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Abstract— Mixed observable Markov decision processes
(MOMDPs) are a modeling framework for autonomous systems
described by both fully and partially observable states. In this
work, we study the problem of synthesizing a control policy
for MOMDPs that minimizes the expected time to complete
the control task while satisfying syntactically co-safe Linear
Temporal Logic (scLTL) specifications. First, we present an
exact dynamic programming update to compute the value
function. Leveraging this result, we propose a point-based
approximation, which allows us to compute a lower bound of
the closed-loop probability of satisfying the specifications. The
effectiveness of the proposed approach and comparisons with
standard strategies are shown on high-fidelity navigation tasks
with partially observable static obstacles.

I. INTRODUCTION

Autonomous systems take actions based on observations
of the environment surrounding them. When the environ-
ment includes both fully observable and partially observ-
able regions, mixed observable Markov decision processes
(MOMDPs) can be used as a framework for decision making
under uncertainty [1]. In MOMDPs, the state space is parti-
tioned into fully observable and partially observable states.
Decisions are taken based on the fully observable states and
the belief representing a probability distribution over the
partially observable states. Compared to partially observable
Markov decision processes (POMDPs), which maintain a
belief for all possible states [2], MOMDPs allow us to reduce
the computational complexity of the policy synthesis process
when both partial and full state observations are available [1].

In POMDPs and MOMDPs, the control objective is
usually expressed as a reward maximization problem [2].
However, reward maximization alone cannot fully encode the
desired high-level objectives. Thus, researchers have focused
on constrained POMDPs (CPOMDPs), where the synthesis
goal is to compute a policy that maximizes the expected
reward, while satisfying expected constraints. This problem
was first studied in [3], where the authors presented an exact
dynamic programming update to compute the optimal de-
terministic policy. The computational complexity of solving
this problem is double exponential in the time horizon. But,
the optimal solution can be approximated in polynomial time
using point-based [4] and finite-state [5] approximations.

Whenever temporal properties of the system are of interest,
control objectives can also be expressed using Linear Tem-
poral Logic (LTL) formulas [6]. The qualitative problem of
synthesizing a policy, which guarantees satisfaction of LTL
formulas for POMDPs, is undecidable when searching over
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the set of feedback policies and EXPTIME-complete when
designing finite-state controllers [7]-[11]. When the system
is uncertain, it may be impossible to design a policy that
guarantees satisfaction of the specifications for all possible
uncertainty realizations. In this case, it is desirable to solve
the quantitative problem, where the objective is to synthe-
size a policy that maximizes the probability of satisfying
LTL specifications. The solution to this quantitative problem
can be approximated by discretizing the belief space [12],
leveraging finite state controllers [11] or using point-based
and simulation-based strategies [13]-[18]. The optimal solu-
tion to quantitative problems is usually not unique; instead
there exists a set of optimal control policies [19]. For this
reason, it is often preferable to compute an optimal policy,
which maximizes an expected reward while satisfying LTL
specifications [19]-[21].

In this work, we consider time-optimal quantitative prob-

lems, where the goal is to minimize the expected time to
complete the task while satisfying syntactically co-safe LTL
(scLTL) specifications. These problems have been studied for
deterministic systems in [20], [21] and in [19], [22]-[26] for
Markov decision processes. To the knowledge of the authors,
this is the first work that studies time-optimal quantitative
problems for mixed observable Markov decision processes.
Our contribution is threefold. First, we present a dynamic
programming update to compute the value function associ-
ated with the time-optimal quantitative problem. Second, we
propose a point-based strategy to approximate the optimal
value function and we show that our approach maximizes a
lower bound of the closed-loop probability of satisfying the
specifications. Finally, we compare our method with standard
time-optimal and quantitative policies. We show that the
proposed strategy allows us to minimize the expected time
to complete the task without compromising the probability
of satisfying the specifications.
Notation: For a vector & € R™ and an integer s € {1,...,n}
we use «(s) to denote the sth component of the vector o and
a' to indicate its transpose. For a function V : R” — R,
V() denotes the value of the function V' at «. Throughout
the paper, we will use capital letters to indicate functions and
lower letters to indicate vectors. Given two sets A and B, the
set minus operation is denoted as A \ B and the Cartesian
product as A x B. Furthermore, we define the indicator
function 14(z) = 1 if x € A and 1 4(z) = 0 otherwise.
The vectors of ones is written as 1, € R™ and zeros as
0, € R™. Finally, given two sets of vectors I' = {v;|Vi €
{1,...,ny}} and A = {)\;|Vj € {1,...,n\}} we denote
TOA={y+)NVie{l,....,n,},Vi€{l,...,n\}}.
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II. BACKGROUND

