

pre-impact stance foot; thus, contact forces are only applied

at the pre-impact swing foot, which leads to conservation of

angular momentum about this foot. As the stance and swing

leg alternates during impact, post-impact L+
y is the angular

momentum w.r.t. the swing foot before impact. Rearranging

Eq. (6) and adding the reset map, we have the following

hybrid model for the robot’s underactuated dynamics:

HZ =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

{
ẋcom = 1

zcom
(Ly + xcomżcom − Ly

com)

L̇y = gxcom

x ∈ D \ S{
x+

com = x−
com − x−

sw

L+
y = L−

y + x−
swż

−
com − z−swẋ

−
com

x− ∈ S

(7)

where the dependencies on q, q̇ are dropped for simplicity.

III. CONTINUOUS DYNAMICS APPROXIMATION VIA LIP

Dynamics. We consider the LIP model walking on a virtual

slope connecting two consecutive discrete footholds with

degree α. The point mass is assumed to move in parallel

to the virtual slope under leg forcing with constant vertical

distance z̃com (Fig. 2(a)). Using zcom = tan(α)xcom + z̃com,

we retrieve the canonical dynamics for the LIP model [31]:

ẍcom =
g

z̃com

xcom =: λ2xcom. (8)

Although the classic LIP model uses [xcom; ẋcom] as the

state, to better resemble the robot’s underactuated dynamics

and utilize the closed-form impact equation for the robot’s

angular momentum in Eq. (7), we choose angular momentum

about the stance foot as the second state. See [32] for a

detailed comparison on the choice of coordinates. Given LIP

has no centroidal angular momentum, applying Eq. (6), the

angular momentum about the stance leg of the LIP becomes:

Ly = zcomẋcom − xcomżcom = z̃comẋcom.

Fig. 2. (a): An illustration of the LIP model on an inclined surface with
degree α. The vertical distance z̃com is constant. (b): State-space phase
portrait for the underactuated LIP dynamics.
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The state-space representation of LIP model dynamics can

then be written as:[
ẋcom

L̇y

]
=

[
0 1

z̃com

g 0

] [
xcom

Ly

]
. (9)

Orbital Energy. First integral of motion of Eq. (8) leads to

a conserved quantity called orbital energy [33], [34]:

E =

(
Ly

z̃com

)2

− λ2x2
com. (10)

Geometrically, E > 0 corresponds to the quadrants with blue

phase curves in Fig. 2(b). The top quadrant (shaded blue) is

the area in the state space that results in forward walking.

The orbital energy is an essential quantity as each orbital

energy level describes a class of trajectories with different

initial conditions and step duration.

Step Duration. For the LIP model, the pre-impact xcom can

be directly modulated by changing the step duration T . Given

the desired pre-impact xdes
com and the initial conditions on xcom

and Ly , T can be solved from the closed-form solution:

xcom(T ) = cosh(λT )xcom(0) +
1

λz̃com
sinh(λT )Ly(0) = xdes

com.

The solution T of this equation depends on the location of

the quadrant. For forward walking, we calculate the solution

and denote it as the time-to-impact function:

T = TI(x
des
com, z̃com, xcom(0), Ly(0)). (11)

Remark: This LIP model is the canonical LIP [2] without

ankle actuation, and the Hybrid-LIP [26] without the double

support phase. It was also used in the capture point approach

[23]. The use of the LIP in this paper is most similar to

[26], [23], [35], which is for approximating the continuous

dynamics of a walking robot.

IV. WALKING SYNTHESIS

This section presents our main contribution: an online

planning and control methodology to stabilize HZ for walk-

ing on constrained footholds. We focus on the stabilization of

the underactuated dynamics of walking via designing appro-

priate desired output trajectories. The high-level philosophy

is similar to that of the HZD and these using ROMs in [26],

[28]. Assuming sufficient control capabilities of the robot ac-

tuators, reasonable desired trajectories of the actuated DoFs

or functions of them (e.g., selected outputs) can be tracked

by a low-level controller. The hybrid underactuated dynamics

are determined by the desired output trajectories, and the

continuum of walking can be described as maintaining the

pre- or post-impact underactuated states in certain viable

regions in the state space.

