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Abstract— The increasing complexity of modern robotic sys-
tems and the environments they operate in necessitates the
formal consideration of safety in the presence of imperfect
measurements. In this paper we propose a rigorous framework
for safety-critical control of systems with erroneous state
estimates. We develop this framework by leveraging Control
Barrier Functions (CBFs) and unifying the method of Backup
Sets for synthesizing control invariant sets with robustness
requirements—the end result is the synthesis of Measurement-
Robust Control Barrier Functions (MR-CBFs). This provides
theoretical guarantees on safe behavior in the presence of imper-
fect measurements and improved robustness over standard CBF
approaches. We demonstrate the efficacy of this framework
both in simulation and experimentally on a Segway platform
using an onboard stereo-vision camera for state estimation.

I. INTRODUCTION

Safety is of utmost importance in many modern control

applications, including autonomous vehicles, medical and

industrial robotics [1]. The growing complexity of these sys-

tems demands that safety properties be rigorously encoded

in the controller design. Such systems are typically described

as safe if their state never leaves a prescribed safe set,
and Control Barrier Functions (CBFs) [2], [3] have become

increasingly popular [4], [5] as a tool for achieving safety.

In this paper, we focus on two challenges related to safety-

critical control realized via CBFs: finding admissible inputs

and making these inputs robust to uncertainty.

The first challenge is guaranteeing that a safe control input

is always available. If safe control actions exist—i.e., satisfy

input constraints—over the entire safe set, the set is called

control invariant [6]. Yet control invariance is not guaranteed

in general—safe actions may not exist for all points in

a given safe set. Therefore, identifying control invariant

sets is critically important for implementing safety-critical

controllers in robotic systems. Hamilton-Jacobi reachability

analysis can be performed to compute such sets [7], but is

intractable for high dimensional systems. Here we adapt the

method of Backup Sets introduced in [8] as a computationally

tractable way of achieving control invariance.

This research is supported in part by the National Science Founda-
tion, CPS Award #1932091; DOW Chemical, project 227027AT; British
Petroleum; and Aerovironment.

R. K. Cosner, A. W. Singletary, T. G. Molnar, and A. D. Ames are with
the Department of Mechanical and Civil Engineering, California Institute of
Technology, Pasadena, CA 91125, USA, {rkcosner, asinglet,
tmolnar, ames}@caltech.edu.

A. J. Taylor and K. L. Bouman are with the Department of Computing
and Mathematical Sciences, California Institute of Technology, Pasadena,
CA 91125, USA, {ajtaylor, klbouman}@caltech.edu.

Fig. 1. Visualization of desired Segway behavior. The Segway is driven from
left to right and must not cross the red line. The transparent blue images
represent the measured position whereas the opaque images represent the
true position. Traditional CBFs do not account for this uncertainty.

The second challenge is that controllers rely on state mea-

surements that are often imperfect or uncertain—especially

for dynamic robotic systems. This can cause unsafe behavior

if not accounted for in the control design and, as such,

has been addressed from multiple perspectives. The work

in [9], [10] considers robust CBF formulations with worst-

case disturbance bounds to achieve safety. Safety guarantees

in the presence of measurement noise are addressed from a

stochastic perspective in [11], [12]. Controllers robust to state

estimation errors were proposed for sampled-data-systems

via an interval-arithmetic condition in [13] and for contin-

uous systems via estimate-error bounding in [14]. In [14]

safety and robustness were enforced by Measurement-Robust
Control Barrier Functions (MR-CBFs). This approach was

inspired by vision-based control [15], [16], [17], where state

information is observed through a complex transformation.

This paper presents a safety-critical control framework that

allows for the synthesis of control invariant sets that are

robust to measurement uncertainty, all with a view toward

experimental realization. The main contributions of this work

are twofold. Firstly, we integrate the method of Backup Sets

for ensuring control invariance [8] with the framework of

MR-CBFs [14]. This leads to practically achievable safety

guarantees even in the presence of measurement uncertainty,

establishing measurement-robust safety-critical control. Sec-

ondly, we present the first experimental demonstration of

both MR-CBFs and the proposed method by controlling the

motion of a Segway using camera data. The experiments

validate the robust safety guarantees provided by our method.

II. PRELIMINARIES

First we provide a review of safety-critical control through

Control Barrier Functions (CBFs) and synthesis of control
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invariant sets via the Backup Set method.

