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Abstract— This paper presents a framework that leverages
both control theory and machine learning to obtain stable
and robust bipedal locomotion without the need for manual
parameter tuning. Traditionally, gaits are generated through
trajectory optimization methods and then realized experimen-
tally — a process that often requires extensive tuning due to
differences between the models and hardware. In this work,
the process of gait realization via hybrid zero dynamics (HZD)
based optimization is formally combined with preference-based
learning to systematically realize dynamically stable walking.
Importantly, this learning approach does not require a care-
fully constructed reward function, but instead utilizes human
pairwise preferences. The power of the proposed approach
is demonstrated through two experiments on a planar biped
AMBER-3M: the first with rigid point-feet, and the second
with induced model uncertainty through the addition of springs
where the added compliance was not accounted for in the
gait generation or in the controller. In both experiments,
the framework achieves stable, robust, efficient, and natural
walking in fewer than 50 iterations with no reliance on a
simulation environment. These results demonstrate a promising
step in the unification of control theory and learning.

I. INTRODUCTION

Despite advancements within robotics, realizing dynamic

bipedal locomotion on hardware [1] remains a benchmark

problem across the fields of control, engineering, high-

performance computing and machine learning. The dynamics

and control community has historically approached the chal-

lenge of walking from theory applied to real-world platforms,

for example Raibert’s seminal work on hopping robots [2].

Such theory includes locomotion stability, which has been

well studied and realized experimentally from various control

perspectives including zero moment point (ZMP) [3] and

simple model-based methods, such as LIP [4], SLIP [5], and

centroidal dynamics [6]. These methods, although powerful,

do not account for the full-order dynamics of the system.

Alternatively, the hybrid zero dynamics (HZD) framework

reduces the full-order dynamics to a lower-dimensional zero

dynamics manifold, through which stability of the over-

all system can be certified. This is accomplished by first

characterizing walking as a hybrid system with continuous

dynamics and discrete state jumps. The HZD framework then

uses Lyapunov methods to guarantee stability of the entire

hybrid system [7]–[9]. This approach has been demonstrated
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Fig. 1. Through 50 iterations of experiments, the proposed combination
of preference-based learning and HZD optimization transforms failed gaits
into robust walking on the AMBER-3M robot with a pair of compliant legs.

for walking [10]–[12], running [13], and quadrupedal loco-

motion [14]. To accomplish experimental success, however,

one needs more than the theoretical stability guarantees —

one must achieve robustness against unmodeled dynamics,

which is especially difficult for model-based methods such

as the HZD framework. This “last-mile mission” was histor-

ically solved by intensive parameter tuning, an arduous and

nonintuitive process which inevitably affects the scalability

of translating theory to hardware in a practical setting.

To circumvent this engineering empiricism, the field of

machine learning has approached bipedal locomotion from

different perspectives, including reinforcement leaning and

imitation learning. Reinforcement learning simplifies the

process of “learning to walk” [15] without prior knowledge

[16]–[19], but because this methodology relies on a carefully

crafted reward function, the behavior is exclusively deter-

mined by its construction. This motivates the second method,

imitation learning, which infers the underlying reward func-

tion from expert demonstrations [20]–[22]. While both meth-

ods have demonstrated promising results, they heavily rely

on physical engines such as Bullet [23], MuJoCo [24], and

RaiSim [25]. As realistic as these rigid-body-dynamics based

simulation environments have become, they still struggle

with rough-terrain dynamics such as elastic impacts, slipping

contacts, and granular media. These differences become more

apparent when transferred to real-world systems.

As opposed to relying on just one field, this paper explores

combining the successes of both: the formality of stability
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from control theory and the ability to learn the relationship

between complex parameter combinations and their resulting

locomotive behavior from machine learning. This is accom-

plished by building upon our previous results [26], [27]

and systematically integrating preference-based learning with

gait generation via HZD optimization. The result is optimal

walking on hardware based only on pairwise preferences

from the operator (i.e. the user prefers gait A over gait B).

