
Design-Technology Co-Optimization for NVM-based Neuromorphic

Processing Elements

SHIHAO SONG, ADARSHA BALAJI, ANUP DAS, and NAGARAJAN KANDASAMY, Drexel Uni-
versity, USA

An emerging use-case of machine learning (ML) is to train a model on a high-performance system and deploy the trained

model on energy-constrained embedded systems. Neuromorphic hardware platforms, which operate on principles of the

biological brain, can signiicantly lower the energy overhead of a machine learning inference task, making these platforms an

attractive solution for embedded ML systems. We present a design-technology tradeof analysis to implement such inference

tasks on the processing elements (PEs) of a Non-Volatile Memory (NVM)-based neuromorphic hardware. Through detailed

circuit-level simulations at scaled process technology nodes, we show the negative impact of technology scaling on the

information-processing latency, which impacts the quality-of-service (QoS) of an embedded ML system. At a iner granularity,

the latency inside a PE depends on 1) the delay introduced by parasitic components on its current paths, and 2) the varying

delay to sense diferent resistance states of its NVM cells. Based on these two observations, we make the following three

contributions. First, on the technology front, we propose an optimization scheme where the NVM resistance state that takes

the longest time to sense is set on current paths having the least delay, and vice versa, reducing the average PE latency,

which improves the QoS. Second, on the architecture front, we introduce isolation transistors within each PE to partition it

into regions that can be individually power-gated, reducing both latency and energy. Finally, on the system-software front,

we propose a mechanism to leverage the proposed technological and architectural enhancements when implementing a

machine-learning inference task on neuromorphic PEs of the hardware. Evaluations with a recent neuromorphic hardware

architecture show that our proposed design-technology co-optimization approach improves both performance and energy

eiciency of machine-learning inference tasks without incurring high cost-per-bit.

CCS Concepts: ·Hardware→ Neural systems; Emerging languages and compilers; Emerging tools and methodolo-

gies; · Computer systems organization→ Data low architectures; Neural networks.

Additional Key Words and Phrases: neuromorphic computing, design-technology co-optimization (dtco), non-volatile memory

(NVM), oxide-based resistive random access memory (OxRRAM)

1 INTRODUCTION

Neuromorphic computing systems are integrated circuits that implement the architecture of central nervous
system in primates [15, 23, 66]. These systems facilitate energy-eicient computations using Spiking Neural
Networks (SNN) [64] for power-constrained embedded devices. To this end, the design worklow is to train
a machine learning model (commonly on a backend server) and subsequently, convert the trained model to
spike-based computations and deploy it on the neuromorphic hardware of an embedded system. The quality
of inference (e.g., accuracy) is assessed in terms of the inter-spike interval (ISI) (see Section B). Therefore, any
deviation from its expected value will lead to a degradation of the inference quality.

Authors’ address: Shihao Song; Adarsha Balaji; Anup Das; Nagarajan Kandasamy, anup.das@drexel.edu, Drexel University, 3141 Chestnut

Street, Philadelphia, PA, USA, 19104.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that

copies are not made or distributed for proit or commercial advantage and that copies bear this notice and the full citation on the irst

page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy

otherwise, or republish, to post on servers or to redistribute to lists, requires prior speciic permission and/or a fee. Request permissions from

permissions@acm.org.

© 2022 Association for Computing Machinery.

1539-9087/2022/1-ART1 $15.00

https://doi.org/10.1145/3524068

ACM Trans. Embedd. Comput. Syst.

https://doi.org/10.1145/3524068

1:2 • Song, et al.

A typical neuromorphic system such as Loihi [29], DYNAPs [67] and µBrain [94] consists of processing
elements (PEs) that communicate spikes using a shared interconnect. Each PE implements neuron and synapse
circuitries. A common technique to implement a neuromorphic PE is using an analog crossbar where bitlines
and wordlines are organized in a grid with memory cells connected at their crosspoints to store synaptic
weights [3, 33, 41, 46, 47, 52, 62, 70, 101]. Neuron circuitries are implemented along bitlines and wordlines.
Figure 1 (left) shows the architecture of an N × N analog crossbar with N bitlines and N wordlines.