A. Control Barrier Functions

Consider the nonlinear control affine system given by:

ẋ = f(x) + g(x)u, x ∈ R
n, u ∈ R

m, (1)

where f : Rn → R
n and g : Rn → R

n×m are locally Lips-

chitz continuous. Given a locally Lipschitz continuous con-

troller k : Rn → R
m, the closed-loop dynamics are:

ẋ = fcl(x) = f(x) + g(x)k(x), (2)

where fcl : R
n → R

n is also locally Lipschitz continuous.

Therefore, for any initial condition x(0) = x0 ∈ R
n there

exists an interval I(x0) � [0, tmax) such that x(t) is the

unique solution to (2) for t ∈ I(x0) [18]. Throughout this

paper we assume I(x0) = [0,∞).
The notion of safety is formalized by defining a safe set

C ⊂ R
n in the state space that the system must remain within.

In particular, consider the set C as the 0-superlevel set of a

continuously differentiable function h : Rn → R:

C � {x ∈ R
n : h(x) ≥ 0},

∂C � {x ∈ R
n : h(x) = 0},

Int(C) � {x ∈ R
n : h(x) > 0}.

(3)

We assume that zero is a regular value of h and C is non-

empty and has no isolated points, that is, h(x) = 0 =⇒
∂h
∂x (x) �= 0, Int(C) �= ∅, and Int(C) = C. In this context,

safety is synonymous with the forward invariance of C:

Definition 1 (Forward Invariance and Safety). A set C ⊂ R
n

is forward invariant if for every x0 ∈ C, the solution to (2)

satisfies x(t) ∈ C for all t ≥ 0. The closed-loop system (2)

is safe with respect to set C if C is forward invariant.

We call a continuous function α : R → R an extended

class-K∞ (K∞,e) if it is strictly monotonically increas-

ing and satisfies α(0) = 0, limr→−∞ α(r) = −∞, and

limr→∞ α(r) = ∞. Control Barrier Functions (CBF) [2] can

be used to synthesize controllers which ensure the safety of

the closed-loop system (2) with respect to a given set C.

Definition 2 (Control Barrier Function (CBF)). Let C ⊂ R
n

be a safe set given by (3). The function h is a Control Barrier
Function (CBF) for (1) on C if there exists α ∈ K∞,e such

that for all x ∈ C:

sup
u∈Rm

ḣ(x,u) � ∂h

∂x
(x)f(x)︸ ︷︷ ︸
Lfh(x)

+
∂h

∂x
(x)g(x)︸ ︷︷ ︸
Lgh(x)

u ≥ −α(h(x)),

(4)

where Lfh : Rn → R and Lgh : Rn → R
m are the Lie

derivatives of h with respect to f and g, respectively.

Intuitively, the CBF constraint (4) requires the system to

slow down as it approaches the boundary of the safe set

(the right-hand side of (4) increases to 0 as the value of h
approaches 0). A main result in [19], [20] relates CBFs to

the safety of the closed-loop system (2) with respect to C:

Theorem 1. Given a safe set C ⊂ R
n, if h is a CBF for

(1) on C, then any locally Lipschitz continuous controller
k : Rn → R

m satisfying

Lfh(x) + Lgh(x)k(x) ≥ −α(h(x)) (5)

for all x ∈ C, renders the system (2) safe w.r.t. C.

Given a nominal (but not necessarily safe) locally Lips-

chitz continuous controller kd : Rn → R
m and a CBF h, the

CBF-Quadratic Program (CBF-QP) [2] ensures safety:

k(x) = argmin
u∈Rm

1

2
‖u− kd(x)‖22 (CBF-QP)

s.t. Lfh(x) + Lgh(x)u ≥ −α(h(x)).

B. Generating Control Invariant Sets via Backup Sets

To guarantee that a safe control action exists, one needs to

ensure the existence of a function h satisfying the CBF con-

dition (4). For a given safe-set C, fulfilling this requirement

can be nontrivial and potentially impossible. To this end, we

restrict our focus to a set CI ⊆ C which is control invariant:

Definition 3 (Control Invariance). A set CI ⊆ C is control
invariant if there exists a controller k : Rn → R

m such that

CI is forward invariant with respect to the system (2).

While directly computing control invariant sets remains

challenging in general, we may define one implicitly via

a backup set [8]. Consider a desired safe set C ⊂ R
n,

which is not necessarily control invariant. Suppose there

exists a set CB ⊂ C, defined as the 0-superlevel set of a

continuously differentiable function hB : Rn → R, which is

known a priori to be control invariant and can be rendered

forward invariant by a known locally Lipschitz continuous

backup controller kB : Rn → R
m. We refer to CB as the

backup set. For simple backup controllers (such as linear

state feedback controllers designed for the linearization of a

system) it is possible to find analytical expressions for local

regions of attraction to serve as backup sets. Alternatively,

numerical tools such as Sums-of-Squares (SOS) may be used

to synthesize control invariant sets [21].

