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Abstract— While traditional real-time systems analysis requires single pessimistic estimates to represent system parameters, the
mixed-criticality (MC) design proposes to use multiple estimates of system parameters with different levels of pessimism, resulting in
low critical workloads sacrificed at run-time in order to provide guarantees to high critical workloads. Shortcomings of the MC design
were improved recently by the precise MC scheduling technique in which the processor speed is increased at run-time to provide
guarantees to both low and high critical workloads. Aiming to extend the precise MC scheduling to multiprocessor computing platforms,
this paper proposes three novel scheduling algorithms that are based on virtual-deadline and fluid-scheduling approaches. We prove
the correctness of our proposed algorithms through schedulability analysis and also present their theoretical effectiveness via speedup
bounds and approximation factor calculations. Finally, we evaluate their performance experimentally via randomly generated task sets
and demonstrate that the fluid-scheduling algorithms outperform the virtual-deadline algorithm.

Index Terms—precise scheduling, mixed-criticality real-time systems, varying-speed platform, fluid scheduling, multiprocessors

F

1 INTRODUCTION

For task models in traditional real-time systems, each sys-
tem parameter is represented by a single value estimate,
which results in a large gap between the worst-case and
average-case performance on modern computing platforms
with complex instruction sets. The adoption of commercial-
off-the-shelf multi-core and many-core platforms has further
worsened this problem, leading to poor resource utilization
and reducing the benefits provided by additional cores.
The mixed-criticality (MC) design paradigm addresses the
resource under-utilization issue by allowing tasks with dif-
ferent levels of criticality with varying levels of guarantees.
The MC paradigm uses the classical Vestal’s model [41] that
introduced tasks of different criticality levels with worst-
case execution time estimates calculated from techniques
requiring different levels of pessimism. Precisely, higher crit-
ical tasks utilize more pessimistic estimates and vice-versa.
Such a mechanism prevents under-utilization by under-
allocating resources until more resources are necessary. On
the other hand, the approaches in [2], [7] proposed multiple
estimates for task periods, deadlines, and processor speeds.
Recently, the Multi-Model system [17] considered multiple
task models with varying levels of guarantees.
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In the MC scheduling, the service provided to the lower
criticality workloads will be degraded in the higher critical-
ity mode in order to provide guarantees under all modes.
Service degradation occurs by either dropping the lower
criticality workload altogether or providing only partial
service. Such imprecise mixed-criticality scheduling [5], [18],
[36] allows the higher critical workloads in higher critical
modes of operation to meet more pessimistic resource re-
quirements while gracefully degrading lower critical work-
loads. However, providing degraded service to non-critical
tasks is not applicable to certain safety-critical applications.
In such cases, current industrial practices require that guar-
antees be provided to all tasks despite their level of critical-
ity. The recently proposed precise mixed-criticality model [15]
aims to provide full computation with no degradation to the
tasks in the system under all operating modes and models.

To this end, an important question arises: without sacri-
ficing the low-critical tasks, is it possible to provide guar-
antees to the high-critical tasks upon mode switch with
the additional workload requirements introduced in high-
critical mode? A possible solution is to utilize the dynamic
voltage and frequency scaling (DVFS) feature in modern
hardware. The ability to change the processor frequency
during run-time means that the additional workload re-
quired to be guaranteed in high-critical mode can be ac-
commodated by increasing the processor speed sufficiently.
Since the processor speed can be increased, it will no longer
be necessary to drop low-critical tasks thereby addressing
the industry needs. However, the processor speed cannot be
increased indefinitely and therefore the full (or maximum)
speed of the processors must be taken into account in the
schedulability test. As an added benefit, Huang et al. [32]
with their adoption of DVFS techniques to mixed-criticality
scheduling problem have shown the benefits of energy
savings. Since overruns are expected to be rare events, it is
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beneficial to operate the system at a lower frequency unless
deadlines cannot be met. While most of the existing MC de-
signs (e.g., [7], [8], [32]) on varying-speed platforms provide
no guarantees to low-critical tasks, the work in [15] com-
bines the precise scheduling of (sporadic implicit-deadline)
MC tasks with varying speed platform. For dual-criticality
settings, this approach aims to minimize the processor speed
under less pessimistic worst-case execution time (WCET)
assumptions or models. The deadlines are guaranteed via
increased processor speed to the maximum value upon
mode switch owing to the overrun of the high-critical task.
In [15] and [43], the authors presented virtual-deadlines
based on the earliest deadline first (EDF) algorithm and
fluid-rate based approaches for precise scheduling of MC
tasks on the uniprocessor platform.

To summarize, the precise MC model introduced two im-
portant advantages over existing approaches: (i) irrespective
of the mode of operation, both low- and high-criticality
tasks are guaranteed full service throughout operation; and
(ii) with the multi-model formulation, the processors can
execute at a slower speed if the requirements are guaranteed
under less pessimistic assumptions. The reduced speed of
operation directly improves energy efficiency, which is an
important design consideration in embedded systems.

This work targets integrating DVFS-based energy con-
servation and precise computing on an (identical) multipro-
cessor platform for MC tasks. Energy efficiency is achieved
by operating the processors at a degraded speed during
normal operation and switching to their full speed only
in the high-criticality mode. A preliminary version of this
work was recently published in a conference [39] where
we proposed two independent scheduling techniques along
with their theoretical analysis. This work extends the confer-
ence version by formulating a mathematical programming
problem (MCF-MP) to identify the optimal fluid rates, and
comparing the performance of our heuristic algorithms with
state-of-the-art methods using randomized workloads. This
work also includes additional performance evaluations and
a plot to visualize the approximation ratio for MCF-FR.
Contributions. Our work targets varying-speed multi-
processors and MC tasks under preemptive and precise
scheduling requirements. Specifically, we

• present a novel mixed-criticality system model and
formalize a new MC scheduling problem;

• propose a novel virtual-deadline based scheduler
fpEDF-VD and prove a schedulability test that is suf-
ficient only;

• develop two alternative algorithms, namely MCF-MP
and MCF-FR, that are both fluid-scheduling based
approaches, where MCF-MP leverages nonlinear op-
timization solvers to achieve the best schedulability
while MCF-FR is a sub-optimal approach with a closed
form solution and bounded approximation ratio;

• design schedulability experiments to demonstrate (em-
pirically) the effectiveness of our proposed methods
and compare their performances.

