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Powered Prosthesis Locomotion on Varying Terrains:
Model-Dependent Control With Real-Time
Force Sensing

Rachel Gehlhar

Abstract—Lower-limb prosthesis wearers are more prone to
falling than non-amputees. Powered prostheses can reduce this
instability of passive prostheses. While shown to be more stable
in practice, powered prostheses generally use model-independent
control methods that lack formal guarantees of stability and rely
on heuristic tuning. Recent work overcame one of the limitations of
model-based prosthesis control by developing a class of provably
stable prosthesis controllers that only require the human interac-
tion forces with the prosthesis, yet these controllers have not been
realized with sensing of these forces in the control loop. Our work
realizes the first model-dependent prosthesis knee controller that
uses in-the-loop on-board real-time force sensing at the interface
between the human and prosthesis and at the ground. The result is
an optimization-based control methodology that formally guaran-
tees stability while enabling human-prosthesis walking on a variety
of terrain types. Experimental results demonstrate this force-based
controller outperforms similar controllers not using force sensors,
improving tracking across 4 terrain types.

Index Terms—Humanoids and bipedal locomotion, physically
assistive devices, prosthetics and exoskeletons.

I. INTRODUCTION

OWER-LIMB prosthesis users fall more frequently than
L non-amputees [1]. A survey in [2] found 45% of polled am-
putees had fallen in the past year while wearing their prosthesis.
This instability could be due to their passive prostheses, which
can be less stable than powered prostheses [3]. Current powered
prosthesis control methods tend to be model-independent [4],
[51, require heuristic tuning, lack formal guarantees of stability,
and do not utilize the system’s natural dynamics and force
interactions with the user and environment. Current state of the
art controllers tune impedance parameters for multiple discrete
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Fig. 1. (top) Gait tiles of human subject walking with model-dependent
prosthesis knee controller using real-time force sensing on four terrains: rubber
floor, outdoor track, grass, and sidewalk. (middle) Insole pressure sensor maps
in the stance phases of a walking cycle. (bottom) Measured socket and ground
force profiles during stance for respective terrain.

phases of a gait cycle for different subjects and behaviors [6]—[8].
Model-based control methods hold potential to yield a more
transferable method between devices, users, and behaviors since
they rely on measurable model parameters and inputs instead of
a large set of heuristic tuning parameters. Additionally, model-
based methods can be designed to yield formal guarantees of
stability since they are based on the actual system dynamics. This
motivates developing model-based prosthesis control methods
that lend a more transferable method between applications, and
guarantee stability for the user.

A challenge arises in developing model-dependent prosthe-
sis controllers: the human dynamics are unknown. The work
of [9] addressed this limitation by developing rapidly expo-
nentially stabilizing control Lyapunov functions (RES-CLFs),
which were shown to stabilize bipedal robotic walking [10], in
the context of separable systems [11], [12]. This resulted in a
class of stabilizing prosthesis controllers relying only on local
prosthesis information. Previously, RES-CLFs were difficult
to realize on hardware due to the typical required inversion
of the inertia matrix which is computationally expensive and
susceptible to modeling error. The work of [13] developed and
demonstrated a RES-CLF controller on a bipedal robot without
inverting the inertia matrix by constructing the RES-CLF in an
inverse dynamics framework, realized as a quadratic program
(QP) [14]. The work of [13] brings the class of controllers
developed in [9] closer to being implementable.

Realizing RES-CLF controllers on prostheses meets an ad-
ditional challenge: they require knowledge of the interaction
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forces. Specifically, both the ground reaction forces and moment,

and socket interaction forces and moment. (For simplicity we
refer to these as “GRFs” and “socket forces”.) The work of [15]
realized the first model-dependent prosthesis controller in stance
with consideration for the forces—however, these forces were
estimated rather than sensed. Holonomic constraints were used
to determine the GRFs, and force estimation for the socket
forces. The lack of real-time force sensing, therefore, necessi-
tated the assumption of rigid contact with the ground (via the use
of holonomic constraints). This inaccurately represents many
real-life scenarios where the terrain deforms under a load, like
granular media [16]. Developing control methods accounting
for non-rigid terrain is especially important for prostheses to
enable amputees to walk stably on a variety of surfaces present
in daily life. Additionally, estimating (not sensing) the socket
forces may not accurately capture the varying load a user applies
during stance. To more accurately account for the interactions
between the user and the prosthesis, and the prosthesis and the
environment, it is necessary to integrate real-time force sensing
into the model-based controller.

