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Abstract— We present a trajectory planning and control
architecture for bipedal locomotion at a variety of speeds
on a highly underactuated and compliant bipedal robot. A
library of compliant walking trajectories are planned offline,
and stored as compact arrays of polynomial coefficients for
tracking online. The control implementation uses a floating-base
inverse dynamics controller which generates dynamically con-
sistent feedforward torques to realize walking using information
obtained from the trajectory optimization. The effectiveness of
the controller is demonstrated in simulation and on hardware
for walking both indoors on flat terrain and over unplanned
disturbances outdoors. Additionally, both the controller and
optimization source code are made available on GitHub.

I. INTRODUCTION

The inclusion of model detail in walking controllers for

underactuated bipedal locomotion can be used to accurately

capture the underactuated dynamics of the system. However,

implementing model-based planning and control for loco-

motion is non-trivial due to inherent model inaccuracies,

dynamically changing constraints, and possibly conflicting

objectives for the robot which can arise. It is due to these

challenges that bipedal robots which exhibit simultaneously

robust, efficient, and agile motions are rare in practice [21].

A significant subset of the bipedal robotics literature mit-

igates the complexity of humanoids and bipeds by viewing

walking as a problem wherein the real world dynamics

are assumed to be governed by the evolution of a simpler

system, such as a LIP models (Linear Inverted Pendulum [8],

[15]), SLIP models (Spring Loaded Inverted Pendulum [25]),

and the ZMP (Zero Moment Point [27]). These methods

can reduce computational complexity for fast planning and

experimental success. Despite its viability in practical imple-

mentation, this local representation of the system can limit

the agility of behaviors and compromise energy efficiency.

One area of planning and control which is particularly

difficult to directly address is passive compliance. Some

of the earliest inclusions of compliant hardware on bipedal

robots was with spring flamingo and spring turkey [13], and

more recently MABEL [18] and ATRIAS [25]. One of the

latest robots in this category is the Cassie biped (shown

in Fig. 1). From a mathematical standpoint, compliance

increases the degree of underactuation which makes finding

stable walking behaviors more difficult. Compliance can also

increase numerical stiffness and model uncertainty. We at-

tempt to address these challenges through two contributions.

*This research is supported under NSF Grant Numbers 1544332,
1724457, 1724464 and Disney Research LA.

1The authors are with the Department of Mechanical and Civil
Engineering, California Institute of Technology, Pasadena, CA 91125
{jreher,ames}@caltech.edu

Fig. 1. The bipedal robot Cassie at Caltech, used as the experimental
platform for demonstration of the methods presented in this work.

The first contribution of this paper is a motion library

of walking behaviors for Cassie that leverage its full-body

dynamics including compliance. To generate this library, we

utilize the framework of Hybrid Zero Dynamics (HZD) [28]

which has demonstrated success in developing controllers

for underactuated walking behaviors. HZD has enabled a

wide variety of dynamic behaviors such as underactuated

humanoid walking [22], compliant running [26], and 3D

bipedal walking with point-feet [20]. Directly related to this

work, motion libraries on sagittal motions under the as-

sumption of sufficient rigidity has been successfully realized

on Cassie [9], but this work ignored the robot’s inherent

compliance. Tangentially, singular walking behaviors which

consider passive compliance were realized in [24]. This

work, therefore, is the first to combine motion libraries that

consider the full-body compliant dynamics of Cassie.

The second contribution is the demonstration of a model-

based controller on hardware that can exploit the HZD

library to generate accurate feedforward torques. One of the

limiting assumptions affecting HZD behaviors is that their

formal stability guarantees are tied to exponential tracking of

outputs. This can lead to the use of high-gain PD feedback

controllers when applied to hardware. Instead, it would

be more desirable to achieve tracking with some inherent

control compliance to disturbances. In this direction, model-

based control in the form of inverse dynamics [3], [16],

control Lyapunov functions [4], or some combination of the

two [23] may offer more desirable control properties. In this

work, we consider an analytical solution to the floating-base

inverse dynamics problem, following the work in [17]. The

end result is an experimental demonstration on Cassie, with

the result being stable and robust walking.
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The paper is structured as follows: Section II gives an

overview of the Cassie robotic model and the hybrid domain

structure which is prescribed for walking. Section III details

the optimization problem which is used to produce a library

of compliant walking trajectories. Section IV introduces a

orthogonal decomposition based inverse dynamics controller,

which uses the optimized accelerations and robot model

to obtain a dynamically consistent feedforward term for

the planned walking gaits. Walking on hardware and in

simulation is then demonstrated, validating that the planned

trajectories capture the passive dynamics of the robot.