In this section, we introduce some definitions and assump-
tions used throughout the paper.
Mixed Observable Markov Decision Process
A MOMDP provides a sequential decision-making formal-
ism for high-level planning under mixed full and partial
observations [1]. More formally, a MOMDP M is a tuple
(S8,&, A, Z, T, Te, O), where

e S=1{1,...,|S]} is a set of fully observable states;

o £={1,...,|&|} is a set of partially observable states;
o A={1,...,]Al} is a set of actions;
e Z = {1,...,]2]|} is the set of observations for the

partially observable state e € &;

o The function T : S x € x A x S — [0, 1] describes the
probability of transitioning to a state s’ given the action
a and the system’s state (s,e), ie., Ts(s,e,a,s’) :=
P(spr1=5"|sp=s,er=¢€,ap=a);

e The function 7, : S X E X A xS x €& — [0,]]
describes the probability of transitioning to a state e’
given the action a, the successor observable state s’ and
the system’s current state (s, e), i.e., To(s,e,a,s’,€’) :=
Plegi1=€|sp=s,er=¢€,ar=a, sp11=5");

o The function O : § x &€ x A x Z — [0, 1] describes
the probability of observing the measurement z € Z,
given the current state of the system (s’,¢’) € S x &
and the action a applied at the previous time step, i.e.,
O(s',€e,a,z) = P(zp=2zlsp=5",er=¢€,ar_1=a);

MOMDPs were introduced in [1] to model systems where
a subspace of the state space is perfectly observable. The
advantage of distinguishing between fully and partially ob-
servable states is that a belief state is needed only for the
partially observable states. Thus, we introduce the belief
vector bg € Be = {be € RI®l . Zllelbg(e) = 1}, where
each entry bg(e) represents the posterior probability that the
partially observable state ej, equals e € £.

Syntactically Co-Safe LTL Specifications

We consider objectives which are expressed using scLTL
specifications. For a set of atomic proposition AP, an scLTL
specification is defined as follows:

Yi=p | p | Y1 A | 1 Ve | 01U | O,

where the atomic proposition p € AP and v, 1, 1o are
scLTL formulas, which can be defined using the logic
operators negation (—), conjunction (A) and disjunction (V).
Furthermore, scLTL formulas can be specified using the
temporal operators until (U) and next (()). Each atomic
proposition p; is associated with a subset of the MOMDP
state space P; C S x &, and a state wy, = (s, ex) of the
MOMDP M satisfies the atomic proposition p; if wy € P;.
Finally, satisfaction of a specification 1) for the trajectory
wy = |wk, Wk+1, - - -], denoted by

wi =Y

is recursively defined as follows: i) wy Ep <= w, € P,
i) wi i Ade = (Wi ) A (W b ), i)
wp E Y1 Vi = (Wi 1)V (wr ), ) wy =

P Uty <— wl):’(/}Q andwj ':’L/J27 VjE{k,...,l—l},
v) wp EOY = wip E.

Assumption 1. We consider reachability specifications,
which are satisfied when the observable state s € S of a
MOMDP M reaches a target set 7 C S.

The above assumption is not restrictive for finite time
problem, as the problem of checking if a finite time trajectory
of a MOMDP satisfies any scLTL specification can be re-
casted as a reachability problem over an extended MOMDP.
Please refer to [27, Chapter 3], [12], [13] for further details
on how to construct such extended MOMDP.

III. TIME-OPTIMAL QUANTITATIVE MOMDP

Problem Formulation

In this section, we introduce the problem under study.
Given a MOMDP M with observable states S, partially
observable states &, and target set 7 associated with the
specification v, we consider the finite-horizon problem of
maximizing the probability of satisfying the specification 1,
while minimizing the expected time to complete the task. In
particular, we define the following time-optimal quantitative
constrained MOMDP (CMOMDP)

N
> ]15\7(30]

t=0
subject to 7 € argmax P [w | ],

7100 — argmin E™
s

(D

where E™[-] denotes the expectation under the policy 7, N
represents the duration of the task and the indicator function
Is\7(s) = 1 when s € S\ T and 1s\7(s) = 0 when
s ¢ S\ T. In the above problem, P"[w |= 9] represents the
probability that the closed-loop trajectory under the policy
K+ SxBg — A will satisfy the specifications. Therefore, the
optimal policy 71790 : S x Bg — A from (1) maximizes the
probability of satisfying the specifications while minimizing
the expected time to complete the control task, i.e., reaching
theset 7T x EC S x €.