This work realizes the first model-dependent prosthesis knee
controller that uses real-time force sensing at the ground and
socket, resulting in stable human-prosthesis walking on a va-
riety of terrains. To achieve this result, we integrate a load
cell, insole pressure sensor, and an inertial measurement unit
(IMU) on a transfemoral powered prosthesis platform (shown in
Fig. 1). To leverage these sensors, we use an optimization-based
controller utilizing RES-CLFs [9] that directly accounts for the
force sensing in real-time, i.e., the sensed forces are utilized
to “complete the model” of the human-prosthetic system and
thereby determine the next control action. The insole pressure
sensor, therefore, allows for the control actions to be dynamically
modulated based upon the sensed terrain type (removing the
need to assume locomotion on a non-deformable surface). The
load cell quantifies the interaction between the human and pros-
thesis allowing the prosthesis to compensate for this dynamic
load in real-time and achieve its desired behavior in the presence
of these large external forces. This framework is demonstrated
experimentally on the prosthesis shown in Fig. 1, wherein walk-
ing is achieved on 4 different terrain types with the proposed
controller demonstrating improved tracking performance across
all terrains.

It is important to note that force sensing has long been utilized
in prosthesis control, although not in the context of realizing
model-based controllers via real-time force sensing. Load cells
have been incorporated into powered prosthesis platforms to
detect ground contact, GRFs, and center of pressure (CoP) [5],
[17], [18]. The work of [17] used GRF sensing capability to de-
termine motion intent to trigger transitions between gait phases
of finite-state based impedance control. The work of [5] used the
CoP to encode and modulate virtual constraints for prosthesis
control. However, to date, GRF and socket force measurements
have not been included in the modeled dynamics to achieve
model-dependent prosthesis control. Additionally, to the best of
the authors’ knowledge, GRFs and CoP measurements from an
insole plantar pressure sensor have not been utilized as real-time
feedback in prosthesis control [19].

The letter is structured in the following manner. Section II
overviews separable system control methods and RES-CLFs.
Section III constructs the controller of focus in this work that
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utilizes real-time force and IMU measurements. Following,
Section IV defines the amputee-prosthesis model and describes
the gait generation method. Section V presents the pressure
sensor used in this study and the powered transfemoral prosthesis
platform, AMPRO3, in which the sensor is integrated. The
experimental set-up and results in Section VI show the improved
knee tracking performance with this real-time force feedback for
4 types of terrain and for 2 subjects on a single terrain type.

II. BACKGROUND ON SEPARABLE SUBSYSTEMS

To construct the controller used as the focus of this work and
justify our claim of formal guarantees of stability for the whole
human-prosthesis system, we will provide a brief overview of the
separable subsystem framework along with RES-CLFs starting
in the context of robotic control systems.

A. Robotic Control System

Consider a robotic control system in 2D space with 77 DOFs
and configuration coordinates ¢ = (¢, qJT, qI)T € R" defining
the configuration space Q. We will focus on a subsystem of the
robot defined by coordinates g5 € R" with mg actuators. The
remaining system is defined by ¢; € R with m, actuators. The
attachment point between these systems is modeled as a 3-DOF
rigid joint (x, z Cartesian position, and pitch) and defined with
coordinates qy. Here 7, + ns + 3 = n and m, + m, = m, the
total number of actuators. The coordinates ¢; include the floating
base coordinates gz € R3. The constrained dynamics of the full
system are given by the following Euler-Lagrange equation [20]:

D(q)§+ H(q,d) = Bu+ Ji (q)n (1)
In(Q)§ + Jn(q,q)q = 0, 2)

where D(q) is the inertia matrix, H (g, ¢) is a vector containing
Coriolis, centrifugal, and gravity forces, B is the actuation
matrix for u € R™ control inputs, and Jj,(q) is the Jacobian
of the holonomic constraints h(q) and projects the constraint
wrenches Aj,.

Robotic Subsystem: To develop model-based prosthesis sub-
system controllers, we model the robotic subsystem separately
with floating base coordinates gz € R® where it attaches to
the remaining system. With subsystem configuration coordi-
nates ¢ = (¢5,¢1)" € R", where #j = 1) + 3, the constrained
robotic subsystem dynamics are:

D(q)i+ H(q,q) = Bus + JL (@)hn + T} (@Ff  3)
Tn(@)i + Jn(@,d)i = 0. )

Here F; are the fixed joint interaction forces inputted to this
system and projected into the dynamics by J¢(q). Jj(q) is the
Jacobian of the 7j;, subsystem holonomic constraints i(g) with
constraint wrench 1. By solving for ¢ in the dynamics (3) and
substituting this into the holonomic constraint (4), we solve for
the constraint wrenches:

Jo = (WD VI N (JWD Y (H — Bug — JFFy) — Jnd).
(5)
For the prosthesis, the work of [15] used (5) to calculate
the GRFs modeled as holonomic constraints with the ground,

estimated the fixed joint force Fy, and calculated gp and ¢p
in stance based on inverse kinematics. For this letter we use

Authorized licensed use limited to: CALIFORNIA INSTITUTE OF TECHNOLOGY. Downloaded on September 26,2022 at 19:46:37 UTC from IEEE Xplore. Restrictions apply.



