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Abstract— The problem of dynamic locomotion over rough
terrain requires both accurate foot placement together with
an emphasis on dynamic stability. Existing approaches to this
problem prioritize immediate safe foot placement over longer
term dynamic stability considerations, or relegate the coordi-
nation of foot placement and dynamic stability to heuristic
methods. We propose a multi-layered locomotion framework
that unifies Control Barrier Functions (CBFs) with Model
Predictive Control (MPC) to simultaneously achieve safe foot
placement and dynamic stability. Our approach incorporates
CBF based safety constraints both in a low frequency kino-
dynamic MPC formulation and a high frequency inverse
dynamics tracking controller. This ensures that safety-critical
execution is considered when optimizing locomotion over a
longer horizon. We validate the proposed method in a 3D
stepping-stone scenario in simulation and experimentally on
the ANYmal quadruped platform.

I. INTRODUCTION

A key motivation behind the development of legged robots

is their ability to overcome complex terrain. Because legged

locomotion only requires discrete footholds, obstacle such

as steps, gaps, and stairs can be traversed, making legged

robots a compelling alternative to wheeled systems. When a

statically stable motion pattern is considered, several mature

strategies for rough terrain locomotion have been proposed

and successfully demonstrated on hardware for bipedal [2],

quadrupedal [3], [4], and hexapedal [5] robots. However,

inspired by the fast and dynamic motions seen in nature, the

use of dynamic gaits—a gait where individual contact phases

are statically unstable—is still an active area of research.

The challenge in dynamic locomotion lies in the fact that

foothold locations are not only constrained by the terrain,

but also affect the dynamic stability of the resulting contact

configuration. Additionally, as the speed of the motions

increases, the inertial and nonlinear effects described by

the full rigid body dynamics of the system become more

relevant. There is therefore a need for methods that can

guarantee a safe foot placement while simultaneously con-

sidering the future impact on the dynamic stability of the

system. A classical locomotion challenge that demands safe
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Fig. 1. ANYmal [6] performing a trotting gait on stepping-stones.

foot placement and dynamic stabilization is the “stepping-

stones” scenario, see Figure 1, where viable foothold loca-

tions are discontinuous and sparsely available. We propose to

combine the safety guarantees endowed by Control Barrier

Functions (CBFs) with the longer horizon considered in

Model Predictive Control (MPC) to guarantee safe foot

placement while achieving dynamic locomotion and high

tracking performance.

A. Related work

Control Barrier Functions [7] are a tool for synthesizing

controllers that ensure safety of nonlinear systems [8],

[9]. Moreover, CBFs have been used in the stepping-stones

problem via a quadratic programming (QP) based tracking

controller [10], [11]. An offline optimized walking trajectory,

or a library thereof [12], is tracked and locally modified to

satisfy CBF safety constraints. While promising in simula-

tion, we are not aware of the successful transfer of a CBF

based stepping controller to hardware, despite extensions

that add robustness [13], or a learning based model error

correction [14]. Indeed, in [15], the stepping-stones problem

is demonstrated experimentally by increasing the look-ahead

horizon of the gait library and through subsequent gait inter-

polation rather than a CBF based method. We hypothesize

that it is exactly this reasoning over a longer horizon that is

missing with the CBF-QP control formulation.

In contrast, Model Predictive Control has become a central

method for the online synthesis and control of dynamic

systems over a given time horizon [16]. In the context of the

stepping-stones problem, a distinction can be made between

MPC based approaches where the footholds locations are

determined separately from the torso motion optimization

[17], [18], [19], and MPC based approaches where the

foothold location and torso motions are jointly optimized.
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Fig. 2. Overview of the proposed multi-layed control setup showing
both the MPC and WBC layer receiving terrain CBF constraints.

The benefit of jointly optimizing torso and leg motions has

been demonstrated in the field of trajectory optimization [20],

[21]. Following this idea, real-time capable methods have

been proposed with the specification of leg motions made

at the position [22], velocity [23], or acceleration level [24].

One challenge of this approach is its computational costs,

which can be resolved by coupling a low-frequency MPC

controller with a high-frequency tracking controller [25].

B. Contribution

In this work, we build upon a kino-dynamic MPC for-

mulation [23] where joint velocities and contact forces are

decision variables in a low frequency MPC controller. This

allows direct integration of CBF safety constraints into the

MPC formulation similar to [26]. By jointly optimizing torso

and leg motions our method avoids the heuristic coordination

that is needed when foot placement and torso motion are

delegated to separate controllers. A higher rate tracking

controller is implemented that fuses inverse dynamics with

the CBF safety constraints to offer guarantees of safety with

the whole-body dynamics in consideration. In the context

of collision avoidance, CBFs can be thought of (and have

shown to be) a generalization of artificial potential fields used

in inverse dynamics methods [27][28]. Finally, we note that

the combination of discrete time CBFs with MPC has been

considered in [29], but it did not consider a multi-layered

approach nor provided experimental results.

