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Abstract— Current lower-limb prosthesis control methods are
primarily model-independent — lacking formal guarantees of
stability, relying largely on heuristic tuning parameters for
good performance, and neglecting use of the natural dynamics
of the system. Model-dependence for prosthesis controllers is
difficult to achieve due to the unknown human dynamics. We
build upon previous work which synthesized provably stable
prosthesis walking through the use of rapidly exponentially
stabilizing control Lyapunov functions (RES-CLFs). This paper
utilizes RES-CLFs together with force estimation to construct
model-based optimization-based controllers for the prosthesis.
These are experimentally realized on hardware with onboard
sensing and computation. This hardware demonstration has
formal guarantees of stability, utilizes the natural dynamics of
the system, and achieves superior tracking to other prosthesis
trajectory tracking control methods.

I. INTRODUCTION

Powered prostheses are generally controlled by model-

independent methods such as impedance control [1], [2],

[3]. These methods rely on heuristic tuning methods to

achieve good behavior, lack formal guarantees of stability,

and do not utilize the natural dynamics of the system. In [4],

some model-dependence was incorporated into prosthesis

control methods to achieve a robust controller. However this

method did not account for the interaction force between

the human and the prosthesis, which acts as an input to the

prosthesis dynamics. The methods in [5], [6] accounted for

the interaction force in constructing a feedback linearizing

controller for a prosthesis that was demonstrated in sim-

ulation. Generalizing these ideas, in [7], [8], the authors

introduced the notion of separable systems and defined a

class of RES-CLF controllers to yield provably stable hybrid

periodic orbits for separable systems with zero dynamics.

CLFs provide formal guarantees of stability and RES-

CLFs [9] in particular give strong enough conditions for

hybrid systems (systems with impacts) with zero dynamics

(uncontrollable dynamics) [10]. Quadratic programs (QPs)

provide a means to implement a CLF constraint while

optimizing a cost and provide a flexible framework to

incorporate feasiblity constraints such as torque bounds.

CLFs in QPs have been realized in simulation in various

works [11], [12], [13], [8], but few to date on hardware

[14]. One difficulty in implementing these controllers on

hardware is the typical required inversion of the inertia
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Fig. 1. Gait tiles of powered prosthesis AMPRO3 worn by able-bodied
human user walking with model-dependent prosthesis controller. Top shows
prosthesis stance, bottom shows prosthesis non-stance. Numbers align with
phases of gait trajectory shown in Fig. 5.

matrix, which is computationally expensive and prone to

error. An alternative CLF-QP was developed in [15] using an

inverse dynamics (ID) approach to overcome this challenge

and achieved dynamic crouching behavior in experiment on

a 3D underactuated compliant bipedal robot. This ID-CLF-

QP is the starting basis for developing an implementable

CLF-QP on our robotic prosthesis.

When trying to implement a CLF-QP on a prosthesis, an

additional challenge arises since the human dynamics are

unknown. While [16] applied a CLF-QP to a prosthesis, this

was done in a model-independent fashion and required a

feed-forward impedance control input term to overcome the

limitations of the model-independent nature. To implement

a model-based prosthesis controller, knowledge of the inter-

action force between the human and prosthesis is required.

While force sensors could provide these measurements, they

are expensive, noisy, and not robust to the multi-directional

forces and torques present in walking. These conditions of

force sensors pose implementation issues for using their

measurements directly as real-time feedback and restrict

prosthesis controllers from being fully model-dependent.

The main result of this paper is the synthesis of model-

dependent controllers using force estimation. We leverage

RES-CLFs and their formal guarantees in the context of

the ID-CLF-QP framework. The unknown dynamics of the

human enter the prosthesis dynamics via interaction forces,

so we estimate these forces to complete the model-dependent

nature. Inspired by the average acceleration discrete algo-

rithm in [17], we developed a force estimation method

with on-board velocity measurements. To demonstrate these

results, we realize the controller on-board the AMPRO3

prosthesis [18], shown in Fig. 1. In particular we demonstrate

that the model-based ID-CLF-QP results in accurate tracking.