Post-Synaptic Neurons

P
re

-S
y
n
a
p
ti
c
 N

e
u
ro

n
s

w
o
rd

lin
e
s

bitlines

Fig. 1. An N × N crossbar showing the parasitic components within.

We investigate the internal architecture of a crossbar and ind that parasitic components introduce delay in
propagating current from a pre-synaptic neuron to a post-synaptic neuron as illustrated in Figure 1 (right). This
delay depends on the speciic current path activated in a crossbar. Higher the number of parasitic components on
a current path, larger is its propagation delay [71, 87, 89, 90, 92]. Parasitic components on bitlines and wordlines
are a major source of latency at scaled process technology nodes and they create signiicant latency variation

in a crossbar [34, 35, 50, 54, 57, 68, 80, 84, 88]. Such variation can introduce ISI distortion (Section B), which may
impact the quality of an inference task [8, 28].

To increase the energy eiciency of a neuromorphic system, Non-Volatile Memory (NVM) such as oxide-based
random access memory (OxRRAM), phase-change memory (PCM), ferroelectric RAM (FeRAM), and spin-based
magnetic RAM (MRAM) is used to implement the memory cells in a crossbar [16, 65, 95, 96, 99]. An NVM cell
can be programmed to a high-resistance state (HRS) or one of many low-resistance states (LRS), implementing
multi-bit synaptic weights [60, 65, 98]. To implement a synaptic weight on a memory cell of a crossbar, the
synaptic weight is programmed as the conductance of the cell.
A crossbar can accommodate only a ixed number of pre-synaptic connections per post-synaptic neuron. To

give an an example, the crossbar in Figure 1 (left) has N pre-synaptic neurons, N post-synaptic neurons, and N 2

memory cells. Each post-synaptic neuron can have a maximum of N pre-synaptic connections. To mitigate the
negative impact of technology scaling, e.g., increase in the value of parasitic components on current paths and
increase in the power density, N is constrained to a lower value, typically between 128 and 256 (see our tradeof
analysis in Section 2). To map a large SNN model on a multi-PE hardware, a system software framework such
as NEUTRAMS [51], NeuroXplorer [12], SentryOS [94], LAVA [61] and DFSynthsizer [77] is commonly used.
These frameworks irst partition a model into clusters, where a cluster is a subset of neurons and synapses of

ACM Trans. Embedd. Comput. Syst.

Design-Technology Co-Optimization for NVM-based Neuromorphic Processing Elements • 1:3

the model that can be implemented on the architecture of a crossbar. Subsequently, the partitioned clusters are
implemented on diferent crossbars of a neuromorphic hardware.
We make the following two key observations related to a neuromorphic PE.
Observation 1: The latency within a crossbar is a function of the length (i.e., the number of parasitic components)

of current paths and the delay to sense the NVM cell activated on a current path.

Observation 2: Due to how memory cells are organized in a crossbar, a signiicant fraction of these memory

cells remains unutilized when implementing machine learning inference tasks. Based on these two observations
(which we elaborate in Sections 2-4), we present a design-technology tradeof analysis to implement machine
learning inference tasks on diferent PEs of an NVM-based neuromorphic system. We make the following four
key contributions.

• Through detailed circuit-level simulations at scaled process technology nodes, we show that bitline and
wordline parasitics are the primary sources of long latency in a crossbar and they create asymmetry in
inference latency. With technology scaling, the absolute latency increases and the latency asymmetry
becomes increasingly more signiicant. In addition, diferent resistance states of a multi-level NVM cell take
varying latencies to sense during an inference operation (see Section 2).

• We propose to optimize the implementation of synaptic weights on NVM cells such that the resistance state
that takes the longest time to sense is programmed on the NVM cell that has the least parasitic delay in a
crossbar. This lowers the latency of a crossbar. (see Section 3)

• We propose an architectural change of introducing isolation transistors in a crossbar to partition it into
regions that can be individually power-gated based on their utilization. In this way, we improve energy
eiciency. In addition, by isolating the unutilized region of a crossbar from the active region, parasitics
of only the active region contribute to latency, rather than both as in a baseline non-partitioned crossbar
architecture. This reduces the latency of a crossbar (see Section 4).