We now describe the organization of the rest of this
paper. Section 2 discusses the system model and for-
mally states the targeted problem. Section 3 presents
a virtual-deadline based fpEDF-VD scheduler. Focusing

on an alternative fluid-based scheduling framework, Sec-
tion 4 presents two algorithms, namely a mathematical-
programming based approach MCF-MP leveraging known
nonlinear optimization solvers, and a polynomial-time al-
gorithm MCF-FR proving an approximation ratio. Section 5
compares the proposed approaches with state-of-the-art
methods with a large numbers of task sets that are ran-
domly generated. Section 6 summarizes the related work,
and Section 7 draws conclusions with directions of future
research.

2 SYSTEM MODEL AND PROBLEM STATEMENT

We consider a set of n implicit-deadline sporadic MC
tasks denoted by τ = {τ1, τ2, · · · , τn}, where each task
τi = (Ti, C

L
i , C

H
i ) is specified by a 3-tuple as explained

below. Each task τi releases a sequence of jobs with a
minimum inter-release separation of Ti time units and every
job has an absolute deadline of Ti after its release. The worst-
case execution time (WCET) of task τi is estimated at two
criticality levels: a low-criticality estimate (CLi ) and a high-
criticality estimate (CHi ≥ CLi ), both on a unit-speed proces-
sor. Besides, CLi and CHi are also the execution requirement
budgets of task τi in the L- and H-modes, respectively. We
use Ji,j to denote the jth job of task τi.

System Model. The MC tasks are to be scheduled on m
energy-conserving processors which can operate at either a
degraded or full speed. Given the set τ of n mixed-criticality
tasks we consider the problem of scheduling on the varying
speed multiprocessor platform. Initially, all m processors
operate at a degraded speed ρ < 1. Under this degraded
energy-conserving speed ρ, any workload executed for t
time units has consumed a processor budget equivalent
to ρ × t time units under a unit-speed processor. During
runtime, the amount of budget consumed by each job of
each task is monitored by the scheduler. Each job Ji,j is
expected to signal completion before it exhausts its low-
criticality budget estimate CLi (which corresponds to an
actual execution time of CLi /ρ time units). If a HI-criticality
task does not signal completion, all m processors begin to
execute at their full speed 1.0. We call this time instant a
mode switch, when the system increases its processor speed
from ρ (in L-mode) to 1.0 (in H-mode). The system can
resume operation in L-mode once all processors idle. Note
that, no task can exceed their CHi budget and doing so is
considered erroneous behavior and such jobs are terminated.
As a consequence, LO-criticality tasks do not trigger a mode
change, since CLi = CHi for LO-criticality tasks.

It is also worth noting that, under the proposed model,
no task will suffer from any ‘drop’ upon a mode switch,
as we provide full service guarantee to all jobs under all
circumstances. The increased processor speed upon mode
switch compensates the additional execution requirement
budget CHi − CLi . This differs from most existing works on
MC scheduling.

We use uLi and uLi to denote the utilization of task τi in
L- and H-modes respectively, where

uLi =
CLi
Ti

and uHi =
CHi
Ti

.

For any LO-criticality task, uLi = uHi since CLi = CHi .
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The overall per-mode system utilizations (of all tasks)
are denoted as

UL =
∑
i

uLi and UH =
∑
i

uHi .

We use uLmax = maxi{uLi } and uHmax = maxi{uHi } to
denote the dominating per-mode utilizations (per task).

Problem Statement. Given a set of MC tasks and m iden-
tical processors with speed that may vary, we hope to
find a correct scheduling mechanism, such that all timely
execution requirements are guaranteed in all circumstances.
Specifically,
• all processors must only operate at their (known)

energy-conserving speed ρ < 1 if all jobs finish within
CLi budget;

• all processors may operate at their full speed 1.0 if any
HI-criticality job executes beyond its CLi budget, and
yet finishes within its CHi budget.

3 SCHEDULING BY VIRTUAL DEADLINES

This section solves the aforementioned problem by propos-
ing a new scheduler based on the virtual-deadline approach.
Specifically, we present fpEDF-VD algorithm, and prove the
correctness of precise MC scheduling on m varying-speed
processors by developing a sufficient schedulability test.

3.1 Algorithm fpEDF-VD
The proposed fpEDF-VD scheduler combines two existing
approaches, namely fpEDF and EDF-VD. Based on the
global EDF scheduler, the fpEDF scheduler was developed
in [9] by statically prioritizing heavy tasks with utilization
exceeding 0.5. fpEDF assumes that m identical unit-speed
processors satisfy the following sufficient schedulability
test.

Theorem 1 (Theorem 4 in [9]). Let Usum denote the total
utilization of an arbitrary sporadic task set, in which ui denoted
the utilization of task τi. This task set is schedulable by fpEDF on
m identical unit-speed processors if

∀i, ui ≤ 1.0 and Usum ≤
m+ 1

2
.

