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ARTICLE INFO ABSTRACT

An explosion in high frequency dissolved oxygen (DO) observations at river network scales is creating new
opportunities to understand dynamic signals in streams and rivers. Among the most informative metrics obtained
from DO time series is stream metabolism—comprising gross primary production (GPP) and ecosystem respi-

This article dedicated to Pat Mulholland.

Ié‘;};WOFdS: ration (ER)—but its estimation is non-trivial. There is thus interest in simpler metrics that can capture spatio-
ER temporal patterns in stream metabolism and their consequences for critical ecosystem processes. Using hourly
Primary productivity DO time series from 43 agricultural headwater streams reaches (Strahler order 1-5) across five watersheds and
Respiration two years, we tested the hypothesis that simple DO metrics are useful proxies of stream metabolism, capturing

DOM key features of its spatiotemporal variation, and predicting attendant patterns in dissolved organic matter quality
and catchment nitrogen processing via denitrification. Our results suggest the diel DO range scaled by stream
depth is an excellent proxy for GPP throughout the network, accurately describing its spatial and temporal
patterns. In contrast, we found that DO metrics were less successful as proxies for ER, with the maximum daily
DO deficit scaled by depth being a good proxy for ER only in higher order streams. We also observed that DO
metrics were strongly related to variation in dissolved organic matter quality and denitrification far better than
GPP or ER. Finally, we found that DO metrics, GPP, and to a lesser extent ER, had power-law relationships with
watershed area (scaling exponents, f = 0.2-0.5), implying increasing downstream metabolic activity. However,
because lower order streams occupy ~75% of network benthic area, total network GPP and ER (g Oz d’l) were
disproportionately provided by lower order streams, consistent with recent theoretical modeling. These findings
reveal the rich inference space that simple DO metrics can provide, and support their use as proxies for stream
metabolism and for inferring network patterns of biogeochemical function.

Denitrification
Nitrate isotopes

1. Introduction

Dissolved oxygen (DO) in flowing waters is an information-rich
ecosystem indicator, at once integrating energy dynamics, describing
aquatic habitat suitability, and constraining biogeochemical processes.
Rapid increases in reliability and decreasing costs of in-situ DO sensors
(Pellerin et al., 2016; Rode et al., 2016) have enabled freshwater sci-
entists to obtain long time series of high-frequency observations that
offer deep insights into inland water functions. A key focus has been on
using these DO time series to estimate stream metabolism as the

conjoined fluxes of gross primary production (GPP) and ecosystem
respiration (ER) (Appling et al., 2018; Demars et al., 2015; Odum,
1956). Although stream metabolism is a fundamental metric of lotic
ecosystems, accurate calculation is non-trivial, especially in headwater
and urban streams with noisy DO signals, heterogeneous reaches, and
where physical gas exchange (K) with the atmosphere is poorly con-
strained (Blaszczak et al., 2019). Despite the often dispiriting un-
certainties associated with metabolism inferences, much can be learned
from simple DO metrics (Moatar et al., 2001; Mulholland et al., 2005;
Wang et al., 2003) that obviate the necessity of modeling assumptions
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(e.g., reach homogeneity, constant ER, lack of groundwater inputs) and
gas exchange estimates, which are notoriously difficult and uncertain
(Demars et al., 2015). Indeed, where broad spatiotemporal patterns are
of focal interest, and where the exacting precision of metabolism com-
putations are not required or the assumptions untenable, DO time series
attributes may be informative regarding network scale metabolic
function.

Network patterns of inland water metabolism have been a central
focus of limnology since the emergence of the river continuum concept
(Vannote et al., 1980) with modern investigations focused on spatial
scaling rules for river networks (Koenig et al., 2019), temporal meta-
bolic regimes (Bernhardt et al., 2018; Savoy et al., 2019), and predictive
frameworks (Segatto et al., 2021). Despite the centrality of spatiotem-
poral network variation to our theoretical understanding of metabolic
patterns and their biogeochemical consequences, few studies have
empirically evaluated network scale behaviour of metabolism and DO,
with those that exist focused primarily on first- and second-order
streams (e.g., catchments 0.3-3.7 km? in Mulholland et al. 2005).
Exploring how DO and stream metabolism scale in space and time
through larger river networks (i.e., up to fifth order streams) thus re-
mains an important knowledge gap.

There are several key predictions of how stream metabolism patterns
evolve throughout a headwater stream network. The first prediction,
which is borne out of theoretical (Koenig et al., 2019; Vannote et al.,
1980) and empirical evidence (Finlay, 2011; McTammany et al., 2003;
Mejia et al., 2019), is that GPP increases along river networks as light
availability increases with increasing channel widths and reduced
shading. This prediction implies that the diel range in DO (sometimes
called DO flux, Jankowski et al., 2021 and references therein) increases
in similar fashion as light inputs (Wang et al., 2003). In contrast, pre-
dictions for how ER may change along a river network diverge. For
example, ER magnitude may either 1) stay constant or decrease slightly,
or 2) increase along a river network. Empirical evidence for the former
derives from studies conducted at the scale of entire river networks from
headwaters to mouth (Battin et al., 2008; Hotchkiss et al., 2015),
whereas evidence for the latter is found in headwater networks and is
attributed to increasing downstream stream temperature (Finlay, 2011;
Mejia et al., 2019). Previous efforts have identified maximum daily DO
deficits (i.e., the greatest degree of undersaturation) as a reasonable
proxy for ER (Mulholland et al., 2005; Wang et al., 2003), implying that
this metric should behave similarly to ER throughout the network.
Importantly, GPP and ER are scaled from DO concentration changes (g
(o2} m~2 d™1) to areal fluxes (g O2 m2dh using stream depth (m).
Stream depth thus linearly diminishes the resulting DO flux so that for
identical GPP or ER, DO diel variation will be greater in headwater than
in downstream reaches. Hence, depth corrections of observed DO con-
centrations are necessary for across order comparisons.

Stream metabolic regimes characterize GPP temporal patterns,
integrating primary producer phenology, light availability, timing of
resource inputs, and disturbance patterns (Bernhardt et al., 2018).
Metabolic regimes are well-predicted by river size because light and
temperature tend to increase downstream and larger rivers are less
frequently disturbed (Savoy et al., 2019). Further variation around these
principal regimes is related to local conditions in turbidity, color, and
disturbance which can lead to asynchronous behavior across river net-
works (Mejia et al., 2019; Roberts et al., 2007), and high within-network
variability. How DO signals relate to these network properties remains
an open question, especially in disturbed systems (Blaszczak et al.,
2019), but temporal patterns in simple DO metrics may prove to be
useful in characterizing metabolic regimes, even where metabolism as-
sumptions are untenable.

