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Overhead Image Factors for Underwater
Sonar-based SLAM

John McConnell1, Fanfei Chen2 and Brendan Englot1

Abstract—Simultaneous localization and mapping (SLAM) is a
critical capability for any autonomous underwater vehicle (AUV).
However, robust, accurate state estimation is still a work in
progress when using low-cost sensors. We propose enhancing
a typical low-cost sensor package using widely available and
often free prior information; overhead imagery. Given an AUV’s
sonar image and a partially overlapping, globally-referenced
overhead image, we propose using a convolutional neural network
(CNN) to generate a synthetic overhead image predicting the
above-surface appearance of the sonar image contents. We then
use this synthetic overhead image to register our observations
to the provided global overhead image. Once registered, the
transformation is introduced as a factor into a pose SLAM
factor graph. We use a state-of-the-art simulation environment
to perform validation over a series of benchmark trajectories
and quantitatively show the improved accuracy of robot state
estimation using the proposed approach. We also show qualitative
outcomes from a real AUV field deployment. datasets, quantita-
tively demonstrating its accuracy, stability, and data-efficiency.

Index Terms—Marine Robotics, SLAM, Range Sensing

I. Introduction

AUTONOMOUS underwater vehicles (AUVs) provide
critical capabilities for inspection, defense, and envi-

ronmental monitoring [1]. However, unlike ground or aerial
robotics, the perceptual sensors employed are often acoustic,
providing robustness to variations in ambient lighting and wa-
ter clarity in a relatively small package. For AUVs operating in
cluttered environments, this leaves multi-beam sonar; profiling
or imaging, as the acoustic perceptual sensor of choice. These
sensors have an expansive field of view that can provide an
AUV with panoramic situational awareness. However, they
have a high cost relative to other robotics applications, as well
as a low signal-to-noise ratio and low resolution.

A critical capability for AUVs is state estimation. This often
calls for the use of simultaneous localization and mapping
(SLAM) to operate in unknown environments. However, many
AUV state estimation systems rely on high cost, and highly
accurate inertial navigation systems (INS). This means that for
low-cost AUVs operating in challenging field settings, without
high-grade INS, SLAM can be brittle, inaccurate, and will drift
as the mission progresses.
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(a) Our experimental “AUV": a custom-
instrumented BlueROV2.

(b) Simulated SLAM mission
with OI factors.

Fig. 1: Highlights of the proposed method: (a) the underwater robot
used in our experiments; (b) SLAM with overhead image (OI) factors
applied to harbor mapping in a high-fidelity simulation.

A potential solution for managing AUV state estimation
error is active SLAM [2], [3], wherein a decision-making agent
acknowledges the fragility of the state estimation framework
and, when necessary, inserts waypoints or trajectories into its
mission expected to curb the growth of uncertainty. Active
SLAM often yields impressive results, but these come at a cost.
So-called “fly-through paths" where an AUV takes the most
efficient path to the goal, performing SLAM en route, may
require the insertion of detours to achieve loop closures. An
alternative remedy would be to surface at regular intervals to
receive GPS measurements. However, both potential solutions
translate to less efficient AUV operations. Moreover, active
SLAM and GPS are undesirable for tactical considerations [4]
when considering intelligence, surveillance, or reconnaissance
(ISR) applications, when efficient transit to mission goals is a
high priority.

In this work we consider AUVs for which, per the aforemen-
tioned considerations, the vehicle needs to be free of trajectory
constraints and operate without GPS. Moreover, a critical
assumption in our work is that the surrounding environment
contains structures that are commonly observable in both
overhead and sonar images. We contend this is true for many
applications in real-world settings, such as pier inspection,
harbor patrol, ISR, or even windfarm navigation.

Many methods have been proposed to improve underwater
SLAM, however, none have applied overhead imagery to
contribute measurement constraints to a SLAM solution. In
this paper, we will examine the use of overhead imagery
available for no cost in the public domain or from a low-
cost unmanned aerial vehicle (UAV) as a method of improving
AUV state estimation. Our contributions are as follows:

• A novel representation and framework for the fusion of
sonar and overhead RGB images. Unlike other work in
this area, our method addresses the registration problem
between overhead images and underwater sonar images.
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• In contrast to other work in this area, we integrate
the above into a pose SLAM framework incorporating
odometry and sonar-based loop closures.