• We show that our technological and architectural optimizations can only deliver on its latency and energy
improvement promises if they are exploited eiciently by the system software. Therefore, we propose a
mechanism to expose our proposed design changes to the system-level, allowing the system software to
improve both latency and energy when implementing machine-learning inference tasks on hardware (see
Section 5).

We evaluate our design-technology co-optimization approach for a recent neuromorphic hardware using 10
machine learning inference tasks. Results show 12% reduction in average PE latency and 22% lower application
energy compared to current state-of-the-art.

To the best of our knowledge, this is the irst work that demonstrates the energy and latency improvement of
power gating crossbar-based neuromorphic hardware designs.

2 DESIGN-TECHNOLOGY TRADEOFF ANALYSIS

Without loss of generality, we demonstrate the design-technology tradeof for an OxRRAM-based neuromorphic
PE, where each NVM cell can be programmed to the following four resistance levels (i.e., 2-bit per synapse) ś
1.5 KΩ, 5.78 KΩ, 13.6 KΩ, and 73 KΩ [20, 21, 32, 65, 75]. Furthermore, we show our analysis for four process
technology nodes ś 16nm, 22nm, 32nm, and 45nm, which are obtained from our technology provider. The analysis
can be easily extended to other NVM types and also to other process technology nodes.

2.1 Cost-per-Bit Analysis for a Neuromorphic PE

The computer memory industry has thus far been primarily driven by the cost-per-bitmetric, which provides the
maximum capacity for a givenmanufacturing cost. As shown in recent works [57, 68, 69, 80, 82ś84], manufacturing
cost can be estimated from the area overhead. To estimate the cost-per-bit of a neuromorphic PE, we investigate

ACM Trans. Embedd. Comput. Syst.

1:4 • Song, et al.

the internal architecture of a crossbar and ind that a neuron circuit can be designed using 20 transistors and a
capacitor [49], while an NVM cell is a 1T-1R arrangement with a transistor used as an access device for the cell.
Within an N ×N crossbar, there are N pre-synaptic neurons, N post-synaptic neurons, and N 2 synaptic cells. The
total area of all the neurons and synapses of a crossbar is

neuron area = 2N (20T + 1C) (1)

synapse area = N 2 (1T + 1R)

where T stands for transistor, C for capacitor, and R for NVM cell. The total synaptic cell capacity is N 2, with each
NVM cell implementing 2-bit per synapse. The total number of bits (i.e., synaptic capacity) in the crossbar is

total bits = 2N 2 (2)

Therefore, the cost-per-bit of an NxN crossbar is

cost-per-bit =
2N (20T + 1C) + N 2 (1T + 1R)

2N 2
≈

F 2 (27 + 2N)

N
, (3)

where the cost-per-bit is represented in terms of the crossbar dimension N and the feature size F . Equation 3
provides a back-of-the-envelope calculation of cost-per-bit. Figure 2 plots the normalized cost-per-bit for four
diferent process technology nodes, with the crossbar dimension ranging from 16 to 256. We make the following
two observations.

16 64 128 256

Crossbar Size

0.0

0.5

1.0

N
or
m
al
iz
ed

C
os
t-
p
er
-B
it Process Technology Node = 45nm 32nm 22nm 16nm

Fig. 2. Cost-per-bit analysis of a crossbar.

First, the cost-per-bit reduces with increase in the dimension of a crossbar, i.e., larger-sized crossbars can
accommodate more bits for a given cost. However, both the absolute latency and latency variation increases
signiicantly for larger-sized crossbars, which increases inference latency and reduces the quality of machine
learning inference due to an increase in the ISI distortion (see our analysis in Section 2.2). Second, the cost-per-
bit reduces considerably with technology scaling. This is due to higher integration density at smaller process
technology nodes.