Stream metabolic rates and associated DO patterns are linked to both
dissolved organic matter (DOM) and nitrogen (N) processing by stream
biota. For instance, DOM derived from GPP tends to be richer in
aliphatic structures than allochthonous-derived DOM (Hansen et al.,
2016; Helms et al., 2008; Zhang et al., 2013). On the other hand,
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consumption of DO, and therefore minimum daily concentrations, is
controlled by biological respiration and decomposition of organic mat-
ter that tends to decrease DOM molecular weight (Hansen et al., 2016;
Helms et al., 2008; Zhang et al., 2013). In turn, large DO deficits affect
the balance between oxic and anoxic respiration pathways, and are
therefore linked to increased potential for in-stream denitrification
(Christensen et al., 1990), which requires low DO. This process inte-
gration of oxygen, DOM quality, and denitrification suggests that
changes in DO concentrations along the stream should both control and
result from in-stream biogeochemical processes and by-products.

Here, we used spatiotemporal variation in DO signals along an
agricultural headwater stream network to evaluate simple inferences of
spatial and temporal variation in metabolic rates, and as predictors of
key biogeochemical processes. We hypothesized that metrics based on
diel variations in DO concentrations would be robust proxies of stream
metabolism, and thus, could qualitatively capture temporal and spatial
variation of metabolic activity. In addition, we hypothesized that DO
metrics would be informative of network patterns of biogeochemical
processes strongly linked to stream metabolism and DO availability such
as in-stream DOM cycling and denitrification. Thus, we expected strong
relationships between DO proxies of stream metabolism and both DOM
quality and denitrification isotopic N signatures.

2. Methods
2.1. Study area

We studied 43 stream sites ranging from Strahler order 1 to 5 within
five agricultural watersheds in the Forez plain of the Loire River, France
from July 2019-October 2020 (Fig. 1). The study area in the headwaters
of the Loire comprises a valley uplifted during the Tertiary and glaciated
during the Quaternary, bound by the Monts du Lyonnais to the east and
the Monts du Forez to the west, with sites spanning an elevation gradient
of 330 to 627 m.a.s.l. (NGF IGN69 datum). Lithology near the Loire
River at watershed outlets is typically a thick alluvium with clay and
sand derived from granite and gneiss rocks. Higher in the watersheds,
lithology is typically granite and gneiss. Topography is characterised by
rolling hills with successions of plateaus separated by long steep slopes.
Drainage networks are dense and valleys are deeply incised. Climate in
the Forez plain is continental, with mean annual rainfall of approxi-
mately 800 mm, and mean annual temperatures of 11 °C (mean annual
minimum-maximum = 6.1-17.2 °C). This area has been continuously
occupied since at least 5750 cal. BP with agricultural activity, damming,
and water mills growing throughout the Iron Age and Gallo-Roman
period around 2000 cal. BP (Cubizolle et al., 2012, 2003; Georges
et al., 2004).

2.2. Data collection

We monitored all sites for DO (g m~3) and temperature (°C) every 15
min and supplemented these data with seasonal grab samples of water
chemistry (up to 5, depending on site) between July 2019 and October
2020, (Fig. 2); we did not collect DO and temperature data during winter
(November-February). At each site, DO and temperature were measured
with an in-situ sensor (HOBO U26-001, Onset Computer Corporation,
Massachusetts, USA) instrumented with a copper anti-biofouling guard.
We cleaned these sensors every two weeks to remove biofouling. Prior to
deployment, we lab-calibrated DO sensors with both 100% water-
saturated air and with sodium sulphite for 0% saturation. We also
measured DO and temperature with a calibrated handheld probe (Pro
Plus, YSI Inc., Ohio, USA) at each field visit to check for sensor drift and
develop corrections as needed. We placed sensors in the middle of the
water column, and as close to the thalweg as possible; sites downstream
of confluences were placed at least 20 stream widths downstream to
ensure mixing (Siders et al., 2017).

For use in metabolism modeling, we gathered meteorologic and
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Fig. 1. Map of the 43 stream sites measured for dissolved oxygen concentration (DO), temperature, and water chemistry across five watersheds (letters matched in
inset to aid in identification) in the headwaters of the Loire River (heavy dark blue line), France (inset shaded by elevation above sea level) and Loire River watershed
shown. Corinne land cover classes shown for each watershed (their location with respect to the main stem is shown in the red-bordered inset). Stream sites are
coloured according to the timing and length of the measurement period for DO and discharge measurement sites are shown with blue triangles. (For interpretation of
the references to color in this figure legend, the reader is referred to the web version of this article.)

hydraulic data from several sources. First, we obtained hourly atmo-
spheric pressure (kPa), insolation (W m~2), and rainfall (mm) data from
Météo France at the nearby St. Etienne-Bouthéon station (site
42005001; https://publitheque.meteo.fr/). We then obtained instanta-
neous discharge (m® s™1) data for one downstream location in each of
the five watersheds from the French Banque Hydro database (http://h
ydro.eaufrance.fr/; Table 1) and assumed the same specific discharge
(q [mm d’l]) across all sites in the same watershed. Daily discharge at
each site was therefore the q for its watershed multiplied by site
drainage area. Stream depth was modeled at each site by first mapping
each site location to its corresponding stream reach from an empirical
reach-based hydraulic geometry model for France (Morel et al., 2020).
Model inputs were daily discharges estimated at each site (see above),
and model outputs included daily values of stream depth (m), velocity
(m s’l), and width (m) for the model reach of each site. For the modeled
region, depth estimates are accurate (RMSE = 1.9 cm) and unbiased

(bias = +0.6 cm) compared to observations (n = 203; Morel et al. 2020).
We estimated stream surface light availability using a physical model of
water temperature (“TNET”) for the Loire River network that operates
on the same reaches as the hydraulic model (Beaufort et al., 2016). The
TNET model outputs hourly shade (unitless) for each reach depending
on riparian vegetation density, riparian tree height, riparian tree
phenology, solar angle, and azimuth. There are no validation data for
the shade outputs, but the model had high agreement (R? = 0.90) with
observations in its original development (Li et al., 2012).

To evaluate variation in biogeochemical function and assess the
explanatory power of DO metrics and metabolism, we took stream water
grab samples of DOM quality and stable isotopes of NO3~ (N = 156, n =
2-5 per site) in five different seasons (Fig. 2, numbered arrows). We
characterized DOM molecular features such as aromaticity and weight,
as these properties reflect DOM source and regulate respiration. Spe-
cifically, we measured ultraviolet-visible (200-800 nm) spectroscopy
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Fig. 2. Representative daily hydroclimatic conditions
showing discharge (blue line), insolation (black dots),
and precipitation (blue vertical bars) in the Coise
catchment (site code = K0663310) during monitoring
period. Specific discharge was assumed to be the same
for all sites within each watershed. Timing and
magnitude of q shown here was similar across wa-
tersheds. The five study periods (wet summer,
autumn, winter, spring, and dry summer) are denoted
with shaded color bands. Red arrows indicate grab
sampling events. (For interpretation of the references
to color in this figure legend, the reader is referred to
the web version of this article.)
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Table 1

Drainage area range and number of study sites in each watershed (n), discharge code*, N surpluses“ (mean =+ sd), and riparian land use! within a 100 m linear

upstream buffer? of each site (mean =+ sd) by watershed.