II. ROBOTIC MODEL

The Cassie biped is an approximately one meter tall walk-

ing robot designed and manufactured by Agility Robotics.

The sensing on the robot is entirely proprioceptive and

includes a 9-DOF IMU, torque sensing, and high-resolution

absolute encoders to measure both compliance and actuated

joints. The physical model of Cassie is complex, with 22

degrees of freedom, 4 of which are fiberglass leaf springs.

There are 10 BLDC motors which control the joints through

8 low-friction cycloidal gearboxes and 2 harmonic gearboxes

at the feet. The compliance in the model is contained to a 4-

bar linkage, through which the knee motors effectively drive

the leg length. While the feet of the robot are actuated, and

offer some small control authority in the sagittal direction,

contact is a reduced to a point in the coronal plane.

A. Floating Base Model

The robot itself is modeled as a tree structure composed of

rigid links. As legged locomotion inherently involves inter-

mittent sequences of rigid contacts with the environment, it

is common practice to construct a floating-base Lagrangian

model of the system and then add constraint forces via

D’Alembert’s principle [10]. We define the configuration

space of the bipedal robot Cassie as Q ⊂ R
n, where

n is the DOF (degrees of freedom) without considering

any holonomic constraints that result in DOF reduction. A

visualization of the prescribed coordinates is shown in Fig.

2, and an URDF of the robotic model detailed in this work

is provided online as a part of a software package [1]. Let

q = (pb, φb, ql) ∈ Q := R
3 × SO(3)×Ql,

where pb is the global Cartesian position of the body fixed

frame attached to the base linkage (the pelvis), φb is its global

orientation, and ql ∈ Ql ⊂ R
nl are the local coordinates

representing the joint angles between links. Further, the state

space X = TQ ⊂ R
2n has coordinates x = (qT, q̇T)T. The

local coordinates are denoted as qTl =
(
qL, qR

)
, where the

superscript L/R denotes the left/right leg, and

qi∈{L,R} =
(
θihr, θ

i
hp, θ

i
hy, θ

i
k, θ

i
s, θ

i
t, θ

i
hs, θ

i
a

)
,

represents the joint of hip roll, hip pitch, hip yaw, knee,
shin, tarsus, heel spring and ankle accordingly. Among these

joints, θhr, θhp, θhy, θk, θa are actuated by BLDC motors with

associated control inputs u ∈ U ⊂ R
m with m = 10 as

previously described. The joints θhs, θs are directly driven by

Fig. 2. The configuration coordinates of the Cassie robot: with the side
and front views highlighting the compliant mechanism and the general
morphology of the robot.

leaf springs, which are treated as rigid links with rotational

springs of stiffness 2300 and 2000 Nm/rad respectively at

the pivot. There is one completely passive joint θt per leg,

and an unconstrained model of the robot with 22 DOF.

The Lagrangian floating-base model can be expressed as:

D(q)q̈ +H(q, q̇) = Bu+ J(q)Tλ+Bsτs (1)

where D(q) is the inertia matrix, h(q, q̇) contains the Coriolis

and gravity terms, B is the actuation matrix with gear

reduction as its entries, and the Jacobian matrix of the holo-

nomic constraints is J(q) = ∂ η
∂q (q) with its corresponding

constraint wrenches λ ∈ R
mη . Note that we introduced the

spring forces as external forces τs = ksq + kbq̇ with ks, kb
the stiffness and damping coefficients, which are distributed

according to the associated spring selection matrix Bs.

B. Holonomic Constraints

Two types of holonomic constraints are commonly consid-

ered for legged robots, external contact constraints depending

on the current configuration of the robot and it’s interactions

with the world, and internal constraints from the robot

geometry. Both constraints are enforced in the same manner,

by prescribing a closure equation, η(q) = constant, which

represents a positional constraint. This expression then yields

a constraint on the accelerations when differentiated twice:

J(q)q̈ +
∂

∂q

(
∂J(q)

∂q
q̇

)
q̇ = 0. (2)

The enforcement of this constraint gives rise to the corre-

sponding force terms, λ, in the equations of motion (1).