We extend the backup set to a larger control invariant set

CI ⊂ R
n, satisfying CB ⊆ CI ⊆ C, by considering the backup

trajectory over a finite and fixed time T ∈ R>0 as follows.

By assumption, for any x ∈ R
n there exists a unique solution

ϕ : [0, T ] → R
n satisfying:

d

dτ
ϕ(τ) = f(ϕ(τ)) + g(ϕ(τ))kB(ϕ(τ)),

ϕ(0) = x.
(6)

The solution ϕ may be interpreted as the evolution of the

system over the interval [0, T ] from a state, x, under the

backup controller kB . In particular, the current state x(t)
may be used as initial condition in specifying ϕ. We denote

φkb
τ (x) � ϕ(τ) for the initial condition x.

Using this notation, we may define the set CI ⊆ C as:

CI =

⎧⎨
⎩

h(φkB
τ (x)) ≥ 0, ∀τ ∈ [0, T ]

x ∈ C and

hB(φ
kB

T (x)) ≥ 0

⎫⎬
⎭ . (7)
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The first inequality implies safety under the backup policy

(φkB
τ (x) ∈ C for all τ ∈ [0, T ]), and the second inequal-

ity implies the backup trajectory reaches CB by time T
(φkB

T (x) ∈ CB). The set CI is thus control invariant as there

exists at least one controller, kB , which renders it forward

invariant. While CI is not necessarily the largest control

invariant subset of C (see viability kernel, [6]), the backup

sets provide a computationally tractable method for finding

an under-approximation of the largest control invariant set.

For notational simplicity, we define the continuously dif-

ferentiable functions hτ : Rn → R and hB : Rn → R as:

hτ (x) � h(φkB
τ (x)), hB(x) � hB(φ

kB

T (x)). (8)

Given these definitions, the CBF condition (4) can then be

specified for the set CI at a point x ∈ CI as follows:

Lfhτ (x) + Lghτ (x)u ≥ −α(hτ (x)), ∀τ ∈ [0, T ],

LfhB(x) + LghB(x)u ≥ −α(hB(x)).
(9)

Any locally Lipschitz continuous controller that takes values

satisfying (9) for all x ∈ CI will keep the closed loop system

(2) safe with respect to CI ; see [22, p. 6].

We note that enforcing the first constraint in (9) is not

necessarily tractable as it must hold for all τ ∈ [0, T ]. To

resolve this, it can be reduced to a finite collection of

more conservative constraints through constraint tightening.

A controller which implements the finite number of tightened

constraints, and thus renders (2) safe with respect to CI , is

given by the Backup Set Quadratic Program (BS-QP):

k(x) = argmin
u∈Rm

1

2
‖u− kd(x)‖22 (BS-QP)

s.t. Lfhτj (x) + Lghτj (x)u ≥ −α(hτj (x)− μ),

LfhB(x) + LghB(x)u ≥ −α(hB(x)),

for all τj ∈ {0,Δt, . . . , T}, where Δt ∈ R>0 is a time-step

such that T/Δt ∈ N and μ ∈ R>0 satisfies:

μ ≥ Δt

2
Lh sup

x∈C
‖f(x) + g(x)kB(x)‖2, (10)

with Lh ∈ R>0 a Lipschitz constant for h on C [8, Thm. 1].

III. MEASUREMENT ROBUSTNESS

The guarantees endowed by the above controllers require

perfect knowledge of the state x, which is unattainable in

practice. In particular, the relationship between the state of

the system and the measurements, such as images or point

clouds, can be complex and not fully known [15], [16], [17].

In this section we revisit measurement-model uncertainty and

present our main result in the form of a measurement-robust

version of the BS-QP.

A. Measurement-Model Uncertainty

To achieve robustness, we consider a structured form

of measurement-model uncertainty that modifies the CBF

condition (4) [14]. We assume the state x is not directly

available, but rather a state-dependent sensor measurement:

y = p(x), (11)

where y ∈ R
k and p : Rn → R

k is locally Lipschitz contin-

uous. An estimate of the state, x̂ ∈ R
n, is reconstructed

from y (such as through measurement models or data-

driven methods [16], [17]). In particular, we assume the map

from measurements to state estimates is imperfect (does not

recover the true state exactly), and is given by the locally

Lipschitz continuous function q̂ : Rk → R
n as follows:

x̂ � q̂(y) = x+ e(x), (12)

where the state error function e : Rn → R
n is unknown and

implicitly defined by q̂.