Motivating Example

Problem (1) is motivated by the example shown in Figure 1,
where a Segway has to collect science samples which may be
located in the goal region (green) while avoiding known ob-
stacle regions (dark brown) and exploring uncertain regions
(light brown). The control problem can be formulated as a
MOMDP, where the Segway’s position is perfectly observed
and only partial observations about the traversability of the
uncertain regions are available. Figure 1 shows an example
with one goal region G and four uncertain regions R, Ro,
Rs, and R4, which may be traversable with probability
0.9, 0.4, 0.3, and 0.5, respectively. The Segway receives a
perfect measurement when it is next to an uncertain region,
otherwise the measurement is corrupted as described in the
example section. In this example, the task has a duration
of N = 30 time steps. The control objective is given
by the scLTL formula ¢y = —CollisionUGoal, where
the atomic proposition Collision is satisfied when the
system is in a cell occupied by an obstacle and the atomic
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< - = Q policy from Problem (2)
<= = = TO policy from Problem (3)
<+— TOQ policy from Problem (1)

(Failed)

Fig. 1. This figure shows a navigation example with several obstacles
(dark brown), one goal region G (green) and four uncertain regions (light
brown) R1, R2 R3, and R4. In this example, all uncertain regions are not
traversable.

proposition Goal is satisfied when the system reached the
goal cell.

As discussed in [12], [14], [15], a control policy can be
computed maximizing the probability that v is satisfied, i.e.,

7 = argmax P"[w = 9. (2)

Alternatively, a control policy can be synthesized minimizing
the expected time to complete the task. The time-optimal
problem is given by the standard reward minimization:

N
> ]15\7(315)] ; 3)

710 = argmin ™
’T t=0

where the indicator function 1 s\ 7 is defined as in (1). Notice
that the solution to the above minimization problem can be
approximated with point-based methods [28] or finite state
controllers [29].

Figure 1 shows the closed-loop behaviors associated with
the control policies from Problems (1)-(3). The Time-
Optimal (TO) policy from Problem (3) steers the system
beside the uncertain regions to collect perfect measurements
about the traversability of the terrain. In this example, all
uncertain regions are not traversable and therefore the control
policy from Problem (3) fails to reach the goal state G in
N = 30 time steps. On the other hand, the Time-Optimal
Quantitative (TOQ) policy from Problem (1) and the Quan-
titative (Q) policy from Problem (2), which are designed
to maximize the probability of satisfying the specification,
reach the goal set G. Finally, we notice that the TOQ policy
first explores region R; and then takes the path around
the obstacle to reach the goal. This behavior minimizes the

expected time to complete the task, as region R may be
traversable with probability 0.9. Thus, this example shows
the advantage of synthesizing TOQ policies, which minimize
the expected time to complete the task, while guaranteeing
that the probability of satisfying the specifications is maxi-
mized.

IV. EXACT DYNAMIC PROGRAMMING UPDATE

In this section, we first show that the optimal value
function V}*(s,-) : B¢ — R of the time-optimal quantitative
problem (1) is piecewise affine for all s € § and k €
{0,..., N}. Afterwards, following the approach presented
in [3], we define a pair of support vectors which characterize
the optimal value function V;*(s,-) for all s € S and
ke{0,...,N}

As shown in [1], the synthesis problem can be reformu-
lated as a stochastic optimal control problem for a fully ob-
servable uncertain system, where the states are the belief b¢e
and the fully observable state s of the MOMDP. Indeed, the
belief evolves accordingly to the following update equation:

be(e) =n0O(s', ¢, a, 2)

X ZTS(S,e,a,s')Te(s,e,a,s'7e')bg(e), “)
ecé

where the scalar n = 1/P(s’, z|s,be,a) is a normalization
constant [1], [30].