The main contributions of this work are two-fold. First,

we propose a multi-layered control approach that combines

CBFs with MPC (see Figure 2). This framework allows CBF

safety constraints on the position coordinates of robotic sys-

tems to be incorporated in a low frequency MPC controller

determining desired velocities as well as in a high frequency

tracking controller that incorporates the dynamics of the

system. Compared to standard CBF approaches, this adds

a horizon when determining safe control inputs. Compared

to MPC approaches, the safety critical constraint is enforced

at a higher rate, and incorporates a higher fidelity whole-

body dynamics model. The second contribution is, to the best

of the author’s knowledge, the first successful experimental

demonstration of CBFs, not only as an approach to the

stepping-stones problem, but on a legged robot.

II. BACKGROUND

This section provides a review of Control Barrier Func-

tions (CBFs) and Nonlinear Model Predictive Control.

Consider the nonlinear control affine system given by:

ẋ = f(x) + g(x)u, (1)

where x ∈ R
n, u ∈ R

m. f : Rn → R
n and g : Rn → R

n×m

are locally Lipschitz continuous on R
n. Given a Lipschitz

continuous state-feedback controller k : Rn × R+ → R
m,

the closed-loop system dynamics are:

ẋ = fcl(x, t) � f(x) + g(x)k(x, t). (2)

The assumption on local Lipschitz continuity of f , g and k
implies that fcl is locally Lipschitz continuous. Thus for any

initial condition x0 := x(0) ∈ R
n there exists a maximum

time interval I(x0) = [0, tmax) such that x(t) is the unique

solution to (2) on I(x0) [30].

A. Control Barrier Functions

The notion of safety that we consider in this paper is

formalized by specifying a safe set in the state space that the

system must remain in. In particular, consider a time-varying

set Ct ⊂ R
n defined as the 0-superlevel set of a continuously

differentiable function h : Rn × R+ → R, yielding:

Ct � {x ∈ R
n : h(x, t) ≥ 0} , (3)

We refer to Ct as the safe set. This construction motivates

the following definitions of forward invariant and safety:

Definition 1 (Forward Invariant & Safety). A time-varying

set Ct ⊂ R
n is forward invariant if for every x0 ∈ C0, the

solution x(t) to (2) satisfies x(t) ∈ Ct for all t ∈ I(x0).
The system (2) is safe on the set Ct if the set Ct is forward

invariant.

Certifying the safety of the closed-loop system (2) with

respect to a set Ct may be impossible if the controller k was

not chosen to enforce the safety of Ct. Control Barrier Func-

tions can serve as a synthesis tool for attaining the forward

invariance, and thus the safety of a set. Before defining CBFs,

we note a continuous function α : (−∞,∞) → R, is said

to belong to extended class K∞ (α ∈ K∞,e) if α is strictly

monotonically increasing, α(0) = 0, and if lim
r→∞ α(r) = ∞,

and lim
r→−∞ α(r) = −∞.

Definition 2 (Control Barrier Function (CBF), [31]). Let

Ct ⊂ R
n be the time-varying 0-superlevel set of a contin-

uously differentiable function h : R
n × R+ → R with 0

a regular value. The function h is a time-varying Control
Barrier Function (CBF) for (1) on Ct if there exists α ∈
K∞,e such that for all x ∈ R

n and t ∈ R+:

sup
u∈Rm

ḣ(x, t,u) �∂h

∂x
(x, t) (f(x) + g(x)u)

+
∂h

∂t
(x, t) ≥ −α(h(x, t)). (4)

Controllers that take inputs satisfying (4) ensure the safety

of the closed-loop system (2) [7].
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Given a nominal (but not necessarily safe) locally Lips-

chitz continuous controller kd : Rn ×R+ → R
m, a possible

controller taking values satisfying (4) is the safety-critical

CBF-QP:

k(x, t) = argmin
u∈Rm

1

2
‖u− kd(x, t)‖22 (CBF-QP)

s.t. ḣ(x, t,u) ≥ −α(h(x, t)).