Watershed Area (km?) Discharge site code N surplus (kg ha™! y’l) Crops (%) Pasture (%) Forest (%) Urban (%)
Loise 1-132 (n = 21) K0714010 31.5 +14.1 8+6 59 + 27 37 +£ 25 6+5
Toranche 55-76 (n = 3) K0704510 46.0 + 16.8 51+8 19+3 24 +13 7+2
Coise 6-305 (n = 11) K0663310 57.7 £ 25.4 8+5 80 + 14 25+ 15 16 £5
Lignon 62-664 (n = 4) K0773220 16.8 + 3.8 27 £ 22 27 £ 18 61 + 30 0+0
Mare 62-233 (n = 4) K0643110 17.8 + 4.1 60 + 42 14+9 27 + 25 7+4

*Banque Hydro site codes.

“"CASSIS-N database (Poisvert et al., 2017), https://geosciences.univ-tours.fr/cassis.

2018 CORINE dataset (CLC 2018).

iBuffers are 100 m wide on both sides of the upstream stream reach length defined for each site

(UV-vis) of DOM with Shimadzu UV-1900 spectrophotometer (Shi-
madzu Scientific Instrument, Inc., Columbia, MD, USA) at three periods:
wet summer, low winter flow, and dry summer (Fig. 2). Prior to analysis,
samples were filtered through 0.45 um polyvinylidene fluoride mem-
branes. We calculated the following UV-vis metrics: 1) specific UV
absorbance at 254 nm (SUVA in L mg c! m’l), the absorbance at 254
nm normalized by DOC concentration (Weishaar et al., 2003), 2) E4:E6,
the ratio of absorbances at 400 and 600 nm, 3) E2:E3, the ratio of ab-
sorbances at 250 nm and 365 nm, and 4) spectral slope (Sg), the ratio
between absorbance slopes (in natural log units) for the wavelength
regions 275-295 nm and 350-400 nm (Helms et al., 2008). Briefly,
SUVA is positively correlated with DOM aromaticity (Weishaar et al.,
2003), E4:E6 and E2:E3 are negatively correlated with aromaticity and
molecular weight (Li and Hur, 2017), and Sg is negatively correlated
with molecular weight but positively with irradiation (Helms et al.,
2008).

Finally, we measured the isotopic composition of N and O in NO3~
(*>N-NO5 and '®0-NO5, respectively) with the bacterial denitrification
method (Pseudomonas chlororaphis subsp. aureofaciens; Casciotti et al.,
2002; Sigman et al., 2001; GasBench-PreCon-IRMS, UC Davis, USA) for
four grab sample sets: wet summer, high winter flow, low winter flow,
and dry summer (Fig. 2). Prior to sample analysis, we removed nitrite
from our samples by acidifying with sulfamic acid and then neutralizing
with sodium hydroxide (Granger and Sigman, 2009). Isotopic results are
presented in delta notation as 615N-N03’ (%0) and 6180-N03’ (%o) rela-
tive to international standards. Mean standard deviations of analytical
sample replicates were half (sds;sy = 0.11%o; sdsigo = 0.13%0) that of
mean standard deviations of reference replicates (sdsisNair = 0.23%o;
sds1govsmow = 0.26%o).

2.3. Data processing

Prior to analysis, we conducted quality control on the DO data (n =
986,349). We first averaged DO data to hourly resolution to reduce file
sizes and processing time (n = 246,947), and then flagged data that were
extremely noisy or otherwise of suspect quality (e.g., negative values,
sensor out of the water), reducing sample size by 4%. We then compared
in situ sensor measurements to hand-held probe observations and
removed data where clear, uncorrectable sensor drift, sensor burial, or
biofouling had occurred, accounting for approximately 6% of the
remaining data. Finally, when in situ and hand-held observations dis-
agreed (n = 10 cases), but indicated linear drift, we corrected these data
with a linear model (p < 0.001), influencing approximately 1% of the
data. For data that passed quality control (n = 222,339), we calculated
hourly DO saturation (DOg,) using water temperature and barometric
pressure at sea level corrected for site elevation, and derived hourly DO
saturation deficit (=DO minus DOgy,), with a negative deficit indicating
measured DO is below saturation. We calculated four daily DO metrics
for each site as potential proxies of stream metabolism following the
logic of Mulholland et al. (2005) and Wang et al. (2003):

1. Daily DO range (g m ), measured between 04:00 and 03:00 the next
day, in solar time (i.e., solar noon is always 12:00).

2. Maximum DO deficit (g m™>), defined as the greatest negative de-
parture from DOgy in each 24-hr period; values were negative for
98% of days.

3. Daily DO range multiplied by daily average water depth (g m~2), to
account for depth dependency (vis-a-vis benthic surface area to
volume effects).
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4. Maximum DO deficit multiplied by the daily average water depth (g
-2
m~ ).

2.4. Stream metabolism modeling

We estimated stream metabolism at each site using a single-station
open channel method (Odum, 1956). The approach is a mass-balance
representation of DO as a function of insolation-dependent inputs
from GPP (g O, m 2 d’l), constant ER (g Oq m2 d’l), and temperature-
and concentration-dependent gas exchange (Kgoo [d~11) between the
water and air. We simultaneously estimated GPP, ER, and Kgoo using
inverse fitting of DO dynamics with a state space approach (i.e.,
including process and observation error) and Bayesian inference with
Markov chain Monte Carlo sampling (MCMC) (Appling et al., 2018). We
developed site-specific hyperpriors for Kegg as lognormal distributions of
the daily means from equations 1, 3, 4, and 5 Raymond et al. (2012),
which relate Kg to velocity, slope, and depth. We then constrained Keggo
by pooling its estimates based on site-specific discharge, where days
with similar discharge are more likely to have similar Kggo; this corre-
sponds to the b Kb oipi tr plrckm.stan model in the streamMetabolizer R
package (version 0.10.9) (Appling et al., 2018). Four MCMC chains were
run in parallel on four cores, with 1000 warmup steps and 500 saved
steps on each chain. We evaluated model fits with the Gelmin-Rubin
convergence diagnostic, R (Gelman and Rubin, 1992), ensuring that
all parameters had an R value less than 1.1 (Brooks and Gelman, 1998).
When this criterion was not met, indicating poor MCMC model
convergence, we excluded metabolism estimates from further analyses.
Model outputs included daily posterior probability distributions for
GPP, ER, Kg00. We used the means of these distributions as the best daily
estimates, the variances as uncertainty measures, and the 95% credible
intervals (Bayesian confidence intervals) to test if the estimates were the
correct sign (i.e., GPP > 0, ER < 0).