Next, we introduce two lemmas that allow us to refor-
mulate Problem (2) and Problem (3) as standard reward
maximization problems. Afterwards, we will leverage these
results to derive an exact dynamic programming update for
the time-optimal quantitative Problem (1).

Lemma 1. Consider a MOMDP M with terminal set T x &
and a finite horizon N. The probability that the quantitative
policy 7@ from Problem (2) satisfies the specifications is

max Prlw = 9] = Jo(s, be),

where the optimal value function Jy is given by the following
dynamic programming recursion:

Ji(s,0g) = L7(s) + Ls\7(s) ?EaiE[ij(S" be)ls, be, al

4)
with Jn(s,-) = L7(s) for all s € S. Furthermore, the
optimal value function Ji(s, ) : Be — [0,1] is piecewise-
affine for all k € {0,...,N} and for all s € S.

Proof: Notice that, given a policy x : S X Bg — A,
the probability of satisfying the specification is given by the
probability of reaching the terminal set T, i.e.,

Pllw =] =P*[3k €{0,...,N}: s, €T,
s; €S\ T,Vj€{0,....k—1}]

=E" [Z ( 1:[ ﬂsw(«%)) 17(33‘)1 :

j=0 \ i=0
where E"[-] denotes the expectation under the policy r. For

more details on the above stochastic reachability problem
please refer to [31].
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Furthermore from [31, Theorem 4], we have that the
optimal value function Jj, : S x Be — R, which is associated
with the optimal policy that maximizes the probability of
reaching the set 7, is given by the following recursion

Ji(s,bg) = 17(s) + Ls\7(s) Ianeaj{E[jk“(S/’ be)|s, be, al
(6)

where Jn(s,-) = 1(s). Next, we show by induction
that Ji(s, ) : Be — R is piecewise affine for all k €
{0,...,N} and s € S. Assume that J; (s, ) is piecewise
affine for a set of support vectors Ay, i.e., Jyy1(s,bg) =
maxgen, B be = maxgen, Y., 3(e)be(e). Then, using the
belief update (4), the definition n = 1/P(s’, z|s,bg,a) and
the definition of the value function Jj41 (s, ), we have that

]E[ijrl(s/abIS)‘svbSva} = ZP(S/,Z‘S,bg7a)Jk+1(SI7big)
_ P(s IAYN;
Z (s,ZI&bs,a)gg\f;ﬁ(e b

anraré%\xZB nOseazZT (s,e,a,s")

X Te(s7e,a,s e )be(e).
(7
Now define 3'(e) =", F(s,e,a,s', €, z)5(e) for
Fls,eas's¢2) =Ti(s, 0 8) (s ccans'e) o
x O(s',€,a,z2),
then equation (7) can be rewritten as
E[Jpr1(s,b%)|s, be, al
max Y be(e) Y F(s,e a,s' ¢, 2)B(e)
SO o

= max bg 3.
,ZﬁGAs €
s’z

Equation (9) implies that the conditional expectation in (6)
is a piecewise affine function of bg. Therefore, Ji(s,-) is
piecewise affine as it is given by the summation and the
point-wise maximization of picecewise affine functions for
all s € §. The proof is concluded by induction on k as the
value function Jy (s, -) is piecewise affine for all s € S. ®

Lemma 2. Consider a MOMDP M with terminal set T x &
and a finite horizon N. The optimal control policy ©'° from
Problem (3) is the optimizer of the following problem:

s 5[ 31760

=0
Proof: Notice that by definition Tgs\7(s;)) = 1 —
17(s¢),Vs € S. Thus, we have that
N N
argmlnE {Z TIs\1 st)] —argmln E™ { (1- ]17—(575))]
=0 t=0
N N
=argmin E™ [Z —]lT(st)] = argmax E" {Z 17 (se)],
4 t=0 T t=0
which concludes the proof. [ |

Optimal Value Function

In what follows, we leverage the dynamic programming
update from Lemma 1 and the maximization problem from
Lemma 2 to design an exact dynamic programming update
for the time-optimal quantitative problem (1). We modify the
strategy presented in [3] to solve the CMOMDP from (1).
The key idea is to construct a set of vector pairs (a, ;, 8% ;.),
which define the optimal value function

Vi (s,be) = b

max o
(a,B)Eijk

subject to

£
10
(0,6) € argmax fTbs,
(e.B)ery

where at time k the set I'; , collects the support vector pairs
associated with the observable state s € S.