The error function e can often be characterized via

upper bounds on measurement-model uncertainty. In par-

ticular, we assume that while the state error e(x) is not

known for a given state x ∈ R
n, it is within a com-

pact error set E(y) specified by a set-valued function

E : Rk → P(Rn) (P denotes the power set), that is, we have

e(x) ∈ E(y) = E(p(x)). The error set can be conservatively

characterized via the function ε : Rk → R≥0 defined as:

ε(y) � max
e∈E(y)

‖e‖2. (13)

Since the controller only has access to the measurement

and the state estimate, systems with measurement-model

uncertainty evolve according to:

ẋ = f(x) + g(x)k(y, x̂). (14)

Qualitatively this uncertainty is similar to error in the dy-

namics model since the true values of f(x) and g(x) are

unknown to the controller. The error bound can be used to

synthesize controllers which render such systems provably

safe as follows [14]:

Theorem 2. Given a safe set C ⊂ R
n, assume that Lfh,

Lgh, and α ◦ h are Lipschitz continuous on C with Lipschitz
constants LLfh,LLgh, and Lα◦h ∈ R≥0, respectively. Define
the function ε : Rk → R≥0 as in (13), and define the func-
tions a, b : Rk → R≥0 as a(y) = (LLfh + Lα◦h)ε(y) and
b(y) = LLghε(y). If k : R

k × R
n → R

m is a Lipschitz
continuous controller satisfying:

Lfh(x̂) + Lgh(x̂)k(y, x̂)

− (a(y) + b(y)‖k(y, x̂)‖2) ≥ −α(h(x̂)) (15)

for all x ∈ C, with y = p(x) and x̂ = q̂(y), then the system
(14) is safe with respect to C.

A continuously differentiable function h : Rn → R for which

such a controller exists is termed a Measurement-Robust

Control Barrier Function (MR-CBF) [14]. As compared to

the original CBF constraint (4), the MR-CBF constraint

(15) adds additional terms incorporating bounds on the

measurement error that ensure that the system is safe with

respect to all possible states which could have generated the

measurement. The original CBF constraint is recovered in

the absence of measurement error, i.e. when ε(y) = 0.
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Fig. 2. Simulation results for a measurement model of x̂ = x− 0.4 m and constant desired velocity of 1 m/s. (Left) An image of the simulated Segway
model. (Center) Trajectories generated using the BS-QP. Solid line represents the true state, dashed line shows the estimated state, and green region
indicates the safe set C. The true trajectory fails to be safe and exits the safe set at t = 3 s. (Right) Trajectories generated using the MR-BS-OP. An
additional robustness region is plotted in blue to indicate the set of of true states which the control input renders safe. Both the true and measured trajectories
are safe demonstrating the robustness of the MR-BS-OP when compared to the BS-QP.

B. Measurement-Robust Backup Set Optimization Program

In this section we present our main result in the form of a

safety-critical control paradigm that is robust to measurement

uncertainty. This is accomplished by unifying the Backup Set

method with MR-CBFs, using the MR-CBF condition (15)

the finite set of constraints imposed in the BS-QP become:

Lfhτj (x̂) + Lghτj (x̂)u

− (aτj (y) + bτj (y)‖u‖2) ≥ −α(hτj (x̂)− μ),

LfhB(x̂) + LghB(x̂)u

− (aB(y) + bB(y)‖u‖2) ≥ −α(hB(x̂)),

(16)

with parameter functions:

aτj (y) = (LLfhτj
+ LαLhτj

)ε(y), bτj (y) = LLghτj
ε(y),

aB(y) = (LLfhB
+ LαLhB

)ε(y), bB(y) = LLghB
ε(y),

(17)

for all τj ∈ {0,Δt, . . . , T}, with ε(y) defined as in (13) and

L represents the Lipschitz constant of its subscripted function

on R
n. These constructions enable the following definition:

Definition 4 (Measurement-Robust Implicit Safe Set). The

set CI ⊆ C ⊆ R
n defined as in (7) is a Measurement-Robust

Implicit Safe Set (MRISS) for the error bound ε : Rk → R≥0

with parameter functions (a0, b0, . . . , aΔt , bΔt , aB , bB) :
R

k → R≥0 if:

• the functions {h0, hΔt
, . . . , hT , hB}, their Lie deriva-

tives, and α are Lipschitz continuous on CI ,

• the constant μ ∈ R≥0 satisfies (10),

• and for all x ∈ CI there exists u ∈ R
m satisfying (16).