• We perform quantitative validation of the proposed
method in a state of the art simulation environment, and
give qualitative results from real robot deployments.

The paper structure is as follows: we will discuss related
work, mathematically define the problem, present our proposed
solution, and then give our results and conclusions.

II. Related Work
In subsequent sections we will define overhead image fac-

tors and discuss their integration into an AUV’s pose SLAM
factor graph. First, we discuss relevant work that motivates
both our choice of SLAM framework, and our decision to
leverage overhead imagery for underwater SLAM.

A. Underwater SLAM with Sonar
Graph-based pose SLAM has been used to support many

successful underwater sonar-based SLAM applications. Ship
hull inspection using a forward-looking imaging sonar is
demonstrated in [5], multibeam profiling sonar SLAM travers-
ing an underwater canyon is achieved in [6], and planar SLAM
using imaging sonar observations of the seafloor is described
in [7]. Additionally, [8] uses a factor graph to perform dense
reconstruction of complex 3D structures using multibeam
profiling sonar. Although underwater landmark-based SLAM
with sonar has also been implemented successfully, [9], [10],
the challenge of landmark SLAM with acoustic sensors is the
identification of point features, or the identification of objects
as landmarks, and their subsequent, repeated association as
they are re-observed.

In the work that follows, we adopt pose SLAM for this
reason. There is no need to solve the data association problem
over landmarks, and more importantly, this implies that land-
mark identification is not required, and sonar observations not
amenable to conversion into landmarks (vessel hulls, seawalls,
etc.) are still useful in the SLAM problem.

While all of the above case studies are successful, [5], [7]
and [10] rely on a ring laser gyroscope for highly accurate,
low-drift heading information. The inertial package in [8] also
shows highly accurate results as it is a simulation derivative
of the INS in [5], [7], [10]. Lastly, [6] and [9] use SLAM
to address missing, or noisy inertial information, showing
improvement, but with drift still present.

While they represent impressive contributions to the state
of the art, most of these works stand in contrast to our
own, as they rely on expensive INS systems. In our work we
focus on SLAM with a relatively low-cost vehicle, equipped
with a Doppler velocity log (DVL) and a MEMS inertial
measurement unit (IMU) for dead reckoning. While most
SLAM frameworks (including ours) also take advantage of
place recognition, a loop closure can only reduce drift to the
level in the reference pose, not to zero. Therefore, our proposed
use of overhead imagery is intended to address the fact that
if loop closures are sparse, or an IMU is of a noisy low-cost
nature, drift may grow to unacceptable levels.

B. Fusion of Overhead Imagery and Ground Based Sensors
The fusion of overhead imagery with ground-based sensors

has been widely explored. Several paradigms have been ap-
plied, including the use of feature association and the use of
CNNs. Firstly [11], [12], fuse overhead images with ground-
level perspectives by finding likely image pairs using image
descriptors. These probable image pairs are then leveraged
in a particle filter to localize a robot. The authors of [13],
[14] and [15] utilize convolutional neural networks (CNNs)
to compute image similarity. A more apt comparison to our
work is [16], where live radar images are used to localize
within a satellite image provided a priori, using deep learning
to predict the rotation offset between images, and synthesize
radar images to facilitate registration. In contrast, we use the
output of overhead image registration to contribute factors to
a SLAM factor graph, which is composed of a variety of
measurement constraints from different sources.