We demonstrate the power of this framework through two

experiments on a modular biped, AMBER-3M, shown in Fig.

1. In both experiments, stable, robust, efficient, and visually

appealing walking is achieved on hardware in fewer than 50

iterations, with no reliance on a simulation environment.

II. HZD GAIT GENERATION

The underlying control scheme of the proposed learning

framework is based around two concepts: (1) hybrid zero

dynamics (HZD) [7], [8], which theoretically addresses lo-

comotion stability, and (2) trajectory optimization, namely

direct collocation [28], which produces a walking trajectory

(gait) that encodes the stability of the closed-loop system.

We will briefly review this methodology in this section.

A. Hybrid Zero Dynamics Method
Inherently, locomotion consists of alternating sequences of

continuous-time dynamics and discrete-time impacts, which

can be encoded as a hybrid control system [29]. Consider a

robotic system with the configuration coordinates q ∈ Q ⊂
R

n and the full system state x = (q, q̇) ∈ X ⊂ TQ. The

continuous-time control system is given by:

D(q)q̈ +H(q, q̇) = Bu, (1)

where D(q) ∈ R
n×n is the inertia matrix, H(q, q̇) ∈ R

n

is the drift vector, B ∈ R
n×m is the actuation matrix, and

u ∈ U ⊂ R
m is the input. Here we present the “pinned”

model for notional simplicity, but the “unpinned model”

could similarly be considered [30]. Note that m < n for

underactuated robotic systems, such AMBER-3M.
As the robot’s foot strikes the ground, an instantaneous

change in velocity occurs causing the system state to sud-

denly jump. Taking z : Q → R to represent the height of the

swing foot, the admissible states are given by the domain:

D := {(q, q̇) ∈ X | z(q) ≥ 0} ⊂ X . The region where

this instantaneous change in velocity occurs is given by the

switching surface S ⊂ D defined by:

S := {(q, q̇) ∈ X | z(q) = 0, ż(q, q̇) < 0}. (2)

Taking x := (q, q̇), the discrete dynamics during this impact

event are encoded by the reset map Δ : S → X , defined as:

x+ = Δ(x−), x− ∈ S (3)

where the x+ and x− denote the pre- and post-impact state

respectively. Finally, one can convert (1) to a control system:

ẋ = f(x) + g(x)u, where when combined with (2) and (3)

yields the single-domain hybrid control system:

HC =

{
ẋ = f(x) + g(x)u x /∈ S
x+ = Δ(x−) x− ∈ S, (4)

which can be extended to the multi-domain case; for more

details on both single and multi-domain models, refer to [7].

The HZD framework reduces the system HC to a lower-

dimensional system. Consider the zero dynamics surface:

Zα := {x ∈ D | y(q, α) = 0, ẏ(q, α) = 0},
where y : Q → R

m is defined through the following outputs
or virtual constraints (encoding desired behavior):

y(q, α) = ya(q)− yd(τ(q), α). (5)

Here, ya(q) is the actual measured output of the system,

and yd(τ(q), α) is the desired output. For the following

discussion, we take the desired output to be parameterized

by the state-based timing variable τ(q) and a collection

of Bézier coefficients α. Through the use of a stabilizing

controller u∗(x), e.g., given by feedback linearization or

control Lyapunov functions [8], [9], [29], one can drive y →
0 exponentially. The end result is the closed-loop dynamics:

ẋ = fcl(x) = f(x) + g(x)u∗(x). In order to guarantee

stability of a hybrid system, a hybrid invariance condition

must be satisfied, encoded through the HZD condition:

Δ(S ∩ Zα) ⊂ Zα. (6)

The remaining step to achieving hybrid invariance is to

generate α such that the HZD condition is satisfied.