2.5. Data analyses

We evaluated proposed DO metrics as prospective proxies of GPP and
ER by comparing 1) DO diel ranges (with and without depth scaling) to
estimated daily GPP, and 2) maximum daily DO deficits (with and
without depth scaling) to ER at each site. To do so, we used: 1) an
iteratively reweighted least squares regression (IRLS), 2) multiple
regression with Strahler order as a second fixed effect. By accounting for
Strahler order, we were able to test if there were predictable network
scale effects on the efficacy of the potential proxies. Residuals from
model fits were normal and homoscedastic, but did exhibit autocorre-
lation. However, model performance was not improved using auto-
correlated variance structures, so we opted to keep the models simple.
To simplify interpretation of all analyses, we used absolute values of ER
and maximum daily DO deficit. All statistical analyses were performed
in R (R Core Team, 2020).

We evaluated the coherence of metabolism and DO proxy patterns
through the fluvial network with log-log linear regression of site means
versus watershed area. Log-log regression relates relative, not absolute,
changes in variables, and thus allows comparison of area scaling effects
on metabolism and DO proxies (via comparison of power —law slopes),
providing direct assessment of the coherence of their spatial patterning.
To compute means of metabolic rates, we used inverse variance
weighting to account for uncertainty in metabolism measurements such
that measurements of GPP or ER with greater uncertainty were assigned
lower weights. Means of DO proxies were simple averages. We compared
regression slopes of DO proxies and metabolism (seasonally and annu-
ally) against watershed area, and considered them equal if their 95%
confidence intervals overlapped.

We evaluated whether DO proxies captured the temporal regimes of
metabolism using Kendall t correlation and visual inspection. We
compared mean weekly values (weeks 10-44) across sites within each
Strahler order (orders 1-5) to account for any scale-dependence of (i.e.,
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effects of watershed area on) temporal patterns. Similar to our spatial
analysis, we used weighted means for stream metabolic rates (GPP and
ER), simple means of DO proxies, and absolute values of ER and
maximum daily DO deficit. We calculated Kendall t values and their
respective p-vales for relationships between 1) GPP and diel DO range x
depth, and 2) |ER| and |maximum daily DO deficit| x depth. When p-
values <0.05 and t > 0.2, we considered the two time-series to have the
same temporal regime.

Finally, we evaluated the relative performance of DO metrics and
metabolism estimates for predicting variation in stream C quality and N
processing using regression and Spearman correlation. We correlated
mean daily DO metrics and metabolism (GPP and ER) with DOM UV-vis
properties and NOj3~ stable isotope values from grab samples. For DO
proxies and metabolism, we used the mean of the three prior days to the
grab sample date (including day of sampling, n = 3). Specifically, we
calculated IRLS and Spearman correlations (p) of a) DO proxies (with
and without depth-scaling) and b) metabolism with 1) DOM UV-vis
metrics indicative of aliphatic vs. aromatic compounds (E4:E6, SUVA,
E2:E3) and molecular weight (Sg), and 2) indicators of in-stream deni-
trification (enriched 8'°N and §'%0 of NO3").

3. Results
3.1. General observations for DO and stream metabolism

We observed seasonal variation in DO concentration patterns
through the river network. Larger streams exhibited daily means more
consistently near saturation than smaller streams, except in spring
(Fig. 3a). In the spring, diel DO ranges and DO deficits increased with
stream order, but these patterns were not consistent throughout the year
(Fig. 3a). During the wet summer and autumn, lower order streams
exhibited greater DO deficits than higher order streams, but diel DO
ranges were similar throughout the network (Fig. 3a). In contrast, dur-
ing the dry summer (with lower q; Fig. 3b), low order streams exhibited
larger diel DO ranges than large streams, but much higher average DO
deficits.

Across sites and seasons, estimated GPP ranged from 0.1 to 4.3 g Oy
m2d10.7+06 g 0o m 2 d’l, mean =+ sd) and estimated ER ranged
from —0.5 to —21.0 g Oy m 2 d~! (-4.0 + 2.2 g O, m 2 d™1). Notably,
credible intervals for ER (2.6 + 1.5 g Oq m 2 d’l, mean =+ sd) were 3—-4
times the width of intervals for GPP (0.7 + 0.4 g Oy m—2 d’l), with the
greatest discrepancies in autumn, indicating poorly constrained esti-
mates. Days with successful metabolism estimates varied widely by site
(114 £ 64 days, range = 4-241 days, overall n = 8,800 site-days). There
were 69 + 18% fewer days with metabolism estimates than the total DO
data available. Data losses resulted from poor model fits, with Gelmin-
Rubin R values for parameters greater than 1.1 (indicating poor model
convergence) 12% of the time, and incorrect signs for estimated GPP and
ER 54% of the time. We also observed obvious equifinality in ER esti-
mates as indicated by ER covariance with Kggp (Appling et al., 2018)
(Fig. S1a). Poor estimates occurred principally in smaller order streams,
and on days when DO signals were noisy, especially during drying pe-
riods in the summer or storm events. Overall, Kggg was well within the
range of reported values in the literature (Raymond et al. 2012) for
streams of this size range (median = 11.9 d™'; interquartile range =
6.6-23 d™1), and correlated positively with discharge, particularly in
spring (Fig. S1b).

3.2. Simple DO metrics as proxies of stream metabolism

When data were pooled across sites and dates, both DO range metrics
(with and without depth scaling) were strongly correlated with stream
GPP estimates (Fig. 4a,b). Depth-scaled DO diel range yielded the
strongest relationship, explaining 70% of estimated variation in GPP
according to the IRLS model (Fig. 4b). Goodness-of-fit was marginally
improved by considering the interaction effect of Strahler order (Rzadj =
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Fig. 3. Network patterns of stream DO and
autumn discharge for exemplary periods across sea-

sons. a) Hourly DO in percentage saturation
averaged across all sampled reaches (n = 43)
within their respective Strahler orders (for
Strahler orders 1-5, n = 4, 11, 16, 8, and 3,
respectively); dark colors are the lowest
Strahler orders and light colors are higher
Strahler orders. The dotted line shows 100%
percent saturation. b) Exemplary hourly q in
the Coise catchment for each season; other
catchments exhibited similar patterns and
magnitude. Winter data were not collected.
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a
spring wet summer dry summer
140+ Strahler order
1204 1 2 3 4 5
S1orNGwA Al T T AR EEARA BT - -ttt NToTocztiTTTcaTa
-
©
2]
8 80
60
40+
b~
S
£ 03
E
()
2 02
K=
[*3
2
el
e " M
=
o
2 1N\_‘—\_J—\_
& 00 . . . . . . . . . . 0 : . : :
04-02  04-04 04-06  04-08 09-02 09-04 09-06 09-08 07-04 07-06 07-08 10-02  10-04 10-06  10-08
44 @ » 4 b

GPP (O, m2d™")
N

y=0.11+19x, R*=0.7

ecosystem respiration (ER) (expressed in
absolute terms) versus DO metrics for all
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0.73), although none of interaction effects were different from each
other (p = 0.05; Table 2)

Ecosystem respiration was uncorrelated with the daily maximum DO
deficit metrics, regardless of depth scaling (Fig. 4c,d). However, the
goodness-of-fit was improved by considering the fixed interaction effects
of Strahler order (R2adj = 0.09), showing a large directional increase in
both slope and intercept with Strahler order (Table 2). This is visually
apparent as well in the horizontal sorting of Strahler orders in the
ER-daily max. DO deficit relationship (Fig. 4d).