Contact Constraints. In this work, ground contact is en-

forced through a holonomic constraint on a stance foot’s

position and orientation, ηst(q). Because the width of the

feet on Cassie is negligible we enforce contact as a line, or

as two collinear points of contact at the toe and heel. This

gives rise to a 5-DOF ground contact constraint:

ηst(q)
T := [pxst, p

y
st, p

z
st, φ

y
st, φ

z
st]

T
, (3)

where the first three components are the Cartesian position of

the center of the foot and the last two correspond to the the

foot pitch and yaw, shown in Fig. 3. Because λz
st is a normal

force, it is unilateral. Additionally, the forces λx
st, λy

st are
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required to satisfy friction models to remain feasible. Ideally,

a classical Amontons-Coulomb model of (dry) friction is used

to avoid slippage and is represented as a friction cone. For

a friction coefficient μ and a surface normal, the space of

valid reaction forces is then:

C =

{
(λx

st, λ
y
st, λ

z
st) ∈ R

3
∣∣λz

st ≥ 0;
√

(λx
st)

2 + (λy
st)

2 ≤ μλz
st

}
.

The moment associated with the foot pitch λmy
st can produce

rotation of the foot over the forward edge if it is too large.

It has been shown that this moment is limited by:

− l

2
λz
st <λmy

st <
l

2
λz
st, (4)

where l is the length of the foot from heel to toe.

Loop Constraints. It is common practice to model robotic

manipulators in branched tree structures. However, on

Cassie, a compliant multi-link mechanism is used to transfer

power from higher to lower limbs without allocating the

actuators’ major weight onto the lower limbs, and effectively

acts as a pair of springy legs [24]. When the mechanism has

a kinematic loop, this is often managed by cutting the loop

at one of the joints and enforcing a holonomic constraint at

the connection to form the closed-chain manipulator. In the

Cassie leg the heel spring is attached to the rear of the tarsus

linkage, with its end constrained via a pushrod affixed to the

hip pitch linkage. For this work, we assume that pushrod

attachment is a virtual holonomic distance constraint applied

between the hip and heel spring connectors as:

ηach(ql) := d(ql)− 0.5012 = 0, (5)

where the attachment distance d(ql) ∈ R is obtained via the

forward kinematics between connectors at the hip and heel

spring (see Fig. 2). We also assume that when a leg is in

swing that the springs on that leg are rigidly fixed:

ηsw(q)
T := [qs, qhs]

T = 0. (6)

This simplifies both the optimization and control implemen-

tations [26], and makes the dynamics less numerically stiff.

C. Hybrid Locomotion Model

A bipedal walking gait consists of one or more different

continuous phases followed by discrete events that transition

from one phase to another, motivating the use of a hybrid

system formulation with a specific ordering of phases. This is

traditionally described as a walking cycle, which is a directed

cycle with a sequence of continuous domains (continuous

dynamics) and edges (changes in contact conditions).

In this work, we structure the dynamics of walking on

Cassie in a hybrid fashion. The walking consists of two

single support domains, D{L,R}
SS , associated with stance on

the respective left (L) or right (R) foot, with an instantaneous

double-support (the swing leg lifts immediately on impact).

An associated directed graph can be specified for the system

which is depicted in Fig. 3. There is an additional assumption

that the walking is symmetric for both left and right stance

when the robot’s average lateral speed over a step is zero,

Fig. 3. Shown on the left is the contact geometry of the robot’s foot,
along with the constrained coordinates and associated contact frame. The
directed graph of walking used in this paper is shown on the right, where
we view walking on Cassie as consisting of two single-support domains
with a compliant stance leg, and rigidly stiff swing leg.

while the walking is allowed to be asymmetric otherwise.

A transition from one single support domain to another

occurs when the normal reaction force on the non-stance foot

crosses zero. Therefore, the domain and guard are given by:

D{L,R}
SS = {(q, q̇, u) : pznsf (q) ≥ 0, λz

nsf (q, q̇, u) = 0},
S{L→R, R→L} = {(q, q̇) : pznsf (q) = 0, ṗznsf (q, q̇) < 0},
where λz

nsf (q, q̇, u) is the vertical ground reaction force of

the swing foot and pznsf (q) is the vertical position of the

center of the swing foot from the ground. Impact occurs

when the swing foot touches the ground, modeled here as

an inelastic contact between two rigid bodies. In this contact

model, the configurations of the robot are invariant through

the impact and velocities will instantaneously change due

to the introduction of new holonomic constraints [10], [14].

