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Predictive, inference-based occupancy mapping has been used successfully in many instances to create
accurate and descriptive maps from sparse data, defining occupied space in a manner suitable to
support autonomous navigation. However, one key drawback of inferring occupancy based largely on
the proximity of range sensor observations is inaccuracy at the boundary between occupied and free
space, where sparse coverage by the sensor data can be misinterpreted. To obtain a more accurate
representation of the boundary between free and occupied space, we propose several modifications
to a recently published occupancy mapping algorithm that uses Bayesian generalized kernel inference.
In particular, our proposed algorithm distinguishes between unknown map cells with insufficient
observations, and those which are uncertain due to disagreement among numerous observations, in a
predictive, inference-based occupancy map. This distinction is key to our improved ability to capture
ambiguities arising at the boundary between free and occupied space. We validate our approach using
synthetic range data from a simulated environment and demonstrate real-time mapping performance
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using range data acquired by a ground robot operating in an underground mine.
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1. Introduction

Autonomous mobile robot exploration uses incomplete infor-
mation about the surrounding environment to evaluate a perfor-
mance metric that prioritizes the gathering of new data. However,
the data gathered can be degraded by factors such as sensor noise,
and gaps in coverage within the data itself. Recently, predictive
occupancy grid mapping algorithms have been developed to ad-
dress this issue. Such inference-based occupancy grid mapping
algorithms can successfully filter noise and fill gaps, while also
decreasing the memory required to maintain such data. Simul-
taneous localization and mapping (SLAM) can be used alongside
such mapping tools to curb the localization error that may further
exacerbate mapping errors.

While predictive mapping has addressed some of the central
issues in occupancy mapping, it has yet to solve a few problematic
consequences of applying predictive inference in this setting. One
example is the over-estimation of free space caused by glanc-
ing rays, for which the gaps between sparse range observations
may be filled with inaccurate predictions of free space. This
can lead to incorrect assumptions in the planning and decision-
making processes of robot exploration. The boundaries between
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free and occupied space within occupancy grid maps are also
often characterized erroneously.

We present a new Bayesian generalized kernel (BGK) [ 1] infer-
ence mapping framework that addresses and attempts to rectify
these issues. To avoid the erroneous prediction of free space due
to glancing rays, we reduce the length of rays used in the training
data. This produces fewer data to support free space estimation,
but within the region between the sensor and ray endpoints, the
rays are closer together, resulting in denser data that yields more
accurate classification of free space (see Fig. 1).

On the boundary between free and occupied space, there
exists a region where inference-based occupancy grid maps will
produce erroneous predictions of occupancy. Even when there is
plenty of data influencing the classification of this region, it is
difficult to accurately define obstacle boundaries. Accordingly, the
goal of our proposed algorithm is to accurately define free and
occupied space near obstacle boundaries, while incorporating a
new state, the uncertain state. The uncertain state occurs when
there is conflicting data about a given map cell, not to be confused
with unknown, which categorizes map regions where robots have
yet to explore. The variance of each map cell plays a vital role in
defining uncertainty, therefore this new successor algorithm to
BKGOctoMap-L is named BGKOctoMap-LV.

2. Related work

Occupancy maps are typically produced from range data. Range
data in the most basic form has a sensor origin linked to each
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Fig. 1. Example of the proposed algorithm mapping a column in an underground
mine, with free space outside the column shown in gray.

endpoint found during the sensing process. One common data
structure used to define these endpoints is a point cloud [2]. As
the name implies, a point cloud is made up of points within 3D
Euclidean space that are located based on a predetermined frame
of reference. Due to their simplicity, point clouds are the default
data structure for a wide variety of sensors used for mapping.
The Robot Operating System (ROS) [3] is frequently used to both
capture and visualize point cloud data. Capturing point cloud data
can be performed using real world sensors, or it can be simulated
using environments such as Gazebo [4].

However, point cloud data presents a few limitations. Firstly,
the data can be overwhelming in size. A 32-beam lidar can
acquire over one million points per second, which rapidly ac-
cumulates when scanning a large environment. Secondly, there
is no native free space representation within the point cloud
data structure. Further computation is necessary to derive free
space from each scan. Thirdly, there is no native representation
of obstacle boundaries within a point cloud, and further compu-
tation is required to estimate them. Finally, point cloud data is
susceptible to corruption by noise and other sources of error.

The errors induced by inaccurate robot localization corrupt the
registration of the point cloud associated with a given range scan.
This particular source of error has been studied extensively, with
the most common remedy being SLAM [5]. In this paper, we will
focus on errors that derive from additive noise in the sensing
process itself, which is frequently assumed to be Gaussian [6], but
can take on other characteristics. We will assume our robot’s state
is fully observable.

2.1. Occupancy grid mapping

Considering the limitations of point cloud data, researchers
have pursued new data structures to define maps efficiently. A
common method in use today is the occupancy grid map [7],
which discretizes 3D space into voxels with a designated spatial
resolution. By setting a low resolution we can drastically reduce
the size of the data structure, as all points within a given voxel
will be tallied together. However, low resolutions reduce our un-
derstanding of the environment. Therefore, a balance is necessary
between memory efficiency and detail.

OctoMap [8], proposed more than a decade ago, continues to
be widely used for memory-efficient 3D occupancy grid mapping.
OctoMap is built to take point cloud data as an input, which is
processed into a probabilistic map of free and occupied cells at
a specified spatial resolution. Successors such as UFOMap [9] or
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the method described in [10] have been proposed in recent years
to optimize both the process of introducing points into the map,
as well as the structure of the map.

Occupancy mapping algorithms often permit cells to be rep-
resented at multiple spatial resolutions within a single map.
One method used to achieve this is called pruning, where newly
defined cells belonging to the same class are condensed into
larger, lower-resolution cells. Pruning has been utilized in several
mapping algorithms to reduce the map data while maintaining an
accurate representation of the environment [1,11,12].

Regardless of the data structure used, sparse data from sensors
will, across some resolutions, result in gaps within an occupancy
grid map. These gaps are a common issue, as the distance be-
tween neighboring sensor rays increases the further an object
is from the sensor origin. Therefore, it is often beneficial to
implement predictive mapping techniques to infer the contents
of an occupancy map between such gaps.