B. Trajectory Optimization

To obtain α, we use a direct collocation based optimization

algorithm, FROST [28], which has been previously utilized

for efficient gait generation of walking [11], running [13],

and quadrupedal locomotion [31]. Direct collocation is an

implicit Runge–Kutta method to approximate the numerical

solution of certain dynamical systems, namely differential-

algebraic equations and partial differential equations. The

trajectory optimization problem is stated as:

HZD Optimization:
{α∗, X∗} = argmin

α,X
Φ(X)

s.t. ẋ = fcl(x) (Closed-loop Dynamics)

Δ(S ∩ Zα) ⊂ Zα (HZD Condition)

Xmin � X � Xmax (Decision Variables)

cmin � c(X) � cmax (Physical Constraints)

amin � p(X) � amax (Essential Constraints)

where X = (x0, ..., xN , T ) is the collection of all decision

variables with xi the state at the ith discretization and T
the duration, Φ(X) is the cost function, and c(X) is the set

of physical constraints on the optimization problem. These

physical constraints are included in every gait generation

framework to encode the physical laws of real-word, such

as the friction cone condition, workspace limit, and motor

capacity [12]. In this work, we specify a specific subset

of physical constraints as p(X), which we term essential
constraints and discuss further in Sec. II-C. With this op-

timization formulation, we can use nonlinear programming

(NLP) solvers, such as IPOPT [32], to efficiently synthesize
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an optimal walking gait. The end result is a stable periodic

solution to the walking dynamics that is parameterized by

some static set of Bézier coefficients α∗.

C. Essential Constraints
Expert operators typically tune amin ∈ R

v and amax ∈ R
v

of (Essential Constraints) in the hopes of guiding the HZD

optimization towards a solution that maximizes the operators’

subjective metric of “good” walking. Since the construction

of these constraints is often essential towards achieving

experimental robustness, we term them essential constraints.

Traditionally, essential constraints consist of gait features

such as average velocity, step length, foot clearance, and

impact velocity. Often, practitioners derive intuition on how

to shape essential constraints from years of experience. One

example of how this intuition relates to stability is Raibert-

type controllers [2], which tune the relationship between step

length and walking velocity based on a simplified model.
In this paper, we present a systematic approach towards

tuning essential constraints using preference-based learning.

To do so, we reformulate (Essential Constraints) as:

a− δ � p(X) � a+ δ,

where a ∈ R
v consists of v constraint values, and δ ∈ R

v

defines the equality tolerance for each constraint. Thus, the

goal of the learning is to identify a∗ := argmaxa∈Rv U(a),
where U : Rv → R is the underlying utility function. In our

work, we construct the components of a to be:

1) average forward velocity of the torso (m/s)

2) phase variable value at which to enforce minimum foot

clearance, τc
3) minimum nonstance foot clearance enforced at τc (m)

4) downward velocity enforced at impact (m/s)

5) step length, i.e. the forward distance between swing

foot and stance foot at impact (m),

which are defined over the search space of possible parameter

combinations A, a discretization of Rv , as given in Table I.

D. Benefits of Preference-Based Learning
The traditional hand-tuning process requires a human

operator to make assumptions about the underlying utility

function U , which is difficult given the following: the non-

intuitive relationship between parameter combinations and

the resulting experimental behavior; and the need to ac-

count for numerous factors including stability, robustness

to perturbations/model uncertainty, and visual appearance.

Additionally, U admits no obvious mathematical description;

eliminating the use of reward-based tuning methods.
Alternatively, we propose the use of preference-based

learning to identify a∗ using only pairwise preferences,

which take advantage of a human’s natural ability to combine

many factors into a single judgment of “better” or “worse”.

Although this requires the human to provide feedback, there

are two major benefits of our approach: 1) the duration of

the tuning process is reduced significantly compared to hand-

tuning; and 2) pairwise preferences are much easier for a

naïve user to provide compared to manually navigating the

complex search space of parameter combinations.