Next, using this definition, we show that the safety of such

sets can be made robust to measurement model uncertainty.

Theorem 3. Given a MRISS CI , if k : Rk × R
n → R

m is
a Lipschitz continuous controller that satisfies (16) with
parameter functions (17) for all x ∈ CI with y = p(x) and
x̂ = q̂(y), then system (14) is safe with with respect to CI .

Proof. For any function h ∈ {h0, hΔt , . . . , hT , hB} let

c(x,k(y, x̂)) = Lfh(x) + Lgh(x)k(y, x̂) + α(h(x)− ν),

where we choose ν = μ if h = hτj and ν = 0 if h = hB . It

follows by Lipschitz continuity that:

‖Lfh(x̂)− Lfh(x)‖2 ≤ LLfh
ε(y),

‖α(h(x̂)− ν)− α(h(x)− ν)‖2 ≤ LαLhε(y),

‖Lgh(x̂)− Lgh(x)‖2‖k(y, x̂)‖2 ≤ LLgh
ε(y)‖k(y, x̂)‖2.

As k satisfies (16), we have that:

c(x,k(y, x̂))

= c(x̂,k(y, x̂)) + c(x,k(y, x̂))− c(x̂,k(y, x̂))

≥ c(x̂,k(y, x̂))− (a(y) + b(y)‖k(y, x̂)‖2) ≥ 0.

Since c(x,k(y, x̂)) ≥ 0 and μ satisfies (10), we have that the

system (14) is safe with respect to CI by [8, Lemma 2].

This result allows us to present an alternative to the BS-QP

controller which adds the measurement-robustness of MR-

CBFs. The constraints (16) can be directly integrated into

a Measurement-Robust Backup Set Optimization Program

controller MR-BS-OP as:

k(y, x̂) = argmin
u∈Rm

1

2
‖u− kd(x̂)‖22 (MR-BS-OP)

s.t. Lfhτj (x̂) + Lghτj (x̂)u

− (aτj (y) + bτj (y)‖u‖2) ≥ −α(hτj (x̂)− μ)

LfhB(x̂) + LghB(x̂)u

− (aB(y) + bB(y)‖u‖2) ≥ −α(hB(x̂))

for all τj ∈ {0,Δt, . . . , T}. Since this controller is a second-

order cone program (SOCP), there exist a variety of solvers

capable of implementing it including ECOS [23]. Notably,

the conservative nature of the method scales with the bound

on the measurement-model error ε(y) and the MR-BS-OP

reduces to the BS-QP when ε(y) = 0. We remark that the

feasibility of MR-BS-OP for all x̂ ∈ R
n can be ensured

by adding a slack variable to the optimization problem. The

impact of the slack variable on safety can be understood via

the concept of projection-to-state safety [24].
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Fig. 3. Experimental results using SLAM from the onboard Intel RealSense T265 and constant desired velocity of 1 m/s. The notation and color schemes
are the same as in Fig. 2. (Left) An image of the Segway platform. (Center) Trajectories generated using the BS-QP. The true trajectory exits the safe set
at t = 6.7 s. The measurement error is plotted in blue. (Right) Trajectories generated using the MR-BS-OP. Both the true and measured trajectories are
safe demonstrating the robustness of the MR-BS-OP when compared to the BS-QP.

IV. EXPERIMENTAL RESULTS

In this section we demonstrate the efficacy of the proposed

MR-BS-OP controller on a modified Ninebot E+ Segway

platform in both simulation and hardware experiment.

We consider a 4-dimensional asymmetrical Segway model

shown in Figures 2 and 3. The state of the system consists

of the position x, the forward velocity ẋ, the pitch angle

ψ, and the pitch rate ψ̇. The equations of motion were

derived using Newton-Euler method treating the Segway as

an inverted pendulum with control input as torque command

at the wheels; see [8]. The Backup Set method for generating

control invariant sets is particularly relevant for this system

due to its non-minimum phase dynamics.

The desired safe set was chosen empirically to be the

set of states with position less than 2 m from the origin,

i.e. C = {x ∈ R
n : x ≤ 2} and h(x) = 2 − x. The

backup controller was an LQR controller on the linearized

system dynamics and the backup set was an estimate of the

region of attraction of the LQR controller to the upright

equilibrium state, given by a quadratic Lyapunov function.

