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Abstract— Mixed observable Markov decision processes
(MOMDPs) are a modeling framework for autonomous systems
described by both fully and partially observable states. In this
work, we study the problem of synthesizing a control policy
for MOMDPs that minimizes the expected time to complete
the control task while satisfying syntactically co-safe Linear
Temporal Logic (scLTL) specifications. First, we present an
exact dynamic programming update to compute the value
function. Leveraging this result, we propose a point-based
approximation, which allows us to compute a lower bound of
the closed-loop probability of satisfying the specifications. The
effectiveness of the proposed approach and comparisons with
standard strategies are shown on high-fidelity navigation tasks
with partially observable static obstacles.

I. INTRODUCTION

Autonomous systems take actions based on observations

of the environment surrounding them. When the environ-

ment includes both fully observable and partially observ-

able regions, mixed observable Markov decision processes

(MOMDPs) can be used as a framework for decision making

under uncertainty [1]. In MOMDPs, the state space is parti-

tioned into fully observable and partially observable states.

Decisions are taken based on the fully observable states and

the belief representing a probability distribution over the

partially observable states. Compared to partially observable

Markov decision processes (POMDPs), which maintain a

belief for all possible states [2], MOMDPs allow us to reduce

the computational complexity of the policy synthesis process

when both partial and full state observations are available [1].

In POMDPs and MOMDPs, the control objective is

usually expressed as a reward maximization problem [2].

However, reward maximization alone cannot fully encode the

desired high-level objectives. Thus, researchers have focused

on constrained POMDPs (CPOMDPs), where the synthesis

goal is to compute a policy that maximizes the expected

reward, while satisfying expected constraints. This problem

was first studied in [3], where the authors presented an exact

dynamic programming update to compute the optimal de-

terministic policy. The computational complexity of solving

this problem is double exponential in the time horizon. But,

the optimal solution can be approximated in polynomial time

using point-based [4] and finite-state [5] approximations.

Whenever temporal properties of the system are of interest,

control objectives can also be expressed using Linear Tem-

poral Logic (LTL) formulas [6]. The qualitative problem of

synthesizing a policy, which guarantees satisfaction of LTL

formulas for POMDPs, is undecidable when searching over
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the set of feedback policies and EXPTIME-complete when

designing finite-state controllers [7]–[11]. When the system

is uncertain, it may be impossible to design a policy that

guarantees satisfaction of the specifications for all possible

uncertainty realizations. In this case, it is desirable to solve

the quantitative problem, where the objective is to synthe-

size a policy that maximizes the probability of satisfying

LTL specifications. The solution to this quantitative problem

can be approximated by discretizing the belief space [12],

leveraging finite state controllers [11] or using point-based

and simulation-based strategies [13]–[18]. The optimal solu-

tion to quantitative problems is usually not unique; instead

there exists a set of optimal control policies [19]. For this

reason, it is often preferable to compute an optimal policy,

which maximizes an expected reward while satisfying LTL

specifications [19]–[21].

In this work, we consider time-optimal quantitative prob-

lems, where the goal is to minimize the expected time to

complete the task while satisfying syntactically co-safe LTL

(scLTL) specifications. These problems have been studied for

deterministic systems in [20], [21] and in [19], [22]–[26] for

Markov decision processes. To the knowledge of the authors,

this is the first work that studies time-optimal quantitative

problems for mixed observable Markov decision processes.

Our contribution is threefold. First, we present a dynamic

programming update to compute the value function associ-

ated with the time-optimal quantitative problem. Second, we

propose a point-based strategy to approximate the optimal

value function and we show that our approach maximizes a

lower bound of the closed-loop probability of satisfying the

specifications. Finally, we compare our method with standard

time-optimal and quantitative policies. We show that the

proposed strategy allows us to minimize the expected time

to complete the task without compromising the probability

of satisfying the specifications.

Notation: For a vector α ∈ R
n and an integer s ∈ {1, . . . , n}

we use α(s) to denote the sth component of the vector α and

α� to indicate its transpose. For a function V : Rn → R,

V (α) denotes the value of the function V at α. Throughout

the paper, we will use capital letters to indicate functions and

lower letters to indicate vectors. Given two sets A and B, the

set minus operation is denoted as A \ B and the Cartesian

product as A × B. Furthermore, we define the indicator

function 1A(x) = 1 if x ∈ A and 1A(x) = 0 otherwise.

The vectors of ones is written as 1n ∈ R
n and zeros as

0n ∈ R
n. Finally, given two sets of vectors Γ = {γi|∀i ∈

{1, . . . , nγ}} and Λ = {λj |∀j ∈ {1, . . . , nλ}} we denote

Γ⊕ Λ = {γi + λj |∀i ∈ {1, . . . , nγ}, ∀j ∈ {1, . . . , nλ}}.
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II. BACKGROUND

In this section, we introduce some definitions and assump-

tions used throughout the paper.

