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Abstract— Experimental demonstration of complex robotic
behaviors relies heavily on finding the correct controller gains.
This painstaking process is often completed by a domain
expert, requiring deep knowledge of the relationship between
parameter values and the resulting behavior of the system. Even
when such knowledge is possessed, it can take significant effort
to navigate the nonintuitive landscape of possible parameter
combinations. In this work, we explore the extent to which
preference-based learning can be used to optimize controller
gains online by repeatedly querying the user for their prefer-
ences. This general methodology is applied to two variants of
control Lyapunov function based nonlinear controllers framed
as quadratic programs, which provide theoretical guarantees
but are challenging to realize in practice. These controllers are
successfully demonstrated both on the planar underactuated
biped, AMBER, and on the 3D underactuated biped, Cassie.
We experimentally evaluate the performance of the learned
controllers and show that the proposed method is repeatably
able to learn gains that yield stable and robust locomotion.

I. INTRODUCTION

Achieving robust and stable performance for physical

robotic systems relies heavily on careful gain tuning, re-

gardless of the implemented controller. Navigating the space

of possible parameter combinations is a challenging en-

deavor, even for domain experts. To combat this challenge,

researchers have developed systematic ways to tune gains

for specific controller types [1]–[4]. For controllers where

the input/output relationship between parameters and the

resulting behavior is less clear, this can be prohibitively

difficult. These difficulties are especially prevalent in the

setting of bipedal locomotion, due to the extreme sensitivity

of the stability of the system with respect to controller gains.

It was shown in [5] that control Lyapunov functions

(CLFs) are capable of stabilizing locomotion through the

hybrid zero dynamics (HZD) framework, with [6] demon-

strating how this can be implemented as a quadratic program

(QP), allowing the problem to be solved in a pointwise-

optimal fashion even in the face of feasibility constraints.

However, achieving robust walking behavior on physical

bipeds can be an arduous process due to complexities such

as compliance, under-actuation, and narrow domains of at-

traction. One such controller that has recently demonstrated

stable locomotion on the 22 degree of freedom (DOF) Cassie

biped, as shown in Fig. 1, is the ID-CLF-QP+ [7].
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Fig. 1: The two experimental platforms investigated in this

work: the planar AMBER-3M point-foot robot [8] (left), and

the 3D Cassie robot [9] (right).

Synthesizing a controller capable of accounting for the

challenges of underactuated locomotion, such as the ID-

CLF-QP+, necessitates the addition of numerous control

parameters, exacerbating the issue of gain tuning. Moreover,

the relationship between the control parameters and the

resulting behavior of the robot is extremely nonintuitive

and results in a landscape that requires dedicated time

to navigate, even for domain experts. Recently, machine

learning techniques have been implemented to alleviate the

process of hand-tuning gains in a controller agnostic way by

systematically navigating the entire parameter space [10]–

[12]. More specifically, Bayesian optimization techniques

have been applied to learning gait parameters and controller

gains for various bipedal systems [13], [14]. However, these

techniques rely on a carefully constructed predefined reward

function. Furthermore, it is often the case that different

desired properties of the robotic behavior are conflicting and

therefore can’t be simultaneously optimized.

To alleviate the gain tuning process and enable the use

of complicated controllers for naı̈ve users, we employ a

preference-based learning framework that only relies on

subjective user feedback, mainly pairwise preferences, to

systematically search the parameter space and realize stable

and robust experimental walking. Preferences are a par-

ticularly useful feedback mechanism for parameter tuning

because they are able to capture the notion of “general

goodness” without a predefined reward function. This is

particularly important for bipedal locomotion due to the lack

of commonly agreed upon numerical metric of good or even

stable walking in the community [15]–[18].
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Fig. 2: Configuration of the 22 DOF (using an unpinned

model) Cassie robot [9] (left) and configuration of the 5 DOF

(using a pinned model) planar robot AMBER-3M [8] (right).

Preference-based learning has been previously used to-

wards selecting essential constraints of an HZD gait gener-

ation framework which resulted in stable and robust exper-

imental walking on a planar biped with unmodeled compli-

ance at the ankle [19]. In this paper, we build on the previous

work by exploring the application of preference-based learn-

ing towards implementing optimization-based controllers on

multiple bipedal platforms. Specifically, we demonstrate the

framework towards tuning gains of a CLF-QP+ controller

on the AMBER bipedal robot, as well as an ID-CLF-QP+

controller on the Cassie bipedal robot, requiring the learning

framework to operate in a much higher-dimensional space.