As proposed in the EDF-VD scheduler [3], [10], the tech-
nique of setting virtual deadlines is to promote the execution
of HI-critical tasks in the L-mode and to leave slacks for
the potential extra workload at a mode switch from L to
H. A scaling factor x determines the virtual deadlines for
HI-critical tasks by T̂ ′i = x · Ti. For LO-critical tasks, their
virtual deadlines are set identical to their actual deadlines,
Ti. Then, the tasks are scheduled according to EDF by their
virtual deadlines in the L-mode and by their actual deadlines
once the system is switched to the H-mode.

Let us now present our novel algorithm, called fpEDF-
VD that consists of two phases – a pre-processing phase as
described in Algorithm 1, and a runtime phase as described
in Algorithm 2. In fpEDF-VD, both HI-critical tasks as well
as the LO-critical tasks are assigned virtual deadlines cal-
culated by the scaling factor. This is because in precise MC
scheduling, LO-critical tasks are not dropped at the mode
switch and therefore we also need the virtual deadlines to

control their carry-over behaviors upon a mode switch. In
the runtime phase, the tasks are mapped to a set of non-
MC sporadic tasks in the L- and H-modes, respectively, to
apply fpEDF in each mode. In other words, we have two
mappings from the MC tasks to non-MC sporadic tasks, and
upon a mode switch, fpEDF is re-launched with respect to a
different set of non-sporadic tasks.

Algorithm 1: Pre-processing Phase for Algorithm
fpEDF-VD.

Data: Dual-criticality task set τ = {τ1, τ2, ...., τn},
number of processors m, energy-conserving
speed ρ

Calculate scaling factor x

x← max

(
uLmax

ρ
,
UL

m+1
2 ρ

)
(1)

if max
(
uL
max

ρ , UL

m+1
2 ρ

)
+max

(
uHmax,

UH

m+1
2

)
≤ 1 then

foreach τi ∈ τ do
T̂i ← x·Ti

end
return SUCCESS

else
return FAILURE

end

3.2 Schedulability Test

We derive a sufficient schedulability test for fpEDF-VD in
Theorem 2. First, the correctness of our proposed scheduler
in the L-mode is established by the following lemma.

Lemma 1. All tasks must meet their virtual deadlines in the
L-mode under fpEDF-VD, if

x ≥ uLmax

ρ
and x ≥ UL

m+1
2 ρ

.

Proof. As shown in Algorithm 2, all tasks in the L-mode
is mapped to {(T ′i , C ′i)}, which is scheduled by fpEDF. By
Theorem 1, if ∀i, C

′
i

T ′i
≤ 1 and

∑
i
C′i
T ′i
≤ m+1

2 , then all tasks in
{(T ′i , C ′i)} must meet their deadlines, i.e., all MC tasks in τ
must meet their virtual deadlines in the L-mode. Meanwhile,
we also have

∀i, C
′
i

T ′i
≤ 1⇔ ∀i, C

L
i /ρ

xTi
≤ 1⇔ ∀i, uLi ≤ xρ⇔ x ≥ uLmax

ρ
,

and
∑
i

C ′i
T ′i
≤ m+ 1

2
⇔
∑
i

CLi /ρ

xTi
≤ m+ 1

2

⇔ ULi
xρ
≤ m+ 1

2
⇔ x ≥ UL

m+1
2 ρ

.

Thus, the lemma follows.

Next, the correctness of fpEDF-VD in the H-mode is
established by the following lemma.
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Algorithm 2: Runtime Phase for Algorithm fpEDF-VD.
If the pre-processing phase returns SUCCESS, then
fpEDF-VD schedules tasks during runtime as follows:
• In the L-mode, fpEDF-VD schedules tasks by their

virtual deadlines on m speed-ρ processors.
It is equivalent to scheduling the task set
{(T ′i , C ′i)}ni=1 on m unit-speed processors, where
T ′i = x · Ti and C ′i = CLi /ρ for every task τi,

Then the task set {(T ′i , C ′i)}ni=1 is scheduled by fpEDF
where tasks with C ′i/T

′
i > 0.5 are considered as heavy

tasks.
• In the H-mode, fpEDF-VD schedules tasks by actual

deadlines on m unit-speed processors.
It is equivalent to scheduling the task set
{(T ′′i , C ′′i )}ni=1 on m unit-speed processors, where
T ′′i = (1− x)Ti and C ′′i = CHi for every task τi,

Then, task set {(T ′′i , C ′′i )}ni=1 is scheduled by fpEDF
where tasks with C ′′i /T

′′
i > 0.5 are considered as

heavy tasks.

Lemma 2. A task with either LO- or HI-criticality will meet its
actual deadline in the H-mode under fpEDF-VD as far as the
following conditions hold:

x ≤ 1− uHmax and x ≤ 1− UH

m+1
2

.

Proof. In this paragraph, we demonstrate that one can safely
map the task set τ under H-mode to another corresponding
implicit sporadic one {(T ′′i , C ′′i )}. This is done by treating
the time instant of mode switch (t∗) as the “last-idle instant”
under the classical EDF schedulability analysis. Note that
with Lemma 1, jobs released during L-mode must have
finished their executions before t∗ if their virtual dead-
lines are on or before t∗. In contrast, for jobs with virtual
deadlines after t∗, their actual deadlines must be at least
(1− x)Ti = T ′′i time units after t∗ — for analysis purposes,
we safely assume that no execution to those jobs have begun
before the mode switch, such that the analysis of H-mode
covers the worst case. While if a job is released in the H-
mode, it is sufficient (and safe) to model it as a simple
sporadic task set {(T ′′i , C ′′i )} due to the following two facts:
(i) the job must have a deadline at least Ti time units after its
release; (ii) the job cannot execute for more than CHi = C ′′i
in any scenario.