GEHLHAR et al.: POWERED PROSTHESIS LOCOMOTION ON VARYING TERRAINS: MODEL-DEPENDENT CONTROL

the x-direction holonomic constraint to calculate the x-direction
GRF but use a pressure sensor to measure the other GRFs:
z-direction force and y-direction moment. A load cell measures
the fixed joint socket forces Iy and an IMU measures ¢p and
¢pB in non-stance.

Separable Subsystems: With states z, = (¢7,¢")", we
write the full robotic system dynamics (1) as an ODE:

. q 0 u
e [Dl(Q)(H(q,d)JrJh(q)T/\h) " DY q)(B)|
Fq(zq) 9q(Tq)

To apply the separable system framework of [12], we rear-
range the states and define x, = (qlT,q?, qlT,qJT)T and T, =

(qF,¢T)T which, due to the fixed joint as explained in [12],
yields a system of the following form:

i) _[r@), [ o@] [u
s f2(z) 0 ¢°(@)] |us|’
—_—— ~—}/ / — —
f(z) 9(x)
z, € R" zs € R™, u, € R, us € R™s. (6)

+

The remaining control input u,. does not affect the dynamics of
xs, allowing subsystem controller design with the x; dynamics
independent of the x, dynamics. We define a separable subsys-
tem and remaining system [9], [12], respectively,

is = f*(x) + g°(@)us, @)
&y = f"(2) + 91 (2)ur + g5 (2)us. ®

Equivalent Subsystem: The subsystem dynamics still de-
pend on the full system states so we alternatively express the
dynamics of =4 as an ODE using (3) with a method similar to
that used for the full-order dynamics:

[2(X) + g°(X)us,

= 5
X =(zr, 2L, (T e R™

©))
Here 7 = x4, 7, = (¢5,q5)T € R™ are measurable states,
and X is the vector of states & = (Z,21)T and measurable
input ¢ = Fy € R™/ . This system equates to (7) by a transfor-
mation 7'(z) = X, where f*(X) = f(z) and g*(X) = ¢°(x)
for all z. For this robotic system form, this transformation exists
and is given in [12]. An IMU and force sensor could give z,- and
¢ in practice.

Separable Subsystem RES-CLF: With the subsystem now
defined in locally available coordinates X', we define a class of
stabilizing model-dependent subsystem controllers. Using the
work of [9] we construct a rapidly exponentially stabilizing
control Lyapunov function (RES-CLF) V' (z) for the equivalent
subsystem,

erlla? < V(es) < Sl

. C3
f V(X u,)] < -2V (x,),
onf V(X u)] < = ZVi(zs)

(10)

for all 0 <e <1 and X € R", with constants ¢y, ¢z, c3 > 0.
All controllers that satisfy V(X' u,) < —<V () belong to the
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class K(X):

KX) = {us eR™ : V(X,u,) < —CSV(xs)}. (11)

The work of [10] developed RES-CLF controllers with ¢ to tune
€ to yield fast enough convergence such that a hybrid system
and its zero dynamics would not be destabilized by the impact
dynamics of the hybrid system.

Main Theoretic Idea of Previous Work: By the work of [9],
when a RES-CLF stabilizes the remaining system (8), any
controller us € K(X) stabilizes the full-order hybrid system
with zero dynamics. Hence, separating a robotic system and
constructing an equivalent subsystem provides a means to con-
struct model-dependent subsystem controllers using solely local
information guaranteeing full-order system stability while also
utilizing the natural dynamics. In the case of a human-prosthesis
system, we assume the human stabilizes itself based on research
of central pattern generators which suggests biological walkers
demonstrate stable rhythmic behavior [21], meaning they have
limit cycles. All stabilizing controllers for these hybrid limit
cycles belong to the class of RES-CLFs in [9] for the remaining
system.

III. CONTROL METHODS

The ID-CLF-QP of [13] provides an implementable form
of a RES-CLF. We outline this construction for an equivalent
robotic subsystem (3) with the additional J?(q) Fy term in the
dynamics. We explain how we measure this term, the GRFs, and
the floating base coordinates for the prosthesis dynamics.