Mixed Observable Markov Decision Process
A MOMDP provides a sequential decision-making formal-

ism for high-level planning under mixed full and partial

observations [1]. More formally, a MOMDP M is a tuple

(S, E ,A,Z, Ts, Te, O), where

• S = {1, . . . , |S|} is a set of fully observable states;

• E = {1, . . . , |E|} is a set of partially observable states;

• A = {1, . . . , |A|} is a set of actions;

• Z = {1, . . . , |Z|} is the set of observations for the

partially observable state e ∈ E ;

• The function Ts : S ×E ×A×S → [0, 1] describes the

probability of transitioning to a state s′ given the action

a and the system’s state (s, e), i.e., Ts(s, e, a, s
′) :=

P(sk+1=s′|sk=s, ek=e, ak=a);
• The function Te : S × E × A × S × E → [0, 1]

describes the probability of transitioning to a state e′

given the action a, the successor observable state s′ and

the system’s current state (s, e), i.e., Te(s, e, a, s
′, e′) :=

P(ek+1=e′|sk=s, ek=e, ak=a, sk+1=s′);
• The function O : S × E × A × Z → [0, 1] describes

the probability of observing the measurement z ∈ Z ,

given the current state of the system (s′, e′) ∈ S × E
and the action a applied at the previous time step, i.e.,

O(s′, e′, a, z) := P (zk=z|sk=s′, ek=e′, ak−1=a);

MOMDPs were introduced in [1] to model systems where

a subspace of the state space is perfectly observable. The

advantage of distinguishing between fully and partially ob-

servable states is that a belief state is needed only for the

partially observable states. Thus, we introduce the belief

vector bE ∈ BE = {bE ∈ R
|E| :

∑|E|
e=1 bE(e) = 1}, where

each entry bE(e) represents the posterior probability that the

partially observable state ek equals e ∈ E .

Syntactically Co-Safe LTL Specifications
We consider objectives which are expressed using scLTL

specifications. For a set of atomic proposition AP , an scLTL

specification is defined as follows:

ψ := p | ¬p | ψ1 ∧ ψ2 | ψ1 ∨ ψ2 | ψ1Uψ2 | © ψ,

where the atomic proposition p ∈ AP and ψ, ψ1, ψ2 are

scLTL formulas, which can be defined using the logic

operators negation (¬), conjunction (∧) and disjunction (∨).

Furthermore, scLTL formulas can be specified using the

temporal operators until (U ) and next (©). Each atomic

proposition pi is associated with a subset of the MOMDP

state space Pi ⊂ S × E , and a state ωk = (sk, ek) of the

MOMDP M satisfies the atomic proposition pi if ωk ∈ Pi.

Finally, satisfaction of a specification ψ for the trajectory

ωk = [ωk, ωk+1, . . .], denoted by

ωk |= ψ

is recursively defined as follows: i) ωk |= p ⇐⇒ ωk ∈ P ,

ii) ωk |= ψ1 ∧ ψ2 ⇐⇒ (ωk |= ψ1) ∧ (ωk |= ψ1), iii)
ωk |= ψ1 ∨ ψ2 ⇐⇒ (ωk |= ψ1) ∨ (ωk |= ψ1), iv) ωk |=

ψ1Uψ2 ⇐⇒ ωl |= ψ2 and ωj |= ψ2, ∀j ∈ {k, . . . , l − 1},

v) ωk |= ©ψ ⇐⇒ ωk+1 |= ψ.

Assumption 1. We consider reachability specifications,

which are satisfied when the observable state s ∈ S of a

MOMDP M reaches a target set T ⊂ S .

The above assumption is not restrictive for finite time

problem, as the problem of checking if a finite time trajectory

of a MOMDP satisfies any scLTL specification can be re-

casted as a reachability problem over an extended MOMDP.

Please refer to [27, Chapter 3], [12], [13] for further details

on how to construct such extended MOMDP.

III. TIME-OPTIMAL QUANTITATIVE MOMDP

Problem Formulation
In this section, we introduce the problem under study.

Given a MOMDP M with observable states S , partially

observable states E , and target set T associated with the

specification ψ, we consider the finite-horizon problem of

maximizing the probability of satisfying the specification ψ,

while minimizing the expected time to complete the task. In

particular, we define the following time-optimal quantitative

constrained MOMDP (CMOMDP)

πTOQ = argmin
π

E
π

[
N∑
t=0

1S\T (st)

]

subject to π ∈ argmax
κ

P
κ[ω |= ψ],

(1)

where E
π[·] denotes the expectation under the policy π, N

represents the duration of the task and the indicator function

1S\T (s) = 1 when s ∈ S \ T and 1S\T (s) = 0 when

s /∈ S \ T . In the above problem, Pκ[ω |= ψ] represents the

probability that the closed-loop trajectory under the policy

κ : S×BE → A will satisfy the specifications. Therefore, the

optimal policy πTOQ : S × BE → A from (1) maximizes the

probability of satisfying the specifications while minimizing

the expected time to complete the control task, i.e., reaching

the set T × E ⊂ S × E .