3.3. Spatial patterns of DO and stream metabolism

Spatial patterns of stream metabolism were similar to those of DO
metrics, in many cases increasing with watershed area (Figs. 5 and 6).
When scaled by depth (blue points, Figs. 5 and 6), DO metrics exhibited
strong spatial coherence with GPP estimates during most seasons as

1.0 1.5 20

|max. daily deficit x depth| (g m™2)

indicated by nearly identical best-fit slopes (B). This was true for the diel
DO range metric across all seasons, and for the maximum daily DO
deficit metric during the dry summer and, to a lesser extent, autumn.
When metrics were not depth-corrected (red points, Figs. 5 and 6), their
spatial patterns were at times inverted to estimated metabolic patterns,
with the exception of the diel DO range in spring. We observed that the
magnitude of depth-indexed daily DO range (Fig. 5a—d) and maximum
daily DO deficit increased with stream order (Fig. 6a—d), a finding that
was consistent across seasons. Moreover, the slopes of these increases
were similar between the two metrics. This pattern emerged largely
because depth increased with increasing watershed area (In(depth) = In
(area)?, p = 0.27 + 0.02, R? = 0.88, p < 0.001), such that, for a similar
DO concentration, DO mass increases with distance downstream. For the
depth-scaled maximum DO deficit, a consistent trend of increasing
magnitude with area contrasted with both the absence of any clear
pattern (spring and wet summer), and the decreasing magnitude (dry
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Table 2

Multiple regression results for metabolism fluxes versus DO metrics (n = 3823).
The GPP and ER columns separate the two model response variables, with scaled
model parameter estimates (confidence interval) and their p-values reported.
GPP models relate GPP to daily diel range x depth with a Strahler order inter-
action and ER models relate maximum daily DO deficit x depth with a Strahler
order interaction.

Predictors GPP ER
Estimates p* Estimates P
(Intercept) 0.23 (0.11-0.34) <0.001 5.34 (4.56-6.12) <0.001
DO metric x 1.12 (0.27-1.98) 0.010 —7.24 (-11.79 to 0.002
depth —2.70)
strahler [2] 0.02 0.710 —1.08 (—1.88 to 0.009
(-0.10-0.14) —0.27)
strahler [3] —0.08 0.196 -1.79 (-2.59 to <0.001
(—0.20-0.04) —0.99)
strahler [4] 0.04 0.564 —1.96 (—2.78 to <0.001
(—0.09-0.16) -1.13)
strahler [5] 0.07 0.296 —3.71 (—4.56 to <0.001
(—0.06-0.19) —2.85)
DO * strahler 0.10 0.814  8.05 (3.46-12.65) 0.001
[2] (—0.76-0.97)
DO * strahler 0.75 0.086  7.92(3.34-12.49) 0.001
[3] (-0.11-1.60)
DO * strahler 0.33 0.446  8.73 (4.16-13.29) <0.001
[4] (-0.52-1.19)
DO * strahler 0.40 0.358 9.38 (4.82-13.94) <0.001
[5] (—0.45-1.25)
R%.q 0.73

0.075

*p-values less than 0.05 are bolded.

summer and autumn) observed when depth adjustments were not
considered. This was also true for daily DO diel ranges.

Stream GPP consistently increased with watershed size during all
seasons, with an order of magnitude difference between the smallest and
largest streams (Fig. 5e-h). Across seasons, GPP increased by 0.28-0.52
% for every 1% increase in watershed area (power law slopes), with the
greatest increases in spring. This is likely due increasing light avail-
ability at the stream surface in larger streams (Fig. S2). Stream ER
showed no consistent pattern with increasing watershed size (Fig. 6 e,f),
except during the dry summer of 2020 and autumn when ER increased
by 0.13-0.2% for every 1% increase in watershed area (Fig. 6g,h). Log-
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log slopes were all less than one, indicating marginal watershed size
effects on GPP and ER with increasing watershed size.

3.4. Temporal patterns of DO and stream metabolism

Temporal alignment of stream metabolism and DO metrics depended
strongly on Strahler order (Fig. 7). GPP and depth-scaled diel DO range
were most temporally aligned, with strong correlations (t > 0.2) in
Strahler orders 2-5 (Fig. 7a—e). In Strahler orders 1 and 2, GPP was
relatively constant over the year, whereas in orders 3 and 4, GPP peaked
in spring and declined nearly an order of magnitude over the remaining
growing season; GPP signals in order 5 exhibit a weak summer peak,
though our record is shorter. In contrast, ER and maximum daily DO
deficit x depth, were inversely correlated for Strahler orders 1-3, and
only exhibited temporal coherence in Strahler order 4 (Fig. 7f-j).
Maximum daily DO deficit x depth was the most temporally dynamic of
the metrics, increasing an order of magnitude from spring to summer,
where they could then remain constant, increase, or decrease from
summer to autumn. ER temporal patterns contrasted with those for GPP,
decreasing over summer, but exhibiting spring and autumn peaks,
especially in orders 2-5 (Fig. 7fj).

3.5. DO metrics and in-stream C and N biogeochemical processing

DOM characteristics differed across sampling campaigns (Table 3;
Fig. 8), with wet and dry summers differing on every UV-vis metric
(tg2_52 = —25.6-11.1, p < 0.001). Of particular note was our observation
that dry summer DOM was more similar to winter than to wet summer
DOM (Table 4 and Fig. 8c,f), with winter and dry summer exhibiting no
difference in E2:E3 (tgz = —1.6, p = 0.15) or E4:E6 (t47 = —0.3, p =
0.76), and only modest differences in Sy (t35 = —3.7, p = 0.002) and
SUVA (ty5 = —3.2, p = 0.01) (Table 4).

DO metrics consistently outperformed metabolism estimates in pre-
dicting variation in DOM quality (Fig. 8). The E4:E6 index of aliphatic
structure increased with increasing daily DO diel range x depth, but was
uncorrelated with GPP, especially during the wet summer (blue circles,
Fig. 8a). Likewise, GPP exhibited no correlation with E4:E6 patterns
during the wet summer, and yielded equivalent predictions as the DO
metric during the dry summer (red circles; Fig. 8b). Sg (an indicator of
molecular weight) correlated far more strongly with maximum daily DO
deficit (Fig. 8d) than with ER (Fig. 8e) in the dry summer, but was
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Kendall t values are shown when p < 0.05,
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uncorrelated with either in the wet summer. Interestingly however, the
direction of correlation for the maximum daily DO deficit and Sy
differed between the two summers: wet summer Sg decreased with
increasing deficit magnitude, while dry summer Sy increased with
increasing deficit magnitude (Fig. 8d).