2.2. Learning-aided occupancy mapping

There are many methods for predicting the missing contents
of 3D occupancy grid maps, however the majority of them frame
occupancy mapping as a supervised learning problem. Gaussian
processes have been widely used for this purpose, and they can
accommodate a variety of kernel functions; of particular note is
their compatibility with a sparse covariance function intended
for exact inference over large datasets [13]. In most learning-
aided mapping approaches, predicting the occupancy probability
of cells not directly observed by sensor rays is influenced by the
proximity of existing data to the query point. Each scan from
a sensor can be interpreted as a set of “hit points" that define
occupied regions and sensor rays that define free space.

Probabilistic inference can also address noise and other sources
of uncertainty in occupancy mapping. Warped Gaussian pro-
cesses [ 14] and Rao-Blackwellized particle filters [ 15] can account
for the localization uncertainty captured by SLAM, while accu-
rately representing occupancy probabilities across a grid map.
Occupancy grid mapping has also been made more compatible
with the map corrections required by SLAM in [16], where previ-
ous sensor observations are moved within an occupancy map as
SLAM corrections are made. Due to the added expense of keeping
track of all sensor observations so they can be moved if necessary,
the majority of inference-based occupancy mapping algorithms,
including ours, assume a robot’s localization is accurate, but that
its range sensor is noisy.

Many occupancy mapping algorithms use Gaussian Processes
(GPs) to infer the missing contents of gaps caused by sensor
inadequacies [11,17-20]. Due to the computational complexity
of GPs, Bayesian generalized kernel (BGK) [21] inference has
been proposed as an efficient alternative technique for applying
Bayesian nonparametric inference to occupancy grid maps [1,
12]. Other inference methods that address the poor scalability
of GPs include integral kernels [22], Markov random field ray
propagation [23], Hilbert maps [24,25], Hilbert maps with deep
learning [26], decomposable radial kernels [27], confidence rich
grid mapping [28], and a method that employs spherical cells
rather than voxels [29].

Another recently proposed approach uses the agreement/
disagreement of nearby sensor observations to respectively stretch
or compress the kernel [30]. The adaptive kernel inference map-
ping algorithm (AKIMap) assumes the gaps between sensor ob-
servations to be a greater source of inaccuracy than sensor noise.
Accordingly, the AKIMap algorithm achieves gap-filling by ex-
panding the kernel’s influence toward similar occupancy states
and compressing the kernel’s influence away from dissimilar
occupancy states.
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2.3. Free space representation

One aspect of occupancy grid mapping that distinguishes it
from other classification problems is the typical use of three
classes to categorize the contents of map cells: free, occupied,
and unknown. To frame occupancy mapping as a binary classi-
fication problem amenable to solution by supervised learning al-
gorithms, several learning-aided occupancy mapping algorithms
focus specifically on classifying occupied cells, with the opposite
class simply being “not occupied”. Such algorithms typically do
not quantify the accuracy with which free space can be pre-
dicted, focusing instead on the accuracy with which obstacles are
mapped [17-19,23].

Predictive occupancy mapping algorithms that classify free
space adopt a variety of approaches to interpreting a robot’s range
sensor observations. The most common method is to define an
evenly spaced distribution of points between the sensor origin
of a range scan and the “hit point” at the end of each sensor ray,
which are interpreted to be sensor observations of free space [11,
12,20,22,28]. AtomMap [29] also adopts this approach, but along
the portion of a ray close to the hit point, it computes the normal
to the nearby obstacle surface and produces two more free cells
normal to the surface. Another method to define observations
of free space is to randomly sample points between the sensor
origin and the hit point of a ray. This approach requires certain
attributes within the algorithm, such as kernel stretching to ac-
count for sparsity among the data, but was utilized by [24,25,30].
Guo et al. [27] used a Poisson distribution along each ray.

A final method for defining observations of free space is to
utilize the sensor rays themselves, rather than representing free
space observations using points. Both GP Occupancy Mapping
(GPOM) [17] and BGKOctoMap-L [1] do this successfully by using
the point-to-line distance, i.e., the shortest distance between a
point of interest and a given sensor ray, to define a single free
space observation contributed by that ray in the evaluation of
a given query point. By adopting this approach, BGKOctoMap-L
is able to mitigate the over-sampling of free space that would
otherwise result from high-resolution interpolation along each
Sensor ray.

2.4. Unknown & uncertain representation

The third classification commonly used in occupancy grid
mapping, unknown, typically applies to cells that have not yet
been observed by a robot’s sensor. In this paper, we will argue
that predictive occupancy mapping benefits from two separate
types of unknown classification: the standard definition of un-
known in which insufficient data has been procured about a
given region, and uncertain, where conflicting data makes ac-
curate classification of map cells challenging. Although it has
not been labeled as the uncertain class previously in predictive
inference-based occupancy mapping, several previous algorithms
have captured what they define as the unknown class, applying it
when there is conflicting data. However, a few algorithms created
methods to define unknown as missing data.

By explicitly defining free space, [10] was able to infer un-
known cells as those remaining in the map apart from the cells
classified as occupied and free. This “leftover" method is widely
used in occupancy grid mapping, by which all map cells are
defined to be unknown at the start of a mapping exercise, un-
til sensor rays pass through them or near them, and they are
gradually eliminated and replaced by free and occupied cells.

Another method to define unknown in occupancy mapping
was proposed by Jadidi et al. [31], in which two separate maps
are generated and then fused together. The first map estimates
occupied and not occupied classes, while the second map esti-
mates free and not free classes. When the two maps are merged
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together, the resulting map contains free and occupied cells con-
tributed by each component map, and the remaining cells are
categorized as unknown. This merging method originally en-
countered problems with overestimation or underestimation of
a given class due to the selected kernel functions being applied
to separate inference problems in isolation. A revised method was
later proposed to solve this issue in [32], by merging the two com-
ponent maps into a unique continuous occupancy map. Although
most mapping algorithms ignore under- and over-estimation of
the free and occupied classes, we aim to make an improvement
specifically to address that issue. Additionally, in the sections that
follow, we will describe a methodology to suitably define both
unknown and uncertain classes separately within a predictive
occupancy map, to achieve descriptive and accurate inference.

