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Chromatin loop extrusion by Structural Maintenance of Chromosome (SMC) complexes is thought
to underlie intermediate-scale chromatin organization inside cells. Motivated by a number of ex-
periments suggesting that nucleosomes may block loop extrusion by SMCs, such as cohesin and
condensin complexes, we introduce and characterize theoretically a composite loop extrusion factor
(composite LEF) model. In addition to an SMC complex that creates a chromatin loop by encircling
two threads of DNA, this model includes a remodeling complex that relocates or removes nucleo-
somes as it progresses along the chromatin, and nucleosomes that block SMC translocation along the
DNA. Loop extrusion is enabled by SMC motion along nucleosome-free DNA, created in the wake
of the remodeling complex, while nucleosome re-binding behind the SMC acts as a ratchet, holding
the SMC close to the remodeling complex. We show that, for a wide range of parameter values, this
collection of factors constitutes a composite LEF that extrudes loops with a velocity, comparable to
the velocity of remodeling complex translocation on chromatin in the absence of SMC, and much
faster than loop extrusion by an isolated SMC that is blocked by nucleosomes.

I. INTRODUCTION

Exquisite spatial organization is a defining property of
chromatin, allowing the genome both to be accommo-
dated within the volume of the cell nucleus, and simulta-
neously accessible to the transcriptional machinery, nec-
essary for gene expression. On the molecular scale, his-
tone proteins organize 147 bp of DNA into nucleosomes,
that are separated one from the next by an additional
5-60 bp [1]. On mesoscopic scales (105 − 106 bp), it
has long been understood that loops are an essential fea-
ture of chromatin organization. The recent development
of chromosome conformation capture (Hi-C) techniques
now enables quantification of chromatin organization via
a proximity ligation assay, that yields a map of the rel-
ative probability that any two genomic locations are in
contact with each other [2]. Hi-C contact maps have
led to the identification of topologically associating do-
mains (TADs) as fundamental elements of intermediate-
scale chromatin organization [3–7]. Genomic regions in-
side a TAD interact frequently with each other, but have
relatively little contact with regions in even neighboring
TADs.

Although how TADs arise remains uncertain, the loop
extrusion factor (LEF) model has emerged as the pre-
ferred candidate mechanism for TAD formation. In this
model, LEFs – identified as the Structural Maintenance
of Chromosome (SMC) complexes, cohesin and condensin
– encircle two chromatin threads, forming the base of a
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loop, and then initiate loop extrusion [8–13]. Efficient
topological cohesin loading onto chromatin, as envisioned
by the LEF model, depends both on the presence of the
Scc2-Scc4 cohesin loading complex and on cohesin’s AT-
Pase activity [14]. Loop extrusion proceeds until the
LEF is blocked by another LEF or until it encounters
a boundary element, generally identified as DNA-bound
CCCTC-binding factor (CTCF), or until it dissociates,
causing the corresponding loop to dissipate. Thus, a
population of LEFs leads to a dynamic steady-state chro-
matin organization. As may be expected, based on the
correlation between TAD boundaries and CTCF binding
sites [15], this model recapitulates important features of
experimental Hi-C contact maps [8, 10, 11].

The LEF model was recently bolstered by beautiful
single-molecule experiments that directly visualized DNA
loop extrusion by condensin [16] and cohesin [17]. How-
ever, both of these studies focused on the behavior of the
SMC complex on naked DNA, whereas inside cells DNA
is densely decorated with nucleosomes. Ref. [17] (and
then Ref. [18]) did also show that cohesin could compact
lambda DNA (48,000 bp) loaded with about three nucle-
osomes, but this nucleosome density (6 × 10−5 bp−1) is
nearly 100-fold less than the nucleosome density in chro-
matin (5× 10−3 bp−1).

The notion that nucleosomes might actually represent
a barrier for SMC translocation and therefore loop ex-
trusion is suggested by measurements that reveal that
cohesin motions on nucleosomal DNA are much reduced
compared to those on naked DNA [19, 20]. Further sup-
porting the hypothesis that nucleosomes hinder SMC-
driven loop extrusion are several studies indicating that
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FIG. 1. Loop extrusion via a composite LEF, comprising an SMC complex, which forms a ring around two nucleosome-free
sections of DNA, nucleosomes that block SMC translocation, and a remodeling complex which removes nucleosomes in front
of the SMC. In our model, a single loop extrusion step starts when the remodeling complex forces a nucleosome from the DNA
ahead of the remodeler, thus moving the junction (J1) between nucleosomal DNA and naked DNA one step forward. β0 is
the rate of nucleosome dissociation (a) or remodeling (f) when the remodeler is next to a nucleosome. Next, the remodeler
moves into the resultant nucleosome-free region, (b) and (g). k1+ is the rate at which the remodeler steps forward, when
the remodeler-nucleosome separation is one step. Then, the SMC complex moves into the new nucleosome-free region left
behind the remodeler (c) and (h). m+ is the rate at which the the SMC steps forward on nucleosome-free DNA. Finally, a
nucleosome rebinds behind the SMC complex, moving the second junction (J2) between nucleosomal DNA and naked DNA
one step forward, and so preventing the SMC from subsequently backtracking. α is the rate of nucleosome rebinding (d) or
re-formation (i). After these four sub-steps, the LEF configuration is the same as before the first step, but the loop is one step
larger, (e) and (j). The top row (a-e) illustrates a hypothetical scenario (models 1 and 2) in which the displaced nucleosome
is in solution before rebinding DNA behind the SMC. The bottom row (f-j) illustrates an alternative “remodeled-nucleosome”
scenario (model 3) in which the displaced nucleosome remains associated with the remodeling complex before rebinding DNA
behind the SMC.

cohesin translocation requires transcription-coupled nu-
cleosome remodeling [20–24]. In particular, Ref. [20]
demonstrates that cohesin, recruited to one genomic lo-
cation by a cohesin loading complex, is relocated to an-
other by RNA polymerase (Pol II) during transcription.
Finally, Ref. [25] found that presence of nucleosomes in
Xenopus laevis egg extract prevented DNA exposed to
the extract from looping and compaction.