Motivating Example
Problem (1) is motivated by the example shown in Figure 1,

where a Segway has to collect science samples which may be

located in the goal region (green) while avoiding known ob-

stacle regions (dark brown) and exploring uncertain regions

(light brown). The control problem can be formulated as a

MOMDP, where the Segway’s position is perfectly observed

and only partial observations about the traversability of the

uncertain regions are available. Figure 1 shows an example

with one goal region G and four uncertain regions R1, R2,

R3, and R4, which may be traversable with probability

0.9, 0.4, 0.3, and 0.5, respectively. The Segway receives a

perfect measurement when it is next to an uncertain region,

otherwise the measurement is corrupted as described in the

example section. In this example, the task has a duration

of N = 30 time steps. The control objective is given

by the scLTL formula ψ = ¬CollisionUGoal, where

the atomic proposition Collision is satisfied when the

system is in a cell occupied by an obstacle and the atomic

4288
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Fig. 1. This figure shows a navigation example with several obstacles
(dark brown), one goal region G (green) and four uncertain regions (light
brown) R1, R2 R3, and R4. In this example, all uncertain regions are not
traversable.

proposition Goal is satisfied when the system reached the

goal cell.

As discussed in [12], [14], [15], a control policy can be

computed maximizing the probability that ψ is satisfied, i.e.,

πQ = argmax
κ

P
κ[ω |= ψ]. (2)

Alternatively, a control policy can be synthesized minimizing

the expected time to complete the task. The time-optimal

problem is given by the standard reward minimization:

πTO = argmin
π

E
π

[
N∑
t=0

1S\T (st)

]
, (3)

where the indicator function 1S\T is defined as in (1). Notice

that the solution to the above minimization problem can be

approximated with point-based methods [28] or finite state

controllers [29].

Figure 1 shows the closed-loop behaviors associated with

the control policies from Problems (1)–(3). The Time-

Optimal (TO) policy from Problem (3) steers the system

beside the uncertain regions to collect perfect measurements

about the traversability of the terrain. In this example, all

uncertain regions are not traversable and therefore the control

policy from Problem (3) fails to reach the goal state G in

N = 30 time steps. On the other hand, the Time-Optimal

Quantitative (TOQ) policy from Problem (1) and the Quan-

titative (Q) policy from Problem (2), which are designed

to maximize the probability of satisfying the specification,

reach the goal set G. Finally, we notice that the TOQ policy

first explores region R1 and then takes the path around

the obstacle to reach the goal. This behavior minimizes the

expected time to complete the task, as region R1 may be

traversable with probability 0.9. Thus, this example shows

the advantage of synthesizing TOQ policies, which minimize

the expected time to complete the task, while guaranteeing

that the probability of satisfying the specifications is maxi-

mized.

IV. EXACT DYNAMIC PROGRAMMING UPDATE

In this section, we first show that the optimal value

function V ∗
k (s, ·) : BE → R of the time-optimal quantitative

problem (1) is piecewise affine for all s ∈ S and k ∈
{0, . . . , N}. Afterwards, following the approach presented

in [3], we define a pair of support vectors which characterize

the optimal value function V ∗
k (s, ·) for all s ∈ S and

k ∈ {0, . . . , N}.

As shown in [1], the synthesis problem can be reformu-

lated as a stochastic optimal control problem for a fully ob-

servable uncertain system, where the states are the belief bE
and the fully observable state s of the MOMDP. Indeed, the

belief evolves accordingly to the following update equation:

b′E(e
′) =ηO(s′, e′, a, z)

×
∑
e∈E

Ts(s, e, a, s
′)Te(s, e, a, s

′, e′)bE(e), (4)

where the scalar η = 1/P (s′, z|s, bE , a) is a normalization

constant [1], [30].

Next, we introduce two lemmas that allow us to refor-

mulate Problem (2) and Problem (3) as standard reward

maximization problems. Afterwards, we will leverage these

results to derive an exact dynamic programming update for

the time-optimal quantitative Problem (1).