The formulation for the cost-per-bit (Equation 3) depends on the speciic neuron architecture of [49] and the
one transistor (1T)-based OxRRAM design of [65]. This formulation can be easily extended to other neuron
and synapse designs. Furthermore, system designers can use our formulation to conigure their neuromorphic
hardware, without having to access and plug-in technology-related data.

2.2 Latency Variation in a Neuromorphic PE

Figure 3 shows the diference between the best-case and worst-case latency in a crossbar (expressed as a
fraction of 1µs spike duration) for ive diferent crossbar conigurations at 45nm, 32nm, 22nm, and 16nm process
technology nodes. See our experimental setup using NeuroXplorer [12] in Section 6.1, which incorporates
software, architecture, circuit, and technology.. All NVM cells are programmed to the HRS state, i.e., 73 KΩ (see
Section 2.3 for the dependency on resistance states).

ACM Trans. Embedd. Comput. Syst.

Design-Technology Co-Optimization for NVM-based Neuromorphic Processing Elements • 1:5

16x16 64x64 128x128 256x256
0

25

50

75

100

∆
L
at
en
cy

(%
)

Process technology node =

173% 404%

45nm
32nm

22nm
16nm

Fig. 3. Variance in latency within a crossbar, expressed as a fraction of a single spike duration.

We make two key observations. First, the latency diference increases with crossbar size due to an increase
in the number of parasitic components on current paths. The average latency diference for 256 × 256 crossbar
is higher than 16 × 16, 64 × 64, and 128 × 128 crossbar by 16.5x, 13.4x, and 4.5x, respectively. This average is
computed across the four process technology nodes. Therefore, smaller-sized crossbars lead to a smaller variation
in latency, which is good for performance. However, smaller-sized crossbars also lead to higher cost-per-bit,
which we have analyzed in Section 2.1. For most neuromorphic PE designs, 128 × 128 crossbars achieve the best
tradeof in terms of latency variation and cost-per-bit [43, 58, 65, 67, 71, 103].
Second, the latency diference increases signiicantly for scaled process technology nodes due to an increase

in the value of the parasitic component. The average latency diference for 32nm, 22nm, and 16nm process
technology nodes is higher than 45nm by 1.3x, 3x, and 6.6x, respectively. The unit wordline (bitline) parasitic
resistance ranges from approximately 2.5Ω (1Ω) at 45nm node to 10Ω (3.8Ω) at 16nm node. The value of these
unit parasitic resistances is expected to scale further reaching ≈ 25Ω at 5nm node [34, 36, 37, 74, 93]. The unit
wordline and bitline capacitance values also scale proportionately with technology. Latency variation increases
ISI distortion, which degrades the quality of machine learning inference.

2.3 Varying Latency to Sense NVM Resistance States

The latency (i.e., the delay) on a current path from a pre-synaptic neuron to a post-synaptic neuron within a
crossbar is proportion to Ref f ·Cef f , where Ref f (Cef f) is the efective resistance (capacitance) on the path. This
delay increases the time it takes for the membrane potential of a post-synaptic neuron to rise above the threshold
voltage causing a delay in spike generation.

The efective resistance on a current path depends on the value of parasitic resistances and the resistance of
the NVM cell. We analyze the latency impact due to diferent resistance states. Figure 4 plots the increase in
latency (expressed as a fraction of 1µs spike duration) to sense three NVM resistance states (LRS2, LRS3, and
HRS) with respect to LRS1 at 45nm, 32nm, 22nm, and 16nm process technology nodes. These results are for a
neuromorphic PE with a 128 × 128 crossbar.

We observe that the latency to sense the HRS state is considerably higher than all three LRS states at all process
technology nodes (consistent with [19, 65, 100]). The latency diference increases with technology scaling due to
an increase in the size of parasitic components on bitlines and wordlines of a crossbar, which we have analyzed
in Section 2.2.

3 PROPOSED TECHNOLOGICAL IMPROVEMENTS

Based on the design-technology tradeof analysis of Section 2, we now present our technology-related optimization.
Without loss of generality, we present our optimization for a 128 × 128 crossbar-based neuromorphic hardware

ACM Trans. Embedd. Comput. Syst.