TABLE I

ESSENTIAL CONSTRAINT ACTION SPACE

Essential Constraint Bounds [amin, amax] Disc. d
Average Forward Velocity (m/s) [0.3, 0.6] 0.05

Clearance Tau (·) [0.4, 0.7] 0.1
Minimum Foot Clearance (m) [0.05, 0.19] 0.02

Impact Velocity (m/s) [−0.8,−0.2] 0.1
Step Length (m) [0.2, 0.4] 0.05

Algorithm 1 LINECOSPARNLP
1: Construct A using amin, amax, and d
2: Initialize datasets {D0,E0 = ∅}
3: for all i = 1, . . . , N do
4: if i == 1 then
5: Obtain a1 = {a1

1, ...., a
n
1 } as uniform-random

6: else
7: Generate Li := random line through a∗

i−1

8: Construct subset Si = Li ∪Ei−1

9: Approximate P(USi |Di−1) as N (μSi ,ΣSi)
10: Draw k = 1, ..., n samples: fk ∼ N (μSi ,ΣSi)
11: Obtain ai = {ak

i = argmax
a∈Si

fk(a)|k = 1, ...n}
12: end if
13: Execute outputs of NLP for ai on the system
14: Append executed actions: Ei = Ei−1 ∪ ai

15: Query operator for preference feedback pi

16: Append preference feedback: Di = Di−1 ∪ pi

17: Approximate P(UEi |Di) as N (μEi ,ΣEi)
18: Update a∗

i = argmax
a∈Ei

μEi(a)

19: end for

III. LEARNING FRAMEWORK

To learn the optimal action a∗ in as few iterations

as possible, we introduce a framework built around

a high-dimensional preference-based learning algorithm

LINECOSPAR [27] that learns a Bayesian posterior over the

utility function U . The new framework, LINECOSPARNLP,

still relies on pairwise preferences obtained from a human

observing the experimental behavior of the robot, but embeds

the learning directly into an HZD optimization problem,

eliminating the need for a pre-computed gait library. We will

first present LINECOSPARNLP, and then explicitly discuss

the differences between the two frameworks.

A. The LINECOSPARNLP Algorithm

The procedure of the LINECOSPARNLP algorithm is

shown in Alg. 1. First, to set up the learning problem, upper

and lower bounds on a ∈ R
v along with the granularity

of discretization d ∈ R
v
+ are chosen by the operator. This

leads to the discrete search space A with |A| = ∏
d. The

corresponding set of utilities is defined as U : A → R, with

UB used to denote the restriction of U on B ⊂ A.

Each iteration i of the algorithm is as follows. First, n
actions, denoted as the set ai := {a1i , . . . , ani } ∈ R

v×n,

must be selected to give to the NLP. The parameter n can

be changed depending on how many actions the operator

would like to sample in each iteration. Because the actions

are compared in pairs, n actions equates to m =
(
n
2

)
pairwise preferences. In the first iteration, a1 is constructed

using uniform-random actions. During every subsequent it-

eration, the algorithm utilizes a Self-Sparring approach [33]
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to Thompson sampling which is a sample-efficient sampling

method for regret-minimization. In general, to select n
actions, Thompson sampling works by drawing n samples

from a given distribution, such as the normal distribution

N (μB ,ΣB) over actions a ∈ B ⊂ A:

fk ∼ N (μB ,ΣB) ∀k = 1, . . . , n, (7)

and selecting the actions that maximize the samples:

aki = argmax
a∈B

fk(a) ∀k = 1, . . . , n. (8)

To be computationally tractable, LINECOSPARNLP per-

forms Thompson sampling only considering the subset of

actions Si ⊂ A. This subset is defined as Si := Li ∪ Ei−1,

with Ei−1 being the dataset of previously executed actions

and Li ⊂ A being a random linear subspace which intersects

the best action from the previous iteration, a∗i−1. Using

this subset, Thompson sampling draws n samples from

the posterior distribution P(USi |Di−1), where Di−1 is the

preference dataset from the previous iteration. The posterior

is modeled as proportional to the product of the preference

likelihood and the Gaussian prior [34]:

P(USi
|Di−1) ∝ P(Di−1|USi

)P(USi
). (9)

The Gaussian process prior is computed as:

P(USi) =
exp

(− 1
2
USi(Σ

pr
i )

−1USi

)
(2π)

|Si|
2 |Σpr

i |1/2
, (10)

where Σpr
i ∈ R

|Si|×|Si| with [Σpr
i ]j,k = K(ajSi

, akSi
) for the

set of actions aSi in Si, and K being a kernel of choice

(taken as a squared exponential kernel in this work). The

preference likelihood function is computed as:

P(Di−1|USi) =

i−1∏
j=1

n∏
k=1

g

(
U(ak

j )− U(ak
j )

cp

)
, (11)

where g : R → (0, 1) is a monotonically-increasing acti-

vation function, and cp > 0 models the expected noisiness

of the preference feedback. In this work, we select g(x) :=
1

1+e−x to be the heavy-tailed sigmoid function because it was

empirically found to improve performance [27].