Lemma 1. Consider a MOMDP M with terminal set T ×E
and a finite horizon N . The probability that the quantitative
policy πQ from Problem (2) satisfies the specifications is

max
κ

P
κ[ω |= ψ] = J̄0(s, bE),

where the optimal value function J̄0 is given by the following
dynamic programming recursion:

J̄k(s, bE) = 1T (s) + 1S\T (s)max
a∈A

E[J̄k+1(s
′, b′E)|s, bE , a]

(5)

with J̄N (s, ·) = 1T (s) for all s ∈ S . Furthermore, the
optimal value function J̄k(s, ·) : BE → [0, 1] is piecewise-
affine for all k ∈ {0, . . . , N} and for all s ∈ S .

Proof: Notice that, given a policy κ : S × BE → A,

the probability of satisfying the specification is given by the

probability of reaching the terminal set T , i.e.,

P
κ[ω |= ψ] = P

κ
[
∃k ∈ {0, . . . , N} : sk ∈ T ,

sj ∈ S \ T , ∀j ∈ {0, . . . , k − 1}
]

= E
κ

[
N∑
j=0

(
j−1∏
i=0

1S\T (si)

)
1T (sj)

]
,

where E
κ[·] denotes the expectation under the policy κ. For

more details on the above stochastic reachability problem

please refer to [31].
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Furthermore from [31, Theorem 4], we have that the

optimal value function J̄k : S×BE → R, which is associated

with the optimal policy that maximizes the probability of

reaching the set T , is given by the following recursion

J̄k(s, bE) = 1T (s) + 1S\T (s)max
a∈A

E[J̄k+1(s
′, b′E)|s, bE , a]

(6)

where J̄N (s, ·) = 1T (s). Next, we show by induction

that J̄k(s, ·) : BE → R is piecewise affine for all k ∈
{0, . . . , N} and s ∈ S . Assume that J̄k+1(s, ·) is piecewise

affine for a set of support vectors Λs, i.e., J̄k+1(s, bE) =
maxβ∈Λs β

�bE = maxβ∈Λs

∑
e β(e)bE(e). Then, using the

belief update (4), the definition η = 1/P (s′, z|s, bE , a) and

the definition of the value function J̄k+1(s, ·), we have that

E[J̄k+1(s
′, b′E)|s, bE , a] =

∑
s′,z

P (s′, z|s, bE , a)Jk+1(s
′, b′E)

=
∑
s′,z

P (s′, z|s, bE , a) max
β∈Λs

∑
e′

β(e′)b′E(e
′)

=
∑
s′,z

1

η
max
β∈Λs

∑
e′

β(e′)ηO(s′, e′, a, z)
∑
e

Ts(s, e, a, s
′)

× Te(s, e, a, s
′, e′)bE(e).

(7)

Now define β′(e) =
∑

e′ F (s, e, a, s′, e′, z)β(e′) for

F (s, e, a, s′, e′, z) = Ts(s, e, a, s
′)Te(s, e, a, s

′, e′)

×O(s′, e′, a, z),
(8)

then equation (7) can be rewritten as

E[J̄k+1(s
′, b′E)|s, bE , a]

=
∑
s′,z

max
β∈Λs

∑
e

bE(e)
∑
e′

F (s, e, a, s′, e′, z)β(e′)

=
∑
s′,z

max
β∈Λs

b�E β
′.

(9)

Equation (9) implies that the conditional expectation in (6)

is a piecewise affine function of bE . Therefore, J̄k(s, ·) is

piecewise affine as it is given by the summation and the

point-wise maximization of picecewise affine functions for

all s ∈ S . The proof is concluded by induction on k as the

value function J̄N (s, ·) is piecewise affine for all s ∈ S .

Lemma 2. Consider a MOMDP M with terminal set T ×E
and a finite horizon N . The optimal control policy πTO from
Problem (3) is the optimizer of the following problem:

max
π

E
π

[ N∑
t=0

1T (st)

]
.

Proof: Notice that by definition 1S\T (st) = 1 −
1T (st), ∀s ∈ S . Thus, we have that

argmin
π

E
π

[ N∑
t=0

1S\T (st)

]
=argmin

π
E
π

[ N∑
t=0

(1− 1T (st))

]

=argmin
π

E
π

[ N∑
t=0

−1T (st)

]
= argmax

π
E
π

[ N∑
t=0

1T (st)

]
,

which concludes the proof.

Optimal Value Function
In what follows, we leverage the dynamic programming

update from Lemma 1 and the maximization problem from

Lemma 2 to design an exact dynamic programming update

for the time-optimal quantitative problem (1). We modify the

strategy presented in [3] to solve the CMOMDP from (1).

The key idea is to construct a set of vector pairs 〈αi
s,k, β

i
s,k〉,

which define the optimal value function

V ∗
k (s, bE) = max

〈α,β〉∈Γ∗
s,k

α�bE

subject to 〈α, β〉 ∈ argmax
〈α,β〉∈Γ∗

s,k

β�bE ,
(10)

where at time k the set Γ∗
s,k collects the support vector pairs

associated with the observable state s ∈ S .