In this paper, motivated by the possibility that nucle-
osomes block loop extrusion by SMCs, we introduce and

characterize theoretically a composite loop extrusion fac-
tor (composite LEF) model that realizes chromatin loop
extrusion. Our model focuses specifically on composite
LEF translocation and the process of ongoing extrusion
of chromatin loops. Nevertheless, we envision that loop
extrusion terminates when a composite LEF encounters a
boundary element, such as CTCF, just as in existing LEF
models. In addition, to ensure that composite LEFs grow
loops (rather than shrink them), we also suppose that
remodelers are recruited to SMCs with a definite orien-
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tation. However, consideration of the molecular mecha-
nisms by which composite LEF loop extrusion might be
terminated by CTCF, or initiated, lies beyond the scope
of this paper.

Fig. 1 is a cartoon representation of the composite LEF
model. As illustrated in the figure, in addition to an
SMC complex that encircles two threads of DNA, cre-
ating a chromatin loop, the model includes a remodel-
ing complex, that removes or relocates nucleosomes as it
translocates along chromatin, and nucleosomes, that cre-
ate a barrier for SMC motion. Both the remodeler and
the nucleosomes are essential components of the com-
posite LEF. We envision that when the ring-like SMC
complex is threaded by DNA, it can move along the
DNA until it encounters a nucleosome, which blocks its
motion. We hypothesize that the SMC’s ATPase ac-
tivity does not exert enough force to move a nucleo-
some, even though it may give rise to directional loop
extrusion on naked DNA. Without nucleosome remod-
eling, therefore, an SMC complex remains trapped by
its surrounding nucleosomes at a more-or-less fixed ge-
nomic location. Loop extrusion is enabled by SMC mo-
tion along the nucleosome-free thread of DNA, that is
created in the wake of the remodeling complex, and is
maintained by the SMC being held close to the remod-
eling complex by the ratcheting action of nucleosomes
re-locating to behind the SMC. The composite LEF, il-
lustrated in Fig. 1, extrudes the right-hand thread of the
chromatin loop, embraced by its constituent SMC com-
plex. The left-hand thread of the loop remains encircled
by the SMC at a fixed genomic location, with the SMC
trapped by its surrounding nucleosomes. In our model,
two-sided loop extrusion would require a remodeler on
each thread, translocating in opposite directions. The
model is agnostic concerning the specific identity of the
remodeler, except that it must be able to displace nucleo-
somes or alter their configuration in a manner that allows
the SMC to subsequently pass them by. The top row of
Fig. 1 illustrates a hypothetical process, in which the dis-
placed nucleosome unbinds from ahead of the remodeler,
before the same or a different nucleosome subsequently
rebinds behind the SMC. The bottom row illustrates an
alternative version of the model, in which the displaced
nucleosome remains associated with the LEF in a tran-
sient, “remodeled” configuration, that is permissive to
loop extrusion.

This paper is organized as follows. In Sec. II, we calcu-
late the velocities of one-sided loop extrusion for three,
slightly different versions of the composite LEF model.
In fact, differences among the loop extrusion velocities
of the different models are small. In Sec. III, we exam-
ine the results of Sec. II to elucidate the conditions re-
quired for efficient loop extrusion. We also compare the
composite LEF’s loop extrusion velocity to the velocities
of the remodeler and the SMC, each translocating alone
on chromatin. For a broad range of parameter values,
we find that the model’s component factors can indeed
be sensibly identified as a composite LEF, that can ex-

trude chromatin loops at a velocity that is comparable
to that of isolated remodeler translocation on chromatin,
and much faster than loop extrusion by an isolated SMC,
that is blocked by nucleosomes. Finally, in Sec. IV, we
conclude.

II. THEORY

The results presented in this section rely on and
were guided by the calculations and ideas presented in
Refs. [26–28], concerning other examples of biological
Brownian ratchets. To calculate the loop extrusion ve-
locity, v, in terms of the rates of remodeling complex
forward (k+) and backward (k−) stepping on DNA, the
rates of SMC forward (m+) and backward (m−) step-
ping on DNA, and the rates of nucleosome binding (α)
and unbinding (β), etc., we make a number of simplify-
ing assumptions. First, we consider chromatin as a se-
quence of nucleosome binding sites. Second, we assume
that the none of the SMC complex, the remodeling com-
plex, and nucleosomes can occupy the same location, i.e.
we assume an infinite hard-core repulsion between these
factors, that prevents their overlap. Third, we assume
that there are well-defined junctions between bare DNA
and nucleosomal DNA in front of the remodeler (junc-
tion 1) and behind the SMC loop (junction 2), so that
when a remodeler forces a nucleosome from junction 1,
subsequently it relocates to junction 2. Finally, we hy-
pothesize that, although SMCs can not push nucleosomes
out of their way, the remodeling complex can. Following
Refs. [27, 28], we actualize this nucleosome-ejecting ac-
tivity via a nearest-neighbor repulsive interaction, ∆G,
between the remodeling complex and junction 1. For
convenience, the key parameters of our models are sum-
marized in Table I.

