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ABSTRACT: Computation of adsorption and transition-state
energies for a large number of surface intermediates for numerous
active site models poses significant computational overhead in
computational screening of catalysts. Machine learning (ML)
techniques can be used to predict part of these energies. To predict
the energies, ML models need to be fed appropriate metal and
species descriptors. For complex surface chemistries, the structures
of the intermediate species can vary greatly. In this paper, working
with the hydrodeoxygenation of succinic acid on six different metal
surfaces, we have studied the effect of linear and non-linear ML models used along with pen-and-paper-based species descriptors and
two categories of metal descriptors on two different categories of intermediate species: chain and ring. More specifically, our
computations include the prediction of chain species when trained on only chain species and also when trained on both chain and
ring species. Similar computations were performed for predictions of ring species. In each case, the results of linear ML models were
compared with kernel-based non-linear models. Our results indicate that ring species data do not improve the prediction of chain
species. Similarly, chain species data do not improve the prediction of ring species. The use of non-linear ML models, however, did
help to minimize the prediction errors compared to the linear models. The study also shows that electronic or adsorption energy-
based metal descriptors along with bond count-based species fingerprints can achieve a mean absolute error (MAE) of less than 0.2
eV for complex chain molecules when used with an appropriate machine learning model.

1. INTRODUCTION
For discovery of heterogeneous catalysts through computa-
tional catalyst screening, microkinetic reaction models are
usually developed, which are based on parameters computed
from density functional theory (DFT) and transition-state
theory (TST).1−3 There is a large computational cost
associated with the computation of adsorption and tran-
sition-state energies for each elementary reaction in the
reaction network on different metal surfaces.4 When energy
data for each intermediate and transition-state species are
available for a number of surfaces, the energies on other
surfaces have been predicted using typically linear scaling
relations based on metal descriptors.5−7 However, when all
species data are not available for any metal surface, the
predictive model must incorporate species descriptors.
Previous studies8−10 have shown that non-linear ML models
outperform linear models in this case. It has also been
shown11,12 that flat molecular fingerprints based on SMILES
notation13 give good predictive results when training and
testing sets contain similar-sized molecules.
In this paper, we have studied and compared the predictive

results between chain-structured intermediate species and ring-
structured species on different metal surfaces for different
splittings of train and test sets. Specifically, we worked with the

data of adsorption energies for surface species for the
hydrodeoxygenation of succinic acid on six different metal
surfaces (Pd, Pt, Rh, Ru, Cu, and Ni). Using two different sets
of electronic metal descriptors14 and adsorption energy-based
metal descriptors, a flat constant-sized SMILES-based species
descriptor, and both linear and kernel-based non-linear ML
models, we have run predictions for four different splittings of
train and test sets: first, when training on a random subset of
the chain species and predicting on the rest of them for each
metal surface; second, similar to the first case but with training
and testing performed on ring structures; third, training on all
the ring structures and a random subset of chain structures and
testing on the rest of the chain molecules; and fourth, training
on the full chain data and a random subset of ring data and
predicting on the rest of the ring data. The key questions that
the current study seeks to answer are as follows: what is the
predictive accuracy of pen-and-paper-based descriptors for
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complex ring-structured intermediates that absorb at multiple
surface sites and thus whose adsorption geometry is difficult to
describe without the use of coordinates that are unknown in a
prediction model? Does inclusion of chain data help with the
prediction of ring structures and vice versa? In terms of
accuracy, is there any advantage of using electronic metal
descriptors over adsorption energy based ones? How linear and
non-linear ML models compare for predictions of both chain-
and ring-structured surface intermediates? Thus, the goal of
the paper was not to develop any novel descriptor or machine
learning model. Instead, this is a comparative study on the
efficiency of established predictive models for chain and ring
species on metal surfaces.

2. METHODOLOGY
In this section, we begin with a description on data collection
and preparation. Then, we discuss the choice of metal
descriptors, species descriptors, and ML models. Finally, the
process of splitting the combined chain and ring data into the
training and testing sets is explained.
2.1. Data Collection and Data Preparation. Since

adsorption energies vary widely based on the structure of the
metal surface,1 we have only used data of the hydro-
deoxygenation of succinic acid for similar, closed-packed
metal surface structures in the current work: Pd(111), Pt(111),
Rh(111), Ru(0001), Cu(111), and Ni(111); all were obtained
from VASP15 calculations with the PBE-D3 functional. Data
consist of 186 intermediate species for both ring and chain
structures for each of the six metal surfaces.
The energy data were prepared to have the same reference

values. For example, the adsorption energy for an intermediate
surface species CxHyOz was calculated as
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Here, E*
DFT is the energy of the free site (clean slab) and EX