Consider two facts: (i) we apply algorithm fpEDF to
schedule the mapped task set {(T ′′i , C ′′i )}, and (ii) Theo-
rem 1. We can conclude that if ∀i, C

′′
i

T ′′i
≤ 1 and

∑
i
C′′i
T ′′i
≤

m+1
2 , then all tasks in {(T ′′i , C ′′i )}must meet their deadlines.

That is, all MC tasks in τ must meet their actual deadlines in
the H-mode. Meanwhile, we also have

∀i, C
′′
i

T ′′i
≤ 1⇔ ∀i, CHi

(1− x)Ti
≤ 1

⇔ ∀i, uHi ≤ 1− x⇔ x ≤ 1− uHmax,

and
∑
i

C ′′i
T ′′i
≤ m+ 1

2
⇔
∑
i

CHi
(1− x)Ti

≤ m+ 1

2

⇔ UHi
1− x ≤

m+ 1

2
⇔ x ≤ 1− UH

m+1
2

.

Thus, the lemma follows.

In the following we will prove that Lemmas 1 and 2 yield
a sufficient schedulability test for our proposed scheduler.

Theorem 2. fpEDF-VD correctly schedule a dual-criticality task
set τ = {τ1, τ2, ...., τn} on m energy-conserving preemptive
processors, each having energy-conserving speed ρ and max speed
1.0, if

max

(
uLmax

ρ
,
UL

m+1
2 ρ

)
+max

(
uHmax,

UH

m+1
2

)
≤ 1. (2)

Proof. By the assignment of x in expression (1), we have

x = max

(
uLmax

ρ
,
UL

m+1
2 ρ

)
.

Therefore, x ≥ uL
max

ρ and x ≥ UL

m+1
2 ρ

. Also, by inequality (2),
x < 1. Thus, in the L-mode, by Lemma 1, all virtual
deadlines and hence all actual deadlines are met under
fpEDF-VD.

Again, inequality (2) yields

x ≤ 1−max

(
uHmax,

UH

m+1
2

)
,

which implies

x ≤ 1− uHmax and x ≤ 1− UH

m+1
2

.

Thus, in the H-mode, by Lemma 2, all actual deadlines are
met under fpEDF-VD. Hence the theorem.

4 DUAL-RATE FLUID SCHEDULING

Despite being a simple algorithm to implement, in fpEDF-
VD, the virtual deadline assignment is a coarse-grained
approach. However, pFair class of algorithms are shown
to be optimal for multiprocessors [11] for non-MC task
models and has the best speedup factor of (1 +

√
5)/2

for MC task models. This section focuses on fluid-rate-
based scheduling techniques as they belong to pFair class of
algorithms and have potential to outperform virtual dead-
line based approaches. Specifically, we restrict our attention
to the so-called dual-rate fluid scheduling [6], [35], where
each task τi is assigned two constant execution rates: θLi
in L-mode and θHi in H-mode. Under fluid scheduling, all
tasks conceptually progress simultaneously by “fractions”
of processor at their constant executing rates (per mode, in
our particular context). Such simultaneous progression can
be implemented by slicing the timeline into small pieces.
Lee et al. has successfully demonstrated such implementa-
tion feasibility with MC-DP-Fair [35].

Note that for each LO-criticality task, an execution speed
of θi = ui would be ideal. However, a HI-criticality task will
need a faster speed (comparing to its LO-utilization) — this
is to provide enough time window beyond the mode switch
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Fig. 1: Relationship between fluid execution rate and cumula-
tive execution over time of a task under MCF framework.

for the additional execution to finish. It should be typical
that the execution speed for a HI-criticality task should be
larger after the mode switch. Figure 1 demonstrates such
a relationship between the execution rates, where the blue
dashed parts indicates LO-criticality task setting and the red
dashed parts represents HI-criticality task settings under the
MC-Fluid (MCF) framework.

4.1 Optimization: Mathematical Programming

We propose MCF-MP algorithm which uses mathemati-
cal programming to optimally obtain the fluid-rate pair
(θLi , θ

H
i ) for each task τi. Specifically, we investigate the

necessary and sufficient schedulability condition for precise
MC scheduling on m varying-speed processors under this
dual-rate fluid scheduling model. In particular, the pairs
{(θLi , θHi )}ni=1 are considered as variables in the optimiza-
tion formulation, whereas the number of processors, the
degraded speed ρ, and the task parameters – execution
budget estimates and period are considered as inputs to the
problem.

Our goal is to ensure that the sum of assigned rates
does not exceed the capacity of the computing platform,
and each task, as it is sequential, is never assigned a rate
greater than 1.0. The temporal correctness of every task can
be guaranteed in the precise MC scheduling sense. That is,
a set of rate assignment pairs {(θLi , θHi )}ni=1 is feasible if and
only if

θLi ≤ ρ, ∀i : 1 ≤ i ≤ n (3)∑
i

θLi ≤ ρ×m, (4)

θHi ≤ 1.0, ∀i : 1 ≤ i ≤ n (5)∑
i

θHi ≤ m, (6)

and all deadlines are guaranteed to meet in both H- and
L-modes.

Let us now discuss how to obtain the constraints on the
rate assignment set {(θLO

i , θ
HI
i )}ni=1 to guarantee all dead-

lines in both H- and L-modes. First, for each task τi, all of its
jobs that are released and have a deadline in L-mode, must
meet their deadlines if and only if CLi /θ

L
i ≤ Ti,∀i : 1 ≤ i ≤

n. That is,

θLi ≥ uLi , ∀i : 1 ≤ i ≤ n. (7)

Second, for each task τi, all of its jobs that are released and
have a deadline in H-mode must meet their deadlines if and
only if CHi /θ

HI
i ≤ Ti,∀i : 1 ≤ i ≤ n. In other words,

θHi ≥ uHi , ∀i : 1 ≤ i ≤ n. (8)

Furthermore, while the relationship between θLi and θHi is
not restricted to the general idea of dual-rate fluid schedul-
ing (see Footnote 1), Theorem 3 below shows that we can
restrict our attention to the non-decreasing dual-rate fluid
scheduling only, where it is required that

θLi ≤ θHi , ∀i : 1 ≤ i ≤ n. (9)

Theorem 3. For the precise MC scheduling problem considered
herein, any task system that is schedulable under dual-rate fluid
scheduling must also be schedulable under non-decreasing dual-
rate fluid scheduling.