A. Model 1

First, we consider a streamlined model (model 1),
which assumes that the nucleosome unbinding and re-
binding rates are much faster than the remodeling com-
plex and SMC forward- and backward-stepping rates.
Because of this separation of time scales, we can consider
that the SMC and remodeler move in a free energy land-
scape defined by the time-averaged configuration of nu-
cleosomes [26]. Thus, when the remodeling complex and
junction 1 are next to each other (zero separation), the
free energy is ∆G, corresponding to the nearest-neighbor
remodeler-junction repulsive interaction, or, when there
are n nucleosome binding sites between the remodeling
complex and junction 1, the free energy is n∆g, corre-
sponding to the free energy of n unbound nucleosomes in
front of the remodeling complex. A straightforward equi-
librium statistical mechanical calculation then informs us
that the probability that the remodeling complex and
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TABLE I. List of symbols representing the key parameters used in this paper. All quantities are referred to a lattice of
nucleosome binding sites

Symbol Quantity

∆g Nucleosome binding free energyaor remodeled nucleosome free energy.b

∆G Free energy of nucleosome-remodeler nearest-neighbor repulsion.
∆GR Free energy change when the remodeler steps forward.
∆GS Free energy change when the SMC complex steps forward.
P1 Probability that the remodeler and junction 1 are not next to each other.
P2 Probability that the SMC complex and junction 2 are not next to each other.
P3 Probability that the remodeler and the SMC complex are not next to each other.
k+ Remodeler forward stepping rate on DNA away from nucleosomes.
k− Remodeler backward stepping rate on DNA away from nucleosomes.
k1+ Remodeler forward stepping rate on DNA into nucleosome contact.
k0− Remodeler backward stepping rate on DNA out of nucleosome contact.
m+ SMC complex forward stepping rate on DNA.
m− SMC complex backward stepping rate on DNA.
α Nucleosome binding rate away from the remodeler.
β Nucleosome unbinding rate away from the remodeler.
α1 Nucleosome binding rate into remodeler contact.
β0 Nucleosome unbinding rate from remodeler contact.
b Step size, taken to be the nucleosome separation.

a Models 1 and 2.
b Model 3

junction 1 are not next to each other is

P1 =
1

1 + e
∆g−∆G

kBT − e−
∆G
kBT

. (1)

Similarly, the probability that the SMC and junction 2
are not next to each other is

P2 = e
− ∆g

kBT , (2)

because we assume there is not a SMC-nucleosome
nearest-neighbor interaction, beyond the requirement
that they not be at the same location.

The principle of detailed balance informs us that the
ratio of forward and backward transition rates are given
by a Boltzmann factor. Therefore, when the the remod-
eling complex and junction 1 are not next to each other,
we expect

k+

k−
= e

−∆GR
kBT , (3)

where ∆GR is the free energy change involved in moving
the remodeler one step forward. However, when the re-
modeling complex and junction 1 are next to each other,
this ratio of rates is modified, because of the nucleosome-
remodeling complex repulsion:

k1+

k0−
= e

− ∆G
kBT

k+

k−
, (4)

where k1+ is the remodeling complex forward stepping
rate, when the remodeler-junction 1 separation is one
step, and k0− is the remodeling complex backward step-
ping rate when the remodeler-junction 1 separation is

zero. As discussed in detail in Refs. [27, 28], to satisfy
Equation (4), in general, we can write

k1+ = e
−∆Gf

kBT k+, (5)

k0− = e
∆G(1−f)

kBT k−, (6)

where 0 < f < 1 [27, 28]. However, as discussed in detail
in Refs. [27] and [28] in an analogous context, the choice
f = 0 maximizes the composite LEF velocity. Therefore,
we pick f = 0, so that

k1+ = k+ (7)

and

k0− = e
∆G
kBT k−, (8)

which satisfy Equation (4). Then, the mean velocity of
the remodeling complex may be written

vR = bk+P1 − bk−P3P1 − bk−e
∆G
kBT P3(1− P1) (9)

where P3 is the probability that the remodeling complex
and the SMC are not next to each other, and b is the step
size along the DNA, taken to be the separation between
nucleosomes for simplicity. The first term on the right-
hand side of Equation (9) corresponds to stepping for-
ward, which can only happen if the remodeling complex
and junction 1 are not next to each other. The second
term on the right-hand side of Equation (9) corresponds
to stepping backwards in the case that the remodeling
complex and junction 1 are not next to each other and
the remodeling complex and the SMC complex are not
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next to each other, in which case the rate of this process
is k−. The third term on the right-hand side of Equa-
tion (9) corresponds to stepping backwards in the case
that the remodeling complex and junction 1 are next to
each other and the remodeling complex and the SMC
complex are not next to each other, in which case the

rate of this process is k−e
∆G
kBT , according to Equation (8).