B. Nonlinear Model Predictive Control

We consider the following nonlinear optimal control prob-

lem with cost functional

min
u(·)

Φ(x(T )) +

∫ T

0

L(x(t),u(t), t) dt, (5)

where x(t) is the state, u(t) is the input at time t, L(·) is

an intermediate cost, and Φ(·) is the cost at the terminal

state x(T ). The goal is to find a continuous control signal

u : I(x0) → R
m that minimizes this cost subject to the

system dynamics, initial condition, and general constraints:

ẋ = f(x,u, t), x(0) = x0, (6)

g(x,u, t) = 0, h(x,u, t) ≥ 0. (7)

Various methods exist to solve this problem [16], and a

detailed discussion is beyond the scope of this paper. In this

work we use the Sequential Linear Quadratic (SLQ) method,

which is a Differential Dynamic Programming (DDP) based

algorithm for continuous-time systems. In particular, the

method in [25] is being used which extends the (SLQ)

formulation of [32] for use with inequality constraints.

III. MULTI-LAYERED CONTROL FORMULATION

In this section we present a multi-layered control formula-

tion that unifies CBFs with MPC to achieve safety and longer

horizon optimality for a general robotic system. Consider a

robotic system with generalized coordinates q ∈ R
d and

coordinate rates q̇ ∈ R
d with dynamics given by:

D(q)q̈+C(q, q̇)q̇+G(q) = B(q)τ , (8)

with inertia matrix D, centrifugal and Coriolis terms C,

gravitational forces G, actuation matrix B, and torques

τ ∈ R
m. Consider a continuously differentiable function

h : Rd×R+ → R that determines a time-varying safe set for

the position coordinates of the robot, with a time derivative

given by:

ḣ(q, q̇, t) =
∂h

∂q
(q, t)q̇+

∂h

∂t
(q, t).

The torques τ do not appear in this time derivative, making it

impossible to choose inputs that ensure the barrier constraint:

ḣ(q, q̇, t) ≥ −α1(h(q, t)), (9)

is met for some α1 ∈ K∞,e. This challenge is often resolved

through the notion of exponential CBFs [33], in which an

auxiliary function he : R
d × R

d × R+ → R is defined as:

he(q, q̇, t) = ḣ(q, q̇, t) + α1(h(q, t)), (10)

ḣe(q, q̇, t, τ ) =
∂he

∂q
(q, q̇, t)q̇+

∂he

∂q̇
(q, q̇, t)q̈+

∂he

∂t
(q, q̇, t).

As q̈ appears in affine relation to τ in (8), he can serve as a

CBF for the set Ct,e �
{
(q, q̇) ∈ R

2d : he(q, q̇, t) ≥ 0
}

by

enforcing:

ḣe(q, q̇, t, τ ) ≥ −α2(he(q, q̇, t)), (11)

for some α2 ∈ K∞,e. Enforcing the forward invariance

of this set implies the desired safety constraint (9) is met,

implying the forward invariance of the set Ct∩Ct,e. Thus the

constraint on the position coordinates of the robot are met.

Typical approaches using exponential CBFs only enforce

the final constraint (11), often in a CBF-QP controller [34].

In practice, when the desired controller kd is synthesized

without considering safety, this can lead to aggressive be-

havior when the system approaches the boundary of the safe

set. Using MPC in a multi-layered setup allows the safety

constraint to be incorporated into the specification of kd.

When the MPC directly operates on the full state and input

of (8), the safety constraint in (11) is readily incorporated, as

was done in [29]. In contrast, we consider a MPC controller

that operates on a reduced order model in which case the

barrier constraint in (9) is added to the MPC problem instead.

For simplicity of exposition, we present here an MPC layer

that operates on a purely kinematic model of the system.

Given a current estimate of the state (q̂, ˙̂q) at time t̂, a

kinematic MPC solves the following optimization problem:

Low-Frequency Safe Kinematic MPC:

min
qd(t),q̇d(t)

Φ(qd(T )) +

∫ T

0

L(qd(t), q̇d(t), t) dt,

s.t qd(0) = q̂,
∂qd

∂t
= q̇d,

ḣ(qd, q̇d, t) + α1(h(q
d, t)) ≥ 0,

where qd(t) and q̇d(t) are trajectories of generalized coordi-

nates and velocities, forming the safe desired trajectory for

the tracking controller. A desired acceleration is obtained

through a combination of tracking terms and a forward

difference of the desired velocities:

q̈d =
q̇d(t̂+ δt)− q̇d(t̂)

δt
+D(q̇d(t̂)− ˙̂q) +P(qd(t̂)− q̂).

Drawing inspiration from the inverse dynamics approach in

[35], the high-frequency controller is given by:

High-Frequency ID-CBF-QP:

k(q, q̇, t) = argmin
τ , q̈

1

2
‖q̈− q̈d‖22

s.t. D(q)q̈+C(q, q̇)q̇+G(q) = B(q)τ ,

ḣe(q, q̇, t, τ ) ≥ −α2(he(q, q̇, t)).