1:6 • Song, et al.

10 20 30 40 50 60 70

NVM Resistance (KΩ)

0

25

50

75

100

∆
L
at
en
cy

(%
)

45nm 32nm 22nm 16nm

Fig. 4. Latency to sense various NVM resistance states, expressed as a fraction of a single spike duration.

designed at 16nm node. We exploit the following two observations from Section 2: 1) HRS resistance state in an
NVM cell takes higher latency to sense than LRS states, and 2) spike propagation latency in a crossbar depends
on the number of parasitic components on its current path. The left sub-igure of Figure 5 shows the proposed
technological changes. A crossbar is partitioned into three regions. The number of parasitic components on
current paths in region A is considerably lower than in the rest of the crossbar. Therefore, all NVM cells in
this region (4 in this example) implement only the HRS resistance state, which takes the longest time to sense.
Conversely, NVM cells in region B have longer propagation delay due to higher number of parasitic components.
Therefore, all NVM cells in this region (9 in this example) implement only the LRS resistance state, which takes
the shortest time to sense. Finally, all other NVM cells (i.e., those in region C) are programmable, i.e., these cells
can implement all four resistance states. The overall objective is to balance the latency on diferent current paths
within a crossbar. This minimizes the latency variation in a crossbar, which reduces ISI distortion and improves
the quality of machine learning inference tasks.

A

B

C

A

B

C

1

2

 L
R

S
1
 (

1
.5

K
?

)

1

2

1

2
HRS state LRS state Programmable

0 1 2 N-3 N-2 N-1

0 1 2 N-3 N-2 N-1

0

1

2

N-3

N-2

N-1

0

1

2

N-3

N-2

N-1

w
o
rd

li
n
e
s

bitlines

Fig. 5. Our proposed technological change.

The right sub-igure shows a pre- and a post-synaptic neuron connected via a synapse that is programmed to
the LRS state. The synaptic connection can be implemented on NVM cells in region B (with only LRS1 state) and
region C (with programmable states). The igure illustrates two alternative implementations of these neurons. If
the pre-synaptic neuron is implemented on wordline 0, then the post-synaptic neuron cannot be implemented on
bitlines 0 and 1. This is because NVM cells in region A are all in HRS. In this example, we show the implementation

ACM Trans. Embedd. Comput. Syst.

Design-Technology Co-Optimization for NVM-based Neuromorphic Processing Elements • 1:7

on bitline 2 (see the blue implementation). Conversely, if the post-synaptic neuron is implemented on bitline 0,
then the pre-synaptic neuron cannot be implemented on wordline 0 and 1 (to avoid using region A). We show the
implementation on wordline 2 (see the red implementation).
Formally, the proposed neuromorphic PE is represented by a tuple ⟨N , Nh, Nl ⟩, where N is the dimension of

its crossbar. All NVM cells at crosspoints of wordlines 0, 1, · · · , Nh − 1 and bitlines 0, 1, · · · , Nh − 1 (i.e., region A)
can implement only HRS. All NVM cells at crosspoints of wordlines N − Nl , N − Nl + 1, · · · , N − 1 and bitlines
N − Nl , N − Nl + 1, · · · , N − 1 (i.e., region B) can implement only LRS. All other NVM cells in the PE’s crossbar can
implement all four resistance states.

Figure 6 plots the variation of latency in the proposed 128×128 crossbar, normalized to a baseline architecture [8],
where any NVM cell can be programmed to any of the four resistance states. See Section 6.4 for a description of
this baseline architecture and Section 6.1 for the simulation setup. The variation in latency is measured as ratio
of the best-case and worst-case latency in the crossbar. The igure reports latency variation for Nh ranging from
2 to 64 with Nl set to 16, 32, and 64.

2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50 52 54 56 58 60 62 64

Nh

0.2

0.3

0.4

0.5

0.6

N
or
m
al
iz
ed

L
at
en
cy

V
ar
ia
ti
on

Nl = 16 32 64

Fig. 6. Latency variation in the proposed crossbar architecture for diferent setings of Nh and Nl .