Overhead image fusion has also been explored in underwater
robotics, fusing sonar imagery with overhead images using a
CNN [17]. However, like [13], [14] and [15], image similarity
is the learned output, and direct registration is not addressed,
which is why we believe no comparison is warranted to [17].
[18] proposes using a CNN to learn the mapping between
a sonar image and the companion overhead RGB image. This
idea performs well on the authors’ similar data, but the authors
note performance limitations when generalizing; we believe
this is likely due to the poor correlation between acoustic
intensity and RGB values. Moreover, they do not consider the
registration problem, of finding the transformation between a
given satellite image footprint and the sonar image. In contrast
to these works, we will use a CNN to learn a more general
image representation, separately address the registration prob-
lem, and use these measurements to improve an existing graph-
based pose SLAM system that also incorporates other sources
of measurement.

III. Problem Description

We formulate a three degree-of-freedom planar SLAM
problem across discrete time steps 𝑡, each with an associated
pose x𝑡 . We define each pose in the plane as

x𝑡 =
(
𝑥 𝑦 𝜃

)⊤
. (1)

Note that we use bold lettering to define vectors and standard
lettering to denote scalars. R denotes the set of real numbers
and R+ denotes positive real numbers. Each pose has a set
of observations z𝑡 . The observations include sonar returns in
spherical coordinates with range 𝑅 ∈ R+, bearing 𝜃 ⊆ [−𝜋, 𝜋),
and elevation 𝜙 ⊆ [−𝜋, 𝜋) and an associated intensity value
𝛾 ∈ R+. These observations can be mapped into Cartesian
space by
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Additionally, each set of observations z𝑡 includes odometry
information: linear velocity 𝑉 ∈ R, linear acceleration 𝐴 ∈ R
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(a) Simulated Sonar Image (b) CFAR Image from (a)

(c) Candidate Overhead Image (d) Example Predictions

Fig. 2: Example Images: (a) A sonar image from our simulation
environment, (b) the CFAR-segmented sonar image, (c) the corre-
sponding candidate overhead image, and (d) the prediction of (b)’s
appearance at the surface, from U-Net’s processing of (b) and (c).

and rotational velocity 𝑊 ∈ R. In practice these measurements
come from the DVL and IMU.

The robot moves through the environment at fixed depth,
transitioning from state to state according to the dynamics

x𝑡 = g(u𝑡 , x𝑡−1) + 𝜹𝑡 , (3)

where x𝑡−1 is the pose at the previous timestep, u𝑡 is the
actuation command and 𝜹𝑡 is process noise. The posterior
probability over the time history of poses is defined as

𝑝(x1:𝑡 ,m|z1:𝑡 , u1:𝑡 ), (4)

with map m. The question addressed in this work, is how we
can leverage the provided observations, in conjunction with
reasonable prior information, to improve state estimation.

IV. Proposed Algorithm
A. Sonar Image Processing

As described in Section III, each sonar observation contains
a set of returns of varying intensity, in spherical coordinates,
which are recorded in a 2D image. However, we must identify
which points in the image are true sonar contacts and which
are noise and/or second returns.

In this work, we utilize constant false alarm rate (CFAR)
detection [19] to identify returns from the surrounding en-
vironment in the sonar imagery. CFAR has been widely
successful in radar and acoustic image processing [20], [21],
and has supported our prior work in underwater active SLAM
[22], [23]. Specifically, we use the smallest-of cell averaging
(SOCA) variant of CFAR, which takes local area averages
around the pixel in question and produces a noise estimate.
If the signal is greater than a designated threshold, the pixel
is identified as an image-feature. An example of its output is
shown in Fig. 2(b); this perceptual data product is used to
support SLAM throughout the work described in this paper.

All CFAR-extracted points in the image are converted to
Cartesian coordinates (Eq. (2)). Because we confine our state
to the plane, and because the elevation angle 𝜙 in Eq. (2)
is not recorded in our sonar imagery, we set 𝜙 as zero. The

x x x

x xx

OI

SSM factor NSSM factor OI factor

Fig. 3: SLAM Factor Graph. Robot poses 𝑥 are connected by
three kinds of factors: sequential scan matching factors (SSM) in
green, non-sequential scan matching factors (NSSM, or loop closures)
shown in red and overhead image factors (OI) shown in blue.

consequence of the lack of elevation angle, is confinement of
our system to in-plane pose estimation.

