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Onboard Safety Guarantees for Racing Drones:
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Abstract—This letter details the theory and implementation be-
hind practically ensuring safety of remotely piloted racing drones.
We demonstrate robust and practical safety guarantees on a 7”
racing drone at speeds exceeding 100 km/h, utilizing only online
computations on a 10 g micro-controller. To achieve this goal, we
utilize the framework of control barrier functions (CBFs) which
give guaranteed safety encoded as forward set invariance. To make
this methodology practically applicable, we present an implic-
itly defined CBF which leverages backup controllers to enable
gradient-free evaluations that ensure safety. The method applied
to hardware results in smooth, minimally conservative alterations
of the pilots’ desired inputs, enabling them to push the limits of
their drone without fear of crashing. Moreover, the method works
in conjunction with the preexisting flight controller, resulting in
unaltered flight when there are no nearby safety risks. Additional
benefits include safety and stability of the drone when losing line-
of-sight or in the event of radio failure.

Index Terms—Robot safety, aerial systems: mechanics and
control.

I. INTRODUCTION

A S HOBBY drones become more and more capable, the in-
terest in drone racing continues to increase. Transparency

Market Research predicts the drone racing industry to reach a
valuation of $786 m by 2027. And while progress is being made
in autonomous racing drones [1], [2], it is still an area dominated
by humans [3]. The goal of this paper is to study racing drones
in the theoretic context of achieving safe flight through minimal
pilot interventions. Importantly, we demonstrate this practically
in a realistic scenario: high speed drone flight.

Safety of small aerial vehicles is a heavily researched area.
These works generally focus on safely planning trajectories
rather than intervening along a desired trajectory. In this set-
ting, [4] accounts for the low computational ability of drones,
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as well as the slow updates of mapping software, in their design
of a planner for quick flight in unknown environments using
motion primitives. While this and similar planners [5] have
demonstrated results in unknown environments, they have not
been demonstrated at the high speeds seen in drone racing. This
is true for nearly all vision planners [6], [7], as the localization
and mapping algorithms simply cannot keep up with speeds
that human operators are capable of. Moreover, for known
environments, reinforcement learning has been utilized to plan
highly dynamic trajectories at speeds exceeding 60 km/h [8], but
attempting to track these trajectories on hardware results in large
tracking errors. This points to the difficulty of adapting existing
strategies to ensure safety with human operators in the loop.

While most drone racing research focuses on autonomy [9],
this work departs from this paradigm with the goal of giving
the human operators as much freedom and control authority
as possible subject to safety constraints. In particular, we seek
to guarantee safety of the drone in known environments (with
realistic sensing and actuation constraints) through minimal
operator control intervention. This can be viewed as a “safety
filter” that allows the pilot to aggressively operate the drone
in a safe fashion—even at high speeds and when performing
aggressive maneuvers.

While the concept of minimally invasive, shared control
systems is less studied than its fully autonomous counterpart,
several approaches exist in the literature. In [10], the authors
propose a sampling-based MPC approach that generates
many possible safe trajectories at each time-step, and chooses
the one closest to the user’s desired input subject to safety
conditions. Another MPC-based approach is demonstrated
in [11], which uses learning to minimize conservatism, but
neither of these approaches are able to run in real-time on a
microcontroller. In the context of geofencing, [12] presents an
MPC-based approach, but it lacks the guaranteed feasibility
of [10]. In [13], an Explicit Reference Governor (ERG) scheme
modifies the derivative of the applied inputs subject to safety
constraints utilizing Lyapunov functions. While this approach
is optimization-free and could be implemented online, it is
difficult to find the required upper-bound of the Lyapunov
function that guarantees constraint satisfaction.

Control barrier functions [14], have recently been proven to
provide an effective means of enforcing safety on a wide vari-
ety of robotic systems [15], (including drones [16]). However,
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Fig. 1. An illustration of geofencing—the pilot can move freely in the boxed
region but cannot leave this volume—which is enforced during high speed flight
(upwards of 100 km/h) through the methodology presented in this paper.

state-of-the-art barrier function implementations are not partic-
ularly well-suited for high-speed drone flight as they typically
rely on simplified models that become invalid at high speeds,
or have no guarantees of feasibility. The backup-set approach
can be used to enforce safety of quadrotors on the full-order
dynamics [17], but requires more onboard computational power
than is available on small racing drones.