We observe that latency variation decreases with an increase in Nh . This is due to an increase in the size of
region A, which increases the (worst-case) latency due to an increase in the number of parasitic components on
current paths via the HRS state. However, the (best-case) latency of current paths via the LRS state remains the
same. Therefore, the latency variation reduces which improves inference quality by lowering the ISI distortion.
To illustrate this concept, Figure 7 provides an example where two synapses are mapped to a 4 × 4 crossbar. In
Figure 7a, the red synapse (in HRS state) is mapped to the bottom left corner of the crossbar, while the blue
synapse (in LRS state) to the top right corner. The igure shows the timing of two spikes. The input spike on
the red and blue synapses are t1 and t2, respectively. Without loss of generality let t2 > t1. The ISI of these two
spikes is t2 − t1. Due to the delay in current propagation through bitlines and wordlines, these two spikes arrive at
the output terminal at diferent times ś red synapse with a delay of x and blue synapse with a delay of y. Here,
y > x . Therefore, ISI of the output spikes is (t2 + y) − (t1 + x). The ISI distortion (diference of ISI between input and
output) is

ISI distortion =

(

(t2 + y) − (t1 + x)

)

− (t2 − t1) = y − x (4)

Figure 7b illustrates a scenario where region A is increased to include more cells that are programmed to the
HRS state. The mapping process will map the red synapse using the farthest cell of region A. The delay on this
synapse is x + ∆, where ∆ is the additional delay due to routing spikes on the red synapse via a longer route
compared to that in Figure 7a. Therefore, ISI of the output spikes is (t2 + y) − (t1 + x + ∆). The ISI distortion is

ISI distortion =

(

(t2 + y) − (t1 + x + ∆)

)

− (t2 − t1) = y − x − ∆ (5)

ACM Trans. Embedd. Comput. Syst.

1:8 • Song, et al.

A

B

A

B

Fig. 7. ISI improvement due to increase in the size of region A.

Comparing Equations 4 & 5, we observe that the ISI distortion reduces due to an increase in the size of region
A. ISI distortion also reduces with an increase in Nl due to a reduction in the worst-case latency. We also note
that, large Nh may lead to higher average crossbar latency, which impacts real-time performance. Finally, we
see that going from Nl = 16 to 32, there is no signiicant reduction in the latency variation. Although the size of
region B increases with an increase in Nl , we observe only marginal reduction of the best-case latency. Overall,
with Nh = Nl = 64, the latency variation is 74% lower than baseline. This is chosen based on the tradeof between
latency variation and average latency for 128 × 128 crossbar at 16nm. The tradeof point can change for other
technology nodes and for other crossbar conigurations.

3.1 Reduction in Latency Variation

To understand the reduction of latency variation within a crossbar as a result of our technological changes, we
provide a simple example. Consider there are only two current paths in a crossbar. The parasitic delay on the
shortest and longest current paths are D and (D + ∆), respectively. The time to sense LRS and HRS NVM states are
S and (S + δ), respectively. Without any optimization, the worst-case condition is triggered when the HRS state is
programmed on the longest path and the LRS state on the shortest path. The minimum and maximum latencies
are (D + S) and (D + S + ∆ + δ), respectively. The latency variation is (∆ + δ). Using our technology optimization,
HRS state is programmed on the shortest path and LRS state on the longest path. The two latencies are (D + S + ∆)

and (D + S + δ). The latency variation reduces to (|∆ − δ |).
Within a crossbar, there are many current paths (N 2 current paths in a N × N crossbar). The precise reduction

in latency variation depends on the speciic current paths activated for a synaptic connection, which is controlled
during the mapping of a machine learning application to the crossbars of the hardware. In Figure 6, we show a
74% reduction comparing only the shortest and the longest paths in a 128× 128 crossbar. In Section 7.2, we evaluate
the general case considering the mapping process. We report an average 22% reduction of latency variation.
Reducing the latency variation helps reduce the ISI distortion, which improves the inference quality. In

Section 7.4, we report an average 4% increase of inference quality.