The associated reset map, Δ, is given as:

Δ :=

[
q+

q̇+

]
=

[ Rq−

RΔq̇(q−)q̇−

]
, (7)

where R is a relabeling matrix, q− and q+ denote the pre

and post-impact configuration, and Δq̇(q) is obtained from

the plastic impact equation:

Δq̇(q−) = I −D−1JT(JD−1JT)−1J. (8)

As in [26], the relabeling matrix accounts for the assumption

that the spring on the swing leg is at its rest deflection.

III. TRAJECTORY PLANNING FOR WALKING

This section details the trajectory optimization approach

used to design a collection of trajectories which can be

implemented to obtain compliant walking behaviors on the

physical system in both the sagittal and coronal directions.

A. Virtual Constraints

Analogous to holonomic constraints, virtual constraints are

defined as a set of functions that regulate the motion of the

robot with a desired behavior [28]. The term “virtual” comes

from the fact that these constraints are enforced through

feedback controllers instead of through physical constraints.

The primary idea is to design a controller u(x, α) to regulate:

y(q, t) := ya(q)− yd(α, t), (9)
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Fig. 4. Contour plots of the swing leg length, leg angle, and leg roll outputs over the library speeds in the sagittal and coronal directions, showing the
forward and reverse sweep of the leg as it tracks the motions. Also shown is the corresponding motion executed in a Gazebo simulation.

for which a behavior can be encoded through the desired

outputs, yd(α, t). A 6th-order Bézier polynomial chosen

for the desired outputs, for which α is a matrix of real

coefficients that parameterize the curve. In this work, we

consider nine outputs of vector relative degree 2:

ya(q) :=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

φx, φy

θsthy, θswhy
θswhr

||ψsw||2
||ψst||2

atan2
(
ψsw
x , ψsw

z

)
φy(q)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

∣∣∣∣∣∣∣∣∣∣∣∣∣∣ qs=0

qhs=0

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

pelvis roll/pitch

stance/swing hip yaw

swing hip roll

swing leg length

stance leg length

swing leg pitch

swing foot pitch

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

where φy(q) is the swing foot Cartesian pitch and,

ψst/sw(q) = p
st/sw
hp (q)− p

st/sw
ak (q), (10)

is the expression for the distance between the hip pitch (hp)

and ankle pitch (ak) joints from the forward kinematics.

Because the foot geometry is quite small, we leave the stance

foot passive. It should be noted that we are controlling the

undeflected leg length and angle of the legs by zeroing the

spring deflections. By formulating the outputs in this way, the

passive dynamics of the system will contain the additional

dynamics associated with the compliant elements [26]. As a

practical matter, this is also important as directly controlling

the compliance in the leg is significantly more difficult.

B. Hybrid Zero Dynamics

The combined mechanical model (1) and (2) can be

expressed in state variable form as,

ẋ = f(x) + g(x)u. (11)

Additionally, because all outputs specified for the system

have vector relative degree two, we assume the existence

of a feedback control law u∗(x, t) that drives y → 0
exponentially, resulting in a closed loop system:

ẋ = fcl(x) = f(x) + g(x)u∗(x). (12)

Additionally, by driving the outputs to zero the controller u∗

renders the zero dynamics manifold:

Z = {(q, q̇) ∈ D | y(q, t) = 0, Lfcly(q, q̇, t) = 0}. (13)

forward invariant and attractive. Thus, the continuous dy-

namics (12) will then evolve on Z. However, because (13)

has been designed without taking into account the hybrid

transition maps (7), it will not be impact invariant. In order

to enforce impact invariance, the Bézier polynomials for the

desired outputs can be shaped through the parameters α. This

can be interpreted as the condition:

Δ(Z ∩ S) ⊂ Z, (14)

and will be imposed as a constraint on the states through the

impact (7). When (14) is satisfied, we say that the system

lies on the hybrid zero dynamics (HZD) manifold.

C. Gait Library Optimization

The desired evolution of the outputs (9) must now be

designed such that we can achieve locomotion, while also

satisfying both the physical limitations of the hardware and

other conditions such as (14). A nonlinear trajectory opti-

mization problem is formed to solve this problem. Similar to

[9], [29], we would like to design a variety of walking speeds

for which the robot can operate. To accomplish this, a library

of walking gaits at sagittal speeds of vx ∈ [−0.6, 1.2] m/s

and coronal speeds of vy ∈ [−0.4, 0.4] m/s are generated in

a grid of 0.1 m/s intervals. The impact-to-impact duration of

each step is fixed at 0.4 seconds for ease of implementation.