The goal of this paper is to provide formal guarantees of safe
flight via minimal operator intervention for high speed drones,
utilizing only onboard sensing and computation. To achieve
this goal, we leverage the implicit control barrier functions
framed in the context of backup controllers. The concept of using
implicit control barrier functions to guarantee safety in a more
computationally efficient manner, without the use of derivatives,
was first introduced in [18]. While the method presented in
this paper is based on our previous work [18], we have made
significant improvements to enhance its performance and make
it more applicable to hardware implementation. The previous
algorithm had a tendency to get stuck near the boundary of the
safe set if model-mismatch or large disturbances were present,
and thus it was tested only in simulation. The first contribution of
this paper is a more refined safety filter that avoids issues near
the set boundaries and interfaces with any off-the-shelf flight
controller, dramatically extending the practicality of the method
while still retaining the formal safety guarantees. The second
contribution is our extensive, real-world testing of this safety
filter. To this end, we experimentally realize control barrier
functions to enforce geofencing (cf. Fig. 1) at speeds of 100 km/h.

II. PRELIMINARIES

A. Safe Flight and Set Invariance

To prevent crashing and guarantee safety, our goal is to ensure
that the system’s state x(t) stays in a predefined safe set S , such
as the box shown in Fig. 1 typically seen in geofencing. Before
formalizing this notion of safety, we must first introduce some
notation and definitions.

We consider a nonlinear control-affine dynamic system:

ẋ = f(x) + g(x)u, (1)

where x ∈ Rn is the state, u ∈ U is the control input, to be cho-
sen from an admissible input set U ⊆ Rm, while f : Rn → Rn

and g : Rn → Rn×m describe the dynamics. Given a controller
u = ρ(x) and an initial condition x(t0) = x0 ∈ Rn, the solution
to this system is given by the flow map x(t) = Φρ(x0, t), t ≥ t0,
i.e., Φρ takes the initial state and time of flow and maps to the
future state of the closed-loop system under ρ.

The goal of forcing the system to remain in S at all time can
be achieved through the concept of set invariance.

Definition 1: A set S is called invariant if the system state
stays in the set indefinitely, i.e. ∀t ≥ t0, x(t) ∈ S . S is control
invariant if there exists a control law k : Rn → U mapping x
to the admissible input set U such that the system is invariant
under k, i.e. ∀t ≥ 0, ∀x0 ∈ S , Φk(x0, t) ∈ S .

B. Control Barrier Functions

Given an invariant set S, a control barrier function can be
formulated and used to enforce set invariance at each time-step.

Definition 2 ([14]): Let S ⊂ Rn be the set defined by a
continuously differentiable function h : Rn → R:

S = {x ∈ Rn : h(x) ≥ 0},
∂S = {x ∈ Rn : h(x) = 0},

Int(S ) = {x ∈ Rn : h(x) > 0}.
Then h is a control barrier function (CBF) if ∂h

∂x �= 0 for
all x ∈ ∂S and there exists an extended class K function ([14,
Definition 2]) α such that for all x ∈ S , ∃u s.t.

∂h

∂x
f(x) +

∂h

∂x
g(x)u︸ ︷︷ ︸

ḣ(x,u)

≥ −α(h(x)). (2)

By choosing an input u such that (2) holds, the invariance of
S is guaranteed [14]. Therefore, given an input from the flight
operator, or another preexisting controller, udes(x, t), we can
pick the closest input u∗(x, t) to udes(x, t) that guarantees safety
by solving the following quadratic program (QP):

u∗(x, t) = argmin
u∈U

‖u− udes(x, t)‖2

s.t.
∂h

∂x
f(x) +

∂h

∂x
g(x)u ≥ −α(h(x)). (3)

As mentioned in the introduction, CBFs work very well for
maintaining set invariance. However, they are often restricted in
their usage due to the difficulty in constructing an invariant set
S. Several methods for computing such sets exist [19], [20], but
almost all methods for nonlinear systems suffer heavily from the
curse of dimensionality and are inapplicable to drones without
model simplification.