Proof. Suppose a system is schedulable under some rate as-
signment of dual-rate fluid scheduling that does not satisfy
expression (9), i.e., θLi > θHi for some i. Then, this system
must still be schedulable if we make a rate assignment
change by assigning θLi ← θHi . This is because the total rate
Constraints (4) and (6) cannot be violated by this assignment
that reduces θLi ; while Constraint (8) implies that a single
constant execution rate of θHi in both L- and H-modes for
task τi (this is the scenario for τi after reduction) guarantees
that all of its deadlines are met regardless of whether
and where the mode switches, because CLi ≤ CHi . Thus,
applying such rate re-assignment multiple times results in a
fluid rate assignment satisfying (9) while not compromising
schedulability.

Therefore, under non-decreasing dual-rate assumption,
for each task τi, its job (if any) released in L-mode but
executed in H-mode must meet its deadline (in H-mode)
if and only if

CLi
θLi

+
CHi − CLi

θHi
≤ Ti, ∀i : 1 ≤ i ≤ n. (10)

This is sufficient becauseCLi /θ
L
i time units after its release is

the latest time for the mode switch to be triggered and if the
mode switch is triggered earlier by any other job, then the
deadline must also be met by (9). This is necessary because
any HI-task can be the one that triggers the mode switch
and needs to execute exact CHi budget. If τi is a LO-task
(i.e., CLi = CHi ), then (10) reduces to (7). Therefore, we can
claim ∀i in inequality (10).

Note that, each of the above Constraints (3)-(10) is “if and
only if” and all three possible situations of a job (entirely in
L- or H-mode, and across the mode switch time instant)
have been exhausted. Therefore, Constraints (3)-(10) are a
necessary and sufficient condition for the MC task system
on the m varying-speed processors to be schedulable by any
two-rate fluid scheduling.

With Constraints (3)-(10), we have an optimization prob-
lem with linear and linear fractional inequality constraints,
where θLi and θHi are variables and all others are problem
input constants1. Thus, in total, there are O(n) variables,

1. Note that the non-negative rate assignment constraints (θLi ≥ 0 ∧
θHi ≥ 0, ∀i) are implied by inequalities (7) and (8)
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Algorithm 3: Algorithm MCF-MP.

Data: Dual-criticality task set τ = {τ1, τ2, ...., τn},
number of processors m, energy-conserving
speed ρ, maximum speed 1.0

if a feasible solution {(θLi , θHi )}ni=1 subject to
Constraints (3)-(10) is found then

in the L-mode, execute each task τi at fluid rate θLi
in the H-mode, execute each task τi at fluid rate θHi
return SUCCESS

else
return FAILURE

end

O(n) linear constraints, and O(n) linear fractional con-
straints, where n is the total number of tasks. This results
in our mathematical programming based algorithm, called
MCF-MP, which is summarized in Algorithm 3. Efficient
numerical solvers (such as fmincon [26] or CVX [28] in
Matlab) can be used to find a feasible solution.

4.2 Fixed-Ratio Fluid Rates

Although MCF-MP optimally solves the dual-rate fluid
scheduling problem, the fractional constraints lead it to be
a non-linear optimization, which can take excessive amount
of time for the solver to return. Therefore, we present an al-
ternative approach to find a feasible solution {(θLi , θHi )}ni=1

by restricting the ratio between the L- and H-modes to be
the same for all tasks. That is, each task τi is assigned a
execution speed θHi = θi in the H-mode and a execution
speed θLi = λ · θi in the L-mode where 0 < λ ≤ 1. The ratio
θLi /θ

H
i = λ ∀i.

Recall that we have simplified notations for per-mode
utilization of the whole task set τ :

UL =
∑
i

uLi and UH =
∑
i

uHi .

Let us now present an algorithm MCF-FR (see Algo-
rithm 4) to choose a system-wide parameter λ and the fluid
rates θi for any given MC task system; the schedulability
directly depends on whether the resulting λ can be upper
bounded by the degraded speed ρ. Due to these simple
condition checks, MCF-FR algorithm and the corresponding
schedulability test run in polynomial time. Note that the
MCF-FR is only a sufficient algorithm for the dual-rate fluid
scheduling problem, since there exists a task set for which
MCF-MP returns SUCCESS, whereas MCF-FR does not as
shown by the following example.

Example 4.1. Consider a task set with 5 tasks with utilizations
presented in Table 1. When ρ = 0.3 and m = 2, according
to MCF-FR, Equation (11) results in λ = 0.31676 > ρ and
therefore Algorithm 4 returns FAILURE. However, MCF-MP
successfully returns the fluid rates presented in Table 1 that satisfy
the Constraints (3)-(10).

In the rest of this section, we show that by selecting λ
and θi according to MCF-FR in Algorithm 4, if λ ≤ ρ, then
the system is schedulable under MCF-FR, i.e., the resulting
{(θLi , θHi )}ni=1 is guaranteed to satisfy constraints (3)-(10).

Algorithm 4: Algorithm MCF-FR.