3. Background - Bayesian generalized kernel inference
3.1. Counting sensor model

Our proposed algorithm is structured similarly to the
BGKOctoMap-L framework proposed by a subset of the authors,
in [1]. Therefore, we make similar assumptions about our
workspace, where measurements are defined asy = {y1, ..., yn |
yi € {0, 1}} and the values are assigned based on whether the
measurements are a ray or hit point, which represent free space
and occupied space respectively. Each y; € Y has a corresponding
location denoted as X = {xq,...,xy | x; € R}, such that all N
range measurements can be described fully in the form of the
tuple (x;, y;). Map cells are also assumed to be indexed by j € Z*.

However, our proposed algorithm, BGKOctoMap-LV, differs
from the prior work in the way we define the occupancy of a map
cell. In [1], each cell was given a probability of occupancy defined
by 6; with Bernoulli likelihood

p(i 1 6) = 6/"(1

where the posterior function p(6; | X,Y) was used to estimate
occupancy. This function was obtained using a conjugate prior,
where 6; was assumed to be a Beta distribution, resulting in the
following occupancy estimator and variance:

_ Qj)l_J/i7 (1)

o
E[6] = —2 2
(6] o (2)
% B
(o5 + BiP(ey + B+ 1)
The hyperparameters «; and g; were defined to simplify the
joint measurement likelihood of each cell. Observations are only
added to the “counts” of these parameters if they fall within the
region R; that influences cell j.

vig) = (3)

o) = 0ap + Z i (4)
i, X,'ERJ'

Bi=Fo+ Y (1-y) 5)
i, Xj eRj

By this definition, «; represents the total count of hit points
within region R;, while g; is the total number of occurrences of
rays passing through the same region R;. Each term also has a
prior defined by «g and Bo.

In that previously used estimation procedure, 6; is assumed to
have a Beta distribution. However, for simplification, we instead
assume a Bernoulli distribution. We also define a new parameter
for each cell j to be the occupancy state m; € {0, 1}, which follows
from the definition of measurements y;, where O represents the
free or unoccupied state while 1 is defined as occupied. This
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distribution’s probability mass function can leverage the same o;
and B; parameters described previously.

9

M itm=1
o + i
Pm)=1 P irm o (6)
aj + B
0, otherwise

With this new distribution we can estimate occupancy and the
variance of occupancy. We will use the term p; to describe the
occupancy estimate in the equations below.

Z Qo

i mj:{OJ}m] pm) o + B . )
Z 2 o fj

v mj:{O,l}(mJ oy im) (o + B) ®)

The expected value of m; is equal to that of the Beta distri-
bution 6;, which suggests a reasonable assumption when using
the new Bernoulli distribution. However, while the variance es-
timates are similar, they vary enough to create unique perspec-
tives. The variance of a Beta distribution will tend to zero as more
data is captured, even when «; and g; are equal. The variance of
a Bernoulli distribution, however, will lie at a maximum when
a; = p;, regardless of how much data has been gathered, serving
our goal of using map cell variance to characterize uncertain cells
with conflicting observations.

3.2. Free space using rays

Using continuous rays permits an accurate representation of
free space, and avoids the potential pitfalls of interpolating along
a ray to generate evenly spaced free points from the sensor origin
to a hit point. If the free points are discretized too finely, multiple
free points will land within individual map cells, outweighing
the influence of hit points. If they are discretized too coarsely,
cells along a ray may have no points introduced into them, even
though a sensor ray has passed through. These problems can be
avoided by using the ray itself to represent free space, rather than
interpolated points.

Our prior work on BGKOctoMap-L [1] used a continuous ray
from the sensor origin to the hit point to define free space, where
each map cell only sees the influence of the nearest point on each
range beam. The nearest point was found by searching along the
length of the ray using the following equations:

P, ifs <0
PQ
Xfee = 1P +86—, if0<8<1 (9)
|PQ|
Q, ifé > 1
PG - Px,
- FX
=—", (10)
|PQ]|

where P is the sensor origin, Q is the hit point, and x, is the map
cell center. When a map cell lies behind the origin of a ray, the
nearest point will be P, whereas if a map cell lies beyond the end
of the ray, the nearest point will be Q. However, if the map cell
occurs somewhere between P and Q within 3D space, then the
nearest point will be determined using 8. These assumptions are
also adopted in BGKOctoMap-LV.

3.3. Kernel estimation

While the discretization provided by occupancy grid maps
is useful in many respects, it can also reduce the accuracy and

Robotics and Autonomous Systems 153 (2022) 104077

Sparse Kernel Region of Influence

0.2r
[Cs=021=02
0.15 6=02,1=0.1
8 [ Js=01,1=02
C
S oir
E
0.05
0 ‘

-0.2 -0.15 -0.1 -0.05 0 0.05 0.1 0.15 0.2
Displacement from center of cell

Fig. 2. An illustrative example of the sparse kernel function (Eq. (11)) with a
variety of values for o and L

precision captured by the underlying sensor data. Therefore, we
assume there is a smooth distribution of sensor data over any
given map cell which can be considered a region of influence
around each cell. BGKOctoMap-L uses the following sparse kernel
to assume a distribution from a cell center [13]: k(x, X') =

2+cos(2m %)
o | /=1

L1 - 9+ ﬁsin(Zn%)] ifd <1

0 ifd>1,

(11)

where d = ||x — x/|| is the distance between a map cell’s center
x and a nearby sensor observation x". A constant hyperparameter
o is used to define the strength of influence while [ declares the
size of the region of influence. As seen in Fig. 2, when d is small
the influence on the predicted occupancy of a map cell will be
largest. This procedure for prediction dictated by spatial prox-
imity can improve the accuracy of occupancy map estimation,
using relevant data from outside a cell’s boundaries to influence
its classification.