Using Equation (1) in Equation (9), we find

vR = b k+−k−e
∆g

kBT P3

1+e
∆g−∆G

kBT −e
− ∆G

kBT

. (10)

We can also calculate the diffusivity of the remodeler:

DR = 1
2

(
b2k+P1 + b2k−P3P1 + b2k−e

∆G
kBT P3(1− P1)

)
= 1

2b
2 k++k−e

∆g
kBT P3

1+e
∆g−∆G

kBT −e
− ∆G

kBT

. (11)

Similar reasoning informs us that the velocity and diffu-
sivity of the SMC complex are

vS = b(m+P3 −m−P2) = b(m+P3 −m−e
− ∆g

kBT ), (12)

and

DS =
1

2
b2(m+P3 +m−e

− ∆g
kBT ), (13)

respectively.
Equation (10) shows that the velocity of the remod-

eling complex, vR, decreases with increasing P3, while
Equation (12) shows that the velocity of the SMC com-
plex, vS , increases with increasing P3. To realize a com-
posite LEF, P3 must take on a value that causes these
two velocities to coincide, so that the remodeling complex
and the SMC complex translocate together with a com-
mon velocity, v, given by v = vR = vS . Equations (10)
and (12) constitute two equations for the two unknowns,
P3 and v. Solving yields

P3 =

k+
k−m+

+(e
− ∆g

kBT −e
− ∆g+∆G

kBT +e
− ∆G

kBT )
m−

k−m+

e

∆g
kBT

m+
+ 1+e

∆g−∆G
kBT −e

− ∆G
kBT

k−

(14)

and

v = b

k+
k−

−m−
m+

e

∆g
kBT

m+
+ 1+e

∆g−∆G
kBT −e

− ∆G
kBT

k−

. (15)

Using this value for P3, it further follows that

DR = b2 k+

1+e
∆g−∆G

kBT −e
− ∆G

kBT

+ 1
2b

2

m−
m+

− k+
k−

e

∆g
kBT

m+
+ 1+e

∆g−∆G
kBT −e

− ∆G
kBT

k−

(16)

and

DS = 1
2b

2

k+
k−

+(e
− ∆g

kBT −e
− ∆g+∆G

kBT +e
− ∆G

kBT )
m−
k−

e

∆g
kBT

m+
+ 1+e

∆g−∆G
kBT −e

− ∆G
kBT

k−

+ 1
2b

2e
− ∆g

kBT m−. (17)

FIG. 2. Three example composite LEF trajectories from
model 2 simulations. In each case, the positions versus time
of the nucleosome junctions are shown gray, the remodeling
complex is shown blue, and the SMC complex is shown red.
When tracking together, each such group of four traces consti-
tutes a composite LEF. The model parameters are k+ = 0.05
per time step, k− = 5 × 10−7 per time step, m+ = m− = 0.3
per time step, ∆G = 18.0kBT , α = 1 per time step, and

β − αe
−∆g
kBT for all three composite LEFs, but ∆g = 18.0kBT

for the bottom group of traces, ∆g = 9.0kBT for the middle
group of traces, and ∆g = 0.5kBT for the top group of traces.
The cyan, green, and magenta lines each have a slope given
by the theoretical composite LEF velocity for the parameters
of each simulation.

B. Model 2

At the cost of a little complication, it is possible to cal-
culate the composite LEF velocity, even when the nucle-
osome binding (α) and unbinding (β) rates are not much
larger than k+, k−, m+, and m−. This model (model 2)
is preferable a priori because we expect the nucleosome
unbinding rate, β, to be small. In fact, the results ob-
tained with model 2 are very similar to those obtained
with model 1.

Similar to the remodeling complex forward- and
backward-stepping rates, when the remodeling complex
and junction 1 are adjacent, the nucleosome binding and
unbinding rates are modified as follows:

α1

β0
= e

− ∆G
kBT

α

β
, (18)

where α1 is the nucleosome binding rate when the
remodeler-junction 1 separation is one step, and β0 is the
nucleosome unbinding rate when the remodeling complex
and junction 1 are adjacent (separation 0). To satisfy
Equation (18), we can write

α1 = e
−∆Gf

kBT α, (19)

and

β0 = e
∆G(1−f)

kBT β, (20)
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which stand alongside Equations (7) and (8). As above,
we again choose f = 0, so that

α1 = α (21)

and

β0 = e
∆G
kBT β. (22)

To proceed in this case, we first write down the mean
velocity of junction 1:

vJ1 = b(β − α)P1 + bβe
∆G
kBT (1− P1), (23)

where P1 is the probability that the remodeling complex
and junction 1 are not next to each other and b is the
step size. Similarly, we can also write down the mean
velocity of the remodeling complex:

vR = b(k+ − k−P3)P1 − bk−e
∆G
kBT (1− P1)P3, (24)

where P3 is the probability that the remodeling complex
and the SMC complex are not adjacent to each other.
Next, we write down the velocity of the SMC complex:

vS = b(m+P3 −m−P2), (25)

where P2 is the probability that the SMC complex and
the junction between bare DNA and nucleosomal DNA
behind the SMC complex, namely junction 2, are not
adjacent to each other. Finally, we can write down the
mean velocity of junction 2:

vJ2 = b(αP2 − β). (26)

For the composite LEF to translocate as a single en-
tity, it is necessary for each of its component parts to
translocate with a common velocity, v, where

v = vJ1 = vR = vS = vJ2. (27)

Solving Equations (23) through (27) for the four un-
knowns, namely v, and the probabilities, P1, P3, and P2,
yields the values of these quantities. To this end, first we
solve Equations (23) and (24), assuming that junction 1
and the remodeling complex have a common velocity (v1)
with the result that

v1 = b
( k+

k−
− α

βP3)

(1− e−
∆G
kBT )( 1

k−
+ P3

β ) + α+k+

βk−
e
− ∆G

kBT

. (28)

Next, we solve Equations (25) and (26), assuming that
the SMC complex and junction 2 have a common velocity
(v2). In this case, we find

v2 = b

m+P3

m−
− β

α

1
m−

+ 1
α

(29)

for the SMC-junction 2 velocity. For these two pairs to
translocate together, manifesting a four component, com-
posite LEF, it is necessary that they share a common
velocity, v, given by v = v1 = v2. Setting Equation (28)
equal to Equation (29) and solving for P3, we find