Next, we show that the support vectors can be updated

using the following recursion:

αa,z,s′,i
s,k (e) =

1G(s)

|Z||S| +
∑
e′

F (s, e, a, s′, e′, z)αi
s′,k+1(e

′),

βa,z,s′,i
s,k (e) =

1G(s)

|Z||S| + 1Q\G(s)
∑
e′

F (s, e, a, s′, e′, z)

× βi
s′,k+1(e

′)

Γ∗,a
s,k = ⊕z∈Z,s′∈S{〈αa,z,s′,i

s,k , βa,z,s′,i
s,k 〉|

∀i ∈ {1, . . . , |Γ∗
s,k+1|}}

Γ∗
s,k = ∪a∈AΓ

∗,a
s,k .

(11)

where the function F is defined as in (8) and

Γ∗
s,N =

{
〈1|Z|, 1|Z|〉 if s ∈ T ,

〈0|Z|, 0|Z|〉 otherwise.
(12)

The backup update of the α-vector is used to compute the

support vectors associated with the cost and it was presented

in [32]. On the other hand, the backup update of the β-vector

is designed based on the dynamic programming update (5)

from Lemma 1 and it is a key contribution of this work.

The following lemma illustrates that the backup update of

the β-vector, which defines the set of support vectors Γ∗
s,k

from (11), allows us to compute the probability that the time-

optimal quantitative policy satisfies the specifications.

Lemma 3. Let Γ∗
s,k be the set of support vectors constructed

using the dynamic programming recursion from (11). Then,
the constraint value function

J∗
k (s, bE) = max

〈α,β〉∈Γ∗
s,k

β�bE (13)

represents the probability that the time-optimal quantitative
policy πTOQ satisfies the specifications, i.e., J∗

k (s, bE) =

P
πTOQ[

[ωk, . . . , ωN ] |= ψ
]
, ∀k ∈ {0, . . . , N}.

Proof: First, we show by induction that J̄k(s, ·) = J∗
k (s, ·)

for all s ∈ S . Assume that J̄k+1(s, ·) = J∗
k+1(s, ·) for all

s ∈ S , which implies that

max
〈α,β〉∈Γ∗

s,k+1

b�E β = J∗
k+1(s, bE) = J̄k+1(s, bE) = max

β∈Λs

b�E β.

(14)
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Then, from equations (6), (9) and (14), we have that

J̄k(s, bE) = 1T (s) + 1S\T (s)max
a∈A

∑
s′,z

max
β∈Λs

b�E β
′

= max
a∈A

∑
s′,z

[
1T (s)

|Z||S| + 1S\T (s) max
〈α,β〉∈Γ∗

s,k+1

b�E β
′
]

= max
a∈A

∑
s′,z

max
〈α,β〉∈Γ∗

s,k+1

[
1T (s)

|Z||S|1
�
|E| + 1S\T (s)(β

′)�
]
bE

= max
a∈A

max
〈α,β〉∈Γ∗,a

s,k

β�bE = max
〈α,β〉∈Γ∗

s,k

β�bE = J∗
k (s, bE),

where β′(e) =
∑

e′ F (s, e, a, s′, e′, z)β(e′), 1|E| ∈ R
|E| is a

vector of ones, 1�|E|bE = 1 and the sets of support vectors

Γ∗,a
s,k and Γ∗

s,k are defined by the backup update (11) for the

set of support vectors Γ∗
s,k+1 from equation (14). Finally,

as J∗
N (s, ·) = J̄N (s, ·), ∀s ∈ S by induction we have that

J∗
k (s, ·) = J̄k(s, ·), ∀s ∈ S ∀k ∈ {0, . . . , N}, which together

with Lemma 2 and the definitions of Problems (1) and (2)

imply that J∗
k (s, ·) = J̄k(s, ·) = P

πQ[
[ωk, . . . , ωN ] |= ψ

]
=

P
πTOQ[

[ωk, . . . , ωN ] |= ψ
]
, ∀k ∈ {0, . . . , N} and ∀s ∈ S .

V. POINT-BASED APPROXIMATION

At each time step the dynamic programming update

from (11) generates in the worst case |A||Γ∗
s,k+1|(|Z|+|S|)

new support vector pairs [28]. In this section, we present

a point-based update, where the optimal value function is

approximated by a constant number of vectors computed for

a set Db = {b(1)E , . . . , b
(n)
E } of n discrete beliefs.