Next, we show that the support vectors can be updated
using the following recursion:

a,z,s’ i ]lg
oy N e) = |ZHS|+ZFseas e’ z)a,kH( e,

Ig(s)
+1o\g(s F(s,e,a,8, ¢, 2)
2l + el 21
X ﬂs’,kJrl(el)

;.
az ,8' i 5a,z,s ,z>|
1 s,k

B (e) =

F; @ZEZ s’ €5{<

Vie{l,...,[T] e}
Pz,k = UCLEAF::Z'
(11)
where the function F' is defined as in (8) and
F:N: <1\Z\a1|2|> ifSGT, (12)
’ (0121,0z)  otherwise.

The backup update of the a-vector is used to compute the
support vectors associated with the cost and it was presented
in [32]. On the other hand, the backup update of the 3-vector
is designed based on the dynamic programming update (5)
from Lemma 1 and it is a key contribution of this work.
The following lemma illustrates that the backup update of
the S-vector, which defines the set of support vectors I';
from (11), allows us to compute the probability that the tlme-
optimal quantitative policy satisfies the specifications.

Lemma 3. Let I'; . be the set of support vectors constructed
using the dynamlc programming recursion from (11). Then,
the constraint value function

i (s,bg) = 537 be

max

(13)
(CHENS]

represents the probability that the time-optimal quantitative

policy w199 satisfies the specifications, i.e., J;(s,bg) =
P [[wg, . .. ,wn] E Y], Vk € {0,...,N}.

Proof: First, we show by induction that .J (s, -) = J;:(s, )
for all s € S. Assume that Ji11(s,:) = Ji (s,-) for all

s € §, which implies that
be B =Jiyi(s,be) =

max Ji s,bg) = max b 3.
@B k+1(8, be) max e B

(14)
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Then, from equations (6), (9) and (14), we have that
Ji(s,bg) = L7 (s) + Ls\7(s) maxz . bgﬁ

= maXZ
acA

]17_( ) T A1
+1 max b
Zjs) FlsT®) e | be

]lT( ) NT
= I +1 b
B2 o, TS AT fbe
sz 8
T T *
=max max be = max be = Ji (s,bg),
s B be B B be = Jy (s, be)

where '(e) = > ., F(s,e,a,8' ¢, 2)B(e), 1| € RI€l is a
vector of ones, 1[9|bg = 1 and the sets of support vectors
[, and T'; ;. are defined by the backup update (11) for the
set of support vectors I'; , ., from equation (14). Finally,
as J(s,)) = JIn(s,-), Vs € S by induction we have that
Ji(s,+) = Ji(s,"),Vs € SVk € {0,..., N}, which together
with Lemma 2 and the definitions of Problems (1) and (2)
imply that J; (s,-) = Ji(s,-) = P™ [[wp, ..., wn] = ] =
P [[wk, -, wn] E 9], Vk€{0,...,N} and Vs € S. m

V. POINT-BASED APPROXIMATION

At each time step the dynamic programming update
from (11) generates in the worst case |A\|F:)k+1\(|z‘+‘5|)
new support vector pairs [28]. In this section, we present
a point-based update, where the optimal value function is
approximated b a constant number of vectors computed for
a set Dy = {bs b b(n)} of n discrete beliefs.

The proposed pomt based strategy is based on the update
from equation (11). In particular, Algorithm 1 computes one
pair of vectors (a® ,3) that approximates the optimal
value function (10) at a point (s,bg). In line 1 of Algo-
rithm 1, we compute the active pair of support vectors using
the following expression’

<as’,a,z’ l@s',a,z>

= argmax o F,(s,bg,a,s,2)
(a,B)ET s kot
subject to (o, B) € argmax B F,(s,be,a,s’,z),

(a,B)ET s kot
(15)

where I, : S X Bg x A X S x Z — B¢ is the belief vector
update, i.e., by = F,(s,bg,a,s, z). Afterwards, we update
the support vectors pair associated with an action a (line 2).
These vectors are then used to compute the set of admissible
actions (line 3) and the optimal action a* (line 4). Finally, we
add the optimal pair (a® , 3% ) to the set of support vector
pairs I'; ., which approximate the optimal value function
Vi (s,-) from (10) for all s € S.