P3 =
1

2m+(1− e−
∆G
kBT )

(
−α−m− −

m+

k−
(α+ k+)e

− ∆G
kBT + (

βm−

α
− βm+

k+
)(1− e−

∆G
kBT )

)

+
βm−

2m+(1− e−
∆G
kBT )

√√√√√√√√
4m+

βm−
(1− e−

∆G
kBT )(

k+

αk−
+

k+

k−m−
+

β

αk−
(1− e−

∆G
kBT ) + (

k+

αk−
+

1

k−
)e

− ∆G
kBT )

+

(
1

β
+

α

βm−
+ (

αm+

βk−m−
+

k+m+

βk−m−
)e

− ∆G
kBT + (

m+

k−m−
− 1

α
)(1− e−

∆G
kBT )

)2

.

(30)

The velocity of the composite LEF can be calculated by
substituting Equation (30) into Equation (29).

We also carried out a series of Gillespie simulations
[29] of model 2 for several values of ∆g

kBT
. Fig. 2 shows

the position versus time for three example simulations,
each carried out for a different value of ∆g

kBT
. For each

of these LEFs, the gray traces represent the positions
of the junctions between nucleosomal DNA and naked
DNA, the blue trace represents the position of the re-
modeling complex, and the red trace represents the po-
sition of the SMC complex. The mean position of the

bottom LEF, which corresponds to ∆g
kBT

= 18, remains
essentially fixed over the period of the simulation, imply-
ing a very small LEF velocity. In addition, in this case,
the remodeler and the SMC remain next to each other
throughout the trajectory, implying a very small value of
P3. By contrast, the mean position of the middle LEF
( ∆g
kBT

= 8) increases more-or-less linearly in time with
the remodeler and the SMC both stepping forward and
frequently moving out of contact. Thus, in this case,
the LEF shows a significant velocity and an intermediate
value of P3. Finally, although the velocity of the top LEF
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FIG. 3. Probability, P3, that the remodeling complex and the SMC complex involved in a composite LEF are not adjacent
to each other, plotted versus ∆G/(kBT ) and ∆g/(kBT ), according to model 1 [Equation (14)] for k+ = 0.05 per time step,
k− = 5.0 × 10−7 per time step, m+ = 0.3 per time step, and m− = 0.0003 per time step (left) or m− = 0.3 per time step
(right).

( ∆g
kBT

= 0.5) is very similar to that of the middle LEF,
the top LEF shows many fewer remodeler-SMC contacts
than the middle LEF, corresponding to a significantly
larger value of P3. The cyan, green, and magenta lines
in Fig. 2 have slopes given by the corresponding model-
2 composite LEF velocities, – calculated by substituting
Equation (30) into Equation (29) – revealing good agree-
ment between theory and simulation.

C. Model 3

Model 3 supposes that the probability of complete nu-
cleosome unbinding into solution is negligible, but that
there exists a ”remodeled” configuration, in which the nu-
cleosome is both associated with the remodeler and also
sufficiently displaced to allow the remodeler to step for-
ward (bottom row of Fig. 1). In this model, we interpret
∆g to be the free energy of the remodeled configuration.
For simplicity, we also assume a separation of time scales
with remodeling occurring much faster than transloca-
tion. Then, the probability that the remodeling complex
and junction 1 are not next to each other is

P1 =
1

1 + e
∆g−∆G

kBT

=
1

1 + (1 + e
∆g

kBT )e
∆G
kBT − e

∆G
kBT

, (31)

while the probability that the SMC and junction 2 are
not next to each other is

P2 =
1

1 + e
∆g

kBT

. (32)

Equations (31) and (32) replace model 1’s Equations (1)
and (2), respectively. However, Equations (9) and (12)
are unchanged for model 3. It is apparent therefore that
we may write down the model-3 results for P3 and v by

replacing e
∆g

kBT in corresponding results for model 1 by

e
∆g

kBT + 1. Thus, for model 3, we find

P3 =

k+
k−m+

+( 1−e
− ∆G

kBT

1+e

∆g
kBT

+e
− ∆G

kBT )
m−

k−m+

1+e

∆g
kBT

m+
+ 1+e

∆g−∆G
kBT

k−

(33)

and

v = b

k+
k−

−m−
m+

1+e

∆g
kBT

m+
+ 1+e

∆g−∆G
kBT

k−

. (34)

III. DISCUSSION

To realize a composite LEF, junction 1 and the re-
modeler, on the one hand, must not outrun the SMC
and junction 2, on the other. This requirement may be
expressed mathematically by insisting that the probabil-
ity, P3, that the remodeling complex and the SMC are
not next to each other, must be less than 1. Otherwise,
for P3 = 1, the remodeler and SMC do not come into
contact, and we may infer that the remodeler has out-
paced the SMC. Fig. 3 plots P3, according to model 1,
as a function of ∆G

kBT
and ∆g

kBT
. For the parameter values,

used in the left-hand panel, we see that P3 is everywhere
less than 1, consistent with the existence of a composite
LEF throughout the region illustrated. In fact, P3 takes
on a relatively large plateau value for

∆G > ∆g (35)

and

m+ > e
∆g

kBT k−. (36)