More generally, we are thus able to transfer the formal
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guarantees afforded by RES-CLFs to hardware, with the

result being stable prosthesis locomotion in practice.

In this work, Section II overviews the separable system

framework used to develop a RES-CLF for the prosthesis

based solely on local information. Section III lays out our

specific controller construction for a robotic subsystem. This

section describes the discrete force estimation method and

how the controller is respectively formed to be incorporate

this estimate. The force estimate completes the prosthesis

subsystem dynamics to enable model-dependent prosthesis

control which we demonstrate in simulation in IV and

experiment in V, yielding provably stable human-prosthesis

walking. The main contribution of this paper is the first real-

ization of fully model-dependent prosthesis control, bringing

the human into the loop of prosthesis control with strong

formal guarantees of stability.

II. BACKGROUND ON SEPARABLE SUBSYSTEMS

To support the main contribution of this paper, we first

review how these formal guarantees are established for a

robotic subsystem like the prosthesis. Since the prosthesis

is connected to a human, it is not an independent system,

but rather a subsystem of a larger system, of which it does

not have full information. We show how to develop a class

of controllers for a robotic subsystem that use only local

information but lead to stability guarantees for the full-order

separable robotic system.

Robotic Control System. For an η DOF robotic system in

2D space, consider the coordinates q = (qTl , q
T
f , q

T
s )

T ∈ R
η

which define the configuration space Q. To create a separable

robotic system, we consider the portion of the system defined

with coordinates qs ∈ R
ηs to be a robotic subsystem that is

rigidly attached with a 3 DOF fixed joint (x, z Cartesian

position, and pitch), with coordinates qf , to the rest of the

system with coordinates ql ∈ R
ηl , where ηl+ηs+3 = η. The

subsystem has ms actuators and the rest of the system has

mr. This Euler-Lagrange equation with positional constraints

gives the dynamics [19]:

D(q)q̈ +H(q, q̇) = Bu+ JT
h (q)λh (1)

Jh(q)q̈ + J̇h(q, q̇)q̇ = 0. (2)

Here D(q) is the inertia matrix; H(q, q̇) the vector sum

of Coriolis, centrifugal, and gravity forces; B the actuation

matrix, λh = (FT
f , λT

g )
T ∈ R

3+ηg the constraint wrenches

to enforce the fixed joint and the ηh contact holonomic

constraints, respectively; and Jh(q) the Jacobian of the

holonomic constraints of the fixed joint and contacts. These

dynamics and constraints can be used to solve for λh by,

λh = (JhD
−1JT

h )−1(JhD
−1(H −Bu)− J̇hq̇). (3)

Robotic Subsystem. By defining floating base coordinates

q̄B ∈ R
3 for the subsystem at the connection point with the

rest of the system, we can define the robotic subsystem with

its own configuration coordinates q̄ = (q̄TB , q
T
s )

T ∈ R
η̄ , with

η̄ = 3 + ηs, and write the constrained subsystem dynamics,

D̄(q̄)¨̄q + H̄(q̄, ˙̄q) = B̄us + J̄T
h (q̄)λ̄h + J̄T

f (q̄)Ff (4)

J̄h(q̄) ˙̄q +
˙̄Jh(q̄, ˙̄q) ˙̄q = 0 (5)

Here J̄h(q̄) is the Jacobian of the η̄h holonomic constraints

for the contacts of the subsystem with constraint wrench

λ̄h, and Ff is the interaction forces and moment (we call

interaction force for simplicity) between the subsystems

given as input to these subsystem dynamics, projected to

the base coordinates with J̄f .

Separable Subsystems. We can write the robotic full-order

dynamics (1) as an ODE using the states xq = (qT , q̇T )T :

ẋq =

[
q̇

D−1(q)(−H(q, q̇) + Jh(q)
Tλh

]
︸ ︷︷ ︸

fq(xq)

+

[
0

D−1(q)(B)

]
︸ ︷︷ ︸

gq(xq)

u

By selecting a different set of states x = (xT
r , x

T
s )

T with

xr = (qTl , q
T
f , q̇

T
l , q̇

T
f )

T and xs = (qTs , q̇
T
s )

T , our ODE takes

the following form:[
ẋr

ẋs

]
=

[
fr(x)
fs(x)

]
︸ ︷︷ ︸

f(x)

+

[
gr1(x) gr2(x)
0 gs(x)

]
︸ ︷︷ ︸

g(x)

[
ur

us

]
, (6)

xr ∈Rnr , xs ∈ R
ns , ur ∈ R

mr , us ∈ R
ms ,

The 0 appears in the actuation matrix g(x) because the

fixed joint present in this system completely decouples the

subsystem dynamics from the actuation ur of the rest of the

system since all the interaction goes through the constraint

wrench for the fixed joint. See [7] for details. Since qf ∈ xr,

the control input us still affects the dynamics of xr(t). In

[7], this system was defined as a separable control system,

which has the unique attribute that the dynamics of xs(t)
only depends on us and not ur.

We separate this separable system into a separable sub-
system and remaining system [7], [8], defined respectively:

ẋs = fs(x) + gs(x)us, (7)

ẋr = fr(x) + gr1(x)ur + gr2(x)us. (8)

Equivalent Subsystem We can write the robotic subsystem

dynamics (4) as an ODE following a method similar to

that used for the full-order dynamics, but this time only the

dynamics of xs(t) = (qTs , q̇
T
s )

T are used such that we obtain

an alternative expression for the dynamics of xs(t) [7]:

˙̄xs = f̄s(X ) + ḡs(X )us, (9)

X = (x̄T
r , x

T
s , ζ

T )T ∈ R
n̄,

Here x̄s = xs, x̄r = (q̄TB , ˙̄q
T
B)

T ∈ R
n̄r are measurable states,

X is the state vector x̄ = (x̄T
r , x

T
s )

T augmented with the

measurable input ζ = Ff ∈ R
nf . For this subsystem to

equate to (7), there must exist a transformation T (x) = X
that yields the following conditions: fs(x) = f̄s(X ) and

gs(x) = ḡs(X ) for all x. This transformation exists for

this robotic system and is given in [7]. While the separable

subsystem (7) still depends on the full-order states x, this
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equivalent subsystem [7] only depends on local states and

measurable states and inputs. In practice x̄r can be measured

with an IMU and ζ with a force sensor.

Separable Subsystem RES-CLF. Now that the subsystem

is defined in local coordinates X , a whole class of model-

dependent controllers can be constructed for the subsystem

in terms of locally available information. In [8] we defined

a RES-CLF V̄ s
ε (xs) for an equivalent separable subsystem

such that for all 0 < ε < 1 and X ∈ R
ns+n̄r+nf ,

c̄s1‖xs‖2 ≤ V̄ s
ε (xs) ≤ c̄s2

ε2
‖xs‖2 (10)

inf
us∈Rms

[ ˙̄V s
ε (X , us)] ≤ − c̄s3

ε
V̄ s
ε (xs),

where c̄s1, c̄
s
2, and c̄s3 are positive constants. This leads to a

class of controllers that satisfy ˙̄V s
ε (X , us) ≤ − c̄s3

ε V̄
s
ε (xs):

K̄s
ε (X ) = {us ∈ R

ms : ˙̄V s
ε (X , us) ≤ − c̄s3

ε
V̄ s
ε (xs)}. (11)

The ε term was included in the formulation of CLFs in [9] to

give a faster rate of convergence for hybrid systems such that

the system and its zero dynamics would not be destabilized

by the impacts present in the hybrid system.

Main Theoretic Idea. The work of [8] proved when a

RES-CLF stabilizes the remaining system (8), any controller

us in this class K̄s
ε (X ) guarantees stability for the full-

order hybrid system with zero dynamics. Hence, this novel

methodology of separating a robotic system and creating

an equivalent subsystem enables construction of model-

dependent subsystem controllers with only local information

while guaranteeing stability of the full-order system and

utilizing the natural dynamics. For the human-prosthesis

system, we assume the human stabilizes itself since central

pattern generator research suggests biological walkers exhibit

stable rhythmic behavior [20], (i.e. have limit cycles), and

our class of RES-CLF controllers in [8] for the remaining

human system includes all stabilizing controllers for these

hybrid limit cycles.

III. CONTROL METHODS

To construct the ID-CLF-QP of [15] we construct a RES-

CLF for the robotic subsystem and formulate it in a QP

without inverting the inertia matrix. Our ID-CLF-QP has an

additional J̄T
f (q̄)Ff term in the dynamics as in (4) to account

for the interaction force between the subsystems. We finally

formulate this controller in a hardware implementable way

with force estimation to arrive at the form used to achieve

provably stable prosthesis control in experiment.

A. Controller Formulation

To construct the ID-CLF-QP of [15], we form subsystem

outputs with which we construct our RES-CLF using the

methods of [9]. We show how the ID-CLF-QP incorporates

this RES-CLF without inverting the dynamics.

CLF Construction. To enforce desired trajectories on our

robotic subsystem, we define linearly independent outputs,

ys(xs) = yas (xs)− yds (τ(xs), α) (12)

where yas (xs) are the actual outputs and yds (τ(xs), α) are the

desired outputs defined by parameters α and modulated by

the state-based phase variable τ(xs) [10]. For our robotic

application, we consider position modulating outputs. We

take the derivatives along f̄s(X ) and ḡs(X ) to relate the

outputs to the control input us:

ÿs = L2
f̄sys(X ) + LḡsLf̄sys(X )us.

Here L2
f̄sys(X ) and LḡsLf̄sys(X ) are Lie derivatives [21]

and LḡsLf̄sys(X ) is invertible since the outputs are linearly

independent. Hence our system is feedback linearizable [21]

and our feedback linearizing controller is,

us(X ) =
(
LḡsLf̄sys(X )

)−1(− L2
f̄sys(X ) + ν

)
, (13)

where ν is our auxiliary control input and by construction

ν = ÿs. By applying this control law, our output dynamics

are linearized and can be written as a linear system with

coordinates ξ = (yTs , ẏ
T
s )

T ,

ξ̇ =

[
0 I
0 0

]
︸ ︷︷ ︸

F

ξ +

[
0
I

]
︸︷︷︸
G

ν

Using this linear system we construct a CLF by solving the

continuous time algebraic Riccati equation (CARE),

FTP + PF − PGGTP +Q = 0,

for P = PT > 0, with the user selected weighting matrix

Q = QT > 0. From the method of [9], we construct a RES-

CLF for our subsystem by the following:

V̄ s
ε (ξ) = ξT

[
1
εI 0
0 I

]
P

[
1
εI 0
0 I

]
ξ =: ξTPεξ.

To obtain our convergence constraint, we take the derivative,

˙̄V s
ε (ξ, ν) = LF V̄

s
ε (ξ) + LGV̄

s
ε (ξ)ν ≤ −1

ε

λmin(Q)

λmax(P )︸ ︷︷ ︸
γ

V̄ s
ε (ξ),

with Lie derivatives along the linearized output dynamics as,

LF V̄
s
ε (ξ) = ξT (FTPε + PεF )ξ,

LGV̄
s
ε (ξ) = 2ξTPεG.

ID-CLF-QP+Ff . To formulate the ID-CLF-QP in terms of

X , we write this RES-CLF and its derivative in terms of xs

and X since ξ depends on xs, through the outputs ys(xs)
and ẏs(xs), and ν depends on X through the relationship,

obtained from (13):

ν = L2
f̄sys(X ) + LḡsLf̄sys(X )us(X ). (14)

This gives us the subsystem RES-CLF (10) where c̄s1 =
λmin(P ). c̄s2 = λmax(P ), and c̄s3 = γ.

The expression (14) requires multiple inversions of the

inertia matrix D̄(q̄) and holonomic constraint term J̄h(q̄)
which is computationally expensive and prone to numerical

error. To avoid this, we recall ν = ÿs and rewrite the outputs

ys(xs) in terms of the robotic subsystem’s configuration

coordinates q̄, since it is a positional constraint: ys(q̄).
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Shown in [15], for position-modulating outputs ys(q̄), we

can equivalently write ÿs as,

ÿs =
∂

∂q̄

(
∂ȳs
∂q̄

˙̄q

)
︸ ︷︷ ︸

J̇y(q̄, ˙̄q)

˙̄q +
∂ys
∂q̄︸︷︷︸

Jy(q̄)

¨̄q (15)

To find a control input us close to the feedback linearizing

controller (13) with PD gains on our output accelerations,

ν = Kpy
s(xs) +Kdẏ

s(xs) := νpd, we minimize the differ-

ence between (15) and νpd in our QP cost. We also include

the holonomic constraints in the cost as soft constraints since

these are difficult to satisfy exactly on hardware. Considering

the variables Υ = (¨̄qT , uT
s , λ̄

T
h , δ)

T ∈ R
ηv , with ηv =

η̄ +ms + η̄h + 1, and using the terms,

Jc(q̄) =

[
Jy(q̄)
J̄h(q̄)

]
J̇c(q̄, ˙̄q) =

[
J̇y(q̄, ˙̄q)
˙̄Jh(q̄, ˙̄q)

]
,

we formulate our ID-CLF-QP+Ff :

Υ� = argmin
Υ∈Rηv

∣∣∣∣∣∣J̇c(q̄, ˙̄q) ˙̄q + Jc(q̄)¨̄q − μpd
∣∣∣∣∣∣2 + σW (Υ) + ρδ

s.t. D̄(q̄)¨̄q + H̄(q̄, ˙̄q) = B̄us + J̄T
h (q̄)λ̄h + J̄T

f (q̄)Ff

LF V̄
s
ε (X ) + LGV̄

s
ε (X )

(
J̇y ˙̄q + Jy ¨̄q

) ≤ −γ

ε
V̄ s
ε (X ) + δ

− umax ≤ us ≤ umax

(16)

where μpd = (νTpd, 0
T )T , W (Υ) is a regularization term

to make the problem well-posed, σ and ρ are weighting

terms, and δ is a relaxation term such that the torque bounds

(−umax, umax) can always be met. (The arguments on Jy, J̇y
are left out for notational simplicity.) This controller selects

the joint accelerations ¨̄q, control input us, and holonomic

constraint wrench λ̄h to satisfy the robotic subsystem dy-

namics (4) and the subsystem RES-CLF (10) while optimally

aiming to satisfy the holonomic constraints (5) and smoothly

track the desired trajectories.

B. Controller Realization for Hardware
Implementing this controller on hardware requires knowl-

edge of the interaction force Ff . Since a force sensor is not

available on the prosthesis platform we developed a method

to estimate the interaction force using discrete calculations of

acceleration. We include this estimated term in the dynamics

of our QP and realize the QP at sample time to implement

on hardware.

Force Estimation. We estimate the joint acceleration ¨̄qest

based on the discrete velocity measurements and time,

¨̄qestk−1 =
˙̄qk − ˙̄qk−1

tk − tk−1
,

where k represents the current time step and k−1 represents

the previous time step. Finding the difference between our

estimated acceleration and the expected acceleration based

on the dynamics from the previous time step,

¨̄qexpk−1 = D̄(q̄k−1)
−1

(− H̄(q̄k−1, ˙̄qk−1) + B̄us,k−1 + J̄T
h (q̄k−1)λ̄h,k−1

)
, (17)

we multiply this by the inertia matrix of the previous time

step to obtain what we consider the residual dynamics Fk−1:

Fk−1 = D̄(q̄k−1)(¨̄q
est
k−1 − ¨̄qexpk−1). (18)

Fig. 2. (Left) Human-prosthesis model with generalized coordinates.
(Middle) Prosthesis separable subsystem model with generalized coordi-
nates. (Right) AMPRO3 powered prosthesis platform with components and
coordinates labeled.

We essentially back-calculate the interaction force that

caused the acceleration difference. Note (18) cancels

D̄(q̄k−1) in (17), such that inertia matrix inversion is not

required. To obtain a smoother signal, we average the resid-

ual dynamics measurements for N time steps:

Favg
k−1 =

1

N

N∑
i=1

Fk−i. (19)

By calculating the force projected into joint space, we are

smoothing the exact signal we input to the dynamics and do

not need a pseudo-inverse of J̄f .

ID-CLF-QP+Fest. We replace J̄T
f Ff of (16) with Favg

k−1 and

evaluate the QP at sample time:

Υ�
k = argmin

Υk∈Rηv

∣∣∣∣∣∣J̇c(q̄, ˙̄qk) ˙̄qk + Jc(q̄)¨̄qk − μpd
∣∣∣∣∣∣2 + σW (Υk) + ρδk

s.t. D̄(q̄k)¨̄qk + H̄(q̄k, ˙̄qk) = B̄us,k + J̄T
h (q̄k)λ̄h,k + Favg

k−1

LF V̄
s
ε (Xk) + LGV̄

s
ε (Xk)

(
J̇y,k ˙̄qk + Jy,k ¨̄qk

) ≤ −γ

ε
V̄ s
ε (Xk) + δk.

− umax ≤ us ≤ umax

(20)

Although we use the residual dynamics estimate from the

previous time step to model the dynamics at the current time

step, when run in a controller at a high enough frequency this

method should capture the residual dynamics well enough.

IV. HUMAN-PROSTHESIS SIMULATION

To demonstrate this ID-CLF-QP+Fest we first apply it to

a prosthesis model in simulation while the human portion

of the system is controlled by a method unknown to the

prosthesis. The accuracy of the force estimation is also tested.

Amputee-Prosthesis Model. We construct an amputee-

prosthesis model as a planar bipedal robot comprised of

8 links: torso, 2 human thighs, prosthesis partial thigh, a

human and prosthesis calf, and a human and prosthesis

foot. The interface between the human right thigh and

prosthesis partial thigh is modeled as a 3 DOF fixed joint,

as described in Section II, giving η = 12. The subsystem

coordinates of the prosthesis are knee θpk and ankle pitch

θpa, qs = (θpk, θpa)
T , giving ηs = 2. The rest of the system

coordinates are the floating base coordinates θB , and the

pitch of the human’s left hip θlh, left knee θlk, and right

hip θrh: ql = (θTB , θlh, θlk, θrh)
T . See Fig. 2. All the pitch

joints are actuated, making mr = 4 and ms = 2.

The human parameters are obtained with a subject’s height

and weight and the parameters in [22], [23]. The prosthesis

parameters are based off of the prosthesis platform AMPRO3
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Fig. 3. Joint outputs from optimization (blue) align closely with human
motion capture data (black) showing the trajectories we use to test the
human-prosthesis model in simulation and implement on the prosthesis
device are human-like.

[18] used in this study. We use this prosthesis model to obtain

the dynamics of (4) for use in (20) on the prosthesis platform,

but omit the ankles in trajectory generation and simulation

because it is more comfortable for the human user to have

the prosthesis ankle have varying set point PD control instead

of following a trajectory.

Hybrid Systems and Human-Like Gait Generation. To

account for both the continuous and discrete dynamics in

human walking, we model it as a hybrid system [24].

Because the human-prosthesis system is asymmetric, we

consider two continuous domains, Dps for prosthesis stance

and Dpns for prosthesis non-stance. These domain indices

are denoted as v ∈ {ps, pns}. Each domain has a holonomic

constraint on the respective stance foot. The domains are

connected by events in a directed graph, specifically the event

when the non-stance foot strikes the ground. The impact

dynamics for these transitions are explained in [25].