B. Graph Based Pose SLAM
To estimate the location of the robot, we use the graph-

based pose SLAM paradigm as in [22], [23]. At the front end,
we utilize scan matching to introduce sonar-derived factors
into the factor graph. We perform scan matching by using
the iterative closest point (ICP) algorithm [24]. To initialize
ICP with an accurate guess, the pose for a newly-arrived
sonar frame is first predicted using our robot’s DVL/IMU
dead reckoning, and further optimized using consensus set
maximization [25], helping ICP to avoid local minima.

At the back end, we utilize the GTSAM [26] implementation
of iSAM2 [27]. Per Fig. 3, we use three types of factors in our
factor graph, sequential scan matching (SSM), non-sequential
scan matching (loop closures - NSSM) and overhead image
(OI) factors. The factor graph is denoted as

f (𝚯) = f0 (𝚯0)
∏
𝑖

fSSM
𝑖 (𝚯𝑖)

∏
𝑗

fNSSM
𝑗 (𝚯 𝑗 )

∏
𝑞

fOI
𝑞 (𝚯𝑞).

Sequential scan matching factors are produced by applying ICP
to adjacent sonar keyframes, and non-sequential scan matching
factors are developed by applying ICP between the current
frame and frames inside a given search radius. Loop closure
outliers are rejected by first evaluating point cloud overlap, and
then applying pairwise consistent measurement set maximiza-
tion (PCM) [28]. The proposed addition of overhead image
factors will be discussed below.

C. Overhead Image Processing
We segment the available overhead imagery into three

classes: water, structures, and vessels. We then generate a
binary mask of the overhead imagery; pixels comprising static
structures are set to 1, and all others (water and vessels) are
set to 0. An example of this mask is shown in green at the top
left of Fig. 4. At each time-step, we carve out of the binary
mask a footprint representing the sonar field of view at the
respective pose estimate, shown at top right of Fig. 4, and
Fig. 2(c). This is performed using the current SLAM solution,
in conjunction with the robot’s known initial pose at the outset
of the mission, to estimate the robot’s current pose within the
overhead imagery. The resulting image is referred to in this
paper as the candidate overhead image.
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Fig. 4: System block diagram. The overhead imagery is segmented
offline, before the mission. As the mission progresses, a candidate
overhead image is retrieved using the current state estimate. Raw
sonar images are segmented using CFAR detection. Candidate over-
head and segmented sonar images are presented in a query to U-Net.
ICP is then applied, to register U-Net’s synthetic image output to
the globally referenced candidate overhead image. If there is enough
overlap, the measurement is added to the factor graph.

D. Learning a Unified Representation

Key challenges to overcome in registering a sonar image to
a candidate overhead image are the differences in perspective,
contents, and modality. In general, an environment contains
two kinds of structures: static structures, such as walls and
docks, and dynamic structures, such as boats, which even when
stationary, may be docked in different locations at different
times. In this work, we assume dynamic structures may have
moved between the time the overhead image was captured and
the time of the mission, but not during the mission. Moreover,
while overhead images contain RGB channels, sonar images
only contain acoustic intensity, not necessarily related to the
RGB channels of a given object.

These fundamental differences are what makes registering a
sonar image to an overhead RGB image challenging. For this
reason, we propose to learn a unified representation that will
aid in the registration problem. The first of our inputs is the
candidate overhead image, with an example shown in Fig. 2(c).
The second input is the sonar CFAR image, with an example
shown in Fig. 2(b). These two images are stacked channel-wise
into a single image as shown at left in Fig. 5. Note that these
images may have a non-zero transformation between them, as
the state estimate may or may not have drifted. We would
like to emphasize that their initial alignment does not need
to be perfect, but simply provide reasonable overlap between
the sonar image and candidate overhead image. The network
output is the static structure observed in the overhead image
transformed to the sonar image’s frame; a synthetic overhead
image. We utilize a well-known network architecture, U-Net

[29], to learn the mapping between input and output with the
addition of dropout layers. The key advantage of this method
is learning a unified representation (a prediction of the above-
surface appearance of the structures observed by the sonar)
that can be registered to overhead imagery, offering the same
perspective, contents and appearance as overhead imagery.