Each hybrid optimization was performed over the two

domains, D{L,R}
SS , with a constraint imposed such that when

the discrete impact (7) is applied to the terminal state that it

satisfies the hybrid invariance condition (14). It is critical that

the motions respect the limitations of the physical system.

In order to address this constraints for the friction cone,

actuator limits, and joint limits are imposed. While these

constraints alone ensure invariance and satisfaction of the

physical constraints, additional constraints on the behavior

were tuned for implementation on hardware, such as the
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Fig. 5. The contours of the floating base x and y accelerations which are
obtained from the trajectory optimization problem. These contribute to the
control action of a feedforward controller which is dynamically consistent
with the contact constraints of the underactuated robotic walking.

swing foot velocity, impact foot configuration, step symmetry

when vy = 0, and others outlined in Table I.

In order to minimize torque and to center the floating base

coordinate movement around the origin, the following cost

function was minimized:

J (w) :=

∫ tf

t=0

(
cu|u|2 + cφ|φb|2

)
dt, (15)

where w ∈ R
Nw with Nw being the total number of

optimization variables and c� are weights applied to the

respective terms. For the library presented in this work the

weights used were cu = 0.0001 and cφ = (20, 1, 30).
An optimization package, FROST [12], was used to tran-

scribe the constraints and cost of each of the 171 gaits into

a nonlinear programming (NLP) problem that can be solved

by a standard optimization solver such as IPOPT [5]:

w∗ = argmin
w

J (w) (16)

s.t. Closed loop dynamics: Eq.(12)

HZD condition: Eq. (14)

Physical feasibility: Table I

Each optimization was then solved through the C-FROST

interface [11] on a laptop with an Intel Core i7-6820 HQ

CPU @ 2.7 GHz with 16 GB RAM, and consisted of 8418

TABLE I

OPTIMIZATION CONSTRAINTS AND PARAMETERS

Step duration = 0.4 sec

Average step velocity, v̄x,y = vx,y m/s

Pelvis height, pz ≥ 0.80 m

Mid-step foot clearance, pznsf ≥ 0.14 m

Vertical impact velocity, ṗzsw ∈ (−0.40,−0.10) m/s

Step width, pylf − pylf ∈ (0.14, 0.35) m

Swing foot pitch, φy(q) = 0 rad

Friction cone, μ < 0.6

variables with 4502 equality and 5880 inequality constraints.

Using each gait as an initial guess for the next speed in the

library, the average number of iterations per run was 199
with an average total evaluation time of 263.8 seconds, and

an average objective value of J (w∗) = 4.12.

Extracting parameters for real-time control. The con-

troller implemented on hardware needs both the feedback

control objectives, defined by yd(α, t), and acceleration

information q̈∗ from the optimal path to complete the planned

motions. The feedback parameters, α, already concisely

parameterize the feedback control, and are placed in a large

matrix which can be used in a bilinear interpolation routine.

A subset of the resulting library of output parameters are

shown in Fig. 4, where the leg length, leg pitch, and hip roll

outputs are visualized over various walking speeds.

Generalized accelerations q̈∗ are extracted from the opti-

mization variables, w, as time-series data from each step. Re-

gression is performed on each curve to obtain the parameters

for a 6th order Bézier polynomial. They can then be stacked

with the α parameters in the same bilinear interpolation

routine for code efficiency. Plots of the accelerations for

the floating base x and y coordinates are visualized in Fig.

5. Finally, the floating-base position p∗x,y and velocity v∗x,y
relative to the stance foot is also extracted in the same

manner as q̈∗, and shown in Fig. 7.

IV. REAL-TIME TRACKING OF OPTIMIZED MOTIONS

The optimization framework described in Sec. III creates

a continuum of walking trajectories [7], which can be in-

terpolated to obtain walking motions at a range of speeds.

In previous work on Cassie [9], [24], PD control achieved

reasonable tracking of the desired outputs with the passive

compliance in the system matching the planned response.

However, implementation relied on high gains with hand-

tuned heuristic feedforward and trajectory modifications to

account for the model mismatch. This section will focus on

an inverse dynamics controller which can leverage nominal

accelerations already found via the optimized plan.

A. Inverse Dynamics Controller

The use of inverse dynamics control for underactuated and

floating-base robots is significantly more complex than for

fixed-base manipulators. In developing controllers for these

systems, there are many considerations to address such as

numerical problems due to repeated matrix inversions of the

inertia matrix, contact force distribution, and computational

efficiency [23]. Here, we follow the approach of Mistry [17],

which uses an orthogonal decomposition to compute the

inverse dynamics torques in the null-space of the constraints.

The underlying idea of the method is to use a QR

decomposition of the constraint Jacobian matrix:

J(q)T = Q

[
R
0

]
, (17)

where Q is an orthogonal matrix and R is an upper triangle

matrix of rank mη . The Q in the QR decomposition provides
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a coordinate transform which separates the system dynamics

(1) into the constrained and unconstrained components:

QT [D(q)q̈ +H(q, q̇)] = QTBu+

[
R
0

]
λ. (18)

Through the use of a selection matrix Su =[
0(n−k)×k I(n−k)×(n−k)

]
, we can obtain the unconstrained

system dynamics which are not dependent on the constraints:

SuQ
T [D(q)q̈ +H(q, q̇)] = SuQ

TBu. (19)

Solving for u leads us to the inverse dynamics:

uff = (SuQ
TB)†SuQ

T
[
D(q)q̈d +H(q, q̇)

]
, (20)

where † represents the appropriate Moore-Penrose inverse

and q̈d is a target acceleration for the system to follow. For

a more detailed analysis of the orthogonal decomposition

and controller derivation, we again direct readers to [17]. In

addition to the feedforward term provided by (20), a feedback

correction is computed as a standard PD controller:

u = uff −
(
∂y(t, q)

∂qm

)†
(Kpy(t, q) +Kdẏ(t, q, q̇)) , (21)

where Kp = [900, 500, 300, 250, 200, 200, 200, 200, 25] and

Kd = [12, 6, 4, 6, 5, 6, 4, 4, 2] are the proportional and deriva-

tive gains applied to the output feedback on hardware.
In order to select the parameters which are used for output

tracking and for the feedforward term, we use average veloc-

ity of the previous step, v̄ak−1. Thus, our Bèzier polynomial

array provides us at each time instant with the nominal

acceleration q̈∗(t, v̄ak−1), outputs yd(t, v̄ak−1), floating-base

positions p∗x,y(t, v̄
a
k−1) and velocities v∗x,y(t, v̄

a
k−1).

In (18) the spring force term, Bsτs, is not present. We

originally developed the controller with the spring dynamics

and were able to achieve walking. However, the robot

would often overreact to perturbations. Instead, we apply

a constraint on the springs (6) at their current deflection.

Because we are using (18) with the accelerations from the

compliant plan, the controller still produces actuated joint

accelerations/torques according to the library (see Fig. 7).

B. Velocity Tracking and Regulation Heuristics
The presented controller required no heuristic tuning on

the feedforward terms to achieve tracking of the outputs such

as offsets or hand-tuned torque profiles. However, directly

implementing this controller with the trajectory obtained

from the NLP (16) can at best result in a marginally stable

locomotion for experiments as it has no way to trend walking

towards an overall target walking speed. Motivated by this,

a PD controller is used to find an offset to the footstrike

location, and translated to the desired outputs:

Δ :=

⎡
⎣Δx

Δy

Δz

⎤
⎦ =

⎡
⎣K̃p,x(ṽ

a
x − vdx) + K̃d,x(ṽ

a
x − v̄ax,k−1)

K̃p,y(ṽ
a
y − vdy) + K̃d,y(ṽ

a
y − v̄ay,k−1)

0

⎤
⎦ ,

ydsw,ll = ||p∗nsf +Δ||2,
ydlp = sin−1

(
(p∗x(y

d) + Δx)/y
d
sw,ll

)− ydb,x,

ydlr = sin−1
(
(p∗y(y

d) + Δy)/y
d
sw,ll

)− ydb,y,

Fig. 6. Phase portraits of the left knee and hip pitch joints.

where ṽax,y = v̄ak−1 +
(
vax,y − v∗x,y

)
is the current step

velocity, vdx,y is the target step velocity from the user joystick,

vax,y is the instantaneous velocity of the robot relative to the

stance foot, and p∗nsf (y
d) = (p∗nsf,x, p

∗
nsf,y, p

∗
nsf,z) are the

nominal Cartesian swing foot positions computed from the

desired outputs. This style of regulator is inspired by early

work of [19], and has been used widely in the literature.

An additional regulator is applied to modify the nominal

accelerations of the floating base accelerations, which were

pictured in Fig. 5. Through the application of a heuristic

feedback controller, we can make the robot choose feedfor-

ward torques which trend the robot toward the target velocity

while satisfying the contact constraints on the system:

q̈dx,y =q̈∗x,y + kp
(
pax,y(q)− p∗x,y

)
+

kv(ṽ
a
x,y − vdx,y) + ki

∫ t

0

γ(ṽax,y(t
′)− vdx,y(t

′))dt′,

where kp = [1.25, 1.90] is a gain affecting the x and y
position errors of the pelvis relative to the stance foot,

kv = [0.80, 0.60] is a gain on the step velocity tracking

error, and ki = [1.90, 0.0] is a gain on the accumulated step

velocity error with a decay constant of γ = 0.9995 to avoid

integral windup. Because the feedforward term (20) uses the

full actuator matrix B, it does apply some control effort on

the stance foot actuator. It is for that reason that the integral

term is applied to the x direction, and not in the y.

C. Experimental Implementation and Results

The controller is implemented on the Intel NUC computer

which comes installed in the Cassie torso, on which we

added a PREEMPT RT kernel. The software runs on two

ROS nodes: one which communicates to the Simulink Real-

Time xPC over UDP to send torques and receive sensor

data and to perform estimation, and a second which runs the

controllers. Each node is given a separate core on the CPU,

and is elevated to real-time priority. The first node runs at 2
kHz and executes contact classification, inverse kinematics

to obtain the heel spring deflection, and an EKF for velocity
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Fig. 7. Experimental results for walking (top) and stepping in place (bottom). On the left is a comparison of the desired velocities from the current gait,
v̄ak−1, compared with the actual velocity of the robot. Also depicted are the accuracy of the tracking on the leg length and swing leg pitch outputs (center),
and the feedforward and total torques for the knee pitch and hip roll joints.

Fig. 8. Gait tiles of the robotic walking exhibited experimentally on the Caltech Cassie robot. The top half is two steps of flat-ground forward walking
outside, while the bottom half shows several steps of the robot walking over a height variation caused by both a shallow grassy slope and exposed roots.

estimation [6], [24]. The second node runs at 1 kHz and

receives the estimation and proprioceptive data over ROS.

It then runs either the standing controller presented in [23],

or executes the controllers presented in Sec. IV-A and IV-B

before communicating the commanded torque over ROS.

These controllers were first tuned in a Gazebo simulation,

shown in Fig. 4, before implementation on hardware. Cassie

was then tested indoors for stepping in place and for-

ward, backward, lateral, and diagonal walking. The velocity

tracking data, output tracking, and feed-forward torques are

shown in Fig. 7 for forward walking and stepping in place.

Additionally, limit cycles of the knee and hip pitch joints are

shown in Fig. 6, demonstrating the stability of the walking.

Cassie was then taken outside to walk over several hills,

raised roots, and a brick path. A video of both the simulation

and experiments is provided at [2], with walking tiles of the

robot on flat ground and traversing rough terrain is shown in

Fig. 8. The controller, simulation, and trajectory optimization

also made available in an open-source repository [1].

V. CONCLUSIONS AND FUTURE WORK

The Cassie biped poses a unique challenge due to its

compliant leg mechanism and the highly underactuated na-

ture of the dynamics. In order to leverage these components

in experiments, we constructed a hybrid model for walking

dynamics based on a compliant model. A trajectory opti-

mization was then developed to efficiently generate walking

trajectories using the method of HZD and was then tracked

through an inverse dynamics controller. The resulting exper-

iments show that the optimization can effectively capture the

passive dynamics on a highly complex robot, while providing

accurate model-based feedforward information.

On the physical system, a trivial double-support domain is

virtually impossible to attain due to the compliance present in

both legs. While this assumption simplified the development

of controllers and trajectory planning, the consideration of a

continuous double-support domain can enhance the stability

of the behaviors. Future work will focus on reintroducing

a nontrivial double-support domain to our walking model.

Additionally, the use of an analytical solution to the inverse

dynamics cannot account for optimal distributions of contact

forces, friction, torque limits, or provide convergence guar-

antees. Thus, our future controller development is focused

on further developing real-time model based controllers for

implementation on hardware, such as extending the control

Lyapunov function based methods in [23] to walking.
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