Elsewhere, P3 is small.
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For the parameter values used in the right-hand panel
of Fig. 3, however, although P3 shows a similar plateau
at intermediate values of ∆g

kBT
, as ∆g

kBT
decreases to near

zero, P3 increases rapidly to unity, and according to
Equation (14), would unphysically exceed unity for small

enough ∆g
kBT

. This circumstance arises when even P3 = 1
is not sufficient to satisfy vR = vS . When the remodeling
complex and junction 1 outrun the SMC and junction 2
– i.e. when vR > vS – the premise of a composite LEF,
upon which Equations (14) and (15) are based, can no
longer hold. Thus, to achieve a composite LEF, we must
have that vR ≤ vS for P3 = 1. This condition requires
that the model parameter values must satisfy

m+ −m−e
− ∆g

kBT >
k+ − k−e

∆g
kBT

1 + e
∆g−∆G

kBT − e−
∆G
kBT

. (37)

This condition is violated at small ∆g for the parameters

used in the right-hand panel of Fig. 3. For k+ � k−e
∆g

kBT

and m+ � m−e
− ∆g

kBT , the condition for a composite LEF
to exist becomes simply m+ > k+, namely the forward
stepping rate of the SMC on naked DNA should be larger
than the forward stepping rate of the remodeler on naked
DNA.

To further elucidate the composite LEF’s behavior as
P3 increases, we turned to Gillespie simulations of the
sort illustrated in Fig. 2. The points in Fig. 4 show the
simulated results for both P3 itself (top panel) and the
remodeler-SMC separation (bottom panel), plotted ver-

sus ∆g
kBT

. The solid line in the top panel corresponds

to Equation (30), demonstrating excellent quantitative
agreement between theory and simulation for P3. For
the parameters of Fig. 4, as ∆g

kBT
decreases below about

3, P3 increases from its plateau value, eventually reaching
unity at ∆g

kBT
' 0.2. Thus, in this case, for ∆g

kBT
< 0.2, a

composite LEF does not exist.
It is apparent from the bottom panel of Fig. 4, that

the remodeler-SMC separation matches P3 for ∆g
kBT

≥ 3.

This result obtains because, for ∆g
kBT
≥ 3, the overwhelm-

ingly prevalent remodeler-SMC separations are 0 and 1,
so that the calculation of P3 and the calculation of the
mean remodeler-SMC separation are effectively the same
calculation in this regime. However, as ∆g

kBT
decreases

below 3, the mean remodeler-SMC separation rapidly in-
creases beyond P3, as larger remodeler-SMC separations
than 1 become prevalent, as may seen for the top LEF
in Fig. 2, which corresponds to ∆g

kBT
= 0.5. The mean

remodeler-SMC separation reaches 1 for ∆g
kBT

. 1.3 and

rapidly increases as ∆g
kBT

decreases further.
A key assumption of our theory is that displaced nu-

cleosomes rebind only at junctions between nucleosomal
DNA and naked DNA. However, when the model pre-
dicts a relatively large region of naked DNA between the
remodeler and the SMC, into which a nucleosome could
easily fit, this assumption seems likely to be inappro-
priate and the model no longer self-consistent, in turn
suggesting that the condition specified by Equation (37)

Δ /
-

FIG. 4. The probability, P3, that the remodeler and SMC are
not next to each other (top) and the mean remodeler-SMC
separation (bottom), plotted versus nucleosome binding en-
ergy, ∆g

kBT
. The circles correspond to results determined from

model-2 Gillepsie simulations, each containing 220 transitions.
The solid line corresponds to Equation (30). The parameter
values used were: k+ = 0.05 per time step, k− = 5×10−7 per
time step, m+ = m− = 0.3 per time step, ∆G = 18.0kBT ,

α = 1 per time step, and β = αe
− ∆g

kBT . These parameters
correspond to those for Fig. 2. The cyan, green, and magenta
points at ∆g

kBT
= 0.5, 8.0, and 18, respectively, correspond to

the bottom, middle, and top traces of Fig. 2.

may be too permissive. However, further investigation
of this question lies beyond the simple model described
here.

Fig. 5 plots the model-1 LEF velocity, corresponding
to the probabilities displayed in Fig. 3, showing that v
achieves a relatively large plateau value when the condi-
tions,

∆G > ∆g (38)

and

m+ > e
∆g

kBT k−, (39)

are both satisfied. Equation (38) informs us that to
achieve rapid composite LEF translocation, a large repul-
sive nucleosome-remodeling complex interaction (∆G) is
necessary, that overcomes the nucleosome binding free
energy (∆g). We might have expected that rapid com-
posite LEF translocation would also require that the rate
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FIG. 5. Mean velocity, v, of a composite LEF plotted versus ∆G
kBT

and ∆g
kBT

, according to Equation (15) for k+ = 0.05 per time

step, k− = 5.0 × 10−7 per time step, m+ = 0.3 per time step, and m− = 0.0003 per time step (left) or m− = 0.3 per time step
(right).

at which the SMC complex steps forward into a gap be-
tween the SMC complex and the remodeling complex
must exceed the rate at which the remodeling complex

steps backwards into that same gap, which is e
∆G
kBT k−,

i.e. we might have expected that m+ > e
∆G
kBT k−. How-

ever, because of Equation (38), Equation (39) is actually
a weaker condition on m+ than this expectation.

Fig. 6 illustrates the model 1 diffusivities of the re-
modeling complex and the SMC complex. Each diffu-
sivity specifies the corresponding factor’s positional fluc-
tuations, about the mean displacement, determined by
the velocity. The diffusivities also show relatively large
plateau values when Equations (38) and (39) are satis-
fied. Surprisingly, the diffusivity of the remodeling com-
plex also shows a second plateau with an even higher

plateau value for ∆G > ∆g and m+ < e
∆g

kBT k−, where
the corresponding composite LEF velocity is small.