The high values of 8'°N-NO3 (11.3 + 4.6%0; mean =+ sd) and low
isotope ratios (6180/615N = 0.38 £+ 0.17) indicate stream nitrate is
derived primarily from animal manure (Kendall, 2012). During winter,
615N—NO3 was constrained across catchments (Fig. 9a). However, during
both summers, 5'°N-NO3 was enriched at all sites compared to winter.
The maximum daily DO deficit and 5'°N-NOs both peaked during the
dry summer, and the relationship between §'%0-NO3 and §'°N-NO;
followed the characteristic denitrification slope of 0.5 (Fig. 9b). We
observed no influence of catchment size or DOC concentration on the
distribution of isotopic values (p > 0.1). However, NO3-N was

negatively correlated with 5'°N-NO3 (r = —0.48, p < 0.001), as were
DOM Sg (r = —0.68, p < 0.001) and SUVA (r = —0.5, p < 0.001); E2:E3
was positively correlated with §!°N-NO3 (r = 0.7, p < 0.001). Most
importantly, 8'°N-NOs was strongly positively correlated with the
magnitude of maximum daily DO deficit (Fig. 8c, F45 = 43.1, p < 0.001,
R%=0.49). In contrast, neither 615N-N03 nor 6180-N03 were correlated
with ER (Fig. 9d).

4. Discussion
4.1. DO metrics are better proxies of GPP than ER
The allure of DO metrics emerges from their simplicity and appli-

cability in all settings and dates, but our data make clear that while
simple DO metrics serve as robust proxies for stream GPP, their



J.S. Diamond et al.

Table 3

Summary of stream grab sample results for DOC and DOM UV-vis (mean =+ sd)
for the five study catchments for the winter, dry summer, and wet summer

seasons (number of samples).
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performance for capturing spatial and temporal variation in ER is far

weaker. Specifically, the depth-scaled diel DO range was an excellent
proxy for GPP, accounting for 70% of GPP variation (Fig. 4b) throughout
the network, capturing both spatial and temporal patterns in stream

Watershed ~ Season DOC(mg Sp(-) E2: E4: SUVA (L primary production. Indeed, a multiple regression model that consider
cLh E3()  E6() mglcl stream order interactions suggests that depth-scaled diel DO range is, by
m ) itself, sufficient to predict network variation in GPP, with no variation in
Loise Winter (21)  4.2+20 1.6 2.6 1.1 3.6+0.9 fitted intercepts or slopes at different stream orders. In contrast, the
+0.1 + 0.3 + 0.0
Dry 39+1.0 2.0 2.8 1.1 4.1 +0.4
summer +0.5 +0.3 + 0.0
13) Table 4
Wet 51+09 09 5.3 5.6 2.7+ 0.1 Comparison of watershed scaling relationships for mean annual stream meta-
summer +£00 +£02 +£20 bolism fluxes.
10) . 2
Toranche Winter (3) 71409 1.4 3.3 11 31401 Metabolic slope rangze of areas p-value R Reference
400 0.0 0.0 flux (std. err.) [km~] (n)
Dry 5.3+07 19 3.1 11 3.3£0.2 GPP 0.30 2-664 (42) <0.001  0.52  This paper
summer (3) + 0.2 + 0.1 + 0.1 (0.04)
Wet 7.6+20 09 5.7 4.7 2.9 +0.2 1.46 128-1722 (10) <0.001  0.84 (Mejia et al.,
summer (3) +0.1 +£00 +20 (0.22) 2019)
Coise Winter (9) 47+04 15 2.9 1.1 3.4+01 0.26 7-17551 (47) <0.001 0.32 (Savoy et al.,
+0.1 +0.1 + 0.0 (0.06) 2019)
Dry 3.6+07 1.9 2.8 11 42+03 0.18 0.1-6860 (78) <0.001 0.26 (Finlay, 2011)
summer (9) + 0.5 +0.3 + 0.0 (0.04)
Wet 6.5+08 0.9 5.8 6.5 26+02 0.54 0.1-10010 <0.001  0.59  (Finlay, 2011)
summer (3) +£00 +£01 £07 (0.07) (103) *
Lignon Winter (7) 49+1.0 1.4 2.9 1.2 4.0+ 04 0.22 0.8-35900 (8) 0.02 0.64 (Minshall
+00 +£02 +£0.0 0.07) et al., 1992)
Dry 51+£3.0 17 3.0 1.1 41+1.0 ER 0.01 2-664 (42) 0.8 0 This paper
summer (4) +0.2 + 0.4 + 0.0 0.1)
Wet 5.4+20 09 5.0 4.7 3.0+ 06 0.81 128-1722 (10) <0.001 0.78 (Mejia et al.,
summer (4) + 0.1 + 0.1 + 2.0 (0.15) 2019)
Mare Winter (4) 7.0+20 1.3 3.2 1.2 3.9+08 0.23 0.1-6860 (103) <0.001  0.38  (Finlay, 2011)
+ 0.2 + 0.1 + 0.1 (0.05)
Dry 86+10 1.3 36 1.3 38+02 0.03 0.1-10010 (86) 0.345 0 (Finlay, 2011)
summer (4) +0.2 + 0.1 +0.1 (0.04) *
Wet 62+£09 1.0 5.3 2.8 32+03 0.19 0.8-35900 (8) 0.08 0.43  (Minshall
summer (4) + 0.0 + 0.4 + 0.4 (0.09) et al., 1992)
*The two slopes in this reference correspond to “natural” (1st line) and human-
dominated systems (2nd line). No information was given on the overall fit across
system types.
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Fig. 9. Nitrate isotopes and their relation to
maximum daily DO deficit and ER for the dry

and wet summer periods. a) Kernel density
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maximum daily DO deficit (with and without depth-scaling) was a poor
proxy for ER, exhibiting limited predictive power (<10% of ER variation
explained), except in higher order streams (Fig. 4c,d). Notably, while its
global ER predictions were weak, this DO metric did capture key aspects
of network variation, with systematically increasing depth-scaled DO
deficits in higher order streams (monotonic changes in fitted intercepts
with increasing order in Table 2), and increasing fitted slopes for orders
2 through 5, indicating that greater DO deficits imply increasing ER in
larger rivers.

Our general finding that DO metrics require depth-adjustment to be
effective does not comport with results in Mulholland et al. (2005) who
observed no improvement in the association between GPP and the DO
diel range with depth adjustment. That study also reported clear re-
lationships between ER and maximum DO deficit, in stark contrast to
our findings. This discrepancy is likely attributable to the larger range of
catchment areas in our study (1-664 km? vs 0.3-3.7 km?) with attendant
greater range in stream physical attributes (e.g., depth, gas exchange).
We note that within any given order, the GPP vs. diel DO range rela-
tionship is very strong (Fig. 4a) but with contrasting slopes for different
stream orders. We also note the DO proxies used in Mulholland et al.
(2005) were strongly predicted by drainage area disturbance, a finding
our observations failed to replicate, possibly because of the comparative
severity and ubiquity of human impacts in our catchments (Fig. S3).