A. Controller Formulation

To develop a Lyapunov function for the ID-CLF-QP of [13]
we construct outputs to feedback linearize the system and dictate
the motion of the robot.

CLF Construction: We define linearly independent subsys-
tem positional outputs to enforce desired trajectories on the
robotic subsystem,

Ys(25) = yl(zs) — vl (r(zs), @), (12)
where y?(x,) are the actual joint outputs and y¢(7(x,, @) are
the desired trajectories defined by parameters o and modulated
by 7(z), a state-based phase variable. Taking the derivatives
along the equivalent subsystem dynamics (9), we relate the
outputs to the control input w,:

:i/.S = L?gys(x) + Lgst‘sys(X)us.

Here L%Sys(X) and LgsLy.ys(X) denote the Lie deriva-
tives [22]. Because the outputs are linearly independent,
Lgs L§.ys(X) is invertible, making our system feedback lin-
earizable [22] with feedback linearizing controller,
—1
us(X) = (Lge L7ys(X)) (—L?;Sys(X)Jru), (13)

with auxiliary control input v. This controller yields ¢, = v
and the following linearized output dynamics with linear system
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coordinates ¢ = (yI,y1)7,
0 I
lo 0 &+
~—— ~~
F G

We solve the continuous time algebraic Riccati equation,
FTP+ PF - PGGTP+Q =0,

for this linear system with user-selected weighting matrix ) =
QT >0, for P=PT >0 to construct a RES-CLF per the

methods of [10]:
1
Vi =€ | ?]P[OI O]f—fTP%

Taking the derivative gives the convergence constraint:

1 )\mm(Q)
€ Amax(P)

V(& v)=LpV(€) + LaV(E)r < V),

with Lie derivatives along the linearized output dynamics as,
LFV(&) = gT(FTPE =+ PEF)fv
LoV (€) =2TP.G.

ID-CLF-QP: We can write this RES-CLF and its derivative
in terms of x and X to use in the ID-CLF-QP since ¢ depends
on z, through ys(zs) and ys(zs) and the relationship in (13)
shows v depends on X:

v = L2ya(X) + Ly Lysya(X)u

We hence obtain the subsystem RES-CLF (10) with ¢; =

)Lmzn(P)’ Co = )Lma;v(P) and c3 = ::;Z((IQ%

To avoid the matrix inversions required by (14), we use the
facts that v = §j; and the output ys () is a positional constraint,
i.e. ys(q), to write the g, in terms of the robotic subsystem’s

configuration coordinates ¢:

o(X). (14)

. 0 (Oys -\ -, Oys -
s — 7= . 1
¥, 6q(8q )Q+ 8qq (15)
—_— =~
Jy (3,d) Jy (@)

This formulation equates to (14), as shown by [13].

To prescribe a PD controller to ¢ with a control input ug
close to (13), we define v = K,y*(xs) + Kqy®(zs) := Vpa
and minimize the difference between 1,4 and (15) in the QP
cost. We also include the holonomic constraints in the cost
as soft constraints since these are difficult to satisfy precisely
on hardware. With decision variables Y = (g7, ul, 21, §)T €
R", with , = 77 + ms + 7, + 1, and using the terms

[7,(@) o L@
T Jc 5 = N )
(@) 0 [m q>]
we formulate our ID-CLF-QP:

Je(q) =

M . . . 2
T = argmin ||Jo(@ @) + (@) — w|| + oW (X) + po

TeRmv

st. D(q)q+ H(g,q) =

BUS+Jh( ))\h‘f’Jf( )F
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LeV(X) + LaV(X) (J'yc} + Jyg') < —%V(X) +6

(16)

— Umax S Us S Umax-

Here pP4 = (v1,0")", the regularization term W () makes
the system well-posed, o and p are user-selected weights, and
the relaxation term § ensures the torque bounds (—umax, Umax )
are always feasible. (We leave out the arguments on .J,, Jy for
notational simplicity.)

B. Controller Realization for Hardware

While [15] realized a variation of the ID-CLF-QP, this method
was only applied in stance, relied on a force estimation method
for Iy, and used the holonomic constraint wrench Ay, for the
GRFs. This rigid-contact model used for the GRFs does not hold
for a foot contacting a variety of real-world non-rigid terrains.
To overcome these limitations, this letter incorporated an IMU,
load cell, and insole pressure sensor into the prosthesis platform.