The proposed point-based strategy is based on the update

from equation (11). In particular, Algorithm 1 computes one

pair of vectors 〈αa∗
, βa∗〉 that approximates the optimal

value function (10) at a point (s, bE). In line 1 of Algo-

rithm 1, we compute the active pair of support vectors using

the following expression1

〈αs′,a,z, βs′,a,z〉
= argmax
〈α,β〉∈Γs,k+1

α�Fv(s, bE , a, s
′, z)

subject to 〈α, β〉 ∈ argmax
〈α,β〉∈Γs,k+1

β�Fv(s, bE , a, s
′, z),

(15)

where Fv : S × BE ×A× S × Z → BE is the belief vector

update, i.e., b′E = Fv(s, bE , a, s′, z). Afterwards, we update

the support vectors pair associated with an action a (line 2).

These vectors are then used to compute the set of admissible

actions (line 3) and the optimal action a∗ (line 4). Finally, we

add the optimal pair 〈αa∗
, βa∗〉 to the set of support vector

pairs Γs,k, which approximate the optimal value function

V ∗
k (s, ·) from (10) for all s ∈ S .
The Backup function from Algorithm 1 is used to update

the sets Γs,k, which define the value function approximation:

Vk(s, bE) = max
〈α,β〉∈Γs,k

α�bE

subject to 〈α, β〉 ∈ argmax
〈α,β〉∈Γs,k

β�bE .
(16)

1For more details on the belief propagation please refer to [1].

Algorithm 1: Backup, (α, β)-vectors computation

Input: s, bE ,Γs,k+1,Γs,k

1 For all s′ ∈ S , a ∈ A, z ∈ Z
〈αs′,a,z, βs′,a,z〉 ← from Equation (15) ;

2 For all a ∈ A, e ∈ E
αa(e) ← 1G(s) +

∑
s′,z,e′ F (s, e, a, s′, e′, z)αs′,a,z(e)

βa(e) ← 1G(s) + 1S\G(s)
∑

s′,z,e′ F (s, e, a, s′, e′, z)

×αs′,a,z(e) ;

3 Compute C = argmaxa∈A(b
�
E β

a) ;

4 Compute a∗ = argmaxa∈C(b
�
E α

a) ;

5 Add 〈αa∗
, βa∗〉 to Γs,k ;

Output: Γs,k

Algorithm 2: Value function update

Input: Γs,k+1

1 for s ∈ S do
2 Initialize Γs,k = Ø;

3 for bE ∈ Db do
4 Γs,k ← Backup(s, bE , Γs,k+1, Γs,k) ;

5 end
6 end

Output: Γs,k

For time k ∈ {0, . . . , N − 1}, the sets Γs,k are recursively

computed using Algorithm 2, which for all s ∈ S computes

the support vector pairs at all belief points bE ∈ Db. The

recursion is initialized setting Γs,N equal to Γ∗
s,N .

Finally, we show that the sets of support vector pairs Γs,k

computed using Algorithms 1 and 2 allow us to define an

approximated constraint value function, which is a lower-

bound of the probability of satisfying the specifications.

Theorem 1. Let Γs,k be the set of support vectors con-
structed using the point-based strategy from Algorithms 1
and 2. Then, the approximated constraint value function

Jk(s, bE) = max
〈α,β〉∈Γs,k

β�bE (17)

is a lower-bound of the probability that the control pol-
icy πTOQ satisfies the specifications, i.e., Jk(s, bE) ≤
P
πTOQ[

[ωk, . . . , ωN ] |= ψ
]
, ∀k ∈ {0, . . . , N}.

Proof: The β-vectors computed by the backup Algo-

rithms 1–2 are a subset of the β-vectors from (11), which

define the optimal value function from (13). Therefore, as

Γs,k ⊆ Γ∗
s,k we have that

Jk(s, bE) = max
〈α,β〉∈Γs,k

β�bE ≤ max
〈α,β〉∈Γ∗

s,k

β�bE = J∗
k (s, bE),

∀k ∈ {0, . . . , N}, ∀s ∈ S and ∀bE ∈ BE . The above equation

and Lemma 3 imply that Jk(s, bE) ≤ P
πTOQ[

[ωk, . . . , ωN ] |=
ψ
]
, ∀k ∈ {0, . . . , N}, ∀s ∈ S and ∀bE ∈ BE .
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Fig. 2. Grid worlds with several obstacles (dark brown), one goal region G (green) and four uncertain regions (light brown) R1, R2 R3, and R4, which
may be free with probability 0.9, 0.4, 0.3, and 0.5. The closed-loop trajectories are associated with different environment realizations. In particular, R4

and R1 are traversable in the 5x5 and 15x15 grid worlds, respectively.