C. Backup Controllers to Construct Invariant Sets

The backup set approach [21] was recently proposed as a
remedy to the difficulty of obtaining control invariant sets. This
approach assumes the knowledge of a very small backup set
SB that is invariant under some backup controller π(x). This
can be, for example, a set describing the hovering maneuver for
the drone and a controller commanding the drone to stop and
hover in place; we will give more details on the backup set and
controller selection later.
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Fig. 2. The flow Φπ and the backup set SB are used to construct the invariant
set SI , following (4).

With the small backup set defined, a point x0 ∈ S is in the
control invariant set SI if the system is able to reach the backup
set SB over some time T without leaving the safe setS under the
predefined backup controller [21]. This makes the description
of our control invariant set:

SI =

{
x0 ∈ Rn

∣∣∣∣∣Φπ(x0, τ)
∀τ∈[0,T ]

∈ S ∧ Φπ(x0, T ) ∈ SB

}
(4)

where Φπ(x0, t) is the flow of the system from initial condition
x0 after time t, governed by ẋ = f(x) + g(x)π(x) = fπ(x),
where π(x) is the backup control policy.

The concept of obtaining an invariant set SI from S using
backup controllers is illustrated in Fig. 2.

As shown in [22], the set generated by a proper backup
controller can approach the size of the maximal control invariant
set. However, for drone racing, where the extraordinary high-
speed is coupled with limited onboard computational ability,
these types of CBFs are not a realistic option. This is due to
the computationally expensive gradient computation at each
time-step to determine ∂h

∂x .
The following section introduces our proposed method, which

is similar to backup-set CBFs, but does not require any gradient
computations or optimization solvers.

III. THEORY

A. Smooth Safety Filtering Along the Backup Controller

In the previous section, we established that a backup controller
and the corresponding backup set can be used to define a control
invariant set as in (4). Let us describe the safe set S and the
backup set SB as the zero super-level sets of smooth functions
h(x) and hB(x). We rewrite SI defined in (4) as:

SI =

{
x ∈ Rn

∣∣∣∣∣(h (Φπ(x, τ)) ≥ 0)
∀τ∈[0,T ]

∧ (hB (Φπ(x, T )) ≥ 0)

}
.

(5)
Furthermore, following [22], we know that

SI =

{
x ∈ Rn

∣∣∣∣ min
τ∈[0,T ]

{h (Φπ(x, τ)) , hB (Φπ(x, T ))} ≥ 0

}
.

(6)
For ease of notation, we define the following implicit CBF.

Definition 3: Given a control system (1) with flow map
Φπ(x, T ) associated with a backup controller u = π(x), the
implicit control barrier function (ImCBF) hI is defined as

hI(x) := min
τ∈[0,T ]

{h (Φπ(x, τ)) , hB (Φπ(x, T ))} . (7)

Associated with the ImCBF is the safe set given as in (6): SI =
{x ∈ Rn | hI(x) ≥ 0}.

The ImCBF hI is implicitly defined as it relies on the flow
map of the system, which is also implicit. hI can be evaluated
by forward simulating the system under the backup controller.

While invariance could be enforced using the QP (3) with the
ImCBFhI as its constraint, called backup CBF QP, the implicitly
defined CBF requires additional computation power to solve.
Typically, the backup CBF QP is not achievable in real-time
without a desktop-grade CPU. A simplification must be made
in order to guarantee safety with a low-weight, low-power
microcontroller suitable for a small racing drone, such as the
Teensy 4.

Instead, we choose an approach utilizing the backup controller
directly. Rather than switching to the backup controller when
the state is about to leave SI , our approach smoothly switches
between the desired controller and the backup controller as
the boundary of SI is approached. We define the function that
regulates this smooth switching the regulation function, and
denote it k(x, hI(x)).

The proposed method for safety filtering using the regulation
function is formalized in the following proposition.

Proposition 1 ([18]): Consider the open-loop system (1)
under a continuous control law given by k(x, hI(x)). If

k(x, 0) = π(x) ∀x ∈ SI , (8)

for backup control law π(x), then the closed-loop system under
k(x, hI(x)) is forward invariant, i.e. safe.