Equipped with (10) and (11), the posterior (9) can then

be estimated via the Laplace approximation as in [34] which

yields a multivariate Gaussian, N (μSi
,ΣSi

). Finally, apply-

ing this distribution to (7) and (8) yields ai. These sampled

actions are then given to the NLP, whereby corresponding

gaits are generated, the outputs are executed on the robot, and

ai is appended to Ei. We define the set of actions executed

on hardware up to and including those sampled in iteration

i as Ei := {a1, . . . ,ai} ∈ R
v×n×i ⊂ A.

After demonstrating the gaits on hardware, the human

operator is queried for m pairwise preferences, denoted as

pi = {p1i , . . . , pmi } ∈ R
m. The collection of all preference

feedback up to and including iteration i is denoted Di :=
{p1, . . . ,pi} ∈ R

m×i. Note that it is possible for pi = ∅
when all sampled actions do not converge, or when the user

chooses to give feedback of “no preference”.

Fig. 2. The experimental procedure is illustrated in terms of each iteration
i with n denoting the number of gaits compared in each iteration. The
experiments presented in this work used n = 2. Using this notation, the set
of n actions given to the HZD optimization is denoted: ai = {a1i , . . . , ani }.
The resulting n sets of Bézier coefficients given to the controller are denoted
αi = {α1

i , . . . , α
n
i }.

Lastly, the algorithm updates its belief of a∗ by modeling

the posterior again using Di. Since obtaining the posterior

over the entire search space A for high-dimensional action

spaces has been shown to be computationally intractable

[27], the posterior is only updated over Ei:

P(UEi |Di) ∝ P(Di|UEi)P(UEi), (12)

which is approximated using the same procedure as for

P(USi
|Di−1) and applying the Laplace approximation to

obtain the distribution N (μEi ,ΣEi). The algorithm’s belief

of the optimal action after iteration i is finally updated as:

a∗i = argmax
a∈Ei

μEi
(a).

B. Changes to LINECOSPAR for use with a NLP

Three notable changes were made to the algorithm

LINECOSPARNLP in comparison to LINECOSPAR. First,

the LINECOSPARNLP selects Li to intersect a∗i−1 as

opposed to a∗i−2 which leverages more recent preference

feedback. This change requires two posterior updates in each

iteration but results in fewer required iterations. Second,

LINECOSPAR uses a buffer method to compare executed ac-

tions with previously executed actions which results in higher

sample-efficiency. However, when considering preference-

based learning towards gait generation, it is important to

account for the computation time required to obtain gaits. For

this reason, we modify the LINECOSPARNLP algorithm

to sample and query n > 1 actions in each iteration. This

results in worse sample-efficiency, but allows for batched gait

generation that enables the generated gaits to be executed on

hardware back to back. Lastly, in LINECOSPAR, coactive

feedback, otherwise known as user suggestions, is also added

to the dataset Di to improve sample-efficiency. However,

these suggestions rely on understanding the mapping be-

tween a and U(a); because this mapping is rarely well-

understood for parameters of a nonlinear optimization prob-

lem, LINECOSPARNLP does not utilize coactive feedback.

2807

Authorized licensed use limited to: CALIFORNIA INSTITUTE OF TECHNOLOGY. Downloaded on September 26,2022 at 20:29:22 UTC from IEEE Xplore.  Restrictions apply.