VI. EXAMPLES

A. Grid Worlds

The proposed strategy is tested on three grid worlds shown

in Figures 1 and 2. We compared the proposed Time-Optimal

Quantitative (TOQ) policy approximated using a one-step

look ahead and the value function from Section V with

the Quantitative (Q) and Time-Optimal (TO) policies from

Problems (2)–(3), which are approximated using standard

point-based approaches for reward maximization2. In all

simulations, the Segway receives a perfect measurement

when adjacent to an uncertain region, a measurement which

is correct with probability 0.8 when one grid cell away in

the diagonal direction and an uninformative measurement

otherwise. The uncertain regions R1, R2, R3, and R4, may

be traversable with probability 0.9, 0.3, 0.4, and 0.5. Finally,

in order to analyze the effect of the number of uncertain

regions on the computational complexity, we also tested a

scenario where region R4 is a known obstacle.

Figures 1 and 2 show the closed-loop trajectories for

different realizations of the uncertain regions. We notice

that the TOQ policy behaves similar to the TO one, when

the constraint from Problem (1) does not restrict the search

space. Consider the 5x5 grid world in Figure 2, where the

agent can explore all uncertain regions in different orders,

as the task horizon is T = 30. In this example, the TOQ

policy first explores region R1, and then it steers the agent

through region R4. This behavior minimizes the expected

time to complete the task, as region R1 has the highest

probability of being free. Thus, the closed-loop trajectories

associated with the TO and TOQ policies overlap. On the

other hand, in the 15x15 grid world from Figure 2, the

task horizon is T = 40 and the agent cannot explore all

2Code available online: https://github.com/urosolia/MOMDP.
All simulations are run on a 2015 Macbook Pro with a 2.5GHz Quad-Core
Intel Core i7 and 16GB of memory.

regions. Therefore, the TOQ policy maximizes the number

of visited regions and behaves as the Q policy. Indeed,

in this 15x15 grid world, first visiting region R1, which

has the highest probability of being free, would lead to a

lower probability of mission success. In general, the TOQ

policy minimizes the expected time to complete the task,

without compromising the probability of satisfying the

specifications, as we have seen in Figure 1.
Table I shows the expected time to complete the task, the

probability of failure, the upper-bound of the probability of

failure3, the total time to approximate the value function and

the backup time required to approximate the value function

at a belief point bE ∈ Db. The TO and Q policies are approx-

imated using a standard point-based backup update and the

TOQ policy is computed using the backup function from

Algorithm 1. The TO policy from Problem (3) minimizes

the expected time to complete the task but, as a result, it

incurs in the highest probability of failure. On the other

hand, the proposed TOQ policy has a probability of failure

equal to the Q policy, which is computed maximizing the

probability of satisfying the specifications. Therefore, the

proposed strategy is able to minimize the expected time to

complete the task, without compromising the probability of

mission success. Notice that as a trade-off the computational

burden of synthesizing the proposed TOQ policy is higher

compared to the one needed to synthesize the Q and TO

policies. This result is expected as we are approximating the

solution to Problem (1) using a pair of vectors; whereas, the

point-based strategy used to approximate Problems (2)–(3)

maintains a single support vector per belief point. Finally,

we underline that the backup time shown in Table I is

associated with the computation of the support vectors at

a discrete belief point bE ∈ Db. Thus, it mostly depends on

the dimension of the belief space, which grows exponentially

3For the TOQ policy the probability of failure (1 − P
π [ω |= φ]) ≤

1− J0(s, bE) where J0(s, bE) is defined in Lemma 1.
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Grid
World

Exp.
Time

Prob.
Failure

Failure
Bound

Total
Time [s]

Backup
Time [ms]

[5x5]TO
3 8.12 4.2% N/A 4.09 0.45

[5x5]Q3 27.78 4.2% ≤ 4.2% 3.49 0.39

[5x5]TOQ
3 8.12 4.2% ≤ 4.2% 8.29 0.92

[5x5]TO
4 8.2 2.1% N/A 7.09 0.62

[5x5]Q4 28.39 2.1% ≤ 2.1% 6.57 0.58

[5x5]TOQ
4 8.2 2.1% ≤ 2.1% 16.86 1.48

[10x5]TO
3 4.23 4.2% N/A 4.69 0.33

[10x5]Q3 29.0 0% ≤ 0% 4.63 0.32

[10x5]TOQ
3 6.2 0% ≤ 0% 11.71 0.82

[10x5]TO
4 4.53 2.1% N/A 8.58 0.48

[10x5]Q4 29.0 0% ≤ 0% 9.34 0.52

[10x5]TOQ
4 6.2 0% ≤ 0% 24.42 1.37

[15x15]TO
3 25.2 10% N/A 36.15 0.33

[15x15]Q3 36.66 6% ≤ 6% 36.21 0.34

[15x15]TOQ
3 31.72 6% ≤ 6% 86.32 0.81

[15x15]TO
4 25.2 10% N/A 75.66 0.58

[15x15]Q4 37.83 3% ≤ 8.9% 73.97 0.56

[15x15]TOQ
4 29.86 3% ≤ 3.5% 186.52 1.43

TABLE I

COMPARISON BETWEEN THE TOQ, Q AND TO POLICIES COMPUTED

APPROXIMATING PROBLEMS (1)–(3), RESPECTIVELY. IN THE TABLE, THE

GRID WORLD [XXY]ji IS DEFINED BY XXY GRID CELLS, i UNCERTAIN

REGIONS AND THE CONTROL POLICY j ∈ {TO,Q,TOQ}.