E. Acoustic Image Registration
We can now attempt to register the network output, a

synthetic overhead image, to the candidate overhead image. To
do so we first convert the images from pixels to meters. Next,
we extract the outline of any structure present and apply voxel-
based down-sampling to reduce the number of points. We then
use ICP to estimate the transformation between the candidate
overhead image points and the predicted synthetic overhead
image points. The resulting transformation is used to estimate
the overlap between the two sets of points; if the overlap does
not exceed a designated threshold, it is considered to be a bad
registration and discarded. Overlap is evaluated by applying
nearest-neighbor association and counting the percentage of
points in the source cloud with a Euclidean distance of less
than one meter to their neighbor. Note that here we do not
apply PCM as a means of outlier rejection, as it is simply not
required; the level of noise and ambiguity is not as severe as
for standard loop closure detection. If the overlap is sufficient,
then the ICP-derived overhead image transformation is added
to the current SLAM state estimate to derive the transformation
between the initial pose and the current pose. We then add this
overhead image factor to our factor graph, linking the initial
and current pose. For the sake of generality, the factor graph in
Fig. 3 shows an overhead image frame that can be associated
with any point of reference, not just the initial robot pose.

V. Experiments and Results

A. Hardware Overview and Simulation Environment
To perform real experiments, we utilize our custom-

instrumented BlueROV2 heavy (Fig. 1a). This vehicle is
equipped with a pixhawk for stability control and a Jetson
Nano for any required onboard computation. The vehicle is
outfitted with a Rowe SeaPilot DVL, VectorNav VN100 IMU,
and bar30 pressure sensor. We note that in contrast to many
other works in this area, our vehicle is equipped with a low-
cost MEMS IMU, rather than a high performance ring-laser
gyroscope, which is our only source of heading information
apart from the sonar and overhead imagery. For perception,
we utilize the Blueprint Subsea Oculus M750d wide aperture
multi-beam imaging sonar. This 750kHz sonar has a vertical
aperture of 20° and a horizontal field of view of 130°. We
operate the sonar at a max range of 30 meters. This relatively
low-cost sensor stands in contrast to profiling sonars and
higher-frequency imaging sonars more commonly used in this
setting that offer higher resolution. Our simulation environ-
ment reflects this sensor payload. We use Gazebo [30] in
conjunction with sonar [31] and UUV simulator [32] packages
to simulate an imaging sonar with the same characteristics as
the M750d.
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Fig. 5: Network Overview. We utilize a U-Net architecture to generate synthetic overhead imagery predicting the above-surface appearance
of an input sonar image’s contents. The inputs to the network are a processed sonar image containing CFAR-detected features, and a candidate
(partially overlapping) overhead image, each with the same spatial area. Input images are 256x128 pixels.

B. Data Gathering

To train our CNN, a significant amount of labeled data is
required. While the authors of [17] and [18] use a sonar dataset
with known locations from GPS, this data is not fully publicly
available and is limited in scope, as it comes from a single
environment with few dynamic structures.

We perform a simulation study due to the lack of available
data from underwater settings with ground truth, and our
inability to perform new large-scale field experiments during
the COVID-19 pandemic. Using a simulator allows us to
generate a diverse body of relevant labeled imagery for our
CNN, and to evaluate SLAM performance, as ground truth is
known. Moreover, we will later demonstrate our algorithm’s
applicability to real-world data after being trained in simula-
tion. Future work will focus on validating this methodology on
real data from complex trajectories in large-scale environments
with ground truth.

To generate training data we use two environments, resem-
bling a marina (Fig. 7(g)) and a ship’s pier (Fig. 7(h)). To
generate validation data, and to evaluate our SLAM solution,
we design two other marina-like environments different from
the first, shown in Figs. 7(i) and 7(j). To gather data, we place
the vehicle at a random, collision-free pose and capture a sonar
image. We then generate a random transformation in-plane,
with translations up to 5m and ± 22° yaw. We then capture
a candidate overhead image at the random transformed pose.
Labels are generated by capturing a candidate overhead image
at the same pose as the sonar image. We generate 5000 samples
from each training environment and 2500 samples from the
validation environment in Fig. 7(i) for ROC curve analysis.
The environment in Fig. 7(j) is used separately to evaluate
long-duration SLAM performance.