Our finding of global utility for depth-scaled diel DO range, but
order-specific utility for depth-scaled maximum DO daily deficit implies
two possible conclusions. First, temporal variation in DO is nearly
entirely due to GPP, with this relationship only weakly influenced by
spatial scale (increasing Rzadj by 3% when considering order effects).
The unexplained variation in this proxy relationship (~25%) may be
attributed to measurement error or site-specific conditions like local re-
aeration hotspots that erase GPP signals. The second conclusion is that
ER is poorly constrained, especially in low order streams (Fig. 4d),
where rapid gas exchange (Fig. 3a) can induce equifinality in ER and
Keoo estimates when diel ranges are small. In higher order streams, the
depth-scaled maximum daily DO deficit served as a reasonable proxy for
ER (e.g., in 5th order streams, we observed R? = 0.54, p = 2.1, F1 469 =
557, p < 0.001). Moreover, ER may be more strongly influenced than
GPP by local heterogeneity in stream properties such as relative distri-
butions of pools, eddies, DOM quality, and inflows of limiting nutrients
and carbon sources from confluences and groundwater (Lupon et al.,

10

three days.

2019).

4.2. Clear network patterns for GPP, but not ER

Our results strongly support predictable network patterns of stream
GPP in agricultural headwaters, and further support the use of diel DO
range as a proxy for that spatial network variation. GPP clearly increases
with catchment size (Fig. 5), with the scaling of this increase aligned
closely with concomitant patterns in depth-scaled diel DO range
(Fig. 5a—d). The most plausible explanation for this is increasing light
availability with increasing stream order and width. Indeed, GPP
exhibited positive relationships with stream surface light availability for
all stream orders, with regression intercepts increasing with order
(consistent with Kirk et al. 2020; Fig. S2). We estimated light use effi-
ciency as the ratio of GPP and stream light availability (after both are
normalized to kJ m~2 d~! using methods from Kirk et al. 2020), and
found it to range from 0.06 to 1.4% (mean = 0.5%), considerably lower
than those observed in (Kirk et al., 2020), which were closer to 2—-3%.
We attribute this to large light reduction effects of geomorphic shading
(Fig. S4) and water depth, reflectance, and color that were not taken into
account.

In contrast, ER exhibited no clear trends with watershed size (Fig. 6),
in agreement with previous work indicating complex, non-monotonic
change in ER through river networks (cf. Battin et al., 2008; Hotchkiss
etal., 2015). Substantial spatial heterogeneity in ER was matched by the
depth-adjusted maximum daily DO deficit, which exhibited similar
order-of-magnitude network variation within each season (Fig. 6a—d).
We note, however, that uncertainties in ER estimates were large (3-4
times those for GPP), and its estimates were considered poor for 54% of
days, challenging strong inference on ER spatial patterns. Using the DO
deficit metric instead, we observe a clear network pattern aligned with
the patterns observed for GPP (Fig. 6a-d). Indeed, if we take the DO
deficit metric as a reasonable proxy for ER, the patterns observed sug-
gest that ER increased at rates similar to GPP along the river network.
This should be expected given the importance of autotrophic respiration
to ER in headwater networks (Segatto et al., 2021).

While GPP increased nearly an order-of-magnitude through our
study networks, the contribution of small streams to GPP at the whole
network scale was larger. Using mean GPP by Strahler order for every
reach across all five watersheds, and scaling for variation in benthic
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surface area (mz), leads to the estimate that Strahler orders 1-3 pro-
duced 81 + 2% more DO than Strahler orders 4-5 (in g O, d™1). Given
that low order streams represent 76% of total stream benthic area, this
result indicates that cumulative river network GPP is dominated by
headwaters, which aligns well with recent theoretical modeling (Koenig
et al., 2019). We further estimate that benthic area-scaled ER (g O3 da™h
was 337 + 2% higher in orders 1-3 than orders 4-5. This far more
dramatic importance of low-order steams in networks suggests that
these reaches are hotspots for internally derived CO; efflux to the at-
mosphere. Yet, we cannot determine the importance of this source in
relation to terrestrial derived CO», which is typically considered larger
in headwaters (Hotchkiss et al., 2015)..

Depth adjustments to our DO metrics were critical for producing
network-scale DO patterns that resemble those from metabolism.
Indeed, the patterns of non-depth-scaled DO metrics with increasing
watershed area were ambiguous for much of the year (Fig. 5a-d), while
depth scaling led to consistent spatial patterns. This underscores the
dominant role of stream depth on benthic (i.e. 2-dimensional) processes
altering water column (i.e., 3-dimensional) DO concentrations, much
like the reasoning of surface area to volume ratio for explaining
disproportionate reactivity of headwater streams (Alexander et al.,
2000). Hence, as depth increases downstream, DO signals should
dampen under the same metabolic fluxes. On the other hand, atmo-
spheric gas exchange tends to decrease downstream as slopes and ve-
locities diminish in higher orders (Raymond et al., 2012), which
amplifies the DO signals driven by metabolic fluxes. Hence, there are
two opposing physical drivers controlling DO network patterns in the
downstream direction: 1) an increasing depth-effect that reduces DO
response to areal fluxes, and 2) a decreasing gas-exchange effect that
increases DO response to areal fluxes. This implies that with constant
stream network metabolism, the balance between these hydraulic con-
trols should create spatially constant diel DO ranges through the
network. Our observations to the contrary (Figs. 5 and 6) necessarily
imply increasing metabolism along the river network (see Fig. S5).

We observed power-law scaling of stream metabolism with water-
shed area, with scaling exponents typically greater than those for stream
depth vs. area in most instances (i.e., p = 0.30-0.50 compared to 0.27).
This was clearest for GPP across seasons (§ = 0.28-0.52), and ER in the
dry summer and autumn (§ = 0.13-0.20), although the depth-scaled
maximum daily DO deficit also exhibited clear power law scaling
across seasons (Figs. 5 and 6). In spring, the fitted exponents for GPP and
DO metric vs. area were 93% and 74% greater than the fitted depth vs.
area exponents, respectively, clearly indicating a biological DO signal
above that expected from hydraulics alone. These scaling values appear
to hold remarkably well at larger scales in the Loire River network.
Using the fitted scaling function (p = 0.4 based on the mean of spring
and summer), mean growing season GPP in the Loire at Dampierre
(watershed area = 35,000 km?) is predicted to be 7.6 g Oz m2d
which is well within the range of recent estimates of 6.2-8.0 Oy m 2 d !
(Diamond et al., n.d.). GPP scaling values in the literature range from 0.2
to 0.5 (Table 4), suggesting convergence in network spatial patterning.
Scaling exponents for ER are more variable, but consistently lower than
those for GPP (Table 4) and also lower than for depth-area. This likely
arises because ER is relatively constant through networks, with GPP:ER
scaling behavior emerging as the difference between GPP and ER slopes
(0.30 in our case; across site GPP:ER range = 0.06-0.54).