II. PRELIMINARIES ON DYNAMICS AND CONTROL

A. Modeling and Gait Generation

Following a floating-base convention [18], we define the

configuration space as Q ⊂ R
n, where n is the unconstrained

DOF (degrees of freedom). Let q = (pb, φb, ql) ∈ Q :=
R

3×SO(3)×Ql, where pb is the global Cartesian position of

the body fixed frame attached to the base linkage (the pelvis),

φb is its global orientation, and ql ∈ Ql ⊂ R
nl are the local

coordinates representing rotational joint angles. Further, the

state space X = TQ ⊂ R
2n has coordinates x = (q�, q̇�)�.

The robot is subject to various holonomic constraints, which

can be summarized by an equality constraint h(q) ≡ 0
where h(q) ∈ R

h. Differentiating h(q) twice and applying

D’Alembert’s principle to the Euler-Lagrange equations for

the constrained system, the dynamics can be written as:

D(q)q̈ +H(q, q̇) = Bu+ J(q)�λ (1)

J(q)q̈ + J̇(q, q̇)q̇ = 0 (2)

where D(q) ∈ R
n×n is the mass-inertia matrix, H(q, q̇) con-

tains the Coriolis, gravity, and additional non-conservative

forces, B ∈ R
n×m is the actuation matrix, J(q) ∈ R

h×n is

the Jacobian matrix of the holonomic constraint, and λ ∈ R
h

is the constraint wrench. The system of equations (1) for the

dynamics can also be written in control-affine form:

ẋ =

[
q̇

−D(q)−1(H(q, q̇)− J(q)�λ)

]
︸ ︷︷ ︸

f(x)

+

[
0

D(q)−1B

]
︸ ︷︷ ︸

g(x)

u.

The mappings f : TQ → R
n and g : TQ → R

n×m are

assumed to be locally Lipschitz continuous.

Dynamic and underactuated walking consists of periods of

continuous motion followed by discrete impacts, which can

be accurately modeled within a hybrid framework [20]. If we

consider a bipedal robot undergoing domains of motion with

only one foot in contact (either the left (L) or right (R)), and

domain transition triggered at footstrike, then we can define:

D{L,R}
SS = {(q, q̇) : pzswf (q) ≥ 0},

SL→R,R→L = {(q, q̇) : pzswf (q) = 0, ṗzswf (q, q̇) < 0},
where pzswf : Q → R is the vertical position of the swing

foot, and D{L,R}
SS is the continuous domain on which our

dynamics (1) evolve with a transition from one stance leg

to the next triggered by the switching surface SL→R,R→L.

When this domain transition is triggered, the robot undergoes

an impact with the ground, yielding a hybrid model:

HC =

{
ẋ = f(x) + g(x)u x �∈ SL→R,R→L

ẋ+ = Δ(x−) x ∈ SL→R,R→L

(3)

where Δ is a plastic impact model [18] applied to the

pre-impact states, x−, such that the post-impact states, x+,

respect the holonomic constraints of the subsequent domain.

In this work, we design locomotion using the hybrid zero
dynamics (HZD) framework [20] in order to generate stable

periodic walking for underactuated bipeds. At the core of this

method is the regulation of virtual constraints, or outputs:

y(x, τ, α) = ya(x)− yd(τ, α), (4)

with the goal of driving y → 0 where ya : TQ → R
p and

yd : TQ×R×R
a → R

p are smooth functions representing

the actual and desired outputs, respectively, τ is a phasing

variable, and α is a set of Bezièr polynomial coefficients that

can be shaped to encode stable locomotion.

The desired outputs were optimized using the FROST

toolbox [21], where stability of the gait was ensured in the

sense of Poincaré via HZD theory [22]. This was done first

for AMBER, in which one walking gait was designed using

a pinned model of the robot [8], and then on Cassie for 3D

locomotion using the motion library found in [23] consisting

of 171 walking gaits for speeds in 0.1 m/s intervals on a grid

for sagittal speeds of vx ∈ [−0.6, 1.2] m/s and coronal speeds

of vy ∈ [−0.4, 0.4] m/s.