IV. LEARNING TO WALK IN EXPERIMENTS

We experimentally deploy LINECOSPARNLP (open-

source code: [35]) to tune the 5 essential constraints outlined

in Table I on the planar bipedal robot, AMBER-3M [36].

This custom research platform has three interchangeable

lower-limb configurations: flat-foot, point-foot, and spring-

foot. We specifically selected this platform because of its

engineering reliability [37], enabling consistent data collec-

tion to isolate the effects of various gaits in the learning

process. The controller for AMBER-3M is implemented on

an off-board i7-6700HQ CPU @ 2.6GHz with 16 GB RAM,

which computes desired torques and communicates them

with the motor drivers. The motor driver communication and

the control logic run at ∼1kHz, each on a separate core.

A. Experimental Procedure

In the experiments, walking gaits are generated by the

HZD-based method presented in Sec. II. We take ya(q) :=
qa ∈ R

4 as the position of the four motorized joints of

AMBER-3M, τ(q) to be the linearized forward hip position,

and use a 5th-order Bézeir polynomial (α ∈ R
4×6) to

describe the desired output trajectories. Additionally, the cost

function is selected to be the mechanical cost of transport

(MCOT), a common metric for locomotion efficiency:

MCOT =

∫ tf

t0

P (t)

mgv
dt, (13)

where P (t) =
∑4

i=1 |ui(t)q̇
a
i (t)| is the 2-norm sum of power.

The average optimization run time is 0.1 second per

iteration, with each gait averaging 160 iterations. The exper-

imental procedure is illustrated in Fig. 2. In our experiments,

the learning was conducted for n = 2, corresponding to

two gaits being compared in each iteration. This was chosen

because we empirically found that operators sometimes had

difficulty remembering the details of more than two gaits at a

time, leading to the most reliable preference feedback when

n = 2. Note that other applications may benefit in a higher

n, which would increase the rate of learning.

Each trial began by initializing AMBER-3M in a static

double-support configuration, starting the treadmill, and at-

tempting to push the robot into the designed periodic orbit.

If the resultant dynamics were not stable, extra precaution

was taken to give the gait the best chance at succeeding.

Once the gait reached its orbit, the robot was released

and the robustness of the gait to various disturbances was

investigated. After both gaits were executed on the physical

robot, a preference was collected from the human operator

observing the physical realization of the walking. In some

iterations, video footage was also reviewed before giving

a preference. The criteria used to determine preferences

between gaits were the following (in order of prioritization):

• Capable of walking

• Robust to perturbations in treadmill speeds

• Robust to external disturbance

• Does not exhibit harsh noise (e.g. during impact)

• Is visually appealing (intuitive judgment from operator)

Fig. 3. The final obtained utilities for the visited actions, averaged over
the two dimensions not shown on each subplot. The optimal action is
illustrated by the yellow star ([0.4399, 0.5425, 0.0759,−0.6040, 0.3190]
for AMBER3M-PF and [0.4105, 0.5930, 0.0833,−0.7020, 0.3504] for
AMBER3M-SF). The other two actions depicted in Fig. 4 are denoted with
a red circle (worst gait) and a blue square (middle gait).

B. Procedure specific to AMBER3M-PF and AMBER3M-SF

In this work, we leverage two configurations of the robot:

1) the point-foot configuration, AMBER3M-PF (1.373 m,

21.3 kg); and 2) the spring-foot configuration, AMBER3M-

SF (1.430 m, 23.5 kg) [36]. We first demonstrate the learning

framework on AMBER3M-PF, with the corresponding rigid

point-foot model used in the gait generation. To emphasize

the scalability of our method, we repeat the exact procedure

applied to AMBER3M-PF on AMBER3M-SF, but intention-

ally do not account for changes in the robot model and

instead still generate gaits assuming the rigid-body model.

Furthermore, we execute the gaits on hardware using the

same controller with unmodified gains. Historically, robots

with compliance are difficult to generate gaits for because of

the resulting complexities which include: increased degrees

of freedom of the system; the addition of a double support

domain to the hybrid dynamics; and increased stiffness

of the dynamics. Past success with compliant bipeds has

relied on sophisticated models [38]. Therefore, the fact that

our method yields stable walking despite the unmodeled

compliance highlights it’s effectiveness.