This controller seeks to track the desired acceleration deter-

mined by the low-frequency MPC controller while ensuring

that the full dynamics are incorporated into the determination

of safe inputs according to (11).
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IV. ANYMAL IMPLEMENTATION

In this Section we provide an overview of how the multi-

layer control formulation discussed in Section III is applied

to the ANYmal quadrupedal robotic platform. An overview

of the control structure is provided in Figure 2.

A. MPC System Model
We apply our approach to the kino-dynamic model of a

quadruped robot, which describes the dynamics of a single

free-floating body along with the kinematics for each leg.

The state x ∈ R
24 and input u ∈ R

24 are defined as:

x =
[
θT , pT , ωT , vT , qT

]T
, u =

[
λT
B , q̇dT

]T
,

where θ ∈ R
3 is the orientation of the base in Euler angles,

p ∈ R
3 is the position of the center of mass in the world

frame FW , ω ∈ R
3 is the angular rate of the base, v ∈ R

3

is the linear velocity of the center of mass in the body frame

FB , and q ∈ R
12 is the joint positions. The joint positions

for leg i are given by qi ∈ R
3. The inputs of the model are

end-effector contact forces λB ∈ R
12 in the body frame and

desired joint velocities q̇d ∈ R
12 with equations of motion:

θ̇ = T(θ)ω, ṗ =W RB(θ)v,

ω̇ = I−1
(
−ω × Iω +

∑4
i=1 rBi

(qi)× λBi

)
,

v̇ = g(θ) + 1
m

∑4
i=1 λBi

, q̇ = q̇d,

where WRB : R3 → SO(3) is the rotation matrix from FB

to FW and T : R3 → R
3×3 transforms angular velocities to

the Euler angles derivatives. Model parameters include the

gravitational acceleration in the body frame g : R3 → R
3,

the total mass m ∈ R+, and the moment of inertia I ∈ R
3×3.

The moment of inertia is assumed constant and taken at the

upright state of the robot. We denote rBi : R
3 → R

3 as the

position of foot i relative to the center of the mass in the

body frame.

B. MPC Constraints
In this subsection we list the constraints that are included

in the low-frequency kino-dynamic MPC controller.
1) Mode Constraints: The mode constraints capture the

different modes of each leg at any given point in time. We

assume that the mode sequence is a predefined function of

time. The resulting mode-dependent constraints are{
vWi

(x,u) = 0, if i is a stance leg,
nTvWi(x,u) = c(t), λBi = 0, if i is a swing leg,

where vW i is the end-effector velocity in world frame. These

constraints ensure that stance legs remain on the ground and

a swing legs follow a predefined curve c : R+ → R in the

direction of the local surface normal n ∈ R
3 to avoid foot

scuffing.
2) Friction Cone Constraints: The end-effector forces are

constrained to lie in the friction cone, λWi
∈ Q(n, μc),

defined by the surface normal n and friction coefficient

μc = 0.7. After resolving the contact forces in the local

frame of the surface, given by F = [Fx, Fy, Fz], a second-

order cone constraint is specified, hcone = μcFz − (F 2
x +

F 2
y )

1
2 ≥ 0.

3) State-Only Foot Placement Constraints: When foot-

placement is formulated as a state-only constraint (rather than

encoded in a CBF), it is specified as the following inequality

constraint on stance feet:

ht
i(x) = Ai · pWi(x) + bi ≥ 0, (12)

where Ai ∈ R
pi×3, bi ∈ R

pi , and pWi
: R24 → R

3 is the

position of foot i in the world frame. The matrix Ai and

bi project the position of foot i on to the target terrain and

form a set of half-space constraints to ensure the foot lands

within a desired target region. Instead of constraining the

stance feet, a similar constraint can be placed on the swing

feet with a constraint set that shrinks in time and converges

to the desired foot placement region:

hw
i (x, t) = Ai · pWi

(x) + bi + s(t) · 1 ≥ 0, (13)

where s : R+ → R+ converges to 0 as the t approaches the

duration of the swing phase.