with the number of uncertain regions. Clearly, the total time

needed to synthesize the control policy depends also on the

grid size and number of belief points, as the backup update

from Algorithm 2 is used repeatedly to approximate the value

function. Indeed, when parallel computing is not available,

the total computational cost scales linearly with the number

of observable states |S| and discrete belief points |Db|.

B. Navigation Task

In this section, we use the proposed time-optimal quantita-

tive policy (1) as high-level decision maker for the navigation

problem shown in Figure 3, where a Segway has to explore

a partially known environment to locate science samples that

may be located in the goal regions Gi. The specification

ψ = ¬collisionU((Goal1 ∧ sample1) ∨ (Goal2 ∧
sample2)), where the atomic proposition samplei is satis-

fied if the region Gi contains a science sample and the atomic

proposition Goali is satisfied if the Segway is in a goal

cell Gi. We implemented a hierarchical controller, where the

proposed time-optimal quantitative policy (1) computes high-

level commands and a model predictive controller [33] is

used to compute low-level inputs. The high-level commands

are move North, South, East and West and they are used to

compute the cell where the Segway should move next. Then,

the low-level control problem is solved as a standard regu-

lation problem [33], where the goal is to steer the Segway

Fig. 3. Evolution of the Segway (blue) in the high-fidelity simulator. The
TOQ policy decides to first explore region R1, which in this example is
not traversable. Afterwards, the controller explores regions R2, G1 and R3.
Finally, the Segway reaches region G2, which in this example contains the
science sample.

to the center of the goal cell. When a transition from cell i
to cell j occurs, we update the belief about the environment

and the observable state of the MOMDP, which represents

the cell where the Segway is located. The accuracy of the

environment observations decays exponentially as a function

of the distance between the Segway and the measured region.

In particular, for the binary variable r(i) ∈ {0, 1}, which

represents the traversability of the region Ri, we receive

a measurement z
(i)
r which is accurate with the following

probability:

P (z(i)r = 1|r(i) = 1, s)

=

{
1 if d(s,Ri) ≤ 1,

0.5 + 0.3e−(d(s,Ri)−2)/2.5 otherwise,

where d(s,Ri) represents the Manhattan distance between

the Segway and region Ri. Similarly, we define the binary

variable g(i) ∈ {0, 1}, which equals to one when region Gi

contains a science sample and zero otherwise, and we receive

an observation z
(i)
g which has the following accuracy:

P (z(i)g = 1|g(i) = 1, s)

=

{
1 if d(s,Ri) = 0,

0.5 + 0.25e−d(s,Ri)/1.5 otherwise.

Figure 3 shows the closed-loop trajectory of the Segway.

At the beginning of the simulation, the probability that

regions R1, R2, and R3, may be traversable is 0.7, 0.5,

and 0.4. Furthermore, the probability that regions G1 and G2

contain the science sample is 0.8 and 0.6, respectively. The

controller first explores region R1, which has the highest

probability of being traversable. However, in this example

region R1 is not traversable and therefore the Segway steers

to region R3. As shown in Figure 4, the environment

observations are used to update environment beliefs and

the probability of mission success, which represents the
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Fig. 4. Probability of satisfying the specification. The figure shows also
the evolution of the belief for the uncertain and goal regions.

probability of satisfying the mission specifications. Notice

that, when the Segway detects that region G1 does not

contain a science sample at the high-level time k = 34, the

probability of mission success drops, as shown in Figure 4.

Afterwards, the controller explores region R3 and steers

the Segway to region G2, which contains a science sample.

Finally, we notice that for all high-level time steps k ≥ 37
the controller is uncertain only about the state of region G2,

therefore the probability of mission success overlaps with the

probability that region G2 contains a science sample.

VII. CONCLUSIONS

In this work, we studied time-optimal quantitative prob-

lems for MOMDPs. First, we presented a dynamic pro-

gramming update to compute the value function of time-

optimal quantitative problems. Afterwards, we leveraged the

piecewise-affine nature of the optimal value function to

define a point-based approximation strategy, which allows us

to compute a lower bound of the probability of satisfying the

specifications. Finally, we compared the proposed strategy

with time-optimal and quantitative policies.
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