DFT

denotes the adsorption energy of species X from the DFT
calculations. The species energies are summarized in Table S1
of the Supporting Information, and coordinate files of all
optimized species structures on all metal surfaces are also
available in the Supporting Information.
2.2. Computational Methods. All calculations were

carried out using the Vienna ab initio simulation package
(VASP)16−19 based on density functional theory (DFT) with
the projector augmented wave (PAW) method .20,21 The
generalized gradient approximation (GGA)22 with the
Perdew−Burke−Ernzerhof (PBE) functional23,24 was used to
treat the electron exchange and correlation effects. An energy
cutoff of 420 eV is used for all calculations, and the energy
convergence criterion was set to 10−7 eV. All structures were
relaxed until the Hellmann−Feynman force on each atom was
smaller than 0.03 eV Å−1. Considering that dispersion
interactions have a significant effect on the adsorption and
desorption processes of long-chain hydrocarbon molecules on
surfaces25,26 and that the PBE functional is unable to describe

these van der Waals interactions, we included them into the
calculations based on Grimme’s DFT-D3 methodology.26 To
conduct the calculations, a 4 × 4 metal (111) surface slab with
4 metal atom layers (64 metal atoms in total) was constructed
to simulate the metal surface. A 15 Å vacuum gap was set to
the direction perpendicular to the surface plane to avoid the
interactions between the periodic slabs. For all surface
calculations, the bottom two layers were fixed to their bulk
positions, while the top two layers were fully relaxed in all
directions. The Brillouin zone integration was sampled by the
3 × 3 × 1 k-point mesh using the Monkhorst−Pack scheme.27

Dipole corrections were applied to the direction perpendicular
to the surface, and all the calculations on the Ni(111) surface
are spin-polarized.

2.3. Metal Descriptors. Two different categories of metals
descriptors were used in our work. First, we used the published
values of electronic metal descriptors14 for the six metal
surfaces used in our study. The eight metal descriptors used are
as follows: Pauling electronegativity, ionization potential,
radius of d-orbitals, surface work function, d-band center, d-
bandwidth, d-band filling, and density of sp-states at the Fermi
level. Second, our predictive trials also included species
adsorption energy-based metal descriptors (adsorption en-
ergies of CHCHCO, OH, and C) used in previous works.8 We
note that electronic descriptors have the advantage over
adsorption energy descriptors that they can be obtained using
look-up tables rather than performing expensive adsorption
energy calculations for all surfaces. Also, there is hope that
these descriptors are less surface chemistry-dependent given
their rather general nature. On the other hand, the catalysis
community has a lot of experience with the use of adsorption
energies as metal descriptors that can be very reliable for some
chemistries.5−8,28,29

2.4. Species Descriptor. Species descriptors can also be
divided into two broad categories: coordinate-based and non-
coordinate-based. The coordinate-based descriptors are
computed using distance measures between each pair or
triplet of atoms inside the species. Some of the commonly used
methods in this category are Coulomb matrix30 and bag-of-
bonds.31 The disadvantage of using atomic coordinates is that
they have to be obtained by DFT or other semi-empirical
methods which defeat the purpose that we do not want to run
these expensive computations for all species. The other
category is based on the count of different bond types around
each atom11 or in the molecule as a whole.32

In the current study, we have used the constant-sized flat
molecular fingerprint based on previously published work11

which is similar to extended connectivity fingerprint (ECFP)12

and other constant-sized molecular descriptors.32 The finger-
print, obtained from the molecule’s SMILES notation, consists
of the number of different types of bonds in the molecule.
Here, the fingerprint vector contains more information than
what is available with a basic bond count scheme which just
calculates the number of C−C bonds or the number of C−O
bonds and so on. Instead, each carbon or oxygen atom is
denoted with the number of free valencies, and the fingerprint
is made up of these more granular-level bond counts such as
how many oxygen atoms with one free valence are connected
to saturated carbon atoms and so forth. The fingerprint is
described in Figure 1 with an example.
We note that particularly for ring species (but also for