The Backup function from Algorithm 1 is used to update
the sets I' 5, which define the value function approximation:

Algorithm 1: Backup, («
Illpllt: S,bg,F&k_i_l,Fs’k
1 Forall s €S,ae A z€ 2
(a¥a2 35"02) « from Equation (15) ;
2 Forallae A, ec &
a®(e) < 1g(s) + >y . o F(s,e,a,s e, z)a® %% (e)
5(1(6) — ]lg( ) + ]IS\Q( )Zs !,ze F(87 e, a, S/v elv Z)
xasl*“’z(e) ;

, B)-vectors computation

3 Compute C = argmax, ¢ 4(bg 3%) ;
4 Compute a* = argmax,c(bi a®) ;
5 Add (a®, %) to Ty ;

Output: I'; j,

Algorithm 2: Value function update

Input: T'y ;1
1 for s € S do
2 Initialize T’y , = O
3 for be € Dy, do
4 | Tyk < Backup(s, be, D g1, Tsp)
5 end
¢ end
Output: I' ;.

For time k € {0,..., N — 1}, the sets I', j, are recursively
computed using Algorithm 2, which for all s € S computes
the support vector pairs at all belief points be € D;. The
recursion is initialized setting I'; y equal to I'y

Finally, we show that the sets of support vector pairs I'; j,
computed using Algorithms 1 and 2 allow us to define an
approximated constraint value function, which is a lower-
bound of the probability of satisfying the specifications.

Theorem 1. Let I'; ), be the set of support vectors con-

structed using the point-based strategy from Algorithms 1

and 2. Then, the approximated constraint value function
(s, be) = BTbe 17

max
<O‘-,B>€Fs,k

is a lower-bound of the probability that the control pol-

icy w99 satisfies the specifications, i.e., J(s,bg) <
TOQ

P™ [[wk, - - - »wn] E ¥], Yk € {0,...,N}.

Proof: The [-vectors computed by the backup Algo-
rithms 1-2 are a subset of the S-vectors from (11), which
define the optimal value function from (13). Therefore, as
Tsx C F;k we have that

be) = The < Tbe = Ji(s,b
Vi(s, be) = (o e a'be Ti(s,be) Iy B be < (.Brers , B be = Ji(s,be),
[ s,k !
. T (16)
subject to (a, 8) € <zrﬁg>r£1§x B be. Vk € {0,...,N},Vs € S and Vbg € Bg. The above equation
R and Lemma 3 imply that Ji (s, bg) < P™  [[wy, ..., wn] =
For more details on the belief propagation please refer to [1]. ’l/)} Vk € {O, ce ,N}, Vs € S and Vbg € Bg. |
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<= - == (Q policy from Problem (2) == == == TO policy from Problem (3)

= TOQ policy from Problem (1)
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Fig. 2. Grid worlds with several obstacles (dark brown), one goal region G (green) and four uncertain regions (light brown) R1, R2 Rs, and R4, which
may be free with probability 0.9, 0.4, 0.3, and 0.5. The closed-loop trajectories are associated with different environment realizations. In particular, R4

and R are traversable in the 5x5 and 15x15 grid worlds, respectively.

VI. EXAMPLES
A. Grid Worlds

The proposed strategy is tested on three grid worlds shown
in Figures 1 and 2. We compared the proposed Time-Optimal
Quantitative (TOQ) policy approximated using a one-step
look ahead and the value function from Section V with
the Quantitative (Q) and Time-Optimal (TO) policies from
Problems (2)—(3), which are approximated using standard
point-based approaches for reward maximization?. In all
simulations, the Segway receives a perfect measurement
when adjacent to an uncertain region, a measurement which
is correct with probability 0.8 when one grid cell away in
the diagonal direction and an uninformative measurement
otherwise. The uncertain regions R, R2, R3, and R4, may
be traversable with probability 0.9, 0.3, 0.4, and 0.5. Finally,
in order to analyze the effect of the number of uncertain
regions on the computational complexity, we also tested a
scenario where region R4 is a known obstacle.