To find a human-like walking trajectory for the model,

human walking motion capture data is taken and Bézier

polynomials are fit to the joint trajectories. A state-based

phase variable, going from 0 to 1, modulates the trajectories

[10]. We run an optimization to minimize the difference

between the outputs (the joints) while satisfying the dynam-

ics (1), feasibility constraints, and a hybrid zero dynamics

condition [10] such that the outputs are invariant through

impact. The optimization solution gives parameters to define

the desired trajectories yds (τ(xs), α) and the outputs to

simulate the human side. See [26] for details. Fig. 3 shows

the resulting trajectories match the human data well. By

finding a prosthesis knee trajectory similar to a human’s knee

trajectory and is provably stable when the rest of the system

is following the human-like trajectories, we assume the

human can still stabilize itself with the prosthesis. Hence the

condition required for our main theoretical idea is satisfied.

Simulation Results. We restrict our attention to implement-

ing the proposed controller in the stance domain Dps where

the interaction force is the largest and the prosthesis’ stability

is critical as it supports the human. In practice we calculate

the base coordinates q̄B , base velocities ˙̄qB , and phase

variable τ(xs) with inverse kinematics using the knee and

ankle data and assuming the foot is flat on the ground. The

swing domain Dpns requires an IMU to provide information

about this domain’s main unknown, the base coordinates.

This remains for future work.

We prescribe a feedback linearizing control law to the

Fig. 4. (a) Prosthesis stance control input for the knee from 3 simulations
of the human-prosthesis model walking with variations of the ID-CLF-QP
applied to the prosthesis. (b) The summation of the constraint forces and
interaction forces projected into joint space.

human side to closely track the human-like trajectories

in simulation. Variations of the ID-CLF-QP controller are

implemented on the prosthesis in stance and a feedback

linearizing control law in swing to enforce the output (12),

where yas (xs) = θpk. The ID-CLF-QP+Ff is implemented

with the exact interaction force Ff calculated with (3), since

Ff ∈ λh, based on a feedback linearizing control law u. The

ID-CLF-QP+Fest used the force estimator (19) with N = 1
since averaging is unnecessary in simulation. Finally the ID-

CLF-QP was used without any interaction force information.

The resultant control inputs are shown in Fig. 4a and

tracking results in Fig. 5. The ID-CLF-QP+Ff and ID-CLF-

QP+Fest achieved practically exact tracking results and had

very similar control inputs. This suggests the force estimator

estimates the force well enough to give similar performance

as when using the exact force. The ID-CLF-QP with no

consideration of the interaction force outputs a very different

control input and had terrible tracking, indicating the signif-

icance of accounting for the force. To compare the force

estimate with the actual computed force, the summation of

the constraint wrenches and interaction force projected into

joint space is taken since the constraint wrench calculation

for the subsystem controller (20) is coupled with the inter-

action force estimate and hence they cannot be individually

compared with the constraint forces and interaction force

calculated with the full-order dynamics (1). Fig. 4b compares

the actual force components calculated by (J̄h(q̄)J̄f (q̄))λh

to the estimated force components J̄f (q̄))λ̄h + F , showing

the force estimation works with high accuracy.

V. HUMAN-PROSTHESIS EXPERIMENTATION

The platform used to demonstrate the model-based control

method is described in this section followed by experimental

results of the proposed controller. The results verify this con-

troller meets our formal condition for exponential stability

and it outperforms the less model-dependent controllers.

Prosthesis Platform AMPRO3. The custom-built powered

prosthesis AMPRO3 used in this work is described in [18],

and briefly described here. The device has an iWalk adapter

such that an able-bodied human can test the device. A

different adapter can be used to connect this device directly

into an amputee’s socket. The mechanical design consists of

a knee and ankle pitch joint which are both controlled with

their own DC brushless motors (MOOG BN23), with about

1 Nm peak torque. Each motor is connected to a harmonic
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gearbox through a timing belt. Both the timing belt and

harmonic gearbox contribute to the mechanical reduction for

each joint: 120 for the knee and 175 for the ankle.

Each motor is controlled by an ELMO motion controller

(Gold Solo Whistle) which receives position and velocity

feedback from incremental encoders and receives input from

the microprocessor. A Beaglebone Black (BBB) micropro-

cessor runnning at 200 Hz handles all of the computations

on board, taking input from the motion controllers and

outputting a commanded torque to the motion controllers.