Each training dataset requires a segmented overhead image
of the full environment, for generating candidate overhead
images as described in Sec. IV.C. Overhead images of each
environment are generated at an altitude of 60m using a
simulated camera. The aforementioned image segmentation
(structure, water, vessels) is generated by hand labeling, as
shown at the top left of Fig. 4. It may be desirable for this step
in the process to be fully automated, but we also contend that
with environments of this size, it may often be a reasonable
cost to human AUV operators in the mission planning step,

Fig. 6: Training ROC Curves. Orange shows validation results
without data augmentation; black shows validation results with data
augmentation; the legend reports the area under the curve (AUC).

especially for settings that will be visited frequently. More-
over, deep learning methods for image segmentation in this
setting are growing in maturity [33]. Therefore, we confine
the technical scope of this paper to include pre-segmented
overhead imagery, as its preparation is simply a part of the
mission planning process, and not an integral part of the live
functionally of the proposed algorithm.

C. CNN Training
Using the gathered dataset, we implement the model archi-

tecture illustrated in Fig. 5 using TensorFlow [34]. The model
is trained for 10 epochs using a categorical cross-entropy
loss function and the Adam optimizer [35]. We evaluate our
model using the validation dataset. We note that our validation
environment (pictured in Fig. 7(i)) has a difference in static
structure, and its vessels are all in new locations, relative to
the training environments. To quantitatively measure model
performance we use receiver operator characteristic (ROC)
curves, shown in Fig. 6. To increase validation performance,
we perform two types of simple data augmentation. First, we
randomly flip each set of images. Secondly, we introduce
Gaussian speckle noise to the set of input images. More
advanced data augmentation (rotations, etc.) is not used to
preserve the contents of each data point, as our imagery is
often sparse on the sonar side.
D. SLAM Performance Metrics

To evaluate the performance of a SLAM framework aided
by overhead image factors, we consider two key metrics, mean
absolute error (MAE) and root mean squared error (RMSE).
These metrics are chosen to not only characterize the mean of
the error distributions but the goodness of fit the SLAM solu-
tion provides with respect to the true trajectory. We consider
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both the Euclidean distance of our SLAM estimate from the
corresponding true pose, and the difference in estimated yaw
angle 𝜃 from that of the true pose. Note that we do not consider
the global pose, but the pose relative to the initial keyframe,
ensuring a fair comparison across competing algorithms. In
the results to follow, sonar imagery is sampled at 5Hz, and as
in [22], [23], sonar keyframes are generated upon every 2m
of translation or 30° of rotation.

E. Simulated SLAM Results
In addition to sonar imagery, our SLAM method requires a

source of dead reckoning, in this case, a simulated DVL and
IMU. Zero mean Gaussian noise is introduced into these sen-
sors with 𝜎𝑣𝑒𝑙𝑜𝑐𝑖𝑡 𝑦 and 𝜎𝑡ℎ𝑒𝑡𝑎 as 0.1 m/s and 1° respectively.
These values are chosen as they produce results similar to
those experienced in the field with our baseline method. Lastly,
the proposed method requires a robot position fix defined
within the overhead imagery. We denote this as the overhead
image frame, which we choose to coincide with the location of
the robot’s initial pose, defined with respect to the overhead
imagery. Each mission is initialized by applying zero-mean
Gaussian noise to the true initial pose using 𝜎𝑡ℎ𝑒𝑡𝑎, and 𝜎𝑥𝑦

of 1 meter. Note that in a real world mission, we believe this
information could be easily sourced by collecting an initial
GPS fix at the surface, at the beginning of a mission. Recall
that we use point-cloud overlap as a means of outlier rejection,
and for this simulation study, the minimum required overlap
to accept an overhead image factor is 80%.