Figures 1 and 2 show the closed-loop trajectories for
different realizations of the uncertain regions. We notice
that the TOQ policy behaves similar to the TO one, when
the constraint from Problem (1) does not restrict the search
space. Consider the 5x5 grid world in Figure 2, where the
agent can explore all uncertain regions in different orders,
as the task horizon is 7' = 30. In this example, the TOQ
policy first explores region R, and then it steers the agent
through region R4. This behavior minimizes the expected
time to complete the task, as region Rq has the highest
probability of being free. Thus, the closed-loop trajectories
associated with the TO and TOQ policies overlap. On the
other hand, in the 15x15 grid world from Figure 2, the
task horizon is 7' = 40 and the agent cannot explore all

2Code available online: https://github.com/urosolia/MOMDP.
All simulations are run on a 2015 Macbook Pro with a 2.5GHz Quad-Core
Intel Core i7 and 16GB of memory.

regions. Therefore, the TOQ policy maximizes the number
of visited regions and behaves as the Q policy. Indeed,
in this 15x15 grid world, first visiting region Ry, which
has the highest probability of being free, would lead to a
lower probability of mission success. In general, the TOQ
policy minimizes the expected time to complete the task,
without compromising the probability of satisfying the

specifications, as we have seen in Figure 1.
Table I shows the expected time to complete the task, the

probability of failure, the upper-bound of the probability of
failure?, the total time to approximate the value function and
the backup time required to approximate the value function
at a belief point bg € D;,. The TO and Q policies are approx-
imated using a standard point-based backup update and the
TOQ policy is computed using the backup function from
Algorithm 1. The TO policy from Problem (3) minimizes
the expected time to complete the task but, as a result, it
incurs in the highest probability of failure. On the other
hand, the proposed TOQ policy has a probability of failure
equal to the Q policy, which is computed maximizing the
probability of satisfying the specifications. Therefore, the
proposed strategy is able to minimize the expected time to
complete the task, without compromising the probability of
mission success. Notice that as a trade-off the computational
burden of synthesizing the proposed TOQ policy is higher
compared to the one needed to synthesize the Q and TO
policies. This result is expected as we are approximating the
solution to Problem (1) using a pair of vectors; whereas, the
point-based strategy used to approximate Problems (2)—(3)
maintains a single support vector per belief point. Finally,
we underline that the backup time shown in Table I is
associated with the computation of the support vectors at
a discrete belief point be € Dy. Thus, it mostly depends on
the dimension of the belief space, which grows exponentially

3For the TOQ policy the probability of failure (1 — P7[w = ¢]) <
1 — Jo(s,bg) where Jo(s,bg) is defined in Lemma 1.
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Grid Exp. Prob. Failure Total Backup
World Time Failure Bound Time [s] Time [ms]
[5x5]TO 812 42% N/A 409 045
[5x5] 3 2778 42% < 42% 3.49 0.39
[5x5]3°9 812 42% <42% 829 0.92
[5x5]F© 82 21% N/A 7.09 0.62
[5x5] 2839 21% <21% 657 0.58
[5x5]709 82 21% <21% 16586 1.48
[10x5]7€ 423 42% N/A 469 0.33
[10x5]$ 290 0% <0% 463 0.32
[10x53°% 62 0% <0% 1171 0.82
[10x5]TC 453 21% N/A 858 0.48
[10x5]% 290 0% <0% 934 0.52
[10x5]7°9 62 0% <0% 2442 1.37
[15x15]T© 252 10% N/A 3615 0.33
[15x15]$ 3666 6% < 6% 3621 0.34
(1515399 3172 6% < 6% 8632 08I
[15x15]TO 252 10% N/A 7566 0.8
(1515 37.83 3% <89% 7397  0.56
[15x15]7°9 29.86 3% <3.5% 18652 143
TABLE I

COMPARISON BETWEEN THE TOQ, Q AND TO POLICIES COMPUTED
APPROXIMATING PROBLEMS (1)—(3), RESPECTIVELY. IN THE TABLE, THE
GRID WORLD [XXYM IS DEFINED BY XXY GRID CELLS, © UNCERTAIN
REGIONS AND THE CONTROL POLICY j € {TO, Q, TOQ}.

with the number of uncertain regions. Clearly, the total time
needed to synthesize the control policy depends also on the
grid size and number of belief points, as the backup update
from Algorithm 2 is used repeatedly to approximate the value
function. Indeed, when parallel computing is not available,
the total computational cost scales linearly with the number
of observable states |S| and discrete belief points |Dp)|.