longer-chain species), describing the specific adsorption site is
not easily done with pen-and-paper descriptors that do not use
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coordinates. Under such conditions, we are most interested in
the most stable adsorption configuration and an additional
objective of this study is investigating what accuracy can be
achieved for databases that only contain the most stable
adsorption configuration of various adsorbed species with
descriptors (fingerprints) that do not explicitly distinguish
adsorption configurations [indirectly, the species descriptors
can probably describe the adsorption configurations in that
adsorbate species with, for example, carbon and oxygen atoms
with one or two unpaired electrons (described in our
fingerprint as C1, C2, and O1) along with the corresponding
C1−C2 bond and C1−O1 bond indices etc. describing sites
within the adsorbate that prefer forming bonds with specific
metal surface sites).
2.5. Machine Learning Models. The ML models in the

current work can be broadly divided into two categories
linear models and kernel-based non-linear models. The goal
was to compare the effects of different settings of species
descriptors and metal descriptors on these categories of ML
models.
The linear models used were linear ridge regression and

lasso.33 Both methods are linear regressions but with different
types of regularizers: the L2 regularizer for ridge and L1 for
lasso. The kernel-based models used were kernel ridge
regression (KRR),34 support vector regression (SVR),35 and
the Gaussian process (GP).36 The GP model has an additional
benefit over the other models in that besides the predictions, it
also supplies the uncertainty measures around the predictions
that can be useful in later stages during the calculation of a
catalyst’s turnover frequency or other macroscopic quantities
of interest.37,38 More advanced and complex ML models based
on different structures of neural networks12,39−45 or molecular
graphs46,47 have also been proposed but have not been used
here. As will be shown later, our predictive trials indicate that
all kernel-based models with tuned hyperparameters outper-
form linear models. The results of kernel-based models,
however, have no statistically significant difference among
themselves. This finding is consistent with previous works8 and
suggests that there is no basis to prefer one kernel-based model
over another in terms of prediction accuracy. However, it

should be pointed out that the GP provides the extra
information about the uncertainty of the predictions compared
to the other models and hence can be of importance for some
scenarios where one has to study the effects of uncertainty
propagation on the macroscopic quantities of interest.
A GP treats each data point as a random variable where any

subset of these variables48 forms a multivariate normal
distribution. The relation between any pair of data points is
defined by the kernel.49 GP predicts the values for test points
given the values of the training points. The uncertainty of the
prediction is higher in the region of data space where the
concentration of training points is low. Also, the opposite
happens in the regions where there is a high number of training
points. Support vector regression (SVR) predicts based on a
subset of the training data which are called support vectors.
Kernel ridge regression (KRR) provides closed form estimates
while using a different loss function compared to SVR. The
hyperparameters of the models such as which kernel to use and
the parameters of the kernels such as length scale were tuned
using 5-fold cross-validation.50 We found Gaussian kernels to
perform better than the Laplacian kernel.51 The hyper-
parameters were tuned using cross-validation on the training
set. The tuned hyperparameters were then used to predict on
the testing sets to yield the performance measure of a trial run.
The performance measures were averaged over all the trial runs
to get the final prediction results.

2.6. Splitting Data into Training and Testing Sets.
Using both linear and non-linear ML models, our predictive
trials ran for four different types of splittings of the combined
data set of chain- and ring-structured intermediate species.
First, for each metal surface, we trained on a random subset

of the chain species and predicted on the rest. Out of the 186
species for a metal surface, 160 were randomly chosen and
added to the training set, and the remaining 26 species were
added to the testing setwith the process repeated for each
metal. The training set thus obtained was used to train each of
the ML models, and in each case, the predictions were done on
the testing set.
Second, similar to the first case but working with ring

structures instead of chain structures, we split the 186 ring
species for a metal surface randomly into 160 to be added to
the training set and the remaining 26 to be added to the testing
set and finally perform the usual training of the ML model on
the training set and then predict on the testing set.
Third, the chain data were split into 160−26 as in the first

case and appended to the training and testing sets. This time,
however, all the ring structure data are appended to the
training set. This is the case where we have both ring and chain
structures in training but only chain structures in the testing
set. The prediction results compared with the first case would
ascertain whether there is any statistically significant benefit
obtained by including the ring structures in the training.
Fourth, similar to the third case but predicting on ring

structures instead of chain structures, we performed the 160−
26 split of ring structure data for each metal and then at the
end appending all of the chain data to the training set and
testing on the rest of the ring structures. Again, this will help us
to see if inclusion of chain data increases the prediction
accuracy on ring structures or not.