This concept of viable regions can be illustrated using a

reduced order model. For the LIP model, if the post impact

x+
com < 0, L+

y > 0, and E+ > 0 (indicating the post-impact

state is in the blue shaded region in Fig. 3(a-LIP)) then

the LIP is positioned such that it can cross its mid-stance

position. If we describe the condition to enable walking

continuation as the COM passes the mid-stance position,

then the three inequality constraints are both sufficient and

necessary for the LIP model to continue walking.

To transfer the condition to a robot, we first perform a

change of coordinate for Eq. (7) using zcom = tan(α)xcom +
z̃com for the underactuated continuous dynamics:{

ẋcom = 1
z̃com

(Ly + xcom
˙̃zcom − Ly

com)

L̇y = gxcom

(12)

Notice that if ˙̃zcom ≈ 0 and |Ly
com| � Ly , the robot’s con-

tinuous underactuated dynamics resembles the continuous

dynamics of the LIP model in Eq. (9). Indeed, it has been

shown in the literature [24], [26], [28] that the state-space

phase portrait for robot dynamics is topologically similar

to that of the LIP model, and the centroidal momentum is

small in magnitude. Given the similarity of the continuous

dynamics between the underactuated LIP and the robot, we

propose to use the post-impact orbital energy to approximate

the condition for the robot to continue walking. If the post-

impact orbital energy E+ ∈ [Emin, Emax] (for Emin, Emax >
0) along with L+

y > 0 and x+
com < 0, then the robot’s

underactuated state takes a value such that next step can be

taken. A physical interpretation for choosing Emin > 0 is to

overcome the bounded integrated model error, and that for

having Emax is to avoid dynamically infeasible impact time

given bounded control input in reality.

The closed-form impact map for robot’s underactuated

dynamics in Eq. (7) indicates that we can satisfy the specified

post-impact conditions by regulating the pre-impact states.

To ensure x+
com < 0, we propose to approximately control

x−
com to some ratio ε ∈ (0, 1) of the current step length

using step duration Ts. For orbital energy, in this work we

simply let Emin = Emax = E∗, which is a desired post-

impact orbital energy we choose. We then regulate L+
y such

that E+(x+
com, L

+
y ) = E∗, which can be modulated with the

pre-impact vertical velocity ż−com as indicated in Eq. (7).

Output Synthesis. Given the desired post-impact conditions,

we now introduce our novel planning strategy. First, given

the upcoming stone configuration, we define ldes and hdes

to be the distance and height of the next foot placement

Fig. 3. (a) Illustration of the set of allowable post-impact states (shaded
blue regions) in the state space to ensure forward walking for the LIP (a-
LIP) and the robot (a-robot). (b) Illustrations of the output definitions on a
planar robot. (c) An example of the desired swing foot trajectories.
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Fig. 4. Overview of the approach to walking synthesis.

relative to the stance foot. Together with ε, the step duration

Ts is determined by the LIP time-to-impact using Eq. (11)

as Ts = TI(εldes, z̃com(x
+), xcom(x

+), Ly(x
+)) where x+ is

the post-impact state and z̃com = zcom − hdes

ldes
xcom.

The desired walking behavior is encoded by the desired

output trajectories. The outputs are Y = Ya−Yd, where Ya :
TQ → R

m, Yd : R → R
m are the actual and desired outputs.

Using a simple planar robot in Fig. 3(b) for illustration, the

following outputs for the sagittal dynamics is picked:

Ya(x) =
[
φother(q) zcom(q) xsw(q) zsw(q)

]T
Yd(s, αf , udes(t)) =

[
φd

other zdcom xd
sw zdsw

]T
(13)

where φother is an vector output for other angles with robot-

dependent dimension. For instance, it can be torso angle

alone for robots similar to Fig. 3(b) or also includes addi-

tional swing foot pitch angle for robots with feet. The super-

script d stands for the desired trajectory. s is a monotonically

increasing phasing variable defined as s := t
Ts

, where t is

the time measured from the beginning of the current step.

αf = [φd
otherf , z

d
comf , ldes, hdes] represent the desired pre-

impact posture. The desired trajectories are synthesized to

1) satisfy the final position of the swing foot, and 2) realize

the chosen post-impact orbital energy E∗. A flowchart of the

synthesis is provided in Fig. 4.

1) Closed-form Polynomials: The desired trajectories of

the outputs other than the vertical COM are designed via

phase-based polynomials [26], the coefficients of which are

determined by the post-impact state in the beginning of each

step and the pre-impact posture at the end of each step.

The user-specified desired pre-impact posture, including

final COM z position and final other angles, can be designed

in different ways. The simplest version is to have φd
otherf

being constant and set zdcomf = z̃∗ + εhdes with z̃∗ a user-

defined constant for all steps, i.e. the torso is always at a

constant angle and the vertical COM position w.r.t. to the

sloped surface is relatively constant. To achieve more natural-

looking behaviors, i.e. walking using a higher COM height

with a shorter step, a nonlinear optimization for kinematics

can be solved given the stone configuration. Once the pre-

impact posture is determined, polynomial-based trajectories

can be easily designed to construct the desired continuous

trajectories in the SSP.

Taking the desired swing foot trajectory as an instance of

this approach, we follow the construction in [26] to let the

swing foot step onto the desired location (see Fig. 3 (c)):

xd
sw(s) = (1− bh(s))xsw(x

+) + bh(s)ldes (14)

zdsw(s) = bv(s) (15)

where bh and bv are sets of Bézier polynomials [7]. The

coefficients of bh are [0, 0, 0,13], where 1N indicates a row

vector of size N with all elements being 1. The coefficients

of bv are [zsw(x
+), zmax

sw 13, hdes, hdes + zneg
sw ], where zmax

sw

determines the swing clearance, and zneg
sw is a small negative

value to ensure the swing foot striking on the step location.

Trajectories for other angles can be designed similarly.
2) Online Optimization for Vertical COM Trajectory:

The vertical COM trajectory is designed as follows to sta-

bly regulate the post-impact underactuated state as desired.

Under constrained footholds, x−
sw = ldes and z−sw = hdes

are pre-determined by the stone configuration. We directly

control the post-impact L+
y and thus the post-impact orbital

energy E+ by modulating ż−com, which can be considered as

a discrete input to the hybrid system. Hence, we denote the

desired ż−com as udes. From Eq. (7), it can be calculated as:

udes =
1

ldes
(L̂des − L̂−

y (x) + hdes
ˆ̇x−

com). (16)

where ·̂ is used to denote the estimation of a parameter and

L̂des corresponds to the desired orbital energy E∗ as:

E∗ =

(
L̂des

ˆ̃z+com

)2

− g

ˆ̃z+com

(x̂+
com)

2,

where x̂+
com = x̂−

com − ldes and z̃+com = ẑ−com − hdes −
h+
des

l+des
x̂+

com. If a two-step preview of the stone configuration

is available, the parameters h+
des, l

+
des are the new desired

stone configuration after impact. If only the next upcoming

stone configuration is known, then this term can be ignored.

The estimation of pre-impact underactuated states x̂−
com and

L̂−
y is performed using LIP solution with the time-to-impact

function in Eq. (11). Other pre-impact states including z−com

and ˆ̇x−
com are approximated by weighted averages of the

desired pre-impact ones and the current ones.

To realize the desired pre-impact vertical COM ve-

locity, we apply a shrinking horizon Model Predictive

Control (MPC) style planning to recursively optimize the

desired vertical COM trajectory from the current state

[zcom(t), żcom(t)]
T at time t to the desired pre-impact state

z− = [zdcomf , udes]
T . The horizon shrinks at each walking

step as the robot is approaching towards the impact event.

Consider the double integrator dynamics for the vertical

COM trajectory with the state being z and input being

uz = z̈com. The input should satisfy the contact condition

that uz
k ≥ −g with g being the gravitational constant for
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Fig. 5. The robot Cassie (left) and AMBER (right).

all k. Given Ts, the continuous dynamics is discretized with

dt = Ts−t
N with N being the number of discretization. The

optimization problem then is:

min
uz
k,zk

N∑
k=0

‖uz
k‖2 (17)

s.t. zk+1 = Azzk +Bzuz
k (Double Integrator)

uz
k ≥ −g, (Contact Constraint)

z0 = [zcom(t), żcom(t)]
T , (Initial Condition)

zN = z−. (Pre-impact Condition)

The simple dynamics of the double integrator allows the

MPC to be formulated as quadratic program (QP) and be

solved at the same frequency as the low-level controller. The

first solution of the input uz
0 is used as the desired vertical

COM acceleration in the following feedback controller.

Feedback Controller. With the synthesized trajectories, we

apply a task-space QP based controller [36], [37], [38]

to enforce the tracking of the desired trajectories while

respecting the constrained dynamics, physical motor torque

limits, and ground contact forces. At each control loop, the

QP with optimization variables q̈, τ, F is formulated as:

min
q̈,τ,F∈Rn+m+h

||Ÿa(q, q̇, q̈)− Ÿd − Ÿt||2Q (18)

s.t. Eq. (1), (2), (Dynamics)

AGRFF ≤ bGRF, (Contact)

τlb ≤ τ ≤ τub, (Torque Limit)

where Q is a weight matrix, and Ÿt = −KpY − KdẎ is

the target acceleration of the output that enables exponential

tracking, where Kp,Kd are the PD gains. Note for vertical

COM output, Ÿt = 0 as the planning starts from the

current states. The controller then attempts to have the Ÿa

track MPC-generated desired acceleration uz
0. The affine

contact constraint on F approximates the contact friction

cone constraint. τlb and τub are the lower and upper bounds

of the torques. Solving this QP yields the optimal torque τ
that is applied on the robot.

V. RESULTS

A. Robot Models and Simulation Setup

We evaluate the proposed approach on two different

robots, AMBER and Cassie, shown in Fig. 5. AMBER is

a custom-built planar bipedal robot that resembles the basic

mathematical model of a point-footed five-linkage walker

[7]. The robot Cassie is a 3D underactuated bipedal robot

built by Agility Robotics [39]. Relativistically, Cassie has

more complex dynamics but has an inertia distribution closer

to the LIP model. We simulate AMBER using a custom

MATLAB simulation which integrates the dynamics using

ODE45 with event-based triggering for contact detection.

Cassie is simulated in C++ using the open-sourced repository

from Agility Robotics which uses Gazebo environment with

ODE physics engine. The procedure of the control imple-

mentation is summarized in Fig. 4. Both the MPC and QP

based low-level controller are solved using QPOASES [40]

at 1kHz on both robots. In the latter of this section, we

show that regardless of the model difference, complexity,

and simulation environment, both robots can be controlled to

walk on constrained footholds using the proposed approach.

B. Simulation Results on AMBER

We first present the results of walking on AMBER where

walking is tested on different scenarios as shown in Fig. 6.

A variety of desired footholds with distance (0.1m to 0.8m)

and height (−0.2m to +0.25m) are tested, resulting in the

underactuated dynamics converged to periodic orbits with

COM forward speed ranging from 0.4m/s to 1.6m/s. For the

vertical COM trajectory as in Fig. 7, the desired pre-impact

COM vertical velocity udes(t) has small oscillations within

a step in our gait synthesis. More importantly, the actual pre-

impact ż−com converges the pre-impact udes at each step under

the MPC planning. The method is also tested on the stepping

Fig. 6. Illustration of robot AMBER walking on flat ground (ldes = 0.7m),
upstairs ({l, h}des = [0.5, 0.2]m), downstairs ({l, h}des = [0.4,−0.1]m),
and randomly placed stepping stones with constrained footholds. All trials
with periodic stone configurations result in convergence to periodic walking
behaviors. See accompanying video for more results.
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Fig. 7. An example of the COM z trajectory planning from online MPC.
The red circles represent the impact events. Note that MPC only updates
acceleration, so there is no difference in the actual and desired position
and velocity. The actual position and velocity of vertical COM satisfy the
pre-impact boundary condition specified in the MPC.

stone problem with randomly varying stone distance between

0.2m and 0.7m and height between ±0.25m.

The synthesis requires two user-chosen parameters: E∗

and ε. The parameter E∗ = 0.5 is used in all scenarios

shown in the figures and in the video [41], except for some

particularly long or short periodic steps, where a large E∗

is needed for the robot to cross the mid-stance position

or a small E∗ is required to generate dynamically feasible

step duration. The behavior is generally robust to the choice

of E∗, and E∗ is positively related to the robot’s forward

walking speed.

The parameter ε is noticed to have a large allowable range

for randomly generated stepping stones, i.e., ε ∈ [0.5, 0.7]
results in the successful traversing of randomly generated

stepping stone (uniform distribution between 0.1m to 0.7m)

for 1000 consecutive steps. In periodic walking, we find that

the stability of walking on stairs is relatively sensitive to

choice ε. Intuitively, higher ε means larger x−
com and L−

y .

Compare Eq. (16) with żcom = hdes

ldes
ẋcom for LIP model, as

|Ldes − L−
y | gets larger, the difference between udes and

the nominal COM z velocity for LIP increases, which may

introduce undesired large COM oscillation. Although we can

get stable periodic stairs walking through mild parameter

tuning using constant ε for all steps, it is more reasonable to

design ε using feedback strategy in the future work.

C. Simulation Results on 3D Cassie

Now we present the simulation results on Cassie. Since

the current framework addresses planar foothold constraints,

we apply it in the sagittal plane of the walking on Cassie.

The stabilization in the coronal plane is achieved by applying

the H-LIP stepping controller in [26], where the lateral foot

placement ysw is planned to stabilize COM y dynamics.

The yaw angles are controlled to simply let the robot walk

forward. Additionally, since Cassie has actuated ankles with

small feet in its sagittal plane, we zero the ankle torque on the

stance foot during walking to mimic the foot underactuation.

Similarly, we apply the approach to control Cassie to

walk on flat ground, up and down stairs, and on randomly

placed stones. The motion is initiated from standing using

an existing standing controller that provides a forward COM

velocity before transiting to walking. The rest of the control

procedures follow identically to AMBER with ε = 0.6,

Fig. 8. Trajectories of Cassie in the phase plot of walking upstairs (a)
and downstairs (b) vs the nominal state trajectory of the LIP of E∗ = 0.6
(black thickened line). The gait-tiles can be seen in Fig. 1.

Fig. 9. Phase plot (left) and gait-tiles (right) of Cassie walking on randomly
located stepping stones in a different view (compared to Fig. 1).

E∗ = 0.6, φd
f = 0 and z̃∗ = 0.75m. Under our control,

Cassie successfully walked over these constrained footholds

as shown in the gait-tiles in Fig. 1. More importantly, as we

can see from the phase portrait Fig. 8, the robot’s underac-

tuated states converged to the group of orbits corresponding

to E∗ = 0.6. Similar results happen for all scenarios (e.g. in

Fig. 9), see the supplementary video [41] for more details.

Although the framework is implemented in simulation for a

3D robot, we have only characterized constrained footholds

walking in the sagittal plane. The application of the H-LIP

stepping controller in the coronal plane essentially assumes

the stepping stones are sufficiently wide (see Fig. 9). To

achieve actual stepping stones behaviors in 3D, we need to

plan the coordination between the sagittal plane and coronal

plane. Potentially, characterizations of the walking with both

E < 0 and E > 0 could be unified to enable momentum

regulations through impact for 3D walking.

In the meantime, we are trying to have the proposed

approach demonstrated on the hardware of Cassie for verifi-

cation. So far, we have implemented the planning and control

approach on the secondary PC of Cassie. We have verified

the control loop can be solved at 1kHz in an Intel NUC PC

core. Experiment results are expected to come in the future.

VI. CONCLUSION

To conclude, we present an online planning and control

framework to generate stable walking for underactuated

bipedal walking on a variety of terrains with constrained foot

locations. The proposed approach controls the angular mo-

mentum via the vertical COM state in the walking synthesis.

We successfully realized the approach in simulation on two

bipedal robots for walking on constrained foot locations with

various settings, showing a strong premise to enable bipedal

robots to locomote in challenging and real environments with

discrete contact locations.

10440

Authorized licensed use limited to: CALIFORNIA INSTITUTE OF TECHNOLOGY. Downloaded on September 26,2022 at 19:32:56 UTC from IEEE Xplore.  Restrictions apply.



REFERENCES

[1] G. Wiedebach, S. Bertrand, T. Wu, L. Fiorio, S. McCrory, R. Griffin,
F. Nori, and J. Pratt, “Walking on partial footholds including line
contacts with the humanoid robot atlas,” in 2016 IEEE-RAS 16th
International Conference on Humanoid Robots (Humanoids). IEEE,
2016, pp. 1312–1319.

[2] S. Kajita, F. Kanehiro, K. Kaneko, K. Fujiwara, K. Harada, K. Yokoi,
and H. Hirukawa, “Biped walking pattern generation by using preview
control of zero-moment point,” in 2003 IEEE International Conference
on Robotics and Automation (Cat. No. 03CH37422), vol. 2. IEEE,
2003, pp. 1620–1626.

[3] J. Reher and A. D. Ames, “Dynamic walking: Toward agile and
efficient bipedal robots,” Annual Review of Control, Robotics, and
Autonomous Systems, vol. 4, pp. 535–572, 2021.

[4] A. Goswami and P. Vadakkepat, Humanoid robotics: a reference.
Springer, 2019.

[5] G. Wiedebach, S. Bertrand, T. Wu, L. Fiorio, S. McCrory, R. Griffin,
F. Nori, and J. Pratt, “Walking on partial footholds including line
contacts with the humanoid robot atlas,” in 2016 IEEE-RAS 16th
International Conference on Humanoid Robots (Humanoids), 2016,
pp. 1312–1319.

[6] R. Tedrake, “Underactuated robotics: Learning, planning, and control
for efficient and agile machines course notes for mit 6.832,” Working
draft edition, vol. 3, 2009.

[7] J. W. Grizzle, C. Chevallereau, R. W. Sinnet, and A. D. Ames,
“Models, feedback control, and open problems of 3d bipedal robotic
walking,” Automatica, vol. 50, no. 8, p. 1955–1988, 2014.

[8] I. R. Manchester, U. Mettin, F. Iida, and R. Tedrake, “Stable dynamic
walking over uneven terrain,” The International Journal of Robotics
Research, vol. 30, no. 3, pp. 265–279, 2011.

[9] E. R. Westervelt, J. W. Grizzle, and D. E. Koditschek, “Hybrid zero
dynamics of planar biped walkers,” IEEE transactions on automatic
control, vol. 48, no. 1, pp. 42–56, 2003.

[10] S. Collins, A. Ruina, R. Tedrake, and M. Wisse, “Efficient bipedal
robots based on passive-dynamic walkers,” Science, vol. 307, no. 5712,
pp. 1082–1085, 2005.