B. Control Lyapunov Functions

Control Lyapunov functions (CLFs), and specifically

rapidly exponentially stabilizing control Lyapunov functions

(RES-CLFs), were introduced as methods for achieving

(rapidly) exponential stability on walking robots [24]. This

control approach has the benefit of yielding a control frame-

work that can provably stabilize periodic orbits for hybrid

system models of walking robots, and can be realized in a

pointwise optimal fashion. In this work, we consider only

outputs which are vector relative degree 2. Thus, differenti-

ating (4) twice with respect to the dynamics results in:

ÿ(x) = L2
fy(x) + LgLfy(x)u.
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where L2
fy(x) : TQ → R

p and LgLfy(x) : TQ → R
p

represent the Lie derivatives of the outputs with respect to

the vector fields f(x) and g(x). Assuming that the system is

feedback linearizeable, we can invert the decoupling matrix,

LgLfy(x), to construct a preliminary control input:

u = (LgLfy(x))
−1 (

ν − L2
fy(x)

)
, (5)

which renders the output dynamics to be ÿ = ν. With the

auxiliary input ν appropriately chosen, the nonlinear system

can be made exponentially stable. Assuming the preliminary

controller (5) has been applied to our system, and defining

η = [y, ẏ]� we have the following output dynamics [25]:

η̇ =

[
0 I
0 0

]
︸ ︷︷ ︸

F

η +

[
0
I

]
︸︷︷︸
G

v. (6)

With the goal of constructing a CLF using (6), we evaluate

the continuous time algebraic Ricatti equation (CARE):

F�P + PF + PGR−1G�P +Q = 0, (CARE)

which has a solution P � 0 for any Q = Q� � 0 and R =
R� � 0. From the solution of (CARE), we can construct a

rapidly exponentially stabilizing CLF (RES-CLF) [24]:

V (η) = η�IεPIεη, Iε =

[
1
εI 0
0 I

]
, (7)

where 0 < ε < 1 is a tunable parameter that drives the

(rapidly) exponential convergence. Any feedback controller,

u, which can satisfy the convergence condition:

V̇ (η) = LfV (η) + LgV (η)u ≤ −1

ε

λmin(Q)

λmax(P )︸ ︷︷ ︸
γ

V (η), (8)

will then render rapidly exponential stability for the output

dynamics (4). To enforce (8), a quadratic program (CLF-QP)

[6], with (8) as an inequality constraint can be posed.

Implementing this controller on physical systems, which

are often subject to additional constraints such as torque

bounds or friction limits, suggests that relaxation for the

inequality constraint should be used. The introduction of

relaxation and the need to reduce torque chatter on phys-

ical hardware lead to the following relaxed (CLF-QP) with

incentivized convergence in the cost [26]:

CLF-QP+:
u∗ = argmin

u∈Rm
‖L2

fy(x) + LgLfy(x)u‖2 + wV̇ V̇ (x, u) (9)

s.t. umin � u � umax

In order to avoid computationally expensive inversions of

the model sensitive mass-inertia matrix, and to allow for a

variety of costs and constraints to be implemented, a variant

of the (CLF-QP) termed the (ID-CLF-QP) was introduced in

[26]. This controller is used on the Cassie biped, with the

decision variables X = [q̈�, u�, λ�]� ∈ R
39:

ID-CLF-QP+:
X ∗ = argmin

X∈Xext

‖A(x)X − b(x)‖2 + V̇ (q, q̇, q̈) (10)

s.t. D(q)q̈ +H(q, q̇) = Bu+ J(q)�λ
umin � u � umax

λ ∈ AC(X ) (11)

where (2) has been moved into the cost terms A(x) and

b(x) as a weighted soft constraint, in addition to a feedback

linearizing cost, and a regularization for the nominal X ∗(τ)
from the HZD optimization. Interested readers are referred

to [7], [26] for the full (ID-CLF-QP+) formulation.

C. Parameterization of CLF-QP
For the following discussion, let a = [a1, ..., av] ∈ A ⊂

R
v be an element of a v−dimensional parameter space,

termed an action. We let Q = Q(a), ε = ε(a), and

wV̇ = wV̇ (a) denote a parameterization of our control tuning

variables, which will subsequently be learned. Each gain ai
for i = 1, . . . , v is discretized into di values, leading to

an overall search space of actions given by the set A with

cardinality |A| = ∏v
i=1 di. For the AMBER robot, v is taken

to be 6 with discretizations d = [4, 4, 5, 5, 4, 5], resulting in

the following parameterization:

Q(a) =

[
Q1 0
0 Q2

]
,

Q1 = diag([a1, a2, a2, a1]),
Q2 = diag([a3, a4, a4, a3]),

ε(a) = a5, wV̇ (a) = a6,

which satisfies Q(a) � 0, 0 < ε(a) < 1, and wV̇ (a) > 0 for

the choice of bounds, as summarized in Table I. Because of

the simplicity of AMBER, we were able to tune all associated

gains for the CLF-QP+ controller. For Cassie, however, the

complexity of the ID-CLF-QP+ controller warranted only a

subset of parameters to be selected. Namely, v is taken to be

12 and di to be 8, resulting in:

Q =

[
Q1 0
0 Q2

]
,

Q1 = diag([a1, . . . , a12]),
Q2 = Q̄,

with Q̄, ε, and wV̇ remaining fixed and predetermined by a

domain expert. From this definition of Q, we can split our

output coordinates η = (ηt, ηnt) into tuned and not-tuned
components, where ηt ∈ R

12 and ηnt ∈ R
6 correspond to

the Q1 and Q2 blocks in in Q.

TABLE I: Learned Parameters

CASSIE

Pos. Bounds Vel. Bounds

Q Pelvis Roll (φx) a1:[2000, 12000] a7:[5, 200]

Q Pelvis Pitch (φy) a2:[2000, 12000] a8:[5, 200]

Q Stance Leg Length (‖φst‖2) a3:[4000, 15000] a9:[50, 500]

Q Swing Leg Length (‖φsw‖2) a4:[4000, 20000] a10:[50, 500]

Q Swing Leg Angle (θswhp ) a5:[1000, 10000] a11:[10, 200]

Q Swing Leg Roll (θswhr ) a6:[1000, 8000] a12:[5, 150]

AMBER

Pos. Bounds Vel. Bounds Bounds

Q Knees a1:[100, 1500] a3:[10, 300] ε a5:[0.08, 0.2]

Q Hips a2:[100, 1500] a4:[10, 300] wV̇ a6:[1, 5]
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Fig. 3: Simulated results averaged over 10 runs, demonstrat-

ing the capability of preference-based learning to optimize

over large action spaces, specifically the one used for exper-

iments with Cassie. Shaded region depicts standard error.

III. LEARNING FRAMEWORK

The preference-based learning framework leveraged in this

work is a slight extension of that presented in [27]. Specif-

ically, this work implements ordinal labels as an additional

feedback mechanism to improve sample-efficiency. As in

[27], the algorithm is aimed at regret minimization, defined

as sampling N actions {a1, . . . ,aN} such that:

{a1, . . . ,aN} = argmin
a∈A

N∑
i=1

(U(a∗)− U(ai)) ,

where A ⊂ R
|a| is the discretized set of all possible

actions, U : A → R is the underlying utility function of

the human operator mapping each action to a subjective

measure of “good”, and a∗ is the action maximizing U .

This objective of regret minimization can be equivalently

interpreted as trying to sample actions with high utilities,

ā∗ = argmaxa∈A U(a), in as few iterations as possible. In

this section, we briefly outline the learning framework and

how it was modified for our application.

A. Summary of Learning Method
In each iteration, the user is queried for their preference

between the most recently sampled action, ai, and the

previous action, ai−1, denoted as ai � ai−1 if action ai

is preferred. This preference is modeled as:

P(ai � ai−1|U(ai), U(ai−1)) = φ

(
U(ai)− U(ai−1)

cp

)
,

where φ : R → [0, 1] is a monotonically-increasing link

function, and cp > 0 represents the amount of noise expected

in the preferences. In this work, we select the heavy-tailed

sigmoid distribution φ(x) := 1
1+e−x .

Inspired by [28], we supplement preference feedback with

ordinal labels. Because ordinal labels are expected to be

noisy, the ordinal categories are limited to only “very bad”,

“neutral”, and “very good”. Ordinal labels are obtained each

iteration for the corresponding action ai and are assumed to

be assigned based on U(ai). Similar to preferences, these

ordinal labels are modeled using a likelihood function:

P(o = r|U(ai)) = φ

(
br − U(ai)

co

)
− φ

(
br−1 − U(ai)

co

)
,

Fig. 4: The experimental procedure, notably the communica-

tion between the controller, physical robot, human operator,

and learning framework.

where o denotes the ordinal label provided by the user with a

corresponding ordered ranking r ∈ {1, 2, 3}, c0 > 0 denotes

expected noise in the ordinal labels, and {b0, . . . , b3} are

arbitrary thresholds that dictate which latent utility ranges

correspond to which ordinal label.