4) Barrier Foot Placement Constraints: When posed as

a CBF constraint as in the proposed low-frequency Safe

Kinematic MPC controller, the foot placement constraints

are specified with constant γ ∈ R++ as:

hw
e,i(x, q̇, t) = ḣw

i (x, t,u) + γhw
i (x, t) ≥ 0. (14)

C. Whole-Body Tracking Control

The control signal u determined by the low-frequency

MPC layer consists of contact forces and desired joint

velocities. A high-frequency hierarchical inverse dynamics

controller is used to convert the optimized MPC trajectory

into torque commands [36]. This whole body control (WBC)

approach considers the full nonlinear rigid body dynamics of

the system. At each priority, a QP is solved in the null space

of all higher priority tasks. Each task is a equality or inequal-

ity constraint that is affine in the generalized accelerations,

torques, and contact forces. The CBF constraints, which are

by design affine in the control torques, are therefore readily

integrated into this framework. The full list of tasks is given

in Table I.

As described in Section III, the following CBF constraint

incorporating the dynamics can be included in the whole-

body controller:

ḣw
e,i(x, q̇, t, τ ) + ξhw

e,i(x, q̇, t) ≥ 0 (15)

with ξ ∈ R++. Finally, the torque derived from the whole

body controller, τWBC ∈ R
12, is computed. To compensate

for model uncertainty for swing legs (on hardware, not in

simulation), the integral of joint acceleration error with gain

K ∈ R++ is added to the torque applied to the system:

τ = τWBC −K

∫ t

tsw0

(q̈− q̈WBC) dt (16)

While this modification implies τ may not satisfy the CBF

condition in (15), we note that τWBC may not satisfy (15) in

the presence of model uncertainty. To achieve safe behavior

in practice, it is necessary to balance the choice of safe inputs

with model uncertainty.
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TABLE I. WHOLE-BODY CONTROL TASK HIERARCHY.

Priority Type Task
0 = Floating base equations of motion.

≥ Torque limits.
≥ Friction cone constraint.
= No motion at the contact points.
≥ Control barrier constraints.

1 = Torso linear and angular acceleration.
= Swing leg motion tracking.

2 = Contact force tracking.

D. User Commands & Terrain Selection

User commanded twists and a desired gait pattern are

provided to the robot via joystick and extrapolated to a

state reference signal xref (t). The reference input uref (t)
is constructed by equally distributing the weight over all

contact feet. The MPC cost function is a frequency dependent

quadratic cost around the reference trajectories to promote

smooth optimal inputs [37].

We assume that a segmented terrain model with each

segment described by a planar boundary and a surface normal

is available. For each contact phase within the MPC horizon,

the terrain segment is selected that is closest to the reference

end-effector position determined by xref (t), evaluated at

the middle of the stance phase. A convex polygon is fit to

the selected terrain, starting from the reference end-effector

position projected onto the segment boundary. This polygon,

together with the surface normal, define the half spaces for

the constraints in (12) and (13).

V. RESULTS

We evaluate the controller proposed in Section IV in

simulation on a classical stepping-stones scenario as shown

in Figure 3. The stones are configured with a pattern of

0.5m width and 0.35m longitudinal spacing, with random

displacements up to 10, 15, and 5 cm, in longitudinal,

lateral, and vertical direction respectively. The controller is

commanded to perform a trotting gait with a forward velocity

of 0.25m/s, and commanded to stop on the final stone. We

compare our proposed controller, numbered V, against four

alternative formulations and report results in Table II.

As seen in the supplementary video [1], the controller

with no foot placement constraints in the MPC controller and

a CBF constraint in the high-frequency controller (denoted

TABLE II. SIMULATION RESULTS

I II III IV V
MPC constr. None CBF State State CBF
WBC constr. CBF None None CBF CBF
num. steps 28 140 140 140 140
num. missteps 5 6 5 0 0
avg. misstep [mm] 1.4 2.5 4.3 - -
total swing time [s] 11.0 49.0 48.6 48.4 48.6
hw
i < 0 time [s] 2.4 2.3 15.3 2.6 0.4

hw
e,i < 0 time [s] 3.3 5.4 15.6 3.7 0.8

CBF-QP, and the closest to the related work [11]) is able to

enforce safety for a number of steps, but quickly destabilizes.

The absence of information on the safety constraint in the

MPC layer results in an abrupt and strong correction for

safety by the high-frequency CBF. This approach work

well only when the stepping-stones are placed close to the

nominal gait of the robot, but it fails in this more challenging

scenario.

The second and third controllers include foot placement

constraints in the MPC controller, but not in the high-

frequency controller. In the second controller the constraints

are implemented as CBFs through (14) and in the third

controller they are implemented as state constraints through

(12). Both of these controllers are able to successfully

traverse the length of the stepping-stones scenario. We see

that the controllers exhibit similar numbers of missteps, but

the MPC controller with CBFs has smaller average misstep

size.

The fourth and fifth controller enforce the high frequency

CBFs (15) and contain either state constraints (12) or CBFs

(14) in the MPC formulation. Both controllers complete the

scenario without missteps. However, the proposed controller

shows the least amount of time violating the barrier condi-

tions. The difference can be explained through the results in

Figure 6. Because the MPC with state constraints (top) is not

aware of the CBF condition, it plans for a trajectory that vio-

lates these constraints during the swing phase. During execu-

tion, the high-frequency tracking controller strictly enforces

the CBF, resulting in a deviation from the MPC plan. Such

abrupt deviations can cause problems, for example when

operating close to kinematic limits. Consistently enforcing

the CBF condition removes this mismatch (bottom).

The simulation experiments indicate that including CBF

Fig. 3. ANYmal traversing stepping-stones in simulation using the multi-layer CBF-MPC controller. The target foothold regions as well
as the contracting barrier constraints are shown at snapshots in the motion. See the video in the supplementary material for the full
motion [1].
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Fig. 4. The minimum values of hw
i and hw

e,i per leg during the
stepping-stones simulation with the CBF only at MPC level.

constraints in the high-frequency controller leads to safer

behavior, and that including terrain constraints in the MPC

controller prevents the high-frequency CBF from destabiliz-

ing the gait. Finally, enforcing CBF constraints in both layers

of the hierarchy prevents an inconsistency that results in large

deviations from the optimal solution determined by the MPC

layer. The values of hw
i and hw

e,i for the controller with CBFs

only in the MPC and for with the CBFs in both WBC & MPC

can be seen in Figures 4 and 5. The controller with CBFs

at both levels has smaller violations of constraints (13) and

(14).

We evaluate the efficacy of this method experimentally

on the ANYmal robotic platform. All computation runs

on a single onboard PC (Intel i7-8850H, 2.6GHz, hexa-

core 64-bit) with the MPC solver running asynchronously

at 30Hz and the whole-body QP tracking controller running

at 400Hz.

The robot is initialized on pre-mapped terrain and receives

external base twist and gait commands. The size of the

segmented regions are decreased by 5 cm with respect to the

real boundary to provide a margin for state estimation errors.

In the supplementary video [1] we visualize the internal state

of the controller. For legs that are in swing, a projection

of the barrier constraint in (13) onto the terrain is plotted.

This barrier constraint shrinks over time and converges to the

selected target foothold region at foot contact. Furthermore,

it can be seen how the foothold target is large when stepping

onto the wooden pallet. This shows that the proposed method

can seamlessly transition between rough and flat terrain,

restricting the motion only when necessary for safe foot

placement. The values of hw
i and hw

e,i for several steps can

be seen in Figure 7. Both constraints are rarely violated,

which confirms that the safety constraints are successfully

transferred to hardware.

VI. CONCLUSIONS

We proposed a multi-layered control framework that com-

bines CBFs with MPC. Simulation experiments show that

enforcing CBF constraints on both the MPC and QP tracking

layer outperforms variants where they are enforced at only

one of the layers. Additionally, we validated the viability

of the approach on hardware by demonstrating dynamic

Fig. 5. The minimum values of hw
i and hw

e,i per leg during the
stepping-stones simulation with the CBF in both WBC & MPC.

Fig. 6. Visualization of the planned MPC trajectories for different
constraint formulations. Top: MPC with state constraints on the
touchdown location (controller IV). Bottom: MPC with CBF con-
straints (controller V). The plots on the right show the planned and
measured values of hw

e,i for the right front foot, with deviations
from the MPC optimal trajectory occurring when CBF constraints
are absent from the MPC formulation.

Fig. 7. The minimum values of hw
i and hw

e,i per leg during the
stepping-stones hardware experiment for the proposed controller
with CBF constraints in WBC & MPC.

locomotion on stepping-stones with safety constraints. Future

work includes developing a perception pipeline to auto-

matically perform terrain-based segmentation from sensor

data and studying the theoretical properties of the proposed

controller.

8357

Authorized licensed use limited to: CALIFORNIA INSTITUTE OF TECHNOLOGY. Downloaded on September 26,2022 at 20:31:43 UTC from IEEE Xplore.  Restrictions apply.



REFERENCES

[1] Supplementary video: https://youtu.be/TCDIirXfByE.
[2] R. J. Griffin, G. Wiedebach, S. McCrory, S. Bertrand, I. Lee, and

J. Pratt, “Footstep planning for autonomous walking over rough ter-
rain,” in International Conference on Humanoid Robots (Humanoids).
IEEE-RAS, 2019, pp. 9–16.

[3] P. Fankhauser, M. Bjelonic, D. Bellicoso, T. Miki, and M. Hutter,
“Robust rough-terrain locomotion with a quadrupedal robot,” in In-
ternational Conference on Robotics and Automation (ICRA). IEEE,
2018.

[4] C. Mastalli, I. Havoutis, M. Focchi, D. Caldwell, and C. Semini,
“Motion planning for quadrupedal locomotion: coupled planning,
terrain mapping and whole-body control,” Prepint on HAL, 2018.

[5] D. Belter, P. Labecki, and P. Skrzypczynski, “Adaptive motion
planning for autonomous rough terrain traversal with a walking
robot,” Journal of Field Robotics, vol. 33, no. 3, pp. 337–370, 2016.

[6] M. Hutter, C. Gehring, D. Jud, A. Lauber, C. D. Bellicoso, V. Tsounis,
J. Hwangbo, K. Bodie, P. Fankhauser, M. Bloesch, R. Diethelm,
S. Bachmann, A. Melzer, and M. Hoepflinger, “Anymal - a highly
mobile and dynamic quadrupedal robot,” in 2016 IEEE/RSJ Interna-
tional Conference on Intelligent Robots and Systems (IROS), 2016, pp.
38–44.

[7] A. Ames, J. Grizzle, and P. Tabuada, “Control barrier function based
quadratic programs with application to adaptive cruise control,” in
Conference on Decision & Control (CDC). IEEE, 2014, pp. 6271–
6278.

[8] M. Jankovic, “Robust control barrier functions for constrained sta-
bilization of nonlinear systems,” Automatica, vol. 96, pp. 359–367,
2018.

[9] A. D. Ames, S. Coogan, M. Egerstedt, G. Notomista, K. Sreenath,
and P. Tabuada, “Control barrier functions: Theory and applications,”
in European Control Conference (ECC). IEEE, 2019, pp. 3420–3431.

[10] Q. Nguyen and K. Sreenath, “Optimal robust control for bipedal
robots through control lyapunov function based quadratic programs.”
in Robotics: Science and Systems (RSS), 2015.

[11] Q. Nguyen, A. Hereid, J. W. Grizzle, A. D. Ames, and K. Sreenath, “3d
dynamic walking on stepping stones with control barrier functions,”
in Conference on Decision and Control (CDC). IEEE, 2016, pp.
827–834.

[12] Q. Nguyen, X. Da, J. Grizzle, and K. Sreenath, “Dynamic walking
on stepping stones with gait library and control barrier functions,” in
Algorithmic Foundations of Robotics XII. Springer, 2020, pp. 384–
399.

[13] Q. Nguyen and K. Sreenath, “Optimal robust time-varying safety-
critical control with application to dynamic walking on moving step-
ping stones,” in Dynamic Systems and Control Conference (DSCC),
vol. 50701. American Society of Mechanical Engineers, 2016, p.
V002T28A005.

[14] J. Choi, F. Castañeda, C. Tomlin, and K. Sreenath, “Reinforcement
Learning for Safety-Critical Control under Model Uncertainty, us-
ing Control Lyapunov Functions and Control Barrier Functions,” in
Robotics: Science and Systems (RSS), Corvalis, Oregon, USA, July
2020.

[15] Q. Nguyen, A. Agrawal, W. Martin, H. Geyer, and K. Sreenath,
“Dynamic bipedal locomotion over stochastic discrete terrain,” The
International Journal of Robotics Research, vol. 37, no. 13-14, pp.
1537–1553, 2018.

[16] J. B. Rawlings, D. Q. Mayne, and M. Diehl, Model predictive control:
theory, computation, and design. Nob Hill Publishing Madison, WI,
2017, vol. 2.

[17] F. Jenelten, T. Miki, A. E. Vijayan, M. Bjelonic, and M. Hutter,
“Perceptive locomotion in rough terrain–online foothold optimization,”
IEEE Robotics and Automation Letters, vol. 5, no. 4, pp. 5370–5376,
2020.

[18] O. Villarreal, V. Barasuol, P. M. Wensing, D. G. Caldwell, and
C. Semini, “Mpc-based controller with terrain insight for dynamic
legged locomotion,” in International Conference on Robotics and
Automation (ICRA). IEEE, 2020, pp. 2436–2442.

[19] D. Kim, D. Carballo, J. Di Carlo, B. Katz, G. Bledt, B. Lim, and
S. Kim, “Vision aided dynamic exploration of unstructured terrain
with a small-scale quadruped robot,” in International Conference on
Robotics and Automation (ICRA). IEEE, 2020, pp. 2464–2470.

[20] H. Dai, A. Valenzuela, and R. Tedrake, “Whole-body motion planning
with centroidal dynamics and full kinematics,” in International Con-
ference on Humanoid Robots (Humanoids). IEEE-RAS, Nov 2014,
pp. 295–302.

[21] A. W. Winkler, C. D. Bellicoso, M. Hutter, and J. Buchli, “Gait and
trajectory optimization for legged systems through phase-based end-
effector parameterization,” IEEE Robotics and Automation Letters,
vol. 3, no. 3, pp. 1560–1567, July 2018.

[22] G. Bledt, P. M. Wensing, and S. Kim, “Policy-regularized model
predictive control to stabilize diverse quadrupedal gaits for the mit
cheetah,” in International Conference on Intelligent Robots and Sys-
tems (IROS). IEEE/RSJ, Sept 2017, pp. 4102–4109.

[23] F. Farshidian, E. Jelavic, A. Satapathy, M. Giftthaler, and J. Buchli,
“Real-time motion planning of legged robots: A model predictive
control approach,” in International Conference on Humanoid Robotics
(Humanoids). IEEE-RAS, 2017, pp. 577–584.

[24] M. Neunert, M. Stäuble, M. Giftthaler, C. D. Bellicoso, J. Carius,
C. Gehring, M. Hutter, and J. Buchli, “Whole-body nonlinear model
predictive control through contacts for quadrupeds,” IEEE Robotics
and Automation Letters, vol. 3, no. 3, pp. 1458–1465, July 2018.

[25] R. Grandia, F. Farshidian, R. Ranftl, and M. Hutter, “Feedback mpc
for torque-controlled legged robots,” in International Conference on
Intelligent Robots and Systems (IROS). IEEE/RSJ, 2019, pp. 4730–
4737.

[26] R. Grandia, A. J. Taylor, A. Singletary, M. Hutter, and A. D. Ames,
“Nonlinear model predictive control of robotic systems with control
lyapunov functions,” in Robotics: Science and Systems (RSS), 2020.

[27] O. Khatib, “Real-time obstacle avoidance for manipulators and mobile
robots,” in Proceedings. 1985 IEEE International Conference on
Robotics and Automation, vol. 2, 1985, pp. 500–505.

[28] A. Singletary, K. Klingebiel, J. Bourne, A. Browning, P. Tokumaru,
and A. Ames, “Comparative analysis of control barrier functions
and artificial potential fields for obstacle avoidance,” arXiv preprint
arXiv:2010.09819, 2020.

[29] J. Zeng, B. Zhang, and K. Sreenath, “Safety-critical model predictive
control with discrete-time control barrier function,” arXiv preprint
arXiv:2007.11718, 2020.

[30] L. Perko, Differential equations and dynamical systems. Springer
Science & Business Media, 2013, vol. 7.

[31] A. D. Ames, X. Xu, J. W. Grizzle, and P. Tabuada, “Control barrier
function based quadratic programs for safety critical systems,” Trans-
actions on Automatic Control, vol. 62, no. 8, pp. 3861–3876, 2017.

[32] F. Farshidian, M. Neunert, A. W. Winkler, G. Rey, and J. Buchli,
“An efficient optimal planning and control framework for quadrupedal
locomotion,” in 2017 IEEE International Conference on Robotics and
Automation (ICRA), May 2017, pp. 93–100.

[33] Q. Nguyen and K. Sreenath, “Exponential control barrier functions for
enforcing high relative-degree safety-critical constraints,” in American
Control Conference (ACC). IEEE, 2016, pp. 322–328.

[34] U. Rosolia and A. D. Ames, “Multi-rate control design leveraging
control barrier functions and model predictive control policies,” arXiv
preprint arXiv:2004.01761, 2020.

[35] J. Reher, C. Kann, and A. D. Ames, “An inverse dynamics approach to
control lyapunov functions,” in American Control Conference (ACC).
IEEE, 2020, pp. 2444–2451.

[36] C. Dario Bellicoso, C. Gehring, J. Hwangbo, P. Fankhauser, and
M. Hutter, “Perception-less terrain adaptation through whole body
control and hierarchical optimization,” in International Conference on
Humanoid Robots (Humanoids). IEEE-RAS, Nov 2016, pp. 558–564.

[37] R. Grandia, F. Farshidian, A. Dosovitskiy, R. Ranftl, and M. Hut-
ter, “Frequency-aware model predictive control,” arXiv preprint
arXiv:1809.04539, 2018.

8358

Authorized licensed use limited to: CALIFORNIA INSTITUTE OF TECHNOLOGY. Downloaded on September 26,2022 at 20:31:43 UTC from IEEE Xplore.  Restrictions apply.