Data: Dual-criticality task set τ = {τ1, τ2, ...., τn},
number of processors m, energy-conserving
speed ρ, maximum speed 1.0

A system-wide parameter λ and per-task parameters θi
are computed as:

λ← max

{
UL

m+ UL − UH ,max
i

{
uLi

1 + uLi − uHi

}}
(11)

∀i, θi =
uLi
λ

+ uHi − uLi (12)

if ρ ≥ λ then
in the L-mode, execute each task τi at fluid rate
θLi ← λ · θi

in the H-mode, execute each task τi at fluid rate
θHi = θi

return SUCCESS;
else

return FAILURE
end

i Criticality uLi uHi θLi θHi
1 HI 0.128057 0.287319 0.1537 0.9789
2 HI 0.089914 0.144498 0.1009 0.5309
3 LO 0.111853 0.111853 0.1125 0.1420
4 HI 0.006206 0.036006 0.0113 0.0921
5 LO 0.220324 0.220324 0.2210 0.2445

Summation 0.5994 1.9884

TABLE 1: A feasible set of fluid rates using MCF-MP where
n = 5, ρ = 0.3, m = 2

Note that, by Eq. (11), we have

0 < λ ≤ 1 (13)

because UH ≤ m and uHi ≤ 1, must hold for all i; otherwise,
deadlines cannot be guaranteed by any algorithm due to
overutilization.

Lemma 3. If MCF-FR returns SUCCESS, then Constraints (3)
and (5) must be true.

Proof. By Eq. (12),

θi =
uLi
λ

+ uHi − uLi

Eq. (11) implies λ ≥ uL
i

1+uL
i −uH

i
, so

θi ≤
uLi
uL
i

1+uL
i −uH

i

+ uHi − uLi

= 1 + uLi − uHi + uHi − uLi
= 1

Furthermore, MCF-FR returning SUCCESS means that λ ≤
ρ. Therefore, λ · θi ≤ λ. Since MCF-FR assigns θLi = λ · θi
and θHi = θi, Constraints (3) and (5) clearly hold.

Lemma 4. If MCF-FR returns SUCCESS, then Constraints (4)
and (6) must be true.
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Proof. According to Eq. (12),∑
i

θi =

∑
i u

L
i

λ
+
∑
i

uHi −
∑
i

uLi

=
UL

λ
+ UH − UL.

Whereas, Eq. (11) implies λ ≥ UL

m+UL−UH , so∑
i

θi ≤
UL

UL

m+UL−UH

+ UH − UL

= m+ UL − UH + UH − UL
= m.

Since MCF-FR returning SUCCESS means λ ≤ ρ, we have∑
i

(λ · θi) ≤ λ ·m.

Moreover, MCF-FR assigns θLi = λ · θi and θHi = θi. Hence
the lemma.

Lemma 5. In MCF-FR, Inequalities (7), (8) and (9) must be
true.

Proof. From Eq. (12), we obtain

θHi = θi = uHi +

(
1

λ
− 1

)
uLi ,

θLi = λ · θi = uLi + λ · (uHi − uLi ).
With the help of Inequality (13) and the fact uHi ≥ uLi > 0,
we have θHi ≥ uHi and θLi ≥ uLi , which are Inequalities (7)
and (8). Moreover, since θLi = λ · θHi , Inequality (13) implies
θLi ≤ θHi which is (9). Thus, the lemma follows.

Lemma 6. In MCF-FR, Inequality (10) must be true.

Proof.

Inequality (10)⇔ CLi
θLi

+
CHi − CLi

θHi
≤ Ti

⇔ CLi
λ · θi

+
CHi − CLi

θi
≤ Ti

⇔ θi ≥
CLi
λ · Ti

+
CHi − CLi

Ti

⇔ θi ≥
uLi
λ

+ uHi − uLi ,

which must hold because of Eq. (12). Hence the lemma.

The next theorem establishes the correctness of algo-
rithm MCF-FR.

Theorem 4. If MCF-FR returns SUCCESS, then the resulting
fluid rates {(θLi , θHi )}ni=1 must be a feasible solution for the
precise MC scheduling problem.

Proof. In Section 4.1 we established Constraints (3)-(10) as
a necessary and sufficient condition for for the precise MC
scheduling problem. from Combining Lemmas 3, 4, 5, and 6,
this theorem follows.

Now we calculate an approximation ratio α for MCF-FR
which is defined as follows. Any system that is schedulable
under some (potentially optimal) algorithm with degraded

speed ρ∗ must also be schedulable by MCF-FR with de-
graded speed ρ such that ρ

ρ∗ ≤ α. Here α ≥ 1 and
therefore, the lower the α, the closer the approximation
is to optimality. The difference between the approximation
ratio and a speedup bound is that, the full speed remains the
same (1.0) with respect to both the approximate and optimal
algorithms.

Theorem 5. Algorithm MCF-FR has an approximation ratio no
greater than

max

{
m

m+ UL − UH ,max
i

{
1

1 + uLi − uHi

}}
.

Proof. By Eq. (11), a system will be schedulable under MCF-
FR given the degraded speed

ρ = λ = max

{
UL

m+ UL − UH ,max
i

{
uLi

1 + uLi − uHi

}}
.

(14)
On the other hand, for a system to be schedulable even
under an optimal scheduling algorithm, the degraded speed
ρ∗ must satisfy

m · ρ∗ ≥ UL (15)

for the system not being overutilized in the L-mode.
Since each individual sequential task cannot be simul-

taneously executed on multiple processors, it is necessary
to have a sufficiently degraded speed that is at least each
individual task’s LO-utilization for being schedulable even
under an optimal scheduling algorithm. That is,

ρ∗ ≥ uLi (16)

Therefore, by Expressions (14), (15), and (16), we have

ρ

ρ∗
= max

{
UL

ρ∗(m+ UL − UH)
,max

i

{
uLi

ρ∗(1 + uLi − uHi )

}}
≤ max

{
m

m+ UL − UH ,max
i

{
1

1 + uLi − uHi

}}
.