In each iteration, operator feedback is obtained and ap-

pended to the preference and ordinal label datasets Dp

and Do, with all feedback denoted as D = Dp ∪ Do.

This feedback is then used to approximate the posterior

distribution P(U | D) as a multivariate Gaussian N (μ,Σ)
via the Laplace approximation as in [29, Sec. 2.3]. To remain

tractable in high-dimensions, U is a restriction of U as

defined in [27]. The predictive distribution at location â is

described by a univariate Gaussian U(â) ∼ N (μ(â),Σ(â)),
whose equations can be found in [29, Sec. 2.3].

To select new actions to query in each iteration, Thompson

sampling [30] is used. Specifically, at each iteration, a

function Û randomly drawn from the Gaussian process is

maximized. This iterative process of (1) querying the opera-

tor for feedback, (2) modeling the underlying utility function,

and (3) sampling new actions, is repeated in each subsequent

iteration. Finally, the best action after the completion of the

experiment is given by â∗ = argmaxa∈A μ(a).

B. Expected Learning Behavior

To demonstrate the learning, a simple example was con-

structed of the same dimensionality as the parameter space

being investigated on Cassie (v = 12, d = 8), where the

utility was modeled as U(a) = ‖a − a∗‖2 for some a∗.

Feedback was automatically generated for both ideal noise-

free feedback as well as for noisy feedback (correct feedback

given with probability 0.9). The results of the simulated algo-

rithm, illustrated in Fig. 3, show that the learning framework

quickly samples actions near a∗, even for an action space

as large as the one used in the experiments with Cassie.

The simulated results also show that ordinal labels improve

convergence, motivating their use in the final experiment.

TABLE II: Learned Parameters

AMBER [750, 100, 300, 100, 0.125, 2]

Cassie [2400, 1700, 4200, 5600, 1700, 1200, 27, 40, 120, 56, 17, 7]
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(a) Very low utility (top) where the robot was unable to
walk unassisted and maximum posterior utility (bottom) where
stable walking was achieved.

(b) The robustness (top) and tracking (bottom) of the walking
with the learned optimal gains, enabling unassisted, stable
walking and good tracking performance.

Fig. 5: Gait tiles for AMBER (left) and Cassie (right).

(a) Phase portraits for AMBER experiments. (b) Output Error of ηt (left) and ηnt (right) for Cassie experiment.

Fig. 6: Experimental walking behavior of the CLF-QP+ (left) and the ID-CLF-QP+ (right) with the learned gains.

IV. LEARNING TO WALK IN EXPERIMENTS

Preference-based learning was applied to the realization of

optimization-based control on two separate robotic platforms:

the 5 DOF planar biped AMBER, and the 22 DOF 3D biped

Cassie, as can be seen in the video [31]. As illustrated in Fig.

4, the experimental procedure had four main components:

the physical robot (either AMBER or Cassie), the controller

running on a real-time PC, a human operator providing feed-

back, and a secondary PC running the learning algorithm.

Each action was tested for approximately one minute, during

which the behavior of the robot was evaluated in terms of

both performance and robustness. User feedback in the form

of pairwise preferences and ordinal labels was obtained after

testing each action via the respective questions: “Do you

prefer this behavior more or less than the last behavior”,

and “Would you give this gait a label of very bad, neutral,

or very good”. After user feedback was collected for the

sampled controller gains, the posterior was inferred over

all of the uniquely sampled actions, which took up to 0.5

seconds. The experiment with AMBER was conducted for 50

iterations, lasting one hour, and the experiment with Cassie

was conducted for 100 iterations, lasting two hours. The

duration of the experiments was scaled based on the size

of the respective action spaces, and trials were terminated

when satisfactory behaviors had been sampled.

A. Results with AMBER – CLF-QP+

The CLF-QP+ controller was implemented on an off-

board i7-6700HQ CPU @ 2.6GHz with 16 GB RAM, which

solved for desired torques and communicated them with the

ELMO motor drivers on the AMBER robot at 2kHz. During

the first half of the experiment, the algorithm sampled a

variety of gains causing behavior ranging from instantaneous

torque chatter to induced tripping due to inferior output

tracking. It is important to note that none of the initial

sampled values led to unassisted walking. By the end of

the experiment however, the algorithm had sampled 3 gains

which were deemed ”very good”, and which resulted in

stable walking. The final learned best actions found by the

algorithm are reported in Table II. Gait tiles for an action

deemed “very bad”, as well as the learned best action are

shown in Fig. 5a. Additionally, tracking performance for the

two sets of gains is seen in Fig. 6a, where the learned best

action tracks the desired behavior to a better degree.