Sensor Measurements to Complete Dynamics: While the
floating base positions and velocities can still be obtained in
stance by inverse kinematics with the prosthesis joint positions
and velocities, we use an IMU on the human leg adapter to
measure the floating base y-rotation and angular velocity in
swing. These measurements with the kinematics give the x
and z-Cartesian velocities. The x and z-Cartesian positions do
not affect the dynamics and hence are not required. This letter
employed a 6-axis load cell to directly measure the interaction
forces I’y between the human and prosthesis and an insole
pressure sensor, detailed in Section V, to determine the vertical
GRF F}, . and pitch ground reaction moment M, ,,. The only
remaining unknown force is the horizontal GRF. We solve for
the wrench A, , € R! through a holonomic constraint, assuming
the foot does not slip on the ground.

Force Sensing ID-CLF-QP: The final controller formula-
tion 1s

2
"+ oW (r) + po

(3, 4)G + Jo(q)§ — pP?

T* = argmin
TeRmw

st. D(@) + H(q,q) = Bus + Ji (@) Fy + JF () Fy

LeV(X) + LaV(X) (qu n Jy(j) < —gV(X) o

a7

— Umax S Us S Umax

with  modified set of decision variables Y =
(@" ul M s, 5)T € R and 7, = 7 +mg + 2. The decision
variable Ah « 1s included with the measured GRFs F} . and
My, in Fy = (Apa, Fyoy My,)7.

IV. AMPUTEE-PROSTHESIS MODEL AND GAIT GENERATION

To develop outputs for the human-prosthesis system for the
ID-CLF-QP, we construct a model of the system and use hybrid
zero dynamics trajectory generation methods.

A. Amputee-Prosthesis Model

We model an amputee-prosthesis system as a bipedal robot
with 8 links and 12 DOFs, i.e. n = 12 for (1). The prosthesis
subsystem has coordinates ¢s = (O, 9pa)T for the knee and
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Fig. 2. (Left) The separable human-prosthesis system with full system con-
figuration coordinates. (Middle) The prosthesis equivalent subsystem with
subsystem configuration coordinates. (Right) Transfemoral powered prosthesis
AMPRO3 with labeled hardware components.

ankle pitch respectively, making 7, = 2. The remaining amputee
system has coordinates q; = (q5, O, 01, O1a, 0,1) " defining
the floating base at the torso and the left hip, left knee, left ankle,
and left hip pitch joints respectively. The fixed joint coordinates
qy define the interface between the amputee’s partial thigh and
the top of the prosthesis. See Fig. 2. Every non-fixed joint is
actuated, giving ms; = 2 and m, = 4.

The human subject’s height and weight along with human
inertia, limb mass, and limb length percentage data from [23],
[24] provide the human parameters. We base the prosthesis
model parameters on the CAD model of AMPRO3 [25], our
transfemoral powered prosthesis. This full system model gives
the dynamics of (1). The prosthesis equivalent subsystem with
floating base coordinates ¢p at the socket gives the dynamics
(3) used in (17).

For this initial realization of a force sensing model-dependent
prosthesis controller, we limit the scope to a knee controller. We
use the given model in the ID-CLF-QP to generate a knee torque,
but predefine a torque for the ankle based on a varying set point
PD controller. Since we do not enforce an ankle trajectory, we
generate a prosthesis knee trajectory for the prosthesis using the
full system model without ankles. Future work will realize this
force sensing ID-CLF-QP controller on both the knee and ankle
for a more complex gait that emulates human heel-toe roll.

Hybrid Systems and Human-Like Gait Generation: Because
bipedal walking contains both discrete and continuous dynam-
ics, we model the amputee-prosthesis system as a hybrid sys-
tem [26]. Since the amputee-prosthesis system is asymmetrical,
we consider two domains of continuous dynamics (1) D,, with
indices v € {ps, pns} for prosthesis stance and for prosthesis
non-stance, respectively. Each domain has a 3 dimensional holo-
nomic constraint for the respective stance foot ground contact
in addition to the fixed joint constraint. Events connect these
domains together in a directed cycle, specifically the event of
the non-stance foot contacting the ground. The work of [27]
explains the impact dynamics occurring at foot-strike.