This set is then translated to match the current position of the

Segway, while not allowing it to exceed the set boundary. The

functions hτ , τ ∈ [0, T ] were converted into four CBFs hτj .

Lastly, the Lipschitz constants for hτj were found explicitly

by inspection of the Segway dynamics and the Lipschitz

constants for hB were found by sampling the state space

in simulation and taking the largest numerical gradient.

Simulation Results. The MR-BS-OP was first validated

in simulation in a ROS-based environment, found here1.

Measurement-model uncertainty was achieved by artificially

adding a constant error of −0.4 m to the true state. The

simple test scenario involved driving the Segway forward

with a constant desired velocity of 1 m/s. As seen in Figure

2, the MR-BS-OP provided robustness to this error. Impor-

tantly, without measurement-robustness, the system would be

unsafe due to uncertainty in the state.

Hardware Results. The MR-BS-OP was then implemented

on hardware. State estimates for ẋ, ψ, and ψ̇ were found

1Simulation code github.com/rkcosner/mrcbf_IROS21.git

using wheel incremental encoders and a VectorNav VN-100

IMU. The position estimate for x was obtained from an Intel

RealSense T265 onboard camera running proprietary Visual

Inertial Odometry (VIO) based SLAM. Onboard computation

was performed by a Jetson TX2 which computes control

actions and relays them to the low-level motor controllers.

The TX2 concurrently runs Linux with ROS, enabling ex-

ternal communication and logging, and the ERIKA3 real-

time operating system, which enables real-time low-level

communication and computation of the control action.

As the (ẋ, ψ, ψ̇) state estimates provided by the encoders

and IMU are highly accurate, we focus on making the system

robust to measurement error in its vision-based position

estimate x̂. An OptiTrack motion capture system was used

in laboratory experiments to provide x estimates which are

considered true. These closely matched the encoder position

estimates for short trials, so the encoder x estimates were

considered true in the outdoor experiments. This data was

used to determine the error bound ε(y) that appears in the

MR-CBF constraint when using the onboard camera.

The value ε(y) = 0.4 was chosen as an upper bound on

the measurement error for all y ∈ p(C). The MR-BS-OP was

implemented at the embedded level in the ERIKA3 operating

system using the ECOS SOCP solver [23]. The desired con-

troller kd was a proportional-derivative controller tracking

user velocity inputs. The backup trajectory φkB
τ (x̂) and its

partial derivatives were approximated via Euler integration

using a time step of Δt = 5 ms and the time used to expand

the backup set CB to CI was T = 1 s. The MR-BS-OP ran

at 250 Hz with 5 decision variables, 4 linear constraints, and

6 second order cone constraints and saturated at ±20 Nm.

To demonstrate the method, a simple scenario is executed

on the Segway in which it is driven forward at a desired

velocity of 1 m/s. This scenario is performed with both the

BS-QP and the MR-BS-OP. The results of these experiments

can be found in Figure 3, images from the experiment can

be seen in Figure 4, and a video can be found at [25]. With

the BS-QP controller the estimated state x̂ remains safe, but

the true state x becomes unsafe whereas with the MR-BS-

OP controller both the estimated and the true state are kept

safe. This highlights the importance of providing robustness

against measurement uncertainty, as achieved by Theorem 3.
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Fig. 4. Images from the experiment using the MR-BS-OP controller. The Segway is piloted towards a wall of yellow boxes and the controller ensures that
it remains safe, i.e. that it does not crash into the boxes. (Top) Time lapse of the Segway trajectory. (Bottom) Camera images taken from the perspective
of the Segway throughout the experiment. The images are displayed in chronological order from left to right. A video can be found at [25].

V. CONCLUSION

This paper established robust controller synthesis with for-

mal safety guarantees for systems relying on uncertain mea-

surements. We approached this problem through the frame-

work of CBFs. We additionally highlighted the importance

of control invariant sets and experimentally implemented the

Backup Set method to produce such a set for a Segway.

Our theoretical construction culminated in the integration

of the Backup Set method with MR-CBFs, which provides

robustness to state measurement uncertainty in the safety

guarantees. We implemented the proposed control method on

a Segway platform and demonstrated robustly safe operation

in experiments. Future work includes addressing feasibility

of the MR-BS-OP for general systems and developing online

methods to efficiently identify the required error bound in the

context of probabilistic and time-varying uncertainties.
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