When all of Equations (37), (38) and (39) are simulta-
neously satisfied, the plateau values of the the probability
that the remodeling complex and the SMC complex are
not next to each other, the LEF velocity, and the two
diffusivities are given approximately by

P3 '
k+

m+
, (40)

v ' bk−(
k+

k−
− m−

m+
), (41)

DR '
1

2
b2k−(

k+

k−
+
m−

m+
), (42)

and

DS '
1

2
b2k+, (43)

respectively. The plateau value of the composite LEF’s
loop extrusion velocity is independent of ∆g. This result
is possible (although not required – see below) because a
loop extrusion step does not lead to a net change in the
nucleosome configuration.

Fig. 5 shows that the LEF velocity is inevitably small
for small ∆G. For ∆G = 0, corresponding to solely hard-
core repulsions between the remodeler and a nucleosome
– what could be termed a “passive” composite LEF, in
analogy to the passive helicase, discussed for example in
Ref. [28] – Equation (15) becomes

v = be
− ∆g

kBT

k+

k−
− m−

m+

1
m+

+ 1
k−

. (44)

In this case, the composite LEF velocity decreases expo-
nentially with the free energy of nucleosome unbinding,
∆g. Since ∆g is several tens of kBT , we do not expect
this limit to be feasible for effective loop extrusion. Al-
though Equation (44) corresponds to f = 0 and ∆G = 0,
it may be shown that it also gives the LEF velocity for
f = 1 in the large-∆G limit. This is because for f = 1,
large ∆G effectively creates a hard wall for the remod-
eler, albeit located one step away from the nucleosome,
recapitulating the situation considered for f = 0 and
∆G = 0.

In comparison to Equation (15), the velocity of a lonely
remodeling complex, translocating on nucleosomal DNA,
unaccompanied by an SMC complex, is

vR = bk+P1 − bk−e−
∆g

kBT (P1 + (1− P1)e
∆G
kBT )

= b k+−k−

1+e
∆g−∆G

kBT −e
− ∆G

kBT

, (45)

which may be straightforwardly obtained from Equa-

tion (10) by replacing P3 with e
− ∆g

kBT , which is the proba-
bility that there is a gap between the remodeler and junc-
tion 2. The velocity of such a lonely remodeling complex
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FIG. 6. Diffusivities, DR (top row) and DS (bottom row) of the remodeling complex and the SMC complex, respectively, plotted
versus ∆G/(kBT ) and ∆g/(kBT ), according to model 1 [Equations (16) and (17)] for k+ = 0.05 per time step, k− = 5.0×10−7

per time step, m+ = 0.3 per time step, and m− = 0.0003 per time step (left column) or m− = 0.3 per time step (right column).

FIG. 7. Mean velocity, v, of a composite LEF, plotted versus ∆G/(kBT ) and ∆g/(kBT ) for model 1 (left) and model 2 (right)
for k+ = 0.05 per time step, k− = 5.0 × 10−7 per time step, m+ = 0.3 per time step, m− = 0.0003 per time step, and (for
model 2) α = 1 per time step. The cyan, green, and magenta points on the model-2 curve correspond to the theoretical mean
velocities of the composite LEFs whose positions versus time are shown in Fig. 2.
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is relatively large for ∆G > ∆g and is small otherwise.
Thus, as seems intuitive, for efficient remodeler translo-
cation on chromatin the remodeler-nucleosome repulsive
free energy, ∆G must exceed the free energy required for
nucleosome unbinding, ∆g. In the large-∆G limit, the
remodeler velocity realizes a plateau value of

vR = b(k+ − k−) = bk−(
k+

k−
− 1), (46)

so that the plateau velocity of a composite LEF exceeds
(is less than) [equals] that of a lonely remodeling complex
for m+ > m− (m+ < m−) [m+ = m−].

We can also straightforwardly calculate the velocity of
the SMC complex on nucleosomal DNA in the absence
of the remodeling complex with the result that

vS = be
− ∆g

kBT (m+ −m−). (47)

Equation (47) informs us that, on nucleosomal DNA, the
velocity of loop extrusion by an isolated SMC complex,
which by assumption does not have its own nucleosome

remodeling activity, is suppressed by a factor e
− ∆g

kBT com-
pared to the velocity of its loop extrusion on nucleosome-

free DNA, which is b(m+−m−). Since e
− ∆g

kBT is tiny, the
velocity of the SMC without the remodeling complex is
correspondingly tiny, even for m+ � m−, emphasizing
that the remodeling complex is essential for significant
loop extrusion in the chromatin context.

Equation (15) informs us that the composite LEF’s

directionality depends only on k+

k−
− m−

m+
. Since we can

expect that k+

k−
= e

−∆GR
kBT and m+

m−
= e

−∆GS
kBT , where ∆GR

is the free energy change associated with the remodeling
complex stepping forward and ∆GS is the free energy
change, associated with the SMC complex stepping for-
ward, it is clear that the composite LEF proceeds for-
ward, only provided ∆GR + ∆GS < 0. This outcome re-
flects the Second Law of Thermodynamics, expressed in
the form that a chemical reaction proceeds forward only
if the corresponding change in free energy is negative.
In comparison, Equation (45) informs us that a lonely
remodeling complex proceeds forwards if ∆GR < 0.

Shown in Fig. 7 is a comparison between the LEF
velocity for model 2 and the LEF velocity for model
1. Model 2 reproduces both the region in the ∆G-∆g
plane where the composite LEF velocity is large and
the plateau value of the LEF velocity within that region
[Equation (41)]. The cyan, green, and magenta points on
the model-2 curve in Fig. 7 correspond to the free energy
settings and theoretical mean velocities of the composite
LEFs, whose simulated positions versus time are shown
in Fig. 2. Both the top group of traces and the middle
group of traces in Figure 2 fall within the plateau re-
gion of the velocity, which explains why their velocities
are very similar. However, while the middle LEF does
fall within the plateau region of P3, the top composite
LEF exhibits a significantly large value of P3 and a cor-
respondingly larger spatial extent.

The conceptually simplest versions of the composite
LEF model (models 1 and 2) envision that the remodeler
ejects a nucleosome from the DNA ahead of the remod-
eler, and that the nucleosome subsequently rebinds be-
hind the SMC. Alternatively, model 3 hypothesizes an in-
termediate, “remodeled” state in which the displaced nu-
cleosome remains associated with the LEF, eventually to
relocate behind SMC. This picture is reminiscent of the
scenario envisioned in Ref. [30], which demonstrated ex-
perimentally that RNA polymerase could pass a nucleo-
some without causing nucleosome dissociation. Nonethe-

less, for e
∆g

kBT � 1, the predictions of all three models are
indistinguishable. The interpretation of ∆g is different
for models 1 and 2, on the one hand, and model 3 on the
other. For models 1 and 2, ∆g is the nucleosome binding
free energy, which is several tens of kBT . For model 3,
∆g is the free energy of the remodeled configuration, rel-
ative to the free energy of a bound nucleosome, which we
may expect to be smaller than the free energy required
to nucleosome unbinding (models 1 and 2). However, as
noted above, the plateau value of the composite LEF’s
loop extrusion velocity is independent of ∆g for all of the
models.

Recent single-molecule measurements demonstrate
that the motion of SMCs on DNA is blocked by suffi-
ciently large DNA-bound proteins, including in partic-
ular RNA polymerase [20], which is one possible candi-
date remodeler component of a composite LEF. Thus,
our premise that the SMC cannot pass the remodeler
seems justifiable.

Other experiments have indicated that condensin takes
steps on naked DNA, that are up to 600 bp in size [31, 32],
using the free energy from two ATP hydrolysis events to
do so [16]. By contrast, single base pair steps are in-
volved in the remodeling activity of canonical chromatin
remodelers, such as SWI/SNF, ISW1, and INO80 [33]. In
addition, RNA polymerase, which also possesses remod-
eling activity, necessarily takes single-base pair steps. In
these cases, a step involves hydrolysis of at least one ATP
molecule. As a result, because the number of ATPs per
base pair is far larger for a remodeler than for an SMC
complex, we should expect that ∆GR � ∆GS , and there-

fore that k+

k−
� m−

m+
. Thus, a prediction of our model is

that the composite LEF velocity is essentially determined
by the velocity of its component remodeler and not by the
velocity of the SMC complex on nucleosome-free DNA.

It is interesting to ask whether there is any experi-
mental support for this prediction. Ref. [34] estimates
that the LEF velocity on chromatin is a few tens of
nm s−1. Specifically, by comparing the results of Hi-C
measurements to loop-extrusion simulations, researchers
have estimated that in higher eukaryotes LEFs give rise
to 100 kilobase loops on average [10, 35–37]. Such loops
develop during the residence time of an SMC on chro-
matin, which is about 1000 s [38–42]. On the basis of
these two estimates, Ref. [34] infers that the velocity of
loop extrusion on chromatin is about 30 nm s−1. Re-
markably, this estimated loop extrusion velocity is many
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times smaller than the velocity of loop extrusion on naked
DNA in vitro, which is 500 nm s−1 [16], but is compara-
ble to the velocity in vivo of RNA polymerase, which is
10-30 nm s−1 [43]. The agreement between the velocity of
remodeler-candidate RNA polymerase and the estimated
velocity of loop extrusion in vivo seems consistent with
the composite LEF model.

IV. CONCLUSIONS

A key result of this paper is that even if nucleosomes
block SMC translocation, efficient loop extrusion remains
possible on chromatinized DNA via a LEF, that is a com-
posite entity involving a remodeler and nucleosomes, as
well as an SMC complex. Thus, the possibility that nu-
cleosomes may block SMC translocation and loop extru-
sion on chromatin is not a reason to rule out the loop
extrusion factor model of genome organization.

We have shown that, for a wide range of possible pa-
rameter values, such a composite LEF exists as a more-
or-less compact entity with all its component parts in
close proximity to each other, and can give rise to loop ex-
trusion with a velocity, that is comparable to the remod-
eler’s translocation velocity on chromatin, but is much
larger than the velocity of a SMC complex that is blocked
by nucleosomes. Although we have focused on one-sided

loop extrusion, two-sided loop extrusion simply requires
two remodelers, one for each chromatin strand threading
the SMC.

The composite LEF model is agnostic concern-
ing whether the SMC complex shows ATP-dependent
translocase activity (m+ 6= m−) or diffuses (m+ = m−)
on naked DNA. However, Equation 37 specifies the con-
dition for a composite LEF to exist defined by the SMC
and the remodeler being in close proximity, while efficient
chromatin loop extrusion requires repulsion between the
remodeler and the junction between nucleosomal DNA
and naked DNA, that is large compared to the nucleo-
some binding free energy (models 1 and 2) or the remod-
eled configuration free energy (model 3): ∆G > ∆g. An
additional condition necessary for efficient loop extrusion

is m+ > e
∆g

kBT k−. Finally, we remark that the composite
LEF model, described in this paper, is quite distinct from
the models of Refs. [44, 45], which propose loop extrusion
occurs without the involvement of a translocase.
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