B. Navigation Task

In this section, we use the proposed time-optimal quantita-
tive policy (1) as high-level decision maker for the navigation
problem shown in Figure 3, where a Segway has to explore
a partially known environment to locate science samples that
may be located in the goal regions G;. The specification
¥ = —collisionU((Goaly A sample;) V (Goalsy A
sample,)), where the atomic proposition sample; is satis-
fied if the region G; contains a science sample and the atomic
proposition Goal; is satisfied if the Segway is in a goal
cell G;. We implemented a hierarchical controller, where the
proposed time-optimal quantitative policy (1) computes high-
level commands and a model predictive controller [33] is
used to compute low-level inputs. The high-level commands
are move North, South, East and West and they are used to
compute the cell where the Segway should move next. Then,
the low-level control problem is solved as a standard regu-
lation problem [33], where the goal is to steer the Segway

Region R3 detected as traversable

Reached G;: no science sample found

Mission starts

" "Region R, detected as
traversable

Reached G, : science found.
Mission completed

Region R1 detected as not

traversable

Fig. 3. Evolution of the Segway (blue) in the high-fidelity simulator. The
TOQ policy decides to first explore region %1, which in this example is
not traversable. Afterwards, the controller explores regions R2, G1 and R3.
Finally, the Segway reaches region Go, which in this example contains the
science sample.

to the center of the goal cell. When a transition from cell ¢
to cell j occurs, we update the belief about the environment
and the observable state of the MOMDP, which represents
the cell where the Segway is located. The accuracy of the
environment observations decays exponentially as a function
of the distance between the Segway and the measured region.
In particular, for the binary variable () € {0,1}, which
represents the traversability of the region R;, we receive
a measurement sz) which is accurate with the following
probability:

Pz = 1)) =1,5)

1 if d(s,R;) <1,
0.5 4 0.3¢~(4(sR)=2)/25  stherwise,
where d(s,R;) represents the Manhattan distance between
the Segway and region R;. Similarly, we define the binary
variable ¢(¥) € {0, 1}, which equals to one when region G;
contains a science‘ sample and zero otherwise, and we receive
an observation zéz) which has the following accuracy:
P(z!(;) =1|¢® =1,s)
1 if d(s,R;) =0,
0.5 + 0.25e =4 R)/15 otherwise.

Figure 3 shows the closed-loop trajectory of the Segway.
At the beginning of the simulation, the probability that
regions R1, Ro, and R3, may be traversable is 0.7, 0.5,
and 0.4. Furthermore, the probability that regions G; and G-
contain the science sample is 0.8 and 0.6, respectively. The
controller first explores region R;, which has the highest
probability of being traversable. However, in this example
region R is not traversable and therefore the Segway steers
to region Rs3. As shown in Figure 4, the environment
observations are used to update environment beliefs and
the probability of mission success, which represents the
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—— Rl = R2 -+ R3 -=- Gl - G2 —— Mission success [8]
1.0
0.9
0.8 [9]
0.7

Zos6 [10]

Qo

©

g 0.5 ‘ [11]

& a

0.4 ]
0.3 [12]
0.2 ‘i
0.1 ?
1 [13]
0.0
0 5 10 15 20 25 30 35 40 45
High-level time k
[14]
Fig. 4. Probability of satisfying the specification. The figure shows also
the evolution of the belief for the uncertain and goal regions.
[15]
probability of satisfying the mission specifications. Notice
that, when the Segway detects that region G; does not [16]
contain a science sample at the high-level time k = 34, the
probability of mission success drops, as shown in Figure 4.
Afterwards, the controller explores region Rz and steers  [i7]
the Segway to region G, which contains a science sample.
Finally, we notice that for all high-level time steps k > 37 13
the controller is uncertain only about the state of region G,
therefore the probability of mission success overlaps with the (19]
probability that region G, contains a science sample.
VII. CONCLUSIONS 0]
In this work, we studied time-optimal quantitative prob-
lems for MOMDPs. First, we presented a dynamic pro-
gramming update to compute the value function of time-  [21]
optimal quantitative problems. Afterwards, we leveraged the
piecewise-affine nature of the optimal value function to 2o
define a point-based approximation strategy, which allows us
to compute a lower bound of the probability of satisfying the 53
specifications. Finally, we compared the proposed strategy  [24]
with time-optimal and quantitative policies.
2
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