Therefore, the theorem follows.

5 PERFORMANCE EVALUATION

In this section, we compare and contrast the performance
of the virtual-deadline based algorithm fpEDF-VD and the
dual-rate fluid scheduling algorithms MCF-MP and MCF-
FR under randomly generated workloads.
Workload Generation. The task sets were generated by
replacing the UUnifast algorithm [16] with its multipro-
cessor version, the UUnifast-discard algorithm [21]. For a
target utilization U and n tasks, UUnifast returns a set of
n utilizations. We adapt this procedure by providing the
per-core utilization as input and then scale the resulting
utilizations by the number of cores m. If the resulting set
of utilizations are all ≤ 1, then we return the utilizations,
else discard and repeat the process until we return.
• n ∈ {20, 40, 60, 80, 100} is the number of cores in the

system.
• m ∈ {2, 4, 8} is the number of cores in the system.
• ρ ∈ {0.3, 0.5, 0.7, 0.9} is the energy-conserving speed

of the processors.
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Fig. 2: A comparison of schedulability ratios of the three scheduling algorithms under different values of m and ρ, where n = 20.

• Ubound = UH/m is the relative utilization which de-
notes the per-core utilization, and UH =

∑
i u

H
i is the

total utilization of the system in HI-criticality mode.
• The LO-criticality execution time CLi for each task is

randomly chosen in the range [Cdown, Cup].
• R: The LO-criticality utilization for each task is ran-

domly chosen in the range [uHi /R, u
H
i ], where R ∈ Z+.

• P : the probability that the chosen task is HI-critical such

that 0 ≤ P ≤ 1.

The specific parameters chosen for workload generation
are as follows Cdown = 1, Cup = 100, R = 4, and
P = 0.5. With these range limits and constants, we generate
2000 randomly generated task sets. The other workload
parameters are derived from the parameters as follows. The
LO-criticality utilization is calculated based on the R pa-
rameter described above. The LO-criticality execution time
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Fig. 3: Scatter plot showing the approximation ratio for the generated task sets, where n = 20

Number of tasks (n)
Number of cores (m) 20 40 60 80 100

2 0.210 0.344 0.705 0.907 1.310
4 0.193 0.405 0.628 0.931 1.187
8 0.177 0.410 0.627 0.838 1.223

TABLE 2: Average computation time using MCF-MP

is randomly chosen in the range [Cdown, Cup]. The time
period and HI-criticality execution time for each task are
calculated from the LO-criticality execution time and LO-
criticality utilization of the corresponding tasks. We note
that even though we generate the workload in a randomized
manner, the resulting task model parameters are not truly
random due to the inherent dependency between individual
task parameters and the need to satisfy the task generation
conditions mentioned earlier. For presenting the evaluation
results, the total utilization of the workload is normalized to
the number of cores m denoted by Ubound. In other words,
Ubound represents the per-core utilization. Then, we evaluate
the performance in terms of the ratio of task sets that meet
the schedulability requirements for each proposed algo-
rithm. The mathematical programming formulation used
in MCF-MP is implemented using the CVXPY tool [1], [22]
written in Python. The source code for the experiments have
been published for reproducibility. 2

Experimental Results. Figure 2 shows the schedulability
ratio for varying relative system utilizations under each
combination of m and ρ values. Among the two fluid-
scheduling algorithms, we observe that MCF-MP upper-
bounds the MCF-FR for all schedulability experiment set-
tings, which can be attributed to the optimality of the MCF-
MP algorithm. Although sufficient, it is observed that MCF-
FR closely follows MCF-MP despite being a polynomial-
time schedulability test. On the other hand, the virtual-
deadline based algorithm fpEDF-VD performs considerably
worse with poor schedulability ratios. For lower relative
system utilization, all three approaches have high schedu-
lability ratios. However, as the number m of processors
increases along with a proportional workload increase, the
schedulability degrades. Conversely, as ρ increases, the

2. Source Code available at https://doi.org/10.24433/CO.6807714.v2
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Fig. 4: Varying the number of tasks for m = 2, ρ = 0.7

schedulability increases for a fixed value of m.
Figure 4 shows the effect of number of tasks on the

schedulability ratio for all three algorithms. We notice that
the number of tasks does not have a significant influence
on the overall schedulability ratio. Although we have only
presented the case for m = 2 and ρ = 0.7, the other cases
have a similar pattern and we omitted those for brevity.

Furthermore, to visualize the theoretical approximation
ratio derived in Theorem 5, in Figure 3 we plot the ap-
proximation ratio using a scatter plot. The x- and y-axis of
Figure 3 are chosen to meaningfully capture the two terms
that determine the approximation ratio. For each generated
task set, the color of the marker in the scatter plot is used
to show the approximation ratio and can be interpreted
through the color bar included in the figure.

In Table 2, we also present the average computation
times when running MCF-MP on the Stokes high perfor-
mance computing cluster at UCF. While the experiments
were run on multiple compute nodes simultaneously, each
instance of MCF-MP ran as a single task on the cluster with
no parallelization. We notice that increasing the number of
cores m does not drastically affect the computation, but
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surprisingly reduces the computation time. We believe this
is due to Conditions (4) and (6) being relaxed asm increases.
On the other hand, increasing n increases the computation
time. Regardless, with m = 8 and n = 100, the computation
takes less than 1.5 seconds.
Overall Performance. From our experiments, we observe
the following.
• MCF-MP outperforms MCF-FR. Since both the algo-

rithms follow fluid scheduling, this can be explained
by the optimality of the mathematical programming
approach.