ACM Trans. Embedd. Comput. Syst.

Design-Technology Co-Optimization for NVM-based Neuromorphic Processing Elements • 1:9

3.2 Impact on Latency

While latency variation impacts inference quality, the average crossbar latency impacts the real-time performance.
To understand the impact of our technological optimization on the average crossbar latency, we consider the
same example of two current paths. Consider there arem synapses with LRS states and n synapses with HRS state.
The average latency in the worst-case condition is m·(D+S)+n·(D+S+∆+δ)

m+n . Using the technological improvement, the

average latency is m·(D+S+∆)+n·(D+S+δ)
m+n . Therefore, the change in latency is

(

n−m
n+m

)

∆. This change in latency depends
on 1) current paths activated in a crossbar and 2) the value of n and m, i.e., the number of synaptic connections
with HRS and LRS states, respectively. In Section 7.3, we show an average 3% reduction of the average crossbar
latency for all the evaluated applications.

4 ARCHITECTURAL ENHANCEMENTS TO NEUROMORPHIC PE

To understand the motivation of the proposed architectural changes, Figure 8 reports the average synapse
utilization of 128 × 128 crossbars in neuromorphic PEs for 10 machine learning models implemented using the
spatial decomposition technique of [11], which is a best-efort approach to improve the utilization of crossbars
in a neuromorphic hardware.

Le
N
et

A
le
xN
et

R
es
N
et

D
en
se
N
et

V
G
G

H
ea
rt
C
la
ss

M
LP
D
ig
it

E
dg
eD
et

Im
gS
m
oo
th

R
N
N
D
ig
it

AV
E
R
A
G
E

0.0

0.5

1.0

1.5

A
ve
ra
ge

S
yn
ap
se

U
ti
liz
at
io
n

0.8% 0.9%
1.1% 1.2% 1.2%

0.8% 0.8% 0.9%
1.1%

0.6%

0.9%

Fig. 8. Average synapse utilization of neuromorphic PEs.

We observe that the average synapse utilization is only 0.9%. This is because a crossbar can accommodate only
a limited number of pre-synaptic connections per post-synaptic neuron. To illustrate this, Figure 9 shows three
examples of implementing neurons on a 4× 4 crossbar. The synapse utilization of the three example scenarios are
(a) 25% (4 out of 16), (b) 18.75% (3 out of 16), and (c) 25% (4 out of 16). As the crossbar dimension increases, the
utilization drops signiicantly. For instance, if a 128× 128 crossbar is used to implement a single 128-input neuron,
i.e., generalization of Fig. 9a, the utilization is only 0.78% (128 utilized synapses out of a total of 1282 = 16, 384
synapses). Lower synapse utilization leads to lower energy eiciency.

To improve energy eiciency, we propose to partition a neuromorphic PE into regions that can be dynamically
power-gated based on its utilization for a given machine-learning inference task. Figure 10 shows the use
of isolation transistors in a neuromorphic PE to partition a 4 × 4 crossbar into active and unutilized regions.
Figure 10a illustrates the implementation of only a single neuron function y1 in the crossbar. To improve energy
eiciency, isolation transistors are needed on every bitline (between wordlines 3 and 4) and on every wordline
(between bitlines 1 and 2). Figure 10b illustrates the implementation of two neuron functions y1 and y2 in the
crossbar. In this scenario, isolation transistors are only needed on every wordline (between bitlines 2 and 3).
To implement inference on a neuromorphic system, each crossbar may have diferent utilization of its memory
cells. Therefore, to improve energy eiciency in every crossbar, isolation transistors are needed on every bitline

ACM Trans. Embedd. Comput. Syst.

1:10 • Song, et al.

(a) (b) (c)

Fig. 9. Implementation of a) one 4-input, b) one 3-input, and c) two 2-input neurons to a 4 × 4 crossbar.

3

2

1

0

3

2

1

0

0 1 2 3
0 1 2 3

(a) Implementing a single neuron func-

tion in a partitioