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Abstract
Bringing dynamic robots into the wild requires a tenuous balance between performance and safety.

Yet controllers designed to provide robust safety guarantees often result in conservative behavior,

and tuning these controllers to find the ideal trade-off between performance and safety typically

requires domain expertise or a carefully constructed reward function. This work presents a design

paradigm for systematically achieving behaviors that balance performance and robust safety by

integrating safety-aware Preference-Based Learning (PBL) with Control Barrier Functions (CBFs).

Fusing these concepts—safety-aware learning and safety-critical control—gives a robust means to

achieve safe behaviors on complex robotic systems in practice. We demonstrate the capability of

this design paradigm to achieve safe and performant perception-based autonomous operation of a

quadrupedal robot both in simulation and experimentally on hardware.

Keywords: Preference-Based Learning, Control Barrier Functions, Safety-Critical Control, Robotics

1. Introduction

The increasing demands of modern engineering problems have required a commensurate increase

in the complexity of the underlying control systems being used. The process of designing these

complex control systems is often accomplished by separating the design into individual subsystems

such as sensing, planning, and low-level control, which are later integrated. A principal challenge

in the integration of such complex systems is balancing safety with performance at the system level.

When each individual subsystem is designed using over-approximations of worst-case scenarios, the

integrated system becomes extremely conservative and exhibits poor performance (Singletary et al.,

2021; Alan et al., 2022). The commonly employed alternative is tuning the safety-performance

trade-off of each component to achieve the desired system-level behavior (Ma et al., 2017), which

can be challenging even for domain experts as the tuning is often done via qualitative assessments.

For instance, for complex safety-critical systems, Control Barrier Functions (CBFs) have be-

come a popular tool for the constructive synthesis of model-based controllers that endow nonlinear

systems with rigorous guarantees of safety (Ames et al., 2014, 2019; Hobbs et al., 2021). As these
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SAFETY-AWARE PREFERENCE-BASED LEARNING FOR SAFETY-CRITICAL CONTROL

Figure 1. An overview of the Safety-Aware Preference-Based Learning design paradigm. Safety-Aware LineCoSpar is

used to generate actions which are rolled out in experiments as parameters of the CBF-based safety filter to obtain user

preferences and safety ordinal labels which are then used to update the user’s estimated utility and generate new actions.

safety guarantees are susceptible to inaccuracies in the models of a system’s dynamics, actuators,

and sensors, approaches have been proposed to deal with model uncertainty (Wang et al., 2018;

Taylor and Ames, 2020; Castañeda et al., 2020; Taylor et al., 2020), disturbances (Jankovic, 2018;

Kolathaya and Ames, 2018; Clark, 2019; Santoyo et al., 2019; Alan et al., 2022; Choi et al., 2021),

and measurement errors (Takano and Yamakita, 2018; Dean et al., 2020; Cosner et al., 2021). These

approaches can work well when deployed independently, but can be extremely conservative systems

when used in conjunction. In practice, achieving performant behaviors with these methods is ac-

complished by conceding theoretical safety guarantees and tuning controller robustness parameters.

To reduce the burden on experts in controller tuning, we seek to incorporate Preference-Based

Learning (PBL) into the design of safety-critical control systems. PBL has shown to be a powerful

tool for converting subjective user preferences of system behavior (e.g., behavior A is preferred over

behavior B) into quantitative adjustments to design parameters. The main advantage of online PBL

is its ability to interactively infer a user’s latent utility function using only subjective feedback such

as pairwise preferences and ordinal labels (Yue et al., 2012; Shivaswamy and Joachims, 2012). This

methodology has been demonstrated in application for exoskeleton gait optimization (Tucker et al.,

2020b), bipedal locomotion (Tucker et al., 2021), spinal cord stimulation (Sui et al., 2018), trajec-

tory planning (Sadigh et al., 2017; Bıyık et al., 2020; Jain et al., 2015), search engines (Raman et al.,

2013), and recommender systems (De Gemmis et al., 2009). For applications with actions that may

be classified as safe or unsafe, safety-critical PBL algorithms have been demonstrated to prevent un-

safe actions from being sampled (Sui et al., 2015, 2018; Berkenkamp et al., 2016). However, these

safety-critical algorithms require worst-case approximations which may cause performant and safe

actions to be characterized as catastrophically unsafe. Thus, we seek to formulate a safety-aware
approach to PBL that generally avoids unsafe actions without being overly conservative.

In this work we propose a design paradigm for synthesizing performant and robust safety-critical

controllers on real systems via safety-aware online PBL (illustrated in Fig. 1). The contributions

of this work are threefold. First, we propose Safety-Aware LineCoSpar (SA-LineCoSpar), a mod-

ified version of LineCoSpar (Tucker et al., 2020a) capable of high-dimensional preference-based

Bayesian optimization while also accounting for safety. Second, we combine the robustness proper-

ties of Measurement-Robust CBFs (MR-CBFs) (Dean et al., 2020) to measurement uncertainty and

Input-to-State Safe CBFs (ISSf-CBFs) (Kolathaya and Ames, 2018) to disturbances with reduced-

order multi-layer safety-critical control (Molnar et al., 2021) to achieve provable safety guarantees

in a parametric form amenable to SA-LineCoSpar. Finally, we deploy these two methods together as

a design paradigm for a safety-critical controller on a quadrupedal robot in simulation and on hard-
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ware in laboratory and outdoor settings. Additionally, this work is the first time that PBL has been

used to tune a CBF-based controller, and the first time these CBF methods have been combined.

2. Safety-Aware Preference-Based Learning
Preference-Based Learning (PBL) provides an approach for searching complex parameter spaces

via subjective feedback, without an explicitly defined reward function. This is particularly relevant

for safety-critical systems, as quantifying the user-preferred trade-off between robustness and per-

formance is difficult. Moreover, poorly defined reward functions often result in “reward hacking”

(Amodei et al., 2016), in which undesirable actions achieve high rewards. Here, we propose Safety-

Aware LineCoSpar (SA-LineCoSpar), outlined in Alg. 1. This is a modification of the LineCoSpar

algorithm (Tucker et al., 2020a), which iteratively selects actions to query user for subjective feed-

back and updates its belief of the user’s underlying utility function via Bayesian inference.

Problem Setup: Let a denote an action, such as a collection of l parameters used in a feedback

controller, that takes values in a finite search space A ⊂ R
l. We assume that each action a ∈ A

has an unknown utility to the user, defined by a function r : A → R. These utilities are given

by rA = [r(a1), . . . , r(a|A|)]� ∈ R
|A|. In each iteration, s ∈ N actions are sampled from A and

executed. Then, the user is queried for two forms of feedback: pairwise preferences and ordinal

labels, describing performance and safety, respectively. This feedback is collected into dataset D.

Modeling the Utility Function: Since collecting an exhaustive dataset to estimate the unknown

utility rA is expensive for non-trivial action spaces, we use Bayesian optimization (BO), a sampling

efficient paradigm for identifying the optimizer. In BO, rA is modeled as a Gaussian process with

prior N (0,Σpr), where each element of the covariance matrix Σpr ∈ S
|A|×|A|
�0 is computed as

Σ
pr
ij = k(ai,aj) with a kernel function k : A×A → R and ai ∈ A denoting the ith action in A. We

select k to be the squared exponential kernel, yielding a prior given by the multivariate Gaussian:

P(rA) =
1

(2π)|A|/2|Σpr|1/2 exp

(
−1

2
r�A(Σ

pr)−1rA

)
. (1)

Given a dataset D, the posterior is proportional to the likelihood and the prior by Bayes’ theorem,

i.e., P(rA | D) ∝ P(D | rA)P(rA). We denote the maximum a posteriori (MAP) estimate of

the posterior by r̂A ∈ R
|A|, which is defined as r̂A � argmaxrA∈R|A| P(rA | D), noting that

r̂A is equivalent to the minimizer of S(rA) = − ln(P(D | rA)) + 1
2r

T
A (Σpr)−1 rA. As is com-

mon in BO, we model the posterior as a multivariate Gaussian centered at r̂A with the covariance

ΣA ∈ S
|A|×|A|
�0 defined as ΣA = (∂

2S
∂r2A

(r̂A))
−1 (Chu and Ghahramani, 2005)1. Additionally, we can

improve tractability of calculating r̂A by reducing the action space A to a subset S ⊂ A, forming a

partial characterization of the utilities denoted by P(rS | D) ≈ N (r̂S ,ΣS), with rS , r̂S ∈ R
|S|.

Preference Likelihood Function: A pairwise preference is defined as a relation between two ac-

tions a1,a2 ∈ A, where a1 � a2 if action a1 is preferred to a2. Since user preferences are expected

to be corrupted by noise, we model individual pairwise preferences via a likelihood function:

P(a1 � a2|r(a1), r(a2)) = gp

(
r(a1)− r(a2)

cp

)
, (2)

where gp : R → [0, 1] is any monotonically-increasing link function, and cp ∈ R>0 accounts for

preference noise. We select gp to be the sigmoid function, i.e., gp(x) = 1/(1 + e−x). Assuming

1. This is known as the Laplace approximation of the distribution P(rA | D), i.e., P(rA | D) ≈ N (r̂A,ΣA).
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conditional independence, the likelihood function for a collection of K ∈ N preferences, Dp, can

be modeled as the product of each individual preference likelihood:

P(Dp|r(a11), r(a12), · · · , r(aK2)) =
K∏
k=1

P(ak1 � ak2|r(ak1), r(ak2)), (3)

where ak1,ak2 ∈ A are the preferred and non-preferred actions, respectively, in the kth preference.

Ordinal Likelihood Function: We partition the action space into “unsafe” and “safe” actions by

leveraging the ordinal nature of these definitions (i.e., unsafe actions are always considered worse

than safe actions). A user provides this feedback as an ordinal label, which assigns an action to a

discrete ordered category such as “bad” and “good” (Chu et al., 2005). While ordinal labels can be

generalized to any number of ordinal categories (c.f. Li et al. (2021)), we utilize just two categories

to represent “unsafe” and “safe”. In this case, the action space is decomposed into two disjoint sets,

A = O1 ∪O2, with a ∈ O1 if r(a) < β and a ∈ O2 if r(a) ≥ β, with the ordinal threshold β ∈ R.

As with preferences, we assume that ordinal label feedback is corrupted by noise and is modeled as:

P(a ∈ O1 | r(a)) = go

(
β − r(a)

co

)
, P(a ∈ O2 | r(a)) = 1− go

(
β − r(a)

co

)
, (4)

where go : R → [0, 1] is any monotonically-increasing link function and co quantifies the noise in

the ordinal label feedback. Again, we select go to be the sigmoid function go(x) = 1/(1 + e−x).
Assuming conditional independence of ordinal label queries, the likelihood function for a collection

of M ∈ N ordinal labels, Do, can be modeled as the product of each individual ordinal likelihood:

P(Do | r(a1), · · · , r(ak)) =
M∏
k=1

P (
ak ∈ Oo(k) | r(ak)

)
, (5)

where ak ∈ A refers to the action corresponding to the kth ordinal label, o(k) ∈ {1, 2}. For

our simulation and experiments, the hyperparameters cp, co, β are determined in advance. Lastly,

assuming conditional independence of the feedback mechanisms, the combined likelihood function

is calculated as the product of the individual likelihoods, P(D | r) = P(Dp | r)P(Do | r).
Sampling New Actions: In the first iteration (i = 1), s ∈ N actions are sampled randomly from

A, recorded as the set of visited actions V1 = {a(1)1 , . . . ,a
(s)
1 }, executed on the system, and the

preferences and ordinal labels are collected into a dataset D1. In each subsequent iteration (i > 1),

s new actions are sampled using Thompson sampling, which is shown to have desirable regret

minimization properties (Chapelle and Li, 2011). Ideally, Thompson sampling draws s samples

from the posterior P(rA | Di−1), i.e r(j) ∼ P(rA | Di−1) for j ∈ {1, . . . , s}, and the action a
(j)
i ∈

A maximizing each r(j) is selected to execute on the system. These sampled actions {a(1)i , . . . ,a
(s)
i }

are concatenated with Vi−1 to produce Vi, executed on the system, and the resulting preferences

and ordinal labels are concatenated with Di−1 to produce Di. However, since it is intractable to

approximate P(rA | D) for high-dimensional action spaces, we utilize a dimensionality-reduction

technique introduced in Tucker et al. (2020a) that instead updates the posterior over a subset Si ⊂ A.

Motivated by Kirschner et al. (2019), we construct the subset as Si = Li ∪ Vi−1, where Li ⊂ A is

the collection of e ∈ N actions in A closest to a randomly drawn line �i ⊂ R
l. This line is drawn to

intersect with the believed best action, computed as â∗i−1 = argmaxa∈Vi−1
r̂Vi−1(a) where r̂Vi−1 is

the MAP estimate of the posterior P(rVi−1 | Di). See Tucker et al. (2020a) for more details.
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Safety-Aware Sampling: It is important to avoid unsafe actions during sequential decision mak-

ing in certain applications, such as learning robotic controllers on hardware, where low-reward ac-

tions might lead to physical damage of the platform. Safe exploration algorithms (Sui et al., 2015,

2018; Berkenkamp et al., 2016) considered the setting where actions below a prespecified safety

threshold are catastrophic and must be avoided at all cost. In our work, since we construct con-

trollers that account for safety, we adopt a more optimistic learning approach called safety-aware.

In this case, actions labeled by a human as “unsafe” are not catastrophic but undesirable. Thus,

the algorithm avoids these actions; whereas the safe exploration algorithms guarantee that no such

actions are sampled which can be sometimes exceedingly conservative in settings like ours.

To achieve this safety-awareness, we leverage the approach introduced in Li et al. (2021), which

uses ordinal labels to identify a region of interest (ROI) in A. In this work, the ROI is defined to be

the actions labeled as “safe”. In each iteration i we estimate an ROI within the set Si as:

SROI
i = {a ∈ Si | r̂Si(a) + λσSi(a) > β}, (6)

where r̂Si(a) and σSi(a) are the posterior mean and standard deviation, respectively, evaluated at

the action a ∈ Si. The variable λ ∈ R determines how conservative the algorithm would be in

estimating the safety region, as illustrated in Figure 2. We see that lower values of λ result in fewer

unsafe actions being sampled, with only a slight effect on sample-efficiency. The restriction to SROI
i

is added to LineCoSpar by only considering actions in SROI
i during Thompson sampling. We refer

to this as Safety-Aware LineCoSpar (SA-LineCoSpar), with the full algorithm outlined in Alg. 1.

Algorithm 1: Safety-Aware LineCoSpar

input: s uniform random actions (V1 ⊂ A),

corresponding feedback (D1),
for i = 2, . . . , N do

Update posterior over Vi−1

â∗i−1 ← argmaxa∈Vi−1
r̂Vi−1

(a)

Li ← New linear subspace intersecting â∗i−1

Construct subspace Si = Li ∪ Vi−1

Update the model posterior over Si

Determine region of interest SROI
i

for j = 1, . . . , s do
r(j) ∼ N (r̂Si

,ΣSi
)

a
(j)
i ← argmaxa∈SROI

i
r(j)

end
Deploy {a(1)i , . . .a

(s)
i } on system

Vi ← Vi−1 ∪ {a(1)i , . . .a
(s)
i }

Di ← Di−1 ∪ new prefs. ∪ new ord. labels

end

Figure 2. A comparison of SA-LineCoSpar and stan-

dard LineCoSpar on a synthetic utility function (drawn

from the Gaussian prior) averaged over 50 runs with

standard error shown by the shaded region. The safety-

aware criteria reduces the number of sampled unsafe

actions with a minimal effect on the prediction error,

defined as |â∗
i − a∗| with â∗

i � argmaxa r̂Si and

a∗ � argmaxa r(a).

3. Robust Safety-Critical Control

In this section, we formalize robust safety and discuss safe controller synthesis through the use

of Control Barrier Functions (CBFs), that ultimately yield controllers whose parameters are to be

updated with SA-LineCoSpar. Consider the following nonlinear control-affine system:

ẋ = f(x) + g(x)(v + d(t)), (7)
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with state x ∈ R
n, input v ∈ R

m, functions f : Rn → R
n and g : Rn → R

n×m assumed to be

locally Lipschitz continuous on their domains, and piecewise continuous disturbance signal d :
R≥0 → R

m for which we define ‖d‖∞ � supt≥0 ‖d(t)‖. Specifying the input via a controller

k : Rn → R
m that is locally Lipschitz continuous on its domain yields the closed-loop system:

ẋ = f(x) + g(x)(k(x) + d(t)). (8)

We assume for any initial condition x(0) = x0 ∈ R
n and disturbance d, this system has a unique

solution x(t) for all t ∈ R≥0. We consider this system safe if its state x(t) remains in a safe set
C ⊂ R

n, defined as the 0-superlevel set of a continuously differentiable function h : Rn×R
p → R:

C = {x ∈ R
n : h(x,ρ) ≥ 0}, (9)

where ρ ∈ R
p are constant application-specific parameters. We say the set C ⊂ R

n is forward
invariant if for every x0 ∈ C the solution x(t) to (8) satisfies x(t) ∈ C for all t ≥ 0. The system (8)

is safe with respect to C if C is forward invariant. Ensuring the safety of the set C in the absence of

disturbances and measurement error can be achieved through Control Barrier Functions (CBFs):

Definition 1 (Control Barrier Functions (CBF) (Ames et al., 2014)) The function h is a Control
Barrier Function (CBF) for (7) on C if there exists α ∈ Ke∞2 such that for all x ∈ R

n:

sup
v∈Rm

∂h

∂x
(x,ρ)f(x)︸ ︷︷ ︸
Lfh(x,ρ)

+
∂h

∂x
(x,ρ)g(x)︸ ︷︷ ︸
Lgh(x,ρ)

v > −α(h(x,ρ)). (10)

While it may be possible to synthesize controllers that render a given set C safe in the presence of

disturbances (Jankovic, 2018), this may result in overly-conservative behavior. Instead, we consider

how safety properties degrade with disturbances via the following definition.

Definition 2 (Input-to-State Safety (Kolathaya and Ames, 2018)) The system (8) is Input-to-State
Safe (ISSf) with respect to C if there exists γ ∈ K∞ such that for all δ ∈ R≥0 and disturbances
d : R≥0 → R

m satisfying ‖d‖∞ ≤ δ, the set Cδ ⊂ R
n defined as:

Cδ = {x ∈ R
n : h(x,ρ) ≥ −γ(δ)}, (11)

is forward invariant. The function h is an Input-to-State Safe Control Barrier Function (ISSf-CBF)
for (7) on C with parameter ϕ ∈ R≥0 if there exists α ∈ Ke∞ such that for all x ∈ R

n:

sup
v∈Rm

Lfh(x,ρ) + Lgh(x,ρ)v − ϕ‖Lgh(x,ρ)‖2 > −α(h(x,ρ)). (12)

The parameter ρ ∈ R
p contains information about the system’s environment that affects safety,

such as the location and size of obstacles. In novel environments the system may need to generate

estimates of ρ denoted by ρ̂ ∈ R
p from complex measurements, such as camera data. The process

of converting complex measurements to environmental parameters ρ̂ is often imperfect, leading to

error between the estimated and true values (i.e., ρ̂ �= ρ), which can cause safety violations. In this

setting, safety can be achieved via Measurement-Robust Control Barrier Functions (MR-CBFs):

2. We say that a continuous function α : R≥0 → R≥0 is class K∞ (α ∈ K∞) if α(0) = 0, α is strictly monotonically

increasing, and limr→∞ α(r) = ∞. We say that a continuous function α : R → R is class Ke
∞ (α ∈ Ke

∞) if

α(0) = 0, α is strictly monotonically increasing, limr→∞ α(r) = ∞, and limr→−∞ α(r) = −∞.
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Definition 3 (Measurement-Robust Control Barrier Functions (Dean et al., 2020)) The function
h is a Measurement-Robust Control Barrier Function (MR-CBF) for (7) on C with parameters
a, b ∈ R≥0 if there exists α ∈ Ke∞ such that for all ρ̂ ∈ R

p and x ∈ R
n:

sup
v∈Rm

Lfh(x, ρ̂) + Lgh(x, ρ̂)v − a− b‖v‖ > −α(h(x, ρ̂)). (13)

The following theorem summarizes the safety results achieved with these various types of CBFs:

Theorem 4 Consider the set C defined in (9).

1. If h is a CBF for (7) on C, d(t) = 0 for t ∈ R≥0 and ρ̂ = ρ, then there exists a controller k
such that (8) is safe with respect to C.

2. If h is an ISSf-CBF for (7) on C with parameter ϕ and ρ̂ = ρ, then there exists a controller k
such that (8) is ISSf with respect to C with γ(δ) = −α−1(−δ2/(4ϕ)) where α−1 ∈ Ke∞.

3. Assume Lfh, Lgh, and α ◦ h are Lipschitz continuous on their domains, and assume that
‖ρ̂−ρ‖ ≤ ε for some ε ∈ R≥0. Then there exists a, b ∈ R≥0 such that if h is an MR-CBF for
(7) on C with parameters a, b ∈ R≥0 satisfying a ≥ a and b ≥ b, and d(t) = 0 for t ∈ R≥0,
then there exists a controller k such that (8) is safe with respect to C.

4. Integrating Safety-Aware Preference-Based Learning with Safety-Critical Control

In this section we propose a design paradigm that leverages SA-LineCoSpar to select parameters

for a CBF-based controller that achieves performance and safety for a multi-layered control system.

Multi-Layered System Dynamics: Many real-life engineering systems have high-dimensional

state spaces and complex dynamics. Hence control systems are often designed as a set of intercon-

nected subsystems, such as a low-dimensional subsystem that provides reference signals capturing

safe behavior and a high-dimensional subsystem that tracks these reference signals. In particular,

consider the following cascaded nonlinear control-affine system resulting as a modification of (7):

ẋ = f(x) + g(x)κ(ξ), ξ̇ = fξ(x, ξ) + gξ(x, ξ)u, (14)

with additional states ξ ∈ R
nξ , control input u ∈ R

mξ and functions κ : R
nξ → R

m, fξ :
R
n × R

nξ → R
nξ , and gξ : Rn × R

nξ → R
nξ×mξ assumed to be locally Lipschitz continuous

on their domains. We note that the input v from (7) was replaced by κ(ξ). These dynamics may

represent Euler-Lagrange systems such as robots, where x reflects base position, ξ captures base

velocities and joint positions and velocities, and the input u reflects the torques applied to the joints.

Given this cascaded system, we utilize the low-dimensional subsystem to ensure that C is ISSf

by making two assumptions. First, we assume the safe set C can be described as in (9), such that it

only depends on the states x and parameters ρ, and not the states ξ. For example, in the context of a

robotic system, this assumption is justified if safety is described as keeping the base position of the

robot away from obstacles. Second, we assume there exists a controller π : Rn×R
nξ×R

m → R
mξ

and μ ∈ R≥0 such that for any continuous, bounded signal s : R≥0 → R
m, the closed-loop system:

ξ̇ = fξ(x, ξ) + gξ(x, ξ)π(x, ξ, s(t)), (15)

satisfies the following implication:

‖κ(ξ(0))− s(0)‖ ≤ μ =⇒ ‖κ(ξ(t))− s(t)‖ ≤ μ, t ∈ R≥0. (16)

7
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This assumption reflects that a separate controller may be designed for the high-dimensional dy-

namics to track well-behaved reference signals synthesized via the low-dimensional model. In par-

ticular, if a continuous controller k : Rn → R
m is designed for the low-dimensional system (7) and

‖κ(ξ(0))−k(x(0))‖ ≤ μ, then we have that the controller π ensures ‖κ(ξ(t))−k(x(t))‖ ≤ μ for

t ∈ R≥0. With this assumption in mind, we may study the ISSf behavior of the closed-loop system:

ẋ = f(x) + g(x)(k(x) + d(t)), ξ̇ = fξ(x, ξ) + gξ(x, ξ)π(x, ξ,k(x)), (17)

with the disturbance defined as d(t) = κ(ξ(t))− k(x(t)) satisfying ‖d‖∞ ≤ μ.

Combined Robust CBFs for PBL: We now combine the robustness properties of MR-CBFs and

ISSf-CBFs to account for measurement uncertainty and the disturbance, d, allowing us to make

robust safety guarantees for the full system (17). This is formalized in the following theorem:

Theorem 5 Given the set C defined in (9), suppose the functions Lfh, Lgh, ‖Lgh‖2, and α ◦h are
Lipschitz continuous on their domains, and assume that ‖ρ̂−ρ‖ ≤ ε for some ε ∈ R≥0. Then there
exists a, b ∈ R≥0 such that if h satisfies:

sup
v∈Rm

Lfh(x, ρ̂) + Lgh(x, ρ̂)v − ϕ‖Lgh(x, ρ̂)‖2 − a− b‖v‖ > −α(h(x, ρ̂)), (18)

for all x ∈ R
n and some a, b ∈ R≥0 satisfying a ≥ a and b ≥ b, then there exists a controller

k : Rn → R
m such that (17) is ISSf with respect to C with γ(δ) = −α−1(−δ2/(4ϕ)).

The proof of this theorem can be found in the extended version of this paper (ext). As in Gurriet et al.

(2018), (18) can be incorporated as a constraint into a safety filter on a locally Lipschitz continuous

nominal controller knom : R
n → R

m. We call this filter the Tunable Robustified Optimization

Program (TR-OP) with tunable parameters α,ϕ, a, and b.

k(x) = argmin
v∈Rm

‖v − knom(x)‖2 (TR-OP)

s.t. Lfh(x, ρ̂i) + Lgh(x, ρ̂i)v − ϕ‖Lgh(x, ρ̂i)‖2 − a− b‖v‖ ≥ −αh(x, ρ̂i),

∀i ∈ {1, . . . , No}.
Here we use a linear class Ke∞ function with coefficient α ∈ R>0. If we wish to enforce multiple

safety constraints, such as in obstacle avoidance with several obstacles, ρ̂i can be used to indicate

the measured parameters of the ith obstacle, with No ∈ N being the total number of obstacles.

Enforcing this constraint for No > 1 can be viewed as Boolean composition of safe sets (Glotfelter

et al., 2018). Additionally, this safety filter is a Second-Order Cone Program (SOCP) (Boyd and

Vandenberghe, 2004) for which an array of solvers exist including ECOS (Domahidi et al., 2013).

Integrating Learning to Tune the Control Barrier Function: The parameter selection process of

TR-OP is particularly important, since the parameters a and b guaranteed to exist by Theorem 5 are

worst-case approximations of the uncertainty generated using Lipschitz constants. Such approxi-

mations often lead to undesired conservatism and may render the system incapable of performing

its goal (as seen in Figure 3). Thus, as illustrated in Figure 1, we propose utilizing SA-LineCoSpar

to identify user-preferred parameters of TR-OP. This relaxes the worst-case over-approximation to

experimentally realize performant and safe behavior. This design paradigm relies on the tunable

construction of TR-OP, allowing us to define the actions for SA-LineCoSpar to a = (α,ϕ, a, b).
We note the construction of TR-OP assures that unsafe actions are not necessarily catastrophic, as

8
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Figure 3. (Left) Actions sampled during simulation in 30 iterations with 3 new actions in each iteration. The preferred

action, â30 = (3, 0.6, 0.5, 0.015), is shown in black and white. A conservative action, a = (2, 0.5, 0.0651, 0.485), is

indicated by the black circle, where a and b were determined by estimating the Lipschitz coefficients present in the proof

of Theorem 5. The conservative action fails to progress whereas SA-LineCoSpar provides an action which successfully

navigates between obstacles. (Center) The minimum value of h that occurred in each iteration. Triangles, diamonds,

and squares represent actions that are sampled randomly, by PBL in simulation and on hardware in an indoor setting,

respectively. Colors correlate to iteration number. The lower bound −γ(δ) for the expanded set Cδ with δ = 1 is plotted.

The preferred actions for simulation and hardware experiments are circled. (Right) Seven additional iterations of 3

actions executed indoors. The preferred action, â∗
37 = (4, 0.6, 0.4, 0), successfully traverses between the obstacles.

any α,ϕ, a, b > 0 endows the system with a non-zero degree of robustness to disturbances and mea-

surement error. This assurance allows us to utilize a safety-aware approach where unsafe actions are

considered undesirable as opposed to more conservative safety-critical approach to learning where

unsafe actions are considered catastrophic.

5. Experimental Results

We applied the proposed design paradigm to a perception-based obstacle avoidance task with a

Unitree A1 quadrupedal robot (Figure 1) in simulation and on hardware for both indoor and outdoor

environments (see video: vid). The action space A and hyperparameters of PBL are defined in

Table 1. We used the unicycle model as our simplified model (7) with the nominal controller knom:

⎡
⎣ẋẏ
ψ̇

⎤
⎦

︸︷︷︸
ẋ

=

⎡
⎣00
0

⎤
⎦

︸︷︷︸
f(x)

+

⎡
⎣cosψ 0
sinψ 0
0 1

⎤
⎦

︸ ︷︷ ︸
g(x)

⎛
⎜⎜⎝
[
v
ω

]
︸︷︷︸
v

+d(t)

⎞
⎟⎟⎠ , knom(x) =

[
Kvdg + C

−Kω(sinψ − (yg − y)/dg)

]
, (19)

where (x, y) is the planar position of the robot, ψ is the yaw angle, (xg, yg) is the goal position

of the robot, dg = ‖(xg − x, yg − y)‖ is the distance to the goal, and Kv,Kω, and C are positive

constants. Obstacle avoidance is encoded via the 0-superlevel set of the function:

h(x,ρi) = dobs,i − robs − ζ cos(ψ − θi), (20)

where ρi = [xobs,i, yobs,i] is the location of the ith obstacle, dobs,i = ‖(xobs,i − x, yobs,i − y)‖ and

θi = arctan((yobs,i−y)/(xobs,i−x)) are the distance and angle from the ith obstacle, robs is the sum

of the radii of the obstacle and robot, and ζ > 0 determines the effect of the heading angle on safety.

The controller used to drive the system is the TR-OP with the nominal controller knom from (19).

In practice, infeasibilities of this safety filter were considered unsafe and the inputs were saturated
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Figure 4. The preferred action, â∗
40 = (5, 0.1, 0.4, 0.02), after simulation, indoor

experiments, and 3 additional iterations of 3 actions in an outdoor environment is

shown alongside views from the onboard camera.

hyperparameter value

λ −0.5
β 0

name min. max. Δ
α 0.5 5 0.5

ϕ 0 1 0.1

a 0 1 0.1

b 0 0.05 0.005

Table 1. The safety-aware hy-

perparameters, and action space

bounds (min. and max.) with

discretizations Δ.

such that v ∈ [−0.2, 0.3]m/s and ω ∈ [−0.4, 0.4] rad/s. The velocity command v is computed at 20

Hz and error introduced by this sampling scheme is captured by the tracking error d(t). Tracking

of v is performed by an inverse dynamics quadratic program (ID-QP) walking controller designed

using the concepts in Buchli et al. (2009), which realizes a stable walking gait for (17) at 1 kHz.

Simulation results: We simulated the quadruped executing the proposed controller with param-

eters provided by SA-LineCoSpar. The resulting trajectories and the position of the obstacles are

shown in Figure 3. We ran 30 iterations, with 3 new actions sampled in each iteration (s = 3), and

obtained user preferences and ordinal labels in between each set of actions. To simulate perception

error, the measurements of the obstacles were shifted by −0.1 m in the y-direction. The parameters

found with SA-LineCoSpar allow the robot to navigate between obstacles. For comparison, a con-

servative action is also shown, which is safe but fails to progress towards the goal. SA-LineCoSpar

eliminates this conservatism with only minor safety violations and determines a parameter set which

is both safe and performant.

Hardware results: After simulation, we continued learning on hardware experiments in a labo-

ratory setting for 7 additional iterations until the user was satisfied with the experimental behavior.

The robot and obstacle positions were estimated using Intel RealSense T265 and D415 cameras to

perform SLAM and segmentation. Centroids of segmented clusters in the occupancy map were used

as the measured obstacle positions ρ̂i. The true robot and obstacle positions were obtained for com-

parison using an OptiTrack motion capture system. The results of these experiments can be seen in

Figure 3. Afterwards, three additional iterations were conducted outdoors on grass until again the

user was satisfied with the experimental behavior. The resulting best trajectory can be seen in Figure

4. The preferred action was also tested on a variety of other obstacle arrangements to confirm its

generalizability. The performance of the final preferred action for these obstacle configurations can

be seen in the supplementary video (vid).

6. Conclusion

In this work we proposed a design paradigm for control systems in which the robust safety re-

quirements of a provably safe, but conservative controller are relaxed, and controller parameters

are instead chosen using a Preference-Based Learning algorithm called SA-LineCoSpar. Using our

algorithm, we were able to learn a set of parameters that leads to user-preferred balance between

safety and robustness on a quadrupedal robot platform. Future work includes applying this frame-

work to other platforms such as bipedal robots, autonomous vehicles, and assistive devices, and to

more complicated environments like obstacles with time-varying parameters.
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