To design output trajectories for the amputee-prosthesis sys-
tem that are invariant through impact, we use a hybrid zero
dynamics condition [28] in an optimization whose solution
must also satisfy the dynamics and feasibility constraints. We
design the cost function to minimize the difference between
the outputs (the joints) and human joint kinematic walking data
obtained through motion capture [29]. The optimization yields
parameters for each domain «, that define Bézier polynomials
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for the desired trajectories y¢ , (7(z), o, ) parameterized by the
state-based phase variable 7(x), forward hip position, which
goes from 0 to 1 in each domain D,, [28]. Details given [29]. The
resulting trajectories match the human data well and are shown
in [15]. Since the optimization gives a prosthesis trajectory that
matches human walking data and is stable with the human side
emulating the human data, we assume in practice the human
will still be able to stabilize itself with the prosthesis following
this human-like trajectory. This satisfies the required condition
about the human for our main theoretical idea in II to ensure full
human-prosthesis system stability for a RES-CLF controlling
the prosthesis.

V. PROSTHESIS PLATFORM FOR CONTROLLER REALIZATION

We integrated a pressure sensor, a load cell, and IMU into
a current powered prosthesis platform to achieve model-based
prosthesis control with real-time in-the-loop forcing sensing.
First, we will describe the pressure sensor selection and use due
to the novelty of incorporating plantar pressure data as real-time
force input to a model-dependent controller.

A. Pressure Sensor

The pressure sensor used for this study met the restrictive
real-time control requirements for our application. Most com-
mercially available insole pressure sensors are designed for
recording data for offline gait analysis and are incompatible
with our application. The sensor for this study is $2.5-3 k and a
company-provided API returns the raw data in real-time over a
USB connection.

The pressure sensor used is a SensorProd Inc. Tactilus Foot
Insole Sensor System, High-Performance V Series (SP049).
Made of a piezoresistive sensor array, the insole pressure sensor
can sense up to 206.8 kPa at 101 separate points per foot. The
sensor provides a resolution of 1 pPa, along with an accuracy
of £10%, repeatability of £2%, and a hysteresis of +5%. To
interface with the pressure sensor, we use an UP Board (02/32),
a small x86 single-board computer.

We incorporated the Tactilus API, a precompiled C++ Win-
dows Library from SensorProd Inc., into a Windows C++
program which scanned the pressure readings in real time at
about 200 Hz with the UP Board through a USB connection.
We applied a Gaussian smoothing filter and simple moving
average filter to the sensor element pressure readings. With the
sensor element pressure, surface area, and displacement from
the ankle’s center of rotation we calculate the vertical GRF F
and ground reaction moment M, ,,.

Prosthesis Platform AMPRO3: We use the transfemoral pow-
ered prosthesis plattorm AMPRO3 custom-built and introduced
in [25]. Two brushless DC motors (MOOG BN23) with 1 Nm
peak torque actuate the knee and ankle pitch joints through
interactions with their respective timing belt connected to each
joint’s harmonic gear box. This gear reduction system gives a
120:1 mechanical reduction for the knee and 175:1 for the ankle.
The motors are controlled by 2 ELMO motion controllers (Gold
Solo Whistle) which receive position and velocity feedback
from 2 incremental encoders. These motion controllers in turn
send this feedback to the microprocessor. The microprocessor
returns a commanded torque to the motion controllers. The
controller algorithms run on the Beaglebone Black Rev C (BBB)
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Fig. 3. Block diagram depicting how the Beaglebone microprocessor, motion
controllers, IMU, load cell, and pressure sensor are involved in the control
scheme.

microprocessor at 166 Hz and are coded in C++ packages with
ROS. The coded force sensing ID-CLF-QP is based on code
from [13].

The insole sensor is physically integrated into the prosthetic
system through placement over the insole of a shoe worn by the
prosthesis foot. The sensor connects to the UP Board through
USB, and sends force and moment measurements to the BBB
through UDP over Ethernet. There is a 5 ms time delay between
when the sensor is read and the BBB receives the data caused
largely by the time it takes the Windows program to receive all
the data from the sensor.

A Yost Labs 3-Space Sensor USB/RS232 IMU is mounted
to the side of the human leg adapter on the prosthesis platform.
This connects to the BBB via USB and streams data at 750 Hz. A
6-axis load cell (M3564F, Sunrise Instruments) is mounted at the
interface between the proximal end of the prosthesis knee joint
and distal end of the human leg adapter with custom designed
aluminum parts. The load cell can measure forces/moments
along the x and y-axes up to 2500 N/200 Nm and z-axis up
to 5000 N/100 Nm. A signal conditioning box (M8131 Sunrise
Instruments) connects to the BBB with a custom-designed cape
and sends data and sends new data via CAN communication once
every control loop. A newly designed electronics box mounted
on the iWalk houses the load cell box, UP Board, and a 9-cell
4400 mAh Li-Po battery (Thunder Power RC) which powers the
whole system. Fig. 2 shows AMPRO3 with the aforementioned
components labeled and Fig. 3 shows a control block diagram
with the sensors. The prosthesis weighs 5.95 kg on its own,
and totals 10.54 kg with the iWalk, electronics box, battery, and
Sensors.