C. Results

A summary of the experimental results is illustrated in

the supplementary video [39], with additional videos and

material available at [40], and the final obtained posterior

provided with the framework code in the repository [35].

The experiment with AMBER3M-PF was run for 30

iterations and sampled 27 unique gaits. The final posterior

over the 27 executed actions is illustrated in the top row of

Fig. 3. Since gaits quickly met the first criterion of being

able to walk, preferences were mainly dictated based on the

robustness and appearance of the experimental walking. The
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Fig. 4. Gait tiles with increasing posterior utility values from left to right are shown for the the rigid model (top) and spring model (bottom). The phase
portraits of the hip (qh) and knee (qk) of the stance leg (blue) and swing leg (yellow) are shown below each corresponding gait, plotted over 10 seconds
of data. The phase portraits clearly indicate that for both AMBER3M-PF and AMBER3M-SF the gaits evolved to be more experimentally robust.

initial gaits tried on hardware, although optimal subject to the

imposed constraints, resulted in inferior trajectory tracking

and power consumption. As the algorithm progressed, the

gaits became significantly smoother, more robust to distur-

bance, and energy efficient. This is exemplified in Fig. 4

which illustrates the gaits corresponding to the minimum,

a middle, and the maximum posterior utility; the iterations

corresponding to when these gaits were first sampled is 1,

21, and 26, respectively. In Fig. 4, we note significantly

lower velocity overshoot for all of the limbs and tighter

tracking shown in the phase portraits for the gaits with higher

posterior utility. It is also interesting to note the framework’s

success at improving the efficiency of the experimental

walking: a latent property which is discernible to the human

operator even though it is not immediately measured. This

improvement is demonstrated by the MCOT values of the

three gaits in Fig. 4: 0.74, 0.95, and 0.26 respectively.

When the procedure was repeated on AMBER3M-SF,

many of the initial gaits were unable to walk due to the

unmodeled compliance. Thus, gaits exhibiting periodic walk-

ing were strongly preferred. This second experiment was

conducted for 50 iterations and sampled 37 unique gaits

with the obtained posterior illustrated in the bottom row of

Fig. 3. Again, three gaits are selected for further discussion

corresponding to the minimum, a middle, and the maximum

posterior utility values. Gait tiles and phase portraits for

these are again shown in Fig. 4. The iterations when these

gaits were first sampled are 4, 10, and 42. Once again, the

algorithm converges to gaits with superior trajectory tracking

and lower MCOT (1.16, 0.38, and 0.33, respectively).

V. CONCLUSION

In this work, we present and experimentally demon-

strate a high-dimensional preference-based learning frame-

work, LINECOSPARNLP (open-source code: [35]), specif-

ically designed for use towards HZD-based gait generation.

LINECOSPARNLP incorporates preference-based learning

with an HZD optimization problem to leverage the theoretical

benefits of HZD without the challenge of parameter tuning.

Furthermore, preference-based learning is a sample-efficient

learning method that does not require the user to mathe-

matically define a metric for “good” walking. Instead, the

framework relies on easy to provide pairwise preferences.

The success of the proposed method is demonstrated

through its ability to experimentally realize gaits that are

stable, robust to model uncertainty, robust to external pertur-

bations, efficient, and natural looking within 50 experimental

iterations, with no requirement for simulation. Furthermore,

LINECOSPARNLP achieves robust walking with unmod-

eled compliant legs, a challenging control task which histor-

ically relied on sophisticated models.

Future work includes extending this framework to more

robotic platforms, such as quadrupeds and 3D bipedal robots,

as well as improving the sample-efficiency of the framework

through additional qualitative feedback mechanisms such as

ordinal labels [41]. The experimental results presented in this

paper demonstrate the rich potential lying in the boundary

between machine learning and control theory. It is well-

known that control theory provides necessary structure to

bipedal platforms, but machine learning can play a critical

role in shaping the final behavior of the system.
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