B. Results with Cassie – ID-CLF-QP+

The ID-CLF-QP+ controller was implemented on the on-

board Intel NUC computer, which was running a PRE-

EMPT RT kernel. The software runs on two ROS nodes, one

of which communicate state information and joint torques

over UDP to the Simulink Real-Time xPC, and one of which

runs the controller. Each node is given a separate core on

the CPU, and is elevated to real-time priority. Preference-

based learning was run on an external computer and was

connected to the ROS master over WiFi. Actions were

updated in real-time; once an action was selected, it was sent

to Cassie via a rosservice call, where, upon receipt, the robot

immediately updated the corresponding gains. As rosservice

calls are blocking, multithreading their receipt and parsing

was necessary in order to maintain real-time performance.
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Fig. 7: Phase plots and torques commanded by the ID-CLF-QP+ in the naı̈ve user experiments with Cassie. For torques,

each colored line corresponds to a different joint, with the black dotted lines being the feedforward torque. The gains

corresponding to a “very bad” action (top) yield torques that exhibit poor tracking on joints and torque chatter. On the other

hand, the gains corresponding to the learned optimal action (bottom) exhibit much better tracking and no torque chatter.

To demonstrate repeatability, the experiment was con-

ducted twice on Cassie: once with a domain expert, and once

with a naı̈ve user. In both experiments, a subset of the Q
matrix from (CARE) was tuned with coarse bounds given

by a domain export, as reported in Table I. These specific

outputs were chosen because they were deemed to have a

large impact on the performance of the controller. Some

metrics used to determine preferences were the following:

no torque chatter, no drift in the floating base frame, re-

sponsiveness to desired directional input, no violent impacts,

no harsh noise, and naturalness of walking. At the start of

the experiments, there was significant torque chatter and

wandering, with the user having to regularly intervene to

recenter the global frame. As the experiments continued,

the walking noticeably improved. At the conclusion of 100

iterations, the posterior was inferred over all uniquely visited

actions. The action corresponding with the maximum utility –

believed by the algorithm to result in the most user preferred

walking behavior – was further evaluated for tracking and

robustness. In the end, this learned best action coincided with

the walking behavior that the user preferred the most.

Features of this optimal action, compared to a worse action

sampled in the beginning of the experiments, are outlined in

Fig. 6. In terms of quantifiable improvement, the difference

in tracking performance is shown in Fig. 6b. The magnitude

of the tuned parameters, ηt, illustrates the improvement that

preference-based learning attained in tracking the outputs

it intended to. At the same time, the tracking error of

the constant parameters, ηnt, shows that the outputs that

were not tuned remained unaffected by the learning process.

This quantifiable improvement is further illustrated by the

commanded torques in Fig. 7, which show that the optimal

gains result in much less torque chatter and better tracking

as compared to the other gains.

C. Limitations and Future Work

The main limitation of the current formulation of

preference-based learning is that the action space must be

predefined with set bounds. In the context of controller

gains, these bounds are difficult to know a priori since the

relationship between the gains and the resulting behavior is

unpredictable. Future work to address this problem involves

modifications to the learning framework to shift action space

based on the user’s preferences. Furthermore, the current

framework limits the set of potential new actions to the

set of actions discretized by di for each dimension i. As

such, future work also includes adapting the granularity of

the action space based on the uncertainty in specific regions.

V. CONCLUSION

Navigating the complex landscape of controller gains is a

challenging process that often requires significant knowledge

and expertise. In this work, we demonstrated that preference-

based learning is an effective mechanism towards system-

atically exploring a high-dimensional controller parameter

space, without needing to define an objective function.

Furthermore, we experimentally demonstrated the power of

this method on two different platforms with two different

controllers, showing the application agnostic nature of the

framework. In all experiments, the robots went from stum-

bling to walking in a matter of hours. Additionally, the

learned best gains in both experiments corresponded with

the walking trials most preferred by the human operator. In

the end, the robots had improved tracking performance, and

were robust to external disturbance. Future work includes

addressing the aforementioned limitations, extending this

methodology to other robotic platforms, coupling preference-

based learning with metric-based optimization techniques,

and addressing multi-layered parameter tuning tasks.
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