4.3. Temporal patterns in DO metrics and metabolism align, especially in
larger streams

Our DO metrics qualitatively captured temporal patterns in stream
metabolism, supporting their use as metabolic proxies. As with spatial
metabolism patterns, the temporal patterns were best aligned between
GPP and depth-scaled diel DO range, which exhibited strong temporal
coherence (Kendall t > 0.2) for stream orders 2-5 (Fig. 7a-d). This result
further supports that depth adjusted diel DO range can effectively
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capture GPP regimes (Bernhardt et al., 2018), with our streams exhib-
iting the “spring peak” productivity regime (Savoy et al., 2019). In
contrast, ER was temporally aligned with depth adjusted maximum
daily DO deficit only in stream order 4 (though p = 0.06 in stream order
5, Fig. 7j). Surprisingly, our temporal patterns in this DO proxy were
negatively-correlated with ER for low order streams, suggesting con-
trasting information content regarding in-stream functioning in network
headwaters. All interpretations of ER patterns are perilous, especially in
our lower order reaches, because of significant uncertainties and equi-
finality in the streamMetabolizer estimates (Fig. S1). When we consider
effects of temperature variation (Figs. S6), which can impact ER far more
than GPP (Song et al., 2018), we observe a counterintuitive inverse
pattern for our ER estimates, but a clear and theoretically compelling
temperature effect on the depth adjusted maximum deficit (p = 0.02, R?
=0.90, p < 0.001; Fig. S7). Given the known positive thermal control on
ER (Allen et al., 2005; Demars et al., 2011; Yvon-Durocher et al., 2012),
our results indicate that when stream metabolism is poorly estimated, as
we observe most acutely in our headwater streams, DO metrics may
provide complementary utility for inferring spatiotemporal patterns in
ecosystem processes.

4.4. DO metrics outperform metabolic rates for inferring strean DOM
quality and denitrification

In line with our expectations, DO metrics consistently outperformed
metabolism in inferring DOM quality (i.e., weight, size, and aromaticity)
and denitrification (inferred from 615N-N03 enrichment patterns)
(Fig. 8). Aliphatic content of DOM was highest with high GPP (Fig. 8ab),
but the depth-scaled DO diel range provided a more consistent predictor
than GPP across the two summer periods (Fig. 8a). Contrary to our ex-
pectations of lighter DOM molecules with increasing ER, we observed
strong seasonally contrasting patterns between depth-scaled maximum
DO deficit (our ER proxy) and Sg (Fig. 8c), which corresponds to DOM
molecular weight (Helms et al., 2008). Only during the dry summer did
DOM molecular weight decrease (Sg increase) with increasing DO def-
icits as expected; during the wet season this pattern was reversed, albeit
changes in Sg were small (Fig. 8d).

The high values of Sg (e.g., >2) in the dry summer are atypical in
flowing freshwater systems (Hansen et al., 2016; Hosen et al., n.d.).
However, the striking contrast in Sg (Fig. 8c), E4:E6 (Fig. 8a), SUVA, and
E2:E3 (Table 4) between the wet and dry summer periods has some
precedent in other drying systems (Guarch-Ribot and Butturini, 2016).
Moreover, the strong similarity in DOM quality metrics between dry
summer values and winter values suggests a common DOM source that is
distinct from the wet summer. During the dry summer, we observed
clear and cool water at our sites (Fig. S5), indicative of deeper
groundwater inputs. Previous work suggest that Sg values like those we
observed may imply a groundwater source for both dry summer and
winter samples (Messetta et al., 2018), although other biological in-
teractions may be involved, complicating interpretations (Guarch-Ribot
and Butturini, 2016; Harjung et al., 2018). This source effect is likely to
override the importance of internal processes affecting DOM, although
we also note that dry summer Sy values are similar to those observed in
highly irradiated systems (Helms et al., 2008). Thus, the observed Sg
signals for the dry summer could also result from increasing hydrologic
disconnection, pool formation, and increased light exposure.

The maximum daily DO deficit strongly covaried with denitrification
proxies in our catchments, explaining nearly 50% of the variation in
5'°N-NO5". In contrast, ER was uncorrelated with stable isotopes of NO3~
(Fig. 9d), as was the depth-scaled maximum daily DO deficit (F45 = 0.27,
p = 0.606). This finding suggests that water column DO concentration
closely reflects denitrification potential in flowing water systems. The
poor performance of ER as a covariate of denitrification likely arises
because ER estimates partially obscure site information about ambient
DO concentration, which ultimately controls the favourability of this
particular N reaction pathway. Further, denitrification, and likely all
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other stream anaerobic reactions, are likely to have small effects
compared to aerobic reactions that comprise oxygen-derived measure-
ments of ER (Mulholland et al., 2009). As such, the linear relationship
between 5'°N-NO3~ and the maximum DO deficit may arise as a
consequence of high NOj3 availability in this agricultural catchment
(Kreiling et al., 2019), and further, it suggests that denitrification in
these N-enrich flowing waters was progressive rather than an abrupt
process.

4.5. Benefits of DO metrics as metabolism proxies

Scientists, government agencies, and stakeholders are increasingly
turning to high-resolution DO data to understand, regulate, and manage
freshwater resources (Jankowski et al., 2021). This alone animates the
utility of simple DO metrics that balance the competing requirements of
information density, uncertainty, and computational complexity.
Building on previous efforts (Moatar et al., 2001; Mulholland et al.,
2005; Wang et al., 2003), we suggest that two simple DO proxies for
ecosystem metabolism - the diel range and the maximum daily DO
deficit - can inform large scale patterns of GPP and ER along river net-
works. We show that these metrics reveal similar spatiotemporal pat-
terns, and even similar magnitudes for GPP (Fig. 3). In addition to the
strong spatial and temporal concordance between metabolism and these
DO metrics, their advantages are multiple. They allow use of the entirety
of recorded DO datasets, foregoing the frustrating data losses normally
associated with metabolism measurements (60-70% in our study). They
are simple and require no specialized inference tools, rendering them
more widely applicable. They align directly with existing water quality
protection frameworks. And finally, they are more directly informative
than metabolism about DOM quality and denitrification potential in
small stream networks. When conditions are sub-optimal for metabolism
estimates, such as storm events or low flow periods, and reaches with
high groundwater inputs or near confluences, these DO metrics provide
useful inference tools for managers. Our results make clear that while
estimating stream metabolism wherever possible is a foundational facet
of river network ecosystem science, the use of simple DO metrics cap-
tures much of the meaningful information about space and time varia-
tion with far fewer assumptions and yields important insights on
biogeochemical controls. These metrics can and should be an important
complement in our efforts to use increasingly massive sensor data sets to
effectively characterize flowing water systems.
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