[11] A. Hereid, E. A. Cousineau, C. M. Hubicki, and A. D. Ames,
“3d dynamic walking with underactuated humanoid robots: A direct
collocation framework for optimizing hybrid zero dynamics,” in 2016
IEEE Int. Conf. on Rob. and Autom. (ICRA), 2016, pp. 1447–1454.

[12] Z. Manchester and S. Kuindersma, “Variational contact-implicit tra-
jectory optimization,” in Robotics Research. Springer, 2020, pp. 985–
1000.

[13] H.-W. Park, K. Sreenath, A. Ramezani, and J. W. Grizzle, “Switching
control design for accommodating large step-down disturbances in
bipedal robot walking,” in 2012 IEEE International Conference on
Robotics and Automation. IEEE, 2012, pp. 45–50.

[14] Q. Nguyen, X. Da, J. Grizzle, and K. Sreenath, “Dynamic walking
on stepping stones with gait library and control barrier functions,” in
Algorithmic Foundations of Robotics XII. Springer, 2020, pp. 384–
399.

[15] A. D. Ames, X. Xu, J. W. Grizzle, and P. Tabuada, “Control barrier
function based quadratic programs for safety critical systems,” IEEE
Transactions on Automatic Control, vol. 62, no. 8, p. 3861–3876, 2016.

[16] Q. Nguyen, A. Hereid, J. W. Grizzle, A. D. Ames, and K. Sreenath, “3d
dynamic walking on stepping stones with control barrier functions,” in
2016 IEEE 55th Conference on Decision and Control (CDC). IEEE,
2016, pp. 827–834.

[17] Q. Nguyen, A. Agrawal, W. Martin, H. Geyer, and K. Sreenath,
“Dynamic bipedal locomotion over stochastic discrete terrain,” The
International Journal of Robotics Research, vol. 37, no. 13-14, pp.
1537–1553, 2018.

[18] N. Csomay-Shanklin, R. K. Cosner, M. Dai, A. J. Taylor, and A. D.
Ames, “Episodic learning for safe bipedal locomotion with control
barrier functions and projection-to-state safety,” 2021.

[19] Q. Nguyen, A. Agrawal, X. Da, W. C. Martin, H. Geyer, J. W. Grizzle,
and K. Sreenath, “Dynamic walking on randomly-varying discrete
terrain with one-step preview.” in Robotics: Science and Systems,
vol. 2, no. 3, 2017.

[20] M. H. Raibert, Legged robots that balance. MIT press, 1986.

[21] S. Rezazadeh and et al., “Spring-mass walking with atrias in 3d:
Robust gait control spanning zero to 4.3 kph on a heavily under-
actuated bipedal robot,” in ASME 2015 dynamic systems and control
conference. American Society of Mechanical Engineers, 2015.

[22] M. Wisse, C. G. Atkeson, and D. K. Kloimwieder, “Swing leg re-
traction helps biped walking stability,” in 5th IEEE-RAS International
Conference on Humanoid Robots, 2005. IEEE, 2005, pp. 295–300.

[23] J. Pratt, T. Koolen, T. De Boer, J. Rebula, S. Cotton, J. Carff,
M. Johnson, and P. Neuhaus, “Capturability-based analysis and control
of legged locomotion, part 2: Application to m2v2, a lower-body
humanoid,” The Int. J. of Rob. Res., vol. 31, no. 10, pp. 1117–1133,
2012.

[24] M. J. Powell and A. D. Ames, “Mechanics-based control of under-
actuated 3d robotic walking: Dynamic gait generation under torque
constraints,” in 2016 IEEE/RSJ Int. Conf. on Intell. Rob. and Sys.
(IROS). IEEE, 2016, pp. 555–560.

[25] C. Hubicki, J. Grimes, M. Jones, D. Renjewski, A. Spröwitz, A. Abate,
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