The controller algorithms are coded in C++ packages, using a

code base from [15], and run with ROS. The whole prosthesis

system is powered by a 9-cell 4400 mAh Li-Po battery

(Thunder Power RC). The components described here can

be seen in Fig. 2.

Hardware Results. The ID-CLF-QP+Fest was implemented

on the prosthesis platform in stance (with N = 10 in

(19)) and superior trajectory convergence and tracking were

achieved compared to a model-independent PD controller

and the ID-CLF-QP controller without consideration for the

force. An able-bodied human tested the device in walking for

over 20 consecutive steps with each controller. The ankle had

a PD controller with varying set point. A PD controller was

applied to the knee in swing, but did not perfectly converge

to the trajectory. Hence the output starts off the trajectory in

stance, explaining the jump present in the desired trajectory

in Fig. 5. However, the ID-CLF-QP+Fest recovers from this

disturbance and converges to the trajectory, demonstrating

the advantage of the exponential convergence of a model-

based RES-CLF. Fig. 5 also shows the significant tracking

improvement exhibited by the ID-CLF-QP+Fest in stance

compared to the other controllers. The rapid convergence

and superior tracking are two important results of this work.

Main Result. The primary result of this work is implement-

ing a model-dependent controller on a prosthesis with formal

guarantees of stability. Fig. 6 shows this result where the CLF

derivative is plotted with its stability bound, indicating the

prosthesis satisfies this formal guarantee of stability. (The

slight breaking of the bound is due to the relaxation term

in the CLF-QP). When the CLF condition is well below

its bound, the control input, shown in the bottom of Fig.

6, has a small magnitude because the controller is letting

the natural dynamics of the system bring it to its desired

trajectory. This effect is especially significant considering

the prosthesis starts off the trajectory at the beginning of the

stance phase and this precisely demonstrates the advantage of

model-dependent control over model-independent control. A

controller without model information would respond to the

large error with a large torque which would require more

energy and the sudden movement could cause discomfort

to the user. This model-dependent controller, on the other

hand, allows the natural dynamics of the system to bring the

prosthesis to its desired trajectory without using more energy

and yielding a less aggressive movement for the user.

(Note: Due to COVID-19 restrictions, the results of this

study are restricted to one subject. Future work will demon-

Fig. 5. (Top left) Output tracking from 3 simulations with variations of the
ID-CLF-QP on the prosthesis in stance plotted with the desired trajectory
and the human data with respect to the phase variable. Experiment output
tracking with the PD controller (top right), ID-CLF-QP (bottom left), and
ID-CLF-QP+Fest (bottom right) applied in stance plotted with the desired
trajectory in time. Dps white, Dpns shaded. Numbers in bottom right plot
indicate phase of gait corresponding to gait tiles in Fig. 1

Fig. 6. Results of four phases of stance from experiment. (Top) The
RES-CLF derivative (blue) plotted against its bound (red). (Bottom) The
prosthesis knee control input.

strate the control method on more subjects.)

VI. CONCLUSION AND FUTURE WORK

In this work, the novel methodology of developing RES-

CLFs for separable systems [7], [8] is realized on a prosthesis

platform, demonstrating the first experimental realization

of a model-dependent prosthesis controller that accounts

for interaction forces. As such, this is the first instance

of realizing prosthesis control with formal guarantees of

stability for the full-order hybrid system with zero dynamics.

These guarantees with consideration for the interaction forces

ensure safety of the user and a responsiveness to the real-time

dynamics are novel relative to existing prosthesis control

methods. Being able to implement model-dependent con-

trollers on a prosthesis platform opens the door to applying

various nonlinear control techniques to prostheses and other

robotic subsystems, thereby improving performance.

Future work will apply this control method in the swing

phase by incorporating an IMU into the prosthesis platform.

Ways to improve the accuracy of the force estimation method

will also be investigated. Episodic learning could adapt our

force estimate to systematically reduce uncertainty while

maintaining stability, similar to the work of [27]. Including a

force sensor at the socket could measure the interaction force

in real-time and using the estimation method presented in this

paper along with the aforementioned learning method could

address the issues of measurement noise and uncertainty.
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