Egs. (4) and (5) describing the counting sensor model must
be updated to incorporate the above kernel function. In those
equations, y; represents the observations of occupancy from the
incoming data, such that a hit point will have y; = 1 while a ray
passing only through free space will have y; = 0.

N
o = o+ Z I((Xj, Xi )i (12)

i=1

N
Bi=Bo+ D kxi.xi)X1—y) (13)
i=1

Eqs. (12) and (13) are used by BGKOctoMap-L and define
the influence of range sensor observations on the classification
of occupancy map cells. However, there are two other states
in our newly proposed variant of this algorithm, unknown and
uncertain. Unknown has typically been assumed to apply when
m; = 0.5 & € for some small €, however, the current Eq. (7)
for expected value will return m; ~ 0.5 for all instances where
a; ~ B, even when o; and f; are very large and the state of cell
j should be uncertain. Therefore, new classifications will be in-
troduced in BGKOctoMap-LV, both to account for unknown cells,
and to separately define cells containing conflicting information
as uncertain.

4. Introducing new classes into BGKOctoMap-L
4.1. Defining and weighting the unknown classification
The unknown classification represents regions of a robot’s

workspace that are yet to be explored. Even when some initial
exploration has occurred, a map cell may still be considered
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partly unknown. Therefore, we propose to incorporate pseudo-
evidence into our estimation procedure via a threshold for the
unknown classification. Above that threshold, a cell’s contents are
assumed to be observed, and it must be designated occupied, free
or uncertain. To ensure that unknown is only counted when o;
and B; are small, we define a threshold wyyy such that:

W — {leN
)j =
Q;j +,Bj

The unknown classification is assumed to apply when m; =
0.5, therefore, we will assume that there is pseudo-evidence y;
corresponding to this class, in the same way that o; accounts
for occupied space and ; accounts for free space. Based on our
threshold wyy, we can make the assumption that w; = o+ 8; +
y;, which means we can solve for y; given that we know the other
three terms. However, now we need to modify the probability
mass function and update the occupancy and variance equations
used in our proposed estimation process.

if o + ﬂj < WMIN

14
otherwise (14)

o i TV
0T m—os
P(m;) = aj+f§+yj (15)
— A im0
o+ Bi+v
0, otherwise

With this new distribution we can update our estimates for
occupancy and the variance of occupancy accordingly.

aj + 0.5y
! mje{0,0.5,1) ) o+ B+ K (16)

m;€{0,0.5,1} (aj + ’Bj + )/1)2

When y; = 0, we can see that Eq. (16) reverts back to Eq. (7),
which considered only free/occupied classes. Including y; via the
wyy term will not change the final state of a cell’s occupancy, but
will produce a result that includes unknown when o+ 8; < wuin.
However, this particular equation still allows for the probability
of occupancy to be in the unknown range when «; & §;, even for
large values. To separate unknown from uncertain, we define a
new estimator to push the probability of occupancy to 1 or 0 as
y; shrinks:

aj + 0.5y fo; > f
) o+ i = Pj
fipm;] = (18)
0.5y;
VJ ifOlj < ﬁj
Bi+vi

In typical applications of occupancy grid mapping, the major-
ity consensus of the sensor observations that land within a map
cell will dictate whether that cell is labeled free or occupied. Fol-
lowing the same philosophy, Eq. (18) checks the consensus of past
sensor observations, and then pushes the occupancy probability
toward the corresponding class. As y; eventually approaches 0
with the exploration of a robot’s workspace, a cell’'s occupancy
probability will approach 1 or 0, indicating that its contents are
no longer unknown.

4.2. Defining the uncertain classification

Unfortunately the threshold wyyy does not address the issue
that «; & B; should represent uncertainty when they are large,
indicating disagreement among sensor observations. There are a
few methods capable of dealing with this issue, such as assigning
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more weight to newer data than to old data [33]. However, our
proposed solution allows us to push the probability of occupancy
to its upper and lower limits while also allowing the occupancy
probability to flip from occupied to free and vice versa without
nearing unknown.

We update the variance Eq. (17) based on Eq. (18), as we need
to use uj, which yields:

(0 + o448 + ) + By}

5 4oy + 1Py + B + 1) e =h
V[m;] =
(4B + 4By + v7) + Bivi(Bi + v) fo; <
4B, + 1Py + B+ ) G
(19)

When y; > «j, B, we can see both forms of variance converge
asymptotically to yl which indicates our starting variance when
wuiN > ®o, Bo- Thjerefore, if wyn is sufficiently large, resulting
in a large quantity of pseudo-evidence indicating unknown, the
starting variance will be small.

However, when y; = 0, the new variance equation simplifies:

ﬂj if o = ﬂj
. o + B
V[m;] = (20)
o if o < /3]'
o + Bj

Known cells will be updated according to this equation. While
Eq. (20) is different from the traditional variance shown in Eq. (8),
we can still use this as an uncertainty metric, as it usefully
captures the proportionality of the lesser observation count to the
total observation count.

We do not apply the “pushing to extremity" premise of Eq. (18)
to a map cell’s variance, as that would result in the variance
dropping to zero once «; + B; > wwmn, reducing the information
we have to describe the occupancy of that cell and our confidence
in its prediction.

4.3. Free space representation from sensor data

Rays beginning at the sensor and ending at a hit point are
used to define a robot’s observations of free space. Due to the
nature of range observations radiating at fixed angles from a
sensor origin, the free space around the sensor will be more
densely represented with data than the surrounding obstacles
observed at various hit points. Additionally, with their continuous
representation, the free observations along a ray are likely to be
closer to a given query point than the single hit point at the end
of the ray. Therefore, overestimation of free space occurs if there
are no checks in place to avoid it.

In particular, glancing rays, occurring nearly tangential to an
obstacle surface, can be a problematic cause of overestimation in
predictive occupancy mapping. When using such rays to estimate
free space, it is possible to erroneously define free space inside
obstacles, as seen at the top of Fig. 3. On the left of the Figure we
can see the true environment, and at right some of the resulting
errors introduced into an occupancy map. When rays are nearly
tangential to an obstacle wall, part of the wall is assumed to be
free space in the resulting map, even with a small standoff from
the ray. This is caused by unbiased inference over the contents
of the sensor ray, which weighs free space more heavily than
occupied space.

To reduce overestimation of free space, the proposed algo-
rithm reduces the length of a ray based on nearby hits. To reduce
the ray length, we search within the ray’s region of influence for
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Fig. 3. An illustrative comparison of occupancy representations. The left shows
training data while the right shows the inference result. From top to bottom: (1)
point-to-line distance kernel evaluation used in BGKOctoMap-L, (2) reducing the
length of glancing rays to minimize overestimation of free space, (3) combining
reduced glancing rays and the proposed occupancy predictions from Eq. (18).

any hits that occur closer to the sensor origin than the hit at the
end the ray. If a hit is found, the ray length is shortened to that
distance. While this is an exhaustive search, there are a few ways
to minimize computational complexity.

By reducing the length of glancing rays passing nearly tangent
to nearby obstacles, we are able to minimize the overestimation
of free space when the available data is sparse. This procedure
complements our proposed Eq. (18) for updating occupancy prob-
abilities, which forces occupancy probability toward the free and
occupied classes. Fig. 3 shows the resulting estimation of occu-
pancy probability from a single range scan. At the bottom of Fig. 3,
the border between free and occupied is sharp, well-defined,
and can quickly adapt to the arrival of new observations, unlike
previous mapping methods. Map variance is not included in this
figure, as the map only visualizes the occupancy probabilities.

5. Algorithm summary

Two key updates to BGKOctoMap-L have been proposed, and
their implementation is discussed in this section. The first reduces
the length of glancing rays, augmenting the training data that will
be subsequently used to infer occupancy. This method requires
the initial training data X, Y, which contain the positions and
occupancy of the raw sensor data. When y; € Y is equal to 1,
the corresponding state x; € X is considered occupied, and when
y; = 0, the corresponding state is free.

The ray-shortening procedure is summarized in Algorithm 1.
To shorten free space rays 5?,—, which are defined between the
sensor origin and a hit, we must compare all rays against all hit
points in the current point cloud on which the map is based. After
computing the nearest point on the ray to a given occupied point
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Algorithm 1 Reducing Free-Space Training Data

1: Input: Training data: X, y;
2: for each (x;, y;) € (x,Y) do
3: if y; = 0 then

4: Use 55 ray

5 for each (x;,y;) € (X, ) do

6: if y, = 1 then

7: Compute X from Eq. (9) using x; as X,
8: d = [|Xfree — X;”

9: if d <[ from Eq. (11) then

10: Xi < reduce_ray(tﬁ-, x;)

Algorithm 2 Bayesian Generalized Kernel (BGK) Inference

1: Input: Training data: X, Y; Query point: x,
2: Initialize: oy, 8, <~ 0

3: for each (x;, y;) € (X,)) do

4: if y; = 0 then

5 Compute X; < Xge from Eq. (9)
6: else

7: )/{\i <~ X;

8 ki < k(x., X;) Sparse kernel, Eq. (11)
9 oy < ot + kiyi

10: Bx < Bx + k(1 —y;)
11: return o, By

x; on line 7, the minimum distance between the ray and point
is calculated. If the distance calculated is less than the influence
distance I, then there is an overlap between the ray and occupied
point, which would ordinarily result in overestimation of free
space. To mitigate overestimation of free space, the ray is reduced
each time a new occupied point is found within its region of
influence. This process occurs repeatedly, where the ray and thus
its region of influence is updated each time d < [, ensuring that
the ray is reduced as far as necessary and the search order does
not matter.

By only changing the input data and the way we process cell
data, we are able to continue to use the same inference procedure
as BGKOctoMap-L, summarized in Algorithm 2. The objective to
compute the posterior parameters given observations X and Y
remains the same. However, the input data has been altered per
Alg. 1, reducing the length of the rays where needed to avoid free-
space overestimation. Also unlike BGKOctoMap-L, the posterior
data o and B are updated per Egs. (14)-(19) to predict both
occupancy and the variance of occupancy.

As described earlier, the proposed BGKOctoMap-LV algorithm
will use Eq. (18) to solve for expected occupancy and (19) to
solve for variance. While the equations themselves differ, the
structure of the algorithm remains the same as the BGKOctoMap-
L algorithm. However, these changes alter the way cell states are
defined. Cells are defined as unknown if the expected occupancy
lies within the range between the occupied and free thresholds,
typically a range of [0.5 — €, 0.5 + €]. By pushing the occupancy
values to their extremes, we can predict the contents of newly
discovered cells early and never revert back to unknown. Using
Eq. (19) for variance, the uncertain state was created by defining
a variance threshold. When the variance is above that thresh-
old, regardless of expected occupancy, the state is considered
uncertain.
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Table 1 Table 2
List of parameters which are the same in all tests performed. List of parameters used in the simulated mapping tests.
Parameter Description Value Algorithms Parameter Description Value Algorithms
occ_thresh Occupancy Threshold 0.7 All resolution Resolution 0.1m All
free_thresh Free Threshold 0.3 All ds_resolution Down-sample Resolution 0.1m All
0.02 GP block_depth Block Depth 1 All
var_thresh Variance Threshold 0.15 BGK-L free. resolution Free Samole Resolution 01m GP/BGK-LV
0.2 BGK-LV | p 085 m BGKL
oo, Bo Beta Prior Parameters 0.001 BGK-L/BGK-LV 10 m GP
— - l Kernel Length ’
WMIN Unknown Prior Parameter 0.001 BGK-LV 02 m BGK-L/BGK-LV
1.0 GP
a0 Kernel Scale 0.1 BGK-L/BGK-LV

6. Experimental results

Using OctoMap [8] as a baseline, we compare our proposed
algorithm, BGKOctoMap-LV,! against other inference-based maps
including Gaussian Process OctoMaps (GPOctoMap) [11], the
original learning-aided Bayesian generalized kernel map
(BGKOctoMap-L) [1], and a newer framework for adaptive kernel
inference (AKIMap) [30]. While these algorithms differ in many
ways, a few key components were kept constant throughout our
tests. The range of known occupancy states was separated into
two regions, known free and known occupied. Known free was
declared to be the region of occupancy where p = ]@[mj] < 0.3
while the known occupied region was defined by 0.7 < p = I@[mj]
for all algorithms.

GPOctoMap, BGKOctoMap-L and our proposed variant
BGKOctoMap-LV all use variance thresholds to define unknown
and uncertain occupancy states. Due to the uniqueness in how
variance is treated among each separate algorithm, they all re-
quired different values for their thresholds. The values used for
our tests can be found in Table 1. A few other parameters were
kept constant during all our testing for BGKOctoMap-L and the
proposed BGKOctoMap-LV. Namely, the beta prior parameters ag
and By were assigned very small values to assume virtually no
prior information about the environment. To ensure fairness in
the results and follow the same process, wy;y was assigned a very
small value as well, resulting in minimal usage of the unknown
class when evaluating the accuracy of map predictions.

Similar to past comparisons [1,11,12], two simulated datasets
were utilized with known ground truth to check each algorithm
for accuracy. The first environment was “structured” with pre-
dominantly rectangular features, while the second environment
was “unstructured” and contained cylindrical objects surrounded
by a rectangular perimeter. Both of these datasets have virtually
no overlapping point cloud data, which challenges inference-
based algorithms using sparse data.

However, accuracy is not the only way to compare inference-
based mapping algorithms. Rather, how effective the inference-
based algorithms are at parsing sparse data into a reasonable
representation of the environment should also be checked. To
do so, we used data captured from our own Jackal ground robot
of the Strataspace mine in Louisville, KY using a VLP-16 Lidar.
Lidar sensors result in very dense data, therefore to rigorously
compare inference capabilities, we artificially sparsified the data
by downsampling the incoming point clouds.

Each test was performed on a desktop with an 8-core 3.60 GHz
Intel i9 CPU with 16 threads running Ubuntu Linux. Every al-
gorithm was run via the Robot Operating System (ROS) [3] and
utilized the Point Cloud Library (PCL) [2].

1 The code for this paper is implemented in a branch of the Learning-aided
3D Mapping Library, available at https://github.com/RobustFieldAutonomyLab/
la3dm/tree/feature/bgklv.

6.1. Simulated data

Both the structured and unstructured environments are 10.0 x
7.0 x 2.0 m in size, with twelve non-overlapping range scans
provided as input. Only the cells that are seen in Figs. 4 and
5 were used to evaluate the accuracy of each algorithm. The
colored cells indicate the known occupied state while the gray
cells indicate the known free state. Both unknown and uncertain
cells were not considered for the purpose of plotting the receiver
operating characteristic (ROC) curves, to accurately capture this
mapping scenario as a binary classification problem.

To ensure consistency in the data, each algorithm used 0.1 m
resolution without any pruning. Various other parameters used
specifically for this simulated mapping test can be found in Ta-
ble 2. Each of the parameters used was either tuned to approx-
imately optimize the performance of each algorithm, or were
defined by their original authors as the default values. In partic-
ular, the free sample resolution used by BGKOctoMap-L was set
to maximize the known free cells, while minimizing the losses
incurred by the known occupied cells when the data conflicts.
Both the GPOctoMap and BGKOctoMap-LV algorithms were able
to use any value less than or equal to the kernel length values
for their free sample resolutions. The kernel length and scale
values used were the default values for that respective resolution.
As the BGKOctomap-LV algorithm was based on BGKOctomap-
L [1], we used the same default values for our kernel length and
scale. These were chosen based on previous experiments, where
larger kernel lengths led to excessive homogeneity within the
maps, while the scale changed how quickly the unknown cells
disappear.

Receiver operating characteristic (ROC) curves were used to
check each algorithm for its accuracy with respect to each envi-
ronment. Only the known free and known occupied cells shown
in Figs. 4 & 5 were used in the ROC curves, resulting in Figs. 6
& 7 respectively. The ROC curve of the structured environment
shows how the proposed algorithm BGKOctoMap-LV has com-
parable accuracy to new techniques such as AKIMap and makes
improvements on the prior BGKOctoMap-L. The same conclusion
can be drawn from the ROC curve describing the unstructured
environment. Thus we believe that the accuracy of the proposed
algorithm is sufficient for use in the field.

6.2. Lidar mapping experiments

We collected VLP-16 lidar data from the Strataspace mine in
Louisville, KY to compare predictive mapping algorithms.? The
subset of the data we selected for these experiments resulted in a
130 x 130 x 7 m environment. To necessitate the use of predic-
tive mapping, the point cloud data was sparsified, downsampling

2 A video showing the process of each mapping algorithm performing on this
data is available at https://youtu.be/VTUc4lQ2en4.
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(a) Environment Model

(e) BGKOctoMap-L

(f) AKIMap
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(g) BGKOctoMap-LV

Fig. 4. Results from using the same Structured map used in [1,30] to test mapping inference on rectangular obstacles.

(a) Environment Model

(e) BGKOctoMap-L

(f) AKIMap

(c) OctoMap

(d) GPOctoMap

(g) BGKOctoMap-LV

Fig. 5. Results from using the same Unstructured map used in [1,30] to test mapping inference on curved obstacles.
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Fig. 6. ROC curves for the Structured Map.
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Fig. 7. ROC curves for the Unstructured Map.
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Table 3 Table 4
List of parameters used in the mine tests. Varying block depth to decide which to use for lidar mapping experiments.
Parameter Description Value Algorithms Algorithm Block Total coverage  Average Average update
3 )
resolution Resolution 0.2 m All depth (m*) cell size frequency (Hz)
ds_resolution Down-sample Resolution 0.5 m All OctoMap N/A 38382 0.0296 3.27
max_range Maximum Sensing Range 30 m All Akimap N/A 35364 0.0080 2.24
4 GP 1 28827 0.0080 0.91
block_depth Block Depth 5 BGK-L é i;gg; 88;1;’3 ;33
6 BGK-LV y :
GPOctoMap 4 43749 0.0806  2.63
free_resolution Free Sample Resolution 0.1'm GP/BGK-LV 5 18034 0.0259 0.07
6.5 m BGK-L 6 1031 0.0144 <0.01
1.0 m GP 1 7862 0.0080 1.19
l Kernel Length . .
& 0.6 m BGK-L/BGK-LV 2 18153 0.0253 332
1.0 GP 3 25229 0.0331 5.54
% Kernel Scale 01 BGK-L/BGK-LV BGKOctoMap-L 31386 0.0407  5.05
5 35956 0.0488 2.73
6 32159 0.0444 0.59
1 33796 0.0080 0.13
the original scans to 0.5 m leaves. Without downsampling, the 2 38451 0.0342 061
data was so dense that all maps performed similarly. BGKOCtoMap-LV i ;gg;g 8'3222 ggg
While map accuracy is important, it often ignores some defin- 5 38911 0.0543 072
ing features of a “good" map. For instance, a map may have very 6 38326 0.0544 0.51

high accuracy, but only define two or three cells as occupied
or free. Other factors need to be taken into account when con-
sidering what defines a “good" map, such as coverage. In a live
experiment, point cloud data is often gathered very quickly and
not every scan can be utilized if a mapping algorithm wishes
to perform in real-time. However, not all scans are necessary if
there is sufficient overlap. Therefore the frequency at which a
map updates is important to mapping effectively. Another useful
metric is how much pruning has occurred. Funk et al. in [10]
prove that successful pruning can be used to speed up motion
planning. When more pruning occurs, fewer cells are used to
cover the same volume.

The data structure used by GPOctoMap, BGKOctoMap-L and
BGKOctoMap-LV has limitations on its pruning capabilities.
“Blocks" are defined as a set of neighboring cells, where block
depth is a parameter used to define how many cells exist within a
given block. Each increase in block depth is equivalent to another
level of possible pruning, however there is also increased com-
putational complexity as block depth increases. Due to the direct
link between block depth and how much pruning can occur, each
algorithm was tested at differing block depths over the same
subset of the mine data used to compare all the algorithms later.
Comprehensive testing resulted in the data shown in Table 4,
where the largest feasible block depth is emboldened and used
in the final experimental results. The lower update frequencies
at block depths one and two are a result of being unable to fully
utilize the multi-threaded functionality of each algorithm at those
depths.

Besides block depth, which was varied for these experiments,
the remaining parameters were kept constant; all values are
summarized in Table 3. The resolution was set to 0.2 m due to
the size of the environment used. That resolution size resulted in
our choice for down-sample resolution, which affected the kernel
characteristic length used by BGKOctoMap-L and BGKOctoMap-
LV. The kernel length dictates how far away from a cell we
should consider data to be influential, thus the kernel length must
be larger than the down-sample resolution. However, the value
chosen for the two BGKOctoMap algorithms was still not as large
as the one used by the GPOctoMap algorithm, which was left at
the default value.

OctoMap and AKIMap do not explicitly use block depth, thus
they were parameterized separately. AKIMap has no pruning
system in place and was left that way for these tests. OctoMap
does have a pruning function, but it can perform that function
without the data structure built via block depth used by the GP

and BGK algorithms, which allowed OctoMap to heavily prune
free space in this experiment without depth parameterization.

Coverage is the sum total of the volume defined by known
free and known occupied cells. Average cell size is the coverage
divided by the total number of cells defined by known free and
occupied. The average update frequency was calculated by finding
the total number of maps published by each algorithm over the
course of the dataset, and dividing by the full duration of the
dataset. While all algorithms were fastest at block depth three,
more pruning occurred at larger block depths. Therefore, the
metric for choosing which block depth to use for each algorithm
was based primarily on total coverage. GPOctoMap had the most
coverage at block depth four, while BGKOctoMap-L had the most
coverage at block depth five. The coverage decreased when the
algorithms were too slow to process enough lidar scans, resulting
in missed data. BGKOctoMap-LV used block depth 6 due to the
increase in average cell size with a minimal loss of coverage.

Most of these algorithms operated successfully around the 2-
3 Hz range while the proposed algorithm managed to succeed at
> 0.5 Hz. While more processing is required, BGKOctoMap-LV
achieved accurate inference over the incoming data. Our pro-
posed algorithm did not see much of a decrease in processing
time as block depth increased, because incoming data was pro-
cessed using a different method which is no longer an exponential
function of block depth, which differs from previous algorithms.
GPOctoMap and BGKOctoMap-L used the size of a block to parti-
tion incoming data into sets, which became superfluous at larger
block depths. For smaller block depths, that system improved
processing speeds, which was necessary for GPOctoMap to run
in real-time by utilizing multi-threading capabilities. By com-
parison, the proposed BGKOctoMap-LV algorithm defines sets
of incoming data for each map cell, regardless of block size,
which allows us to successfully utilize larger block depths. The
difference can be seen by the drop from 2.63 Hz to 0.07 Hz as
GPOctoMap goes from block depth four to five. Similar behavior
occurs as BGKOctoMap-L goes from block depth five to six, where
the average update frequency drops from 2.73 Hz to 0.59 Hz. Our
proposed algorithm, BGKOctoMap-LV, does not change as drasti-
cally as block depth increases, with the worst case from block
depth five to six resulting in a 0.21 Hz decrease in processing
speed.
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(b) OctoMap
]

(d) BGKOctoMap-L

(e) AKIMap

(f) BGKOctoMap-LV

Fig. 8. Each mapping algorithm was tested using the same lidar dataset collected from an underground limestone mine. Lidar odometry was employed while mapping
to minimize drift. To help visualize the data, we only show data below z = 3 m. Gray cells indicate free space, while colored cells indicate occupied space. The color

change of occupied cells indicates their height.

While GPOctoMap produced a very large average cell size
at both block depth three and four, the data may be mislead-
ing. GPOctoMap performed with strong inference capabilities,
producing a much smoother representation of the environment.
When such smoothing occurs, very few smaller cells remain
as most are pruned, being merged together with their similar
neighbors. This behavior actually reduces the accuracy of certain
real-world features, such as bumpy surfaces or protrusions. How-
ever, those same features would decrease the average cell size

10

of a completely accurate occupancy grid map. Therefore, even
though it seems GPOctoMap is vastly outperforming at lower
block depths, the map produced is likely to under-perform in path
planning exercises compared to the larger block depths used by
BGKOctoMap-L and BGKOctoMap-LV.

Using the parameters shown in Table 3, each algorithm was
tested over the data visualized in Fig. 8a. The point cloud data
was not range-limited, showing more than what was utilized by
each mapping algorithm. Color is used to indicate height, with red
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Fig. 9. For closer inspection, we chose a subset of the mine data that represents the qualitative performance of each mapping algorithm with our predetermined
parameters, showing how each map defines occupied space, free space, and the boundary between them. Too much inference results in overestimation, while too

little results in an incomplete representation of the wall.

indicating the top and blue the bottom. For ease of visualization,
each point was given a non-zero size. All of the images in Fig. 8
were truncated at a height of 3m to better illustrate how each
algorithm inferred free space. However, when testing each block
depth, we did not impose a cutoff height.

Each algorithm accurately captured the global characteris-
tics of the mine, with some aliasing occurring in the AKIMap
image due to its lack of pruning. By mapping everything at
the finest available resolution, AKIMap produced thin obstacle
boundaries and far too many map cells to permit rapid path
planning. OctoMap performed one task that was implemented
into the proposed BGKOctoMap-LV algorithm but does not exist
in the inference-based competitors, which is utilizing rays up
to max range from obstacles observed beyond the max range.
By utilizing every ray, OctoMap was able to successfully fill in
free space quite effectively even with sparse data. GPOctoMap
was able to capture the majority of free space with the largest
cell size available at the respective block depth used. This is due
to its aggressive inference capabilities, which also resulted in
an inflated representation of obstacle boundaries. BGKOctoMap-L
also resulted in inflated obstacle boundaries, however we believe
the cause to be different. The free resolution of BGKOctoMap-L
used for this experiment was quite large, at 6.5 m. Free space
would be significantly over-represented if it was not directly
curbed. By using such a large value, we were able to reduce
the overestimation of free space while still acquiring an accurate
map, which can be seen in Fig. 8d. However, a consequence of
curbing free space was the overestimation of occupied space.

The proposed BGKOctoMap-LV produced a very rich and well-
pruned free space representation of the mine data. However, this
result is not unique to BGKOctoMap-LV. Therefore, we will zoom
in on a subset of the map to better understand the boundary
between occupied and free cells. In Fig. 9, we inspect a single pil-
lar within the mine that enables us to more clearly visualize the
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differences between all algorithms. OctoMap has gaps in the oc-
cupied data due to the lack of inference applied to the range data.
AKIMap performed similarly, likely due to limits on the range
of influence of sensor data, which was based on its fine resolu-
tion. Both GPOctoMap and BGKOctoMap-L had similarly inflated
representations of occupied space, however, GPOctoMap added
thickness atop free space observations, while BGKOctoMap-L ex-
panded into the free space due to pulling the free space back
from the walls. The proposed algorithm BGKOctoMap-LV resulted
in well-defined free space and accurate estimation of occupied
space. There are some small gaps in the data between known free
and known occupied cells due to the uncertainty caused by high
variance, however those gaps would be at most a min-resolution
cell thick. The proposed algorithm is able to accurately represent
the unambiguously free and occupied regions of the workspace,
while capturing uncertainty on the boundary between them.

Reducing the inflated representation of occupied space in
BGKOctoMap-LV may have unexplored benefits. Uneven surfaces,
such as those caused by furniture or certain wall features, are
expected to be captured accurately with less generalization. One
example to consider is a thin wall that is seen from both sides.
In the BGKOctomap-L case, we would expect the wall to be
estimated significantly thicker, as overestimation of occupancy
occurs from the wall surface toward the sensor on each side of the
wall. GPOctomap pushes the overestimation behind the surface,
resulting in a more accurate yet still excessively thick wall, where
newer data may fix the currently viewed side of the wall at the
cost of expanding the reverse side. BGKOctomap-LV minimizes
this overestimation, resulting in the most accurate representation
of a thin wall seen from both sides. Thin walls are very common
within indoor environments, which indicates the frequency and
potential relevance of this scenario.
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7. Conclusion and future work

In this paper, we have proposed BGKOctoMap-LV, enhanc-
ing the BGKOctoMap-L inference-based occupancy grid mapping
algorithm to accurately capture known free, known occupied,
unknown, and uncertain states. The framework’s accuracy was
confirmed using simulated mapping scenarios, comparing against
recently proposed algorithms in inference-based occupancy grid
mapping, while real lidar data was also used to qualitatively
illustrate their different outcomes intuitively.

We expect a future version of this algorithm to prove useful
for exploration and inspection in 3D environments. Separating
uncertain from unknown will allow us to develop new methods
of exploration using inference based mapping that focus exclu-
sively on the unknown classification and disregard those map cells
considered uncertain, for the purpose of efficiently completing the
exploration mission. A different approach could utilize both states
for a two step exploration and interrogation method. With the
ability to drive down uncertainty without depending on the un-
known classification, mobile robot exploration algorithms could
interrogate structures until they have been completely observed,
before continuing to explore.

We believe there are a few more avenues for improving this
algorithm’s performance, and there needs to be further examina-
tion of the unknown classification. One such method would be a
varying kernel length based on how far data is from the sensor.
Due to the radial nature of sensor data, it will be corrupted by
larger errors the farther the data is from the sensor. Therefore, we
believe we can create more accurate maps if we adjust the kernel
characteristic length for data that lies farther from the sensor.
The unknown classification is expected to play a larger role in
noisy mapping scenarios, where the boundary between occupied
and free is unclear from a single sensor observation. One other
update would be to favor new incoming data over older data. This
has been utilized previously [33,34] to remove dynamic obstacles
from static maps, and would potentially improve the accuracy
and adaptability of this framework.
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