3. RESULTS AND DISCUSSION
The chain structure data for the hydrodeoxygenation of
succinic acid contains information on 186 intermediate species

Figure 1. Molecular fingerprint for a ring-structured surface species.
Here, C0 denotes a saturated carbon (no free valence). C1, C2, and C3
denote carbon atoms with one, two, and three free valencies,
respectively. Similarly, O0 is a saturated oxygen, whereas O1 is an
oxygen atom with one free valence. The fingerprint vector (shown at
the bottom of the image) contains the number of different saturated
or unsaturated atoms and the number of bonds between them.
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across 6 metal surfaces, making the total size of the chain data
set 1116. Similarly, there is a 1116-sized data set for the ring-
structured species. The results of the predictions on the chain
species are shown in Figure 2 and Table 1, and those of ring

species are shown in Figure 3 and Table 2. For both the tables,
the first 10 rows show predictions when using electronic metal
descriptors, whereas the bottom 10 rows are for energy-based
metal descriptors. There is no apparent advantage of using
adsorption energies as metal descriptors relative to the
tabulated electronic metal descriptors. For each set of the 10
rows, the first 5 show predictions for linear and non-linear ML
models when training on either chain or ring species and
predicting on the same category of species, whereas the second
5 rows are for predictions of linear and non-linear ML models
when training on both ring and chain species and predicting on
either chain (for the first table) or ring species (for Table 2).
For each case, the whole process is repeated 100 times each

time selecting a different random subset. The absolute error
(AE) for each run is obtained by taking the absolute difference
between the predicted and real energies. For both the tables,
the mean and standard deviation of these absolute errors are
shown in the fourth and fifth columns, respectively. Repeating
the experiments 100 times also gives us 100 different MAEs.
The standard deviations of these MAEs are shown in the sixth
column and are generally quite small. For both Figures 2 and 3,
the scatter plots show a random subset of prediction results of
100 different runs on the randomly selected test sets for all
metal surfaces.
The key takeaway from these results are as follows: first, the

prediction MAE for ring species using kernel-based ML models
such as SVR is around 0.2 eV; second, inclusion of ring data
when predicting chain and inclusion of chain data when
predicting ring do not help to improve the predictions (to
ensure that this was not because of different data distributions
between the ring data and the chain data, we performed data
normalization, but it did not have a statistically significant
difference on the prediction accuracy); third, non-linear
models outperform linear models; and fourth, the difference

Figure 2. Predicted adsorption energy (after referencing) vs actual
adsorption energy (after referencing) for predictions of chain-
structured species. The top row shows prediction results for linear
(on the left) and non-linear SVR (on the right) models when
predicting chain data while training on chain data. The bottom row
shows prediction results for linear (on the left) and non-linear SVR
(on the right) models when predicting chain data while training on
the rest of the chain plus all the ring structure data.

Table 1. Results of Prediction of Chain-Structured Speciesa

case metal desc model
MAE
(eV)

SD of
AEs
(eV)

SD of
MAEs
(eV)

1 chain to chain electronic Ridge 0.247 0.200 0.014
2 chain to chain electronic Lasso 0.251 0.243 0.017
3 chain to chain electronic KRR 0.130 0.121 0.009
4 chain to chain electronic GP 0.133 0.119 0.009
5 chain to chain electronic SVR 0.126 0.123 0.008
6 chain plus ring

to chain
electronic Ridge 0.315 0.250 0.019

7 chain plus ring
to chain

electronic Lasso 0.321 0.249 0.017

8 chain plus ring
to chain

electronic KRR 0.154 0.131 0.008

9 chain plus ring
to chain

electronic GP 0.137 0.129 0.009

10 chain plus ring
to chain

electronic SVR 0.139 0.129 0.010

11 chain to chain energy Ridge 0.245 0.204 0.015
12 chain to chain energy Lasso 0.245 0.208 0.016
13 chain to chain energy KRR 0.130 0.122 0.010
14 chain to chain energy GP 0.129 0.124 0.011
15 chain to chain energy SVR 0.127 0.124 0.010
16 chain plus ring

to chain
energy Ridge 0.318 0.245 0.020

17 chain plus ring
to chain

energy Lasso 0.315 0.240 0.018

18 chain plus ring
to chain

energy KRR 0.158 0.134 0.009

19 chain plus ring
to chain

energy GP 0.137 0.139 0.011

20 chain plus ring
to chain

energy SVR 0.136 0.141 0.009

aThe first five rows and rows 11 to 15 show the results for different
ML models when training on a randomly selected subset of chain data
and predicting on the rest of the chain species for all metal surfaces.
Rows 6 to 10 and 16 to 20 show the results for linear and non-linear
models when training on a randomly selected subset of chain data and
all ring species and predicting on the rest of the chain species for all
metal surfaces.