Equipped with a trained CNN, we can apply our full
proposed pipeline to the validation environment of Fig. 7(i).
To evaluate our SLAM system we generate two “fly-through"
trajectories at a fixed depth of approximately 1 meter; one
transits from left to right and the other from right to left.
This style of trajectory is selected since it efficiently transits
the environment, while observing nearly all structures in the
marina along the way. Using these two trajectories, we evaluate
our proposed SLAM method as well as a baseline method,
which is simply our SLAM method without the addition of
overhead image factors.

The performance of each competing method is evaluated
on both fly-through trajectories, and a summary of results is
given in Table I. When considering results from the fly-through
trajectories, even with numerous loop closures, the SLAM
solution without overhead image factors still accumulates error
as shown in Fig. 7(b). Conversely, the addition of the overhead
image factors in the fly-through trajectory case reduces all
error metrics and produces a more accurate map, shown in
Fig. 7(a).

Secondly, in order to evaluate the efficacy of our algorithm
over long distances, we run a 2.7-kilometer “long distance”
trajectory using the simulation environment shown in Fig. 7(j).
This trajectory is generated by looping around the environ-
ment ten times. With overhead image factors, a three-fold
improvement is shown in terms of position, with a similar
yaw MAE and marginal increase in yaw RSME. Results are
summarized in Table I. We note that no modifications are
made to our implementation when running the long-distance
trajectory experiment, and online performance is still achieved.

Fly Through Long Distance
Metric Proposed Baseline Proposed Baseline

Euclidean Error
MAE (meters) 0.83 2.06 0.87 3.13
RMSE (meters) 0.95 2.29 0.93 3.17

Yaw Angle Error
MAE (degrees) 1.70 5.95 3.65 3.98
RMSE (degrees) 2.09 6.48 10.5 10.27

TABLE I: SLAM Results. MAE and RMSE. “Fly through" refers
to the two benchmark trajectories in validation environment one as
in Fig. 7(i). “Long distance" refers to the 2.7km transit through
validation environment two shown in Fig. 7(j).

F. Real World SLAM Results

While we confine our quantitative case study to simulation,
we demonstrate the promise of future work by testing our sys-
tem on real data. Due to restrictions resulting from the COVID-
19 pandemic, gathering a new large-scale, ground-truthed
dataset for this study was not possible; instead, previously-
gathered datasets were utilized. These feature data collected
with our custom BlueROV2 in two marina environments:
the SUNY Maritime College marina on the East River in
The Bronx, NY and the U.S. Merchant Marine Academy
(USMMA) on the Long Island Sound in Kings Point, NY.
Our training maps, shown in Figs. 7(g) and 7(h), are intended
to capture the general appearance of these environments.
These real-world environments pose several challenges to our
overhead image factor system. Firstly, we train in simulation,
and it is unknown how well our trained CNN will generalize
to the real world. Secondly, the simulator, while realistic, is
a controlled environment. Moreover, our real-world settings
present environmental challenges, such as currents up to 2kts.

The datasets are recorded at a fixed depth of approximately
2m for SUNY Maritime and 1m for USMMA. Overhead
imagery is hand segmented and provided to the system a priori,
in addition to the robot’s initial location in the imagery. The
initial location was determined by manual alignment. Again
we use point-cloud overlap as a means of outlier rejection,
and for these field datasets, the minimum required overlap to
accept an overhead image factor is 95%.

At SUNY Maritime, we consider an “out and back” trajec-
tory where the robot moves away from its starting location
and returns along a similar path within close proximity of
the starting location. Baseline results for SUNY Maritime
are shown in Fig. 7(d). Although our system was trained
in simulation, it contributes several overhead image factors,
mitigating the drift compared to the baseline method as shown
in Fig. 7(c). The baseline method mainly shows drift in 𝜃, and
even though several loop closures occur, error still accumulates
in the map.