Proof: By definition, SI is invariant under the control law
π(x). Therefore, ∀x0 ∈ SI , ∀t ≥ t0,Φπ(x0, t) ∈ SI . By conti-
nuity of the flow operator, we know thatΦk is continuous, andhI

is continuous since it is the composition of continuous functions
h andhB and the flowΦk. Therefore, the state must pass through
hI(x) = 0 before exiting SI . Without loss of generality, label
any such pointxh0

. Sincefk = fπ at such a point, the system will
remain in SI for all time, as xh0

∈ SI ⇒ Φπ(x0, t) ∈ SI , ∀t ≥
th0

. �
Additionally, to improve performance, we require that for

hI(x) � 0, k(x, hI(x)) = udes(x). This way, the filter does not
modify pilot’s actions unless there is an eminent risk of leaving
the safe set.

Other than the reduced computational complexity, there are
several advantages to this filtering approach. Unlike control
barrier functions, there is no notion of relative degree for the
input, giving complete freedom in the choice of h(x). Moreover,
input bounds can be handled trivially as, by design, we choose
π(x) ∈ U , and k can be constructed so that the input bound is
always satisfied. Another benefit of this method is showcased in
the following proposition.

Theorem 1: If k(·, ·) is locally Lipschitz in its arguments, and
the dynamics under the backup controller fπ are continuous and
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Fig. 3. As the drone approaches the barrier, λ decreases, resulting in the backup
controller being utilized more.

bounded on S , then the resulting filter k(x, hI(x)) is locally
Lipchitz continuous.

Proof: By the definition of a CBF, h(x) and hB(x) are
differentiable. Moreover, the flow of the system Φπ(x, t) is
differentiable for continuous dynamics and backup controller
by the second fundamental theorem of calculus, and therefore
locally Lipschitz (since it is also bounded). Since Lipschitz con-
tinuity is preserved under themin operator, we have thathI(x) is
locally Lipschitz continuous. Lastly, since Lipschitz continuity
is preserved under compositions, we have that k(x, hI(x)) is
locally Lipschitz continuous. �

While switching controllers can result in discontinuous in-
puts, the locally Lipschitz property demonstrated in Theorem 1
guarantees smoother control inputs with this method.

B. Choice of Regulation Function

The two requirements for our filtering function is that (i)
the backup controller π(x) is applied when hI(x) = 0, (ii) it
is Lipschitz continuous in its arguments. When hI(x) > 0, we
want the filter to mimic udes(x) as much as possible. To achieve
this, we first choose the mixing function

k (x, hI(x)) = λ (x, hI(x))udes(x) + (1− λ(x, hI(x)))π(x),
(9)

for λ(x, hI(x)) : Rn × R → [0, 1]. Fig. 3 illustrates how this
mixing works. When λ(x, hI(x)) = 1, the human operator is in
complete control. As the drone approaches the wall, the value of
λ(x, hI(x)) decreases, and it begins to slow down. Finally, near
the boundary, a steady-state is reached between the operator’s
control action and the backup control action, and the drone stops.
It is important that the backup controller attempts to move away
from the boundary, so that the system does not get “stuck” near
the boundary, i.e. λ > 0 always.

To allow for maximum freedom of the operator, the function
should exactly match udes(x) when hI(x) � 0. One way to
achieve this is by exploiting the exponential function:

λ(x, hI(x)) = 1− exp
(−βh+

I (x)
)
, (10)

where constant β is used to tune how quickly the function
λ(x, hI(x)) decays, and h+

I (x) = max(hI(x), 0) ensures that

λ(x, hI(x)) ∈ [0, 1]. With this filtering controller, we get the
desired behavior of λ(x, hI) ≈ 1 when hI(x) � 0, while pro-
viding a smooth decay to 0 when as hI(x) → 0. The constant β
is used to tune how quickly the function λ decays.

C. Comparison to Backup CBF Condition

To demonstrate the effectiveness of this method, we compare
its performance to the backup set CBF approach [21]. The two
relevant metrics for this comparison are the computational times
and the conservatism, as both methods provide guarantees of
safety.

While no perfect comparison can be made, due to the freedom
in the selection of both λ(x) and k(x), these functions are chosen
independently to result in smooth transitions when approaching
the boundary of the set, while minimizing conservatism.

Example 1: Consider an inverted pendulum with state x
dynamics ẋ

x =

[
θ

θ̇

]
+

[
0

1

]
u, ẋ =

[
θ̇

sin(θ)

]
+

[
0

1

]
u, (11)

and backup control law

π(x) = −Fx, (12)

which attempts to stabilize the system to the backup set

hB(x) = min

{( π

12

)2

− x2
1, δ

2 − x2
2

}
, (13)

for a small velocity value δ chosen to be 0.1 rd/s, while staying
in the set

h(x) = min
{
1− x2

1, 2− x2
2

}
. (14)

For the exact formulation of the backup-set CBF, see [22].
The filtering function used here is the same as that used on the
drone (9), to be detailed in the following section. The inverted
pendulum was commanded a constant angular acceleration of
2 rd/s2, and the resulting positions, velocities, and filtered inputs
are displayed in Fig. 4.

Two benefits of the smooth filter can be seen in this com-
parison. While filtering performance is similar, the regulation
function is an order of magnitude faster to evaluate. Moreover,
when the gains are increased to allow a rapid approach of the
boundary of the safe set, the CBF begins to oscillate near the
boundary, whereas the smooth filter does not suffer from such
behavior. These oscillations occur due to numerical instability of
the optimization problem as the system pushes against boundary
of the safe set.

It is important to note that the optimization-based CBF still
has a distinct advantage in some situations. Utilizing gradient
information allows quick motion along the boundary of the set,
whereas with this switching approach, the value of λ(x, hI(x))
will be low, limiting performance near the boundary. In future
work, we will explore how this ability can be utilized in a
derivative-free approach. While it is not particularly important
for geofencing, it would be important in the context of collision
avoidance while drone-racing.
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Fig. 4. The filtering performance of the traditional CBF compared to the
proposed regulation function, for two parameters β in (10) and the scalar α
for the CBF (3).

IV. MODELING AND IMPLEMENTATION

A. Modeling the Drone and Onboard Flight Controller

Flight controllers on modern racing drones are able to track
desired angular rates extremely well. With the availability of
low-cost, high-speed electronic speed controllers (ESCs) and
rate gyros, state-of-the-art controllers can track angular rates
at control frequencies of 8 kHz. We utilize this by wrapping
our controller around the closed-loop system of the drone with
the onboard flight controller. Therefore, rather than the control
inputs being the torques of the four motors, we command throttle
and angular rates. This choice of architecture greatly simplifies
the task of modeling the drone dynamics, and allows us to better
filter the system in a way that minimizes the impact on the pilot.
Moreover, the same filter can be applied to different drones with
different dynamics, including those with six or eight rotors.

By modeling the response of the system to desired angular
rate commands, the proposed method does not rely on perfect
angular rate tracking. Through this, we also account for any
delay in the filter stemmed from communication between the
sensors and the onboard flight controller.

The drone and flight controller system is modelled as rigid
body motion in the Special Euclidean Group in 3 dimensions,
SE(3). The state-space model x ∈ R13 is chosen to be x =
[pw, q, vw, ωb]

T where pw = [x, y, z]T is the position in the
world frame, vw = [vx, vy, vz]

T are the world-frame velocities,
q is the quaternion representation of the orientation with respect
to the world frame, and ωb = [ωx, ωy, ωz]

T are the body-frame
angular velocities.

To model the system’s response to an angular rate command,
we set the derivative of the angular rates to

ω̇ = C(x)(ωdes − ω), (15)

whereC(x) : Rn → R+ is a (potentially state-dependent) func-
tion that determines how quickly the desired rates are tracked.

For a well-tuned racing drone with minimal filter delay, its
value should be on the order of 50, and can be treated as
state-independent.

Lastly, to map the throttle command to thrust, we fit a
second-order polynomial with data from the accelerometer and
GPS. While this mapping will be dependent on the voltage, the
inclusion of an integral term in the altitude controller is generally
sufficient to eliminate any drift.

B. Safe Sets and Backup Controllers

The primary goal of this work is to constrain the position of
the drone inside a large polytope in the 3D space, inside of which
the pilot has almost complete control, but is unable to leave. To
this end, we define the safe set

h(x) = min{r2x − (x− xc)
2, r2y − (y − yc)

2, r2z − (z − zc)
2},

(16)
which is positive inside of a box with side lengths (rx, ry, rz)
centered at (xc, yc, zc), and negative outside.

The backup controller π(x) is a velocity controller on SE(3),
inspired by [23]. The backup controller attempts to bring the
drone to zero velocity in the x, y, z, but has one other goal which
is very important: to bring the drone away from the boundary
if it is too close. This is critical, as if the drone were to simply
stop at the boundary, the pilot would be stuck at the edge of the
safe set due to λ(x) approaching 0. To achieve this, we set the
desired velocity to

vx =

{
0 r2x − (x− xc)

2 ≥ δ,

−(δ − r2x + (x− xc)
2) otherwise.

(17)

Under this backup controller, the drone will move a distance
δ from the boundary before stopping. The desired velocities are
identical for y and z directions.

Finally, the backup set SB is defined by the function

hB = −
√

v2x + v2y + v2z + ε. (18)

This backup set ensures that the drone is able to slow itself
to a speed of ε, chosen to be 0.1 m/s, thus guaranteeing that the
drone is able to stop before hitting the boundary.

C. Modification of Safety Filter for Very High Speeds

Modifications must be made to the function λ(x, hI(x)) to
work well at very high-speeds. This is because β must be made
large to have smooth breaking at high speeds, which would make
the filter overly conservative near the boundary at low speeds.
This can be fixed simply by scaling the value of hI(x) by the
inverse of the velocity towards the barrier. The safety filtering
function used by the drone is

λ(x, hI(x)) = 1− exp

(
−βhI(x)

+

v+⊥

)
, (19)

where v⊥ is the velocity in the direction of the barrier.
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Fig. 5. Simulation results of the two primary hardware test cases. On the left, the drone accelerates towards the barrier at xw = 10 m. On the right, the drone
free-falls from 70 m towards the barrier at zw = 0.5 m.

D. Simulation

Before testing the barrier functions on hardware, we first
devise the test cases in simulation. While the safety filters are the
same in simulation and on hardware, the hardware is operated
by a human pilot, while the sim has its own desired controllers,
so some discrepancies will arise because of this.

Two primary test cases were run in simulation, a high-speed
horizontal test, with the goal of successful filtering at 100 km/h,
and a free fall from 70 m. The results of the horizontal simulation
are shown in Fig. 5a. The drone accelerates to a maximum
speed of 107 km/h before being forced to stop. The minimum
distance to barrier was 0.12 m. The free fall simulation was
also successful: the drone accelerated to a top speed of 70 km/h
downwards, before reaching a hover at a distance of 1.2 m above
the barrier.

V. RESULTS

A. Hardware Setup

Our quadrotor is built on a Chimera 7” frame with four iFlight
XING X2806.5 1300 KV brushless motors, a T-Motor F55 A Pro
II 4-in1 ESC, a MAMBA BASIC F722 Flight Controller (FC),
a Teensy 4.1 microcontroller, a Vectornav VN-200 IMU+GPS,
a FrSky R-XSR receiver, a DJI FPV air unit, and a Cadex FPV
camera. We use a FrSky QX7 radio to send desired angular
rates commands to Teensy microcontroller through the receiver.
The VN-200 fuses GPS and IMU data with a built in extended
Kalman filter. This data is sent to the Teensy as navigation data
at 400 Hz. Using this data, the microcontroller then modifies
these angular rates commands with the regulation function and
then forwards them on to the FC. The FC runs betaflight, an open
source software, to track the commanded angular rates. The PID
loop runs at the gyro update rate at 8 kHz. The FC sends digital
commands to the ESC using DSHOT600 at the same 8 kHz. FPV
video is digitally streamed with a end to end latency of 25 ms

Fig. 6. The 7” racing drone used for experiments.

from the DJI FPV air unit to DJI FPV goggles, which are worn
by the operator.

B. Filter Software and Execution

To simplify the transition from simulation to hardware, the
barrier functions are first generated in MATLAB for simulation,
and then codegen is used to create C++ code that will run
on hardware. All code used to generate and run the barrier
functions on a Teensy 4.1 can be found at https://github.com/
DrewSingletary/racing_drone_geofencing. This codebase also
includes the interface for our specific receiver and flight con-
troller, but this could be modified to fit other drone and radio
configurations.

The execution time of the filter on the Teensy is approximately
350 μs. The algorithm runs at the update rate of the navigation
data, which is 400 Hz.

C. Outdoor Flight Tests

A large number of flight tests were done to verify the safety
guarantees provided by our method. We emphasize two specific
examples, but several more flight tests are displayed in Fig. 8.

Test 1: Horizontal barrier at 104 km/h. For this test, the
pilot commanded the drone to head north at high speeds. The
active component of the barrier was 40 m north of the initial
position. The drone was able to reach a top speed of 104 km/h,
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Fig. 7. Two highlighted examples of geofencing with the high-speed racing drone.

Fig. 8. Four separate experimental runs where the drone is commanded to approach the barrier several times. λ never reaches zero, meaning the pilot always has
some amount of control, and the drone never leaves the defined safe set.
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before beginning to break at a distance of 15 m from the barrier.
The pilot attempted to push the drone past the barrier, but was
stopped at a minimum distance of 1.7 m from the barrier. Due
to this, the pilot was then able to safely move away from the
restricted airspace.

Fig. 7a showcases the results of the experiment. The results
agree strongly with the simulation data in Fig. 5a, despite the
human piloting commanding different desired inputs than the
simulation. This is, in part, due to the very accurate angular rate
tracking showcased at the bottom right of Fig. 7a. While there is
a slight delay in this tracking, this is properly modeled in (15),
thus it does not affect our ability to guarantee safety.

Fig. 7c shows the drone throughout this maneuver, highlighted
in blue. Above this, the orientation of the drone at different
snapshots are visualized. As shown, the drone reaches an angle
of nearly 90◦ while breaking.

Test 2: Free fall from 70 m. At the beginning of this test,
the pilot was flying at an altitude of 70 m and then sends no
commands, mimicking a loss of radio connection. The barrier
was chosen to be a distance of 0.5 m from the ground. After
a short free-fall, reaching a vertical velocity of −60 km/h, the
safety filter stabilizes the drone before coming to a stop at a
distance of 1.8 m above the ground.

The data from this flight is visualized in Fig. 7b. Rather than
plotting desired angular rates, we now showcase the desired
throttle of the drone sent from the user compared to the throttle
produced by the safety filter. Despite the pilot commanding no
throttle for the entire duration of the descent, the drone is able
to smoothly recover before crashing.

Again, when comparing this data to the simulation in Fig. 5(b),
notice the extremely similar results. In fact, the only major
discrepancy, which is the fact that the simulation reached a
speed of 10 km/h faster downwards than the drone, can be easily
explained by a lack of drag in the simulation model. This did
not occur during the horizontal tests, as the velocity controller
is able to correct for this drag in flight.

Testing for reliability and consistency. Fig. 8 highlights the
reliability and consistency of this method in the application
of geofencing. Four separate flights are plotted, two of which
engage the horizontal barrier whereas two engage the vertical
barrier. In each flight, the barrier is engaged two to four times,
and every time, safety is maintained, and λ never reaches zero,
meaning the pilot never lost complete control of the drone for
any period of time.

VI. CONCLUSION

In this work, we showcased a novel safety filter intended to
guarantee safe, high speed flight in the presence of a human
operator. This method required no offline computations, and
was implemented on a small microcontroller aboard a 7” racing
drone. The filter was successful at keeping the drone inside of
a desired region at speeds upwards of 100 km/h, and was easily
able to recover from an 70 m free fall. Future work will consist
of adding vision into the loop to dynamically construct the safe
sets, as well as multi-robot collision avoidance at high-speeds
for drone races.
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