• MCF-MP outperforms fpEDF-VD. In our experiments,
every task set schedulable by fpEDF-VD is also schedu-
lable by MCF-MP; however, there exist some task sets
that are schedulable by MCF-MP but are not schedula-
ble by fpEDF-VD. Due to the complexity of the MCF-
MP algorithm, we were unable to search for a case
where fpEDF-VD can schedule a task set that is deemed
unschedulable by MCF-MP.

• While MCF-MP outperforms the other two approaches
at the cost of significant computations, experiments
show that MCF-FR has a closer-to-optimal performance
among the fluid scheduling approaches, most notable at
higherm values. Since fpEDF-VD and MCF-FR are both
polynomial-time algorithms, we generated 1 million
task sets to identify a task set where fpEDF-VD can
schedule a task set that fails the MCF-FR test, and found
no such case.

Although we have not provided theoretical guarantees
for the above observations, the schedulability experiments
are based on a randomized task set and suggests a general
trend.

6 RELATED WORK

In the literature, several variations of MC models have been
proposed since its original introduction by Vestal [41]. The
survey by Burns and Davis [19], [20] provides a detailed
summary of the models and their results. Since the introduc-
tion by Vestal, most works on mixed-criticality scheduling
provide no guarantees to LO-criticality tasks in H-mode [4],
[8], [23], [24]. Burns and Baruah [18] proposed IMC model,
an alternative to traditional MC model that reduces the
priority of LO-criticality tasks while still allowing their
execution in H-mode. Both fixed-priority [18] and EDF-
VD [36] scheduling approaches have been studied for the
IMC model. Baruah et al. generalized the Vestal model such
that the lower criticality tasks are not completely discarded
in the higher critical modes.

Moving away from providing no guarantees, recent
works have attempted to provide degraded guarantees to
LO-criticality tasks in H-mode while still providing full
guarantees in L-mode. We categorize such works where at
least degraded guarantees are provided as imprecise MC.
Reducing the utilization budgets [18], [31], [33], [34] in
H-mode by means of reducing execution time, increasing
task periods, or by dropping selected jobs. The adaptive
MC Weakly hard model [27] proposed by Gettings et al.
imposes weakly-hard constraints on LO-criticality tasks in
H-mode. For multiprocessor systems, Xu and Burns propose
a technique to move LO-criticality tasks to a processor

not experiencing a mode change [42]. Santy et al. [38]
propose a technique to suspend LO-criticality tasks only
if not suspending can cause a HI-criticality task to miss
its deadline. Along the same vein, Bate et al. propose a
bailout protocol [12], [13] which allows the LO-criticality
tasks to continue execution but prevents their future releases
upon mode switch. Although better than providing no
guarantees, degraded guarantees are not applicable to some
applications and the criticisms against such a method was
presented in [25]. In contrast to service degradation, precise
scheduling techniques provide full service guarantees in all
modes of operation to all tasks in the system. We categorize
such works as precise MC. Recently, a precise MC model
was proposed where full guarantees were provided in both
criticality modes of operation on a varying speed uniproces-
sor [15].

To solve MC problems, Lee et al proposed the MC-Fluid
scheduling algorithm for multiprocessor systems, where the
rate of execution of a task depends on its criticality [35].
A more practical version of MC-Fluid, the MC-DP-Fair
algorithm was also proposed so that fluid model-based
scheduling techniques can be implemented on hardware.
Baruah et al. simplified the fluid scheduling algorithm with
their MCF algorithm which has a speedup bound no more
than 1.33 [6] for the dual-criticality case. Finally, the speedup
bound is improved for MC-Fluid from 1.618 to 1.33.

Energy consumption in embedded systems is a grow-
ing concern and several works [14], [29], [30], [40] have
proposed scheduling techniques for non-mixed-criticality
systems. The DVFS feature of processors allows runtime
changes to processor speed and can be exploited to reduce
energy consumption [32]. Extensions to multiprocessor plat-
forms was proposed in [37]. Using DVFS to provide precise
scheduling to MC tasks was recently explored in [15], [43].

To summarize, (1) existing works on MC either allow
partial or full degradation of LO-criticality tasks in H-mode;
(2) the DVFS capability has been exploited for purposes
of energy minimization in MC systems. Our work allows
precise computation for LO-criticality tasks in both modes
on multiprocessor systems, while minimizing energy during
their normal (and expected) operation in L-mode. This work
is a stepping stone towards maximizing the potential of
energy-saving architectures such as big.LITTLE for real-time
applications.

7 CONCLUSION

This paper proposed a framework for precise mixed-
criticality (MC) scheduling on varying-speed multiprocessor
platforms. Specifically, we presented three novel algorithms.
The first algorithm fpEDF-VD is based on virtual-deadlines
and we proved a speedup bound for the algorithm. Next, we
proposed MCF-MP, a mathematical programming formula-
tion to calculate the optimal fluid rate for a fluid-rate based
scheduling approach. With the optimal rate known, we pro-
posed MCF-FR which is a polynomial time algorithm and
we calculated its approximation ratio. For each algorithm,
we provided its correctness and a sufficient schedulability
test. In our empirical schedulability study using randomly
generated tasks, we observe that MCF-FR despite being a
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polynomial time algorithm has a closer-to-optimal perfor-
mance among the fluid scheduling approaches and even
outperforms the fpEDF-VD algorithm in terms of schedu-
lability ratio.

In future, we plan to investigate if the proposed speedup
bound and approximation ratio are tight; else how to im-
prove them. While we have considered that the processors
operate at the same speed (energy-conserving or full speed),
we will extend to the case where the processors can switch
their speeds independently. Further, we will formally prove
the dominance relationships among these algorithms or
identify counter-examples to show non-dominance. Finally,
using on-board implementations, we plan to evaluate en-
ergy savings on real-world conditions.
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