VI. HUMAN-PROSTHESIS EXPERIMENTATION

On this prosthesis platform, we realize our model-dependent
force sensing knee controller, resulting in stable human-
prosthesis walking. We present the results here.

A. Experimental Procedure

A 1.7 m, 62 kg non-amputee human subject (Subject 1) and
a 1.8 m, 75 kg non-amputee subject (Subject 2) tested the
prosthesis device with an iWalk adapter. The iWalk allows a
subject’s bent right leg to be strapped to the device for walking
as shown in Fig. 1. A foam shoe lift strapped to the bottom of
their left leg’s shoe evens the length difference between their
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Fig.4. Gaittiles of 2 subjects walking on a rubber floor with the force sensing
ID-CLF-QP prosthesis controller.
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Fig. 5. (a) Phase portrait of first 18 steps using the force sensing ID-CLF-QP

controller (17) on a sidewalk, showing the system yields a stable periodic orbit.
(b) (top) CLF bound and derivative for first 4 steps of the same experiment, show-
ing the prosthesis usually satisfies the stability condition, (bottom) magnified
plot of the CLF bound, w.r.t. phase variable 7 ().

own left leg and their right leg with the prosthesis. We applied
the proposed controller to the knee in both stance and non-stance
phase. A PD controller with varying set-point was applied to the
prosthesis ankle. Both subjects walked with the prosthesis for
at least 30 steps with 4 different controllers on a rubber floor.
Gait tiles of an experiment are shown in Fig. 4. Subject 1 walked
with the prosthesis with 2 of these controllers on an additional
3 terrains: an outdoor track, grass, and a sidewalk.

The first controller is the force sensing ID-CLF-QP (17), the
controller of focus in this letter, using the pressure sensor to
obtain F, ., M, the load cell to obtain F’y, and the IMU in
swing for ¢p and qp. For comparison, we tested an ID-CLF-QP
without including the measurements from the pressure sensor
and load cell to see the effect the force sensor measurements have
on the controller performance. Here the GRFs were determined
with the holonomic constraints (4) but the fixed joint forces
Fy were considered 0. Thirdly, we compared the performance
to the previous force estimating ID-CLF-QP in [15], where the
holonomic constraints are again used to determine the GRFs and
the effect of the socket forces is estimated with a force estimator
with amoving average time window of 30. Here the time window
was increased to yield a smooth torque response when using the
same gains K p, K p inv/pq as those selected for the force sensing
ID-CLF-QP. The gains vpq and all other user-selected terms
in the QP were kept consistent between controllers. Finally,
we compared the performance to a traditional PD controller,
which is used in other prosthesis control methods [5], [30]. The
experimental results are shown in the supplemental video [31].

Hardware Results: The knee phase portrait of Fig. 5(a). shows
the stability of this main controller for 18 steps on a sidewalk.
Fig. 5(b). depicts the CLF derivative with its upper CLF stability
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Fig. 6. (a) Control input (mean and 3 standard deviations) and (b) output

tracking with force sensing ID-CLF-QP and the ID-CLF-QP without force
sensors for four different terrains for 11 step cycles, w.r.t. to phase variable
7(zs).

TABLE I
TRACKING RMSE OF 4 TERRAINS FOR 2 CONTROLLERS

Stance RMSE (6) Swing RMSE (6)

Sensor No Sensor Sensor No Sensor
Rubber Fl. 0.0409 0.0797 0.0341 0.0349
Track 0.0460 0.0662 0.0302 0.0297
Grass 0.0398 0.0740 0.0328 0.0307
Sidewalk 0.0380 0.0763 0.0331 0.0295

bound for the first 4 steps. While the derivative occasionally ex-
ceeds the bound because of the relaxation term in the QP (17), the
overall human-prosthesis system can still be input-to-state stable
as proved in [32]. Additionally, although the force measurements
may have error from sensor noise and time delay, the work
of [32] showed for a bounded error in the force measurement the
prosthesis will still be stable to a set and conditions exist such
that the human will remain exponential input-to-state stable [33]
when the prosthesis deviates from its nominal control law.