Figure 3. Predicted adsorption energy (after referencing) vs actual
adsorption energy (after referencing) for predictions of ring-
structured species. The top row shows prediction results for linear
(on the left) and non-linear SVR (on the right) models when
predicting ring data while training on ring data. The bottom row
shows prediction results for linear (on the left) and non-linear SVR
(on the right) models when predicting ring data while training on the
rest of the ring plus all the chain structure data.
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between prediction accuracy of electronic metal descriptors
and adsorption energy-based metal descriptors is not statisti-
cally significant.
Another observation on the results is that the prediction

errors on ring species are significantly higher than those on
chain species. One possible explanation for this is that
dehydrogenated ring species prefer to form strong bonds
with specific sites of the surface metal atoms (atop vs bridge vs
three-fold hollow); however, this leads to significant strain in
the ring structure, and the optimized structures, for
significantly dehydrogenated ring species such as adsorbed
C4O on Pt(111), often possess both elongated and/or
compressed bonds within the ring atoms and the metal sites.
Figure 4 illustrates that the spread of the energy values is
bigger for ring species compared to the chain species in our
data set. Also, the ring structure data contain more outliers,
and we found that these high-energy outliers are consistently
significantly dehydrogenated species with elongated and/or
compressed bonds. Fingerprints that only consider nearest
neighbor atoms are limited in capturing the properties of such
species, and more complex fingerprints are needed if it is
desired to describe the properties of deeply dehydrogenated
surface ring species. However, given that these species are
usually high-energy species that are likely not kinetically

relevant and that more training data are required for models
with more complex fingerprints, it might be acceptable to use
the fingerprints of this study and have a higher prediction error
for deeply dehydrogenated ring species.

4. CONCLUSIONS
Working with two data sets on the most stable chain and ring
structures on six different metals surfaces, our comparative
study on predicting adsorption energies of these two different
structures has revealed some key insights. We have seen that
although ring structures had a higher predictive error, it was
still below 0.2 eV when working with simple SMILES-based
flat fingerprints and electronic or adsorption energy-based
metal descriptors along with regular non-linear ML models.
Our results also indicate that the non-linear models perform
better than the linear models when the predictive model
requires species descriptors as well as metal descriptors.
Another key outcome from the current study is that
information on chain species does not help in predicting ring
species and vice versa for current species descriptors. We
highlight that these results have been obtained with species
descriptors that do not explicitly describe specific adsorption
sites but that we used a database containing only the most
stable adsorption configuration and energy as it is currently
typical in many databases.
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Table 2. Results of Prediction of Ring-Structured Speciesa

case metal desc model
MAE
(eV)

SD of
AEs (eV)

SD of
MAEs
(eV)

1 ring to ring electronic Ridge 0.380 0.336 0.025
2 ring to ring electronic Lasso 0.389 0.342 0.027
3 ring to ring electronic KRR 0.201 0.241 0.019
4 ring to ring electronic GP 0.203 0.237 0.019
5 ring to ring electronic SVR 0.192 0.245 0.017
6 chain plus

ring to ring
electronic Ridge 0.440 0.401 0.028

7 chain plus
ring to ring

electronic Lasso 0.428 0.395 0.027

8 chain plus
ring to ring

electronic KRR 0.212 0.242 0.019

9 chain plus
ring to ring

electronic GP 0.199 0.254 0.018

10 chain plus
ring to ring

electronic SVR 0.202 0.248 0.018

11 ring to ring energy Ridge 0.385 0.331 0.026
12 ring to ring energy Lasso 0.392 0.329 0.027
13 ring to ring energy KRR 0.203 0.229 0.018
14 ring to ring energy GP 0.204 0.226 0.020
15 ring to ring energy SVR 0.190 0.248 0.018
16 chain plus

ring to ring
energy Ridge 0.435 0.401 0.030

17 chain plus
ring to ring

energy Lasso 0.434 0.401 0.029

18 chain plus
ring to ring

energy KRR 0.209 0.243 0.019

19 chain plus
ring to ring

energy GP 0.200 0.252 0.017

20 chain plus
ring to ring

energy SVR 0.204 0.251 0.018

aThe first five rows and rows 11 to 15 show the results for different
ML models when training on a randomly selected subset of chain data
and predicting on the rest of the chain species for all metal surfaces.
Rows 6 to 10 and 16 to 20 show the results for linear and non-linear
models when training on a randomly selected subset of ring data and
all chain species and predicting on the rest of the ring species for all
metal surfaces.

Figure 4. Box plots comparing the energy distributions in chain and
ring data sets. The ring data set has not only a bigger spread but also
more outliers.
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