At USMMA, we consider a different trajectory, a straight-
line transit where no loop closures occur in the standard SLAM
solution. We consider this type of trajectory to demonstrate the
utility of overhead image factors, which can correct drift even
when loop closures are unavailable. The drift of the baseline
trajectory, shown in Fig. 7(f), results in a highly inaccurate
map. Once again our system, trained only in simulation, can
contribute several overhead image factors that improve the state
estimate, as shown in Fig. 7(e).
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(a) Example simulated SLAM mission with
overhead image factors

(b) Example simulated SLAM mission without
overhead image factors

(c) Example real-world SLAM mission with
overhead image factors at SUNY Maritime

(d) Example real-world SLAM mission without
overhead image factors at SUNY Maritime

(e) Example real-world SLAM mission with
overhead image factors at USMMA

(f) Example real-world SLAM mission without
overhead image factors at USMMA

(g) Training environment one (h) Training environment two (i) Validation environment one (j) Validation environment two
Fig. 7: Example outcomes: (a) SLAM mission with overhead image (OI) factors, and (b) the same trajectory without OI factors. The gray
background of (a) and (b) shows the OI mask; grid boxes are 5m. (c) Results from the SUNY Maritime dataset using the proposed OI
system, and (d) results without OI factors using the same trajectory shown in (c). (e) Results from USMMA with OI factors, and (f) results
from the same trajectory without OI factors. SSM factors are shown as green lines, loop closures are shown as red lines, and OI factors are
shown as blue lines. Poses are shown as boxes, where color changes with time. The planar point cloud map utilizes the same color scheme
as the poses the points are derived from. (g),(h) Our simulation training environments, and (i),(j) our validation environments.

We wish to underscore the significance of these results
and the potential of the proposed framework. Although the
system was trained in simulation, it can, and in these two
environments, does generalize to real sonar data. However, we
are keenly aware of the challenges associated with deploying
deep learning methods in the field. Future work will focus on
expanding our methodology and testing on more significant,
more complex trajectories and developing a ground-truthed
dataset. Full video playback of these experiments, in addition
to portions of our simulated SLAM experiments, are included
in our video attachment.

G. Computation Time

Our framework results in the following sources of addi-
tional computational overhead: a single GPU query, a single
ICP query, and a single instance of overlap estimation per
keyframe, which are implemented in a multi-threaded manner.
If an overhead image factor is detected, the result is passed to
the SLAM thread, where it is added to the factor graph. The
result is a SLAM system that runs faster than keyframes are
added. A runtime test of our overhead image factor system,
which encompassed network prediction, ICP, and overlap
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estimation, yielded a rate of 55Hz, which is above and beyond
the requirements of sonar keyframe processing. This test was
performed over the 2500 examples from our validation set.
These experiments were conducted using an Intel i9-9900K
CPU @ 3.60GHz and an Nvidia Titan RTX GPU.

VI. Conclusions
In this work, we have presented a novel method for ad-

dressing drift in a sonar-based underwater SLAM solution,
using overhead image factors. We have shown that our method
provides significant added value in terms of pose estimation
error. Moreover, we do not use complex prior information such
as environment CAD models. Instead we use data that can be
sourced from the public domain, and an initial position fix.
Additionally, we do not attempt to localize a robot using only
an overhead image; we use all of the available information
in conjunction with state-of-the-art sensor fusion methods
[26] to build a robust and low drift state estimate. We do
concede that this method is mostly applicable in littoral envi-
ronments, where structures are observable above and below
the water. However, we would contend that this represents
many AUV/ROV applications, such as hull inspection, har-
bor security, and operating near offshore structures. When
considering potential shortfalls of this system, we make one
key assumption throughout this work; that the surrounding
environment contains structures observable by both sonar and
overhead imagery. Otherwise, our method will be unable to
mitigate drift using overhead image factors. Moreover, the
same will be true if the structures in question are degenerate
(consider a single small pier piling or a long flat wall). Lastly,
in this work, we train and evaluate primarily in simulation.
Future work will focus on developing the data (simulation and
real) to extend this work to more extensive, outdoor, real world
environments in the littoral zone and near offshore energy
assets.
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