Fig. 6(a). shows the mean torque inputs with 3 standard
deviations of the first two controllers for 11 step cycles on 4
different terrains. (Note the standard deviations overlap appears
as purple.) Both controllers exhibit variation between steps on
a given terrain and variation between terrains, however the
variation in the force sensing ID-CLF-QP leads to better tracking
performance. Fig. 6(b). depicts the tracking performance with
the mean. The human motion capture data used to generate
the desired trajectory is also depicted. The swing tracking is
similar for all controllers, so only one example is shown. The
force sensing ID-CLF-QP achieves better tracking in stance than
the ID-CLF-QP without force sensors on all terrains. Table |
shows the root mean square error (RMSE) of the force sensing
ID-CLF-QP (“Sensor”) over 11 step cycles is lower than the
ID-CLF-QP with no force sensors (“No Sensor”) in stance for
all four terrains.

Fig. 7 shows that the torque and tracking results for the four
controllers for 2 subjects. The stance tracking results show better
tracking performance from the force sensing ID-CLF-QP for
both subjects compared to the 3 other controllers. Table II shows
the RMSE of the tracking performance over 11 step cycles where
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Fig. 7. (a) Control input (mean and 3 standard deviations) and (b) output

tracking (mean) with force sensing ID-CLF-QP, no sensor ID-CLF-QP, force
estimating ID-CLF-QP, and PD controller for 11 step cycles, w.r.t. phase variable

T(xs).

TABLE 11
TRACKING RMSE OF 4 CONTROLLERS FOR 2 SUBJECTS

Stance RMSE () Swing RMSE (0)

Subject I~ Subject 2 | Subject 1 ~ Subject 2
Sensor 0.0237 0.0409 0.0331 0.0341
No Sensor 0.0455 0.0797 0.0372 0.0349
Force Est 0.0357 0.0552 0.0409 0.0401
PD Control | 0.0484 0.0522 0.0464 0.0427

the force sensing ID-CLF-QP has the lowest RMSE out of all of
the controllers in stance for both subjects. The greater difference
between RMSE values for the stance phase makes sense since
this is when the prosthesis undergoes loading from the user
and our controllers’ vary in their response to these interaction
forces. The force sensing ID-CLF-QP’s better tracking for both
subjects without tuning in between suggests this control method
is more transferrable between subjects, meaning it could lend a
method that works for multiple subjects without hours of expert
tuning for each subject, as is currently required by impedance
control methods [7]. Future work will test this control method on
more subjects to further investigate its transferability between
subjects.

These results show the force sensing ID-CLF-QP can achieve
better tracking utilizing force sensors than without, suggest-
ing that accounting for the forces in the dynamics allows this
model-dependent controller to respond to its real-time loading
conditions to achieve good tracking. This also suggests the
improvement in model accuracy allows this model-dependent
controller to better capture the nonlinearities of a trajectory,
motivating the use of model-dependent prosthesis controllers to
achieve more dynamic behaviors. This motivates further study
of model-dependent prosthesis control methods to assess if
the model-dependence can yield a more transferable method
between prosthetic devices and users, requiring less tuning and
yielding formal guarantees of stability.
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VII. CONCLUSION AND FUTURE WORK

This work achieved the first experimental realization of a
model-dependent prosthesis knee controller in both stance and
swing using real-time in-the-loop force measurements to com-
plete the dynamics using an insole pressure sensor, load cell, and
IMU resulting in stable human-prosthesis walking. By directly
measuring the forces from the human and ground with the load
cell and pressure sensor, we enable the prosthesis to account for
its real-world conditions. These sensing methods increase the
validity of our human-prosthesis stability guarantees and could
empower a variety of amputees to walk in varying ways across
changing terrain.

This controller achieved better tracking on 4 types of terrain
compared to its counterpart without force sensors. Additionally
this controller outperformed its counterpart with force estima-
tion and a traditional PD controller on 2 subjects. These results
demonstrate the controller’s robustness and ability to adapt
to varying external forces from the user and the ground. Its
improved performance on 2 subjects without tuning in between
suggests the real-time force response could replace the need to
tune many parameters for every user and behavior, as is required
in typical impedance prosthesis control methods [7]. Since this
control method relies on real-time dynamic force sensing, as
opposed to static tuned parameters, to respond to the forces
induced by the user and the terrain, it could provide a more
transferable method between users and behaviors, reducing the
time amputees spend in a tuning session.

Future work will test more subjects, including an amputee
subject, to further assess this controller’s ability to achieve im-
proved tracking performance while undergoing varying external
forces. This controller will be applied to the ankle in addition
to the knee for a more complex multi-contact gait [34] that
emulates human heel-toe roll, to achieve a more natural and
efficient gait. The CoP measurement from the pressure sensor
enables use of CoP as a phase variable [5] and could be used as
a guard to determine transitions in multi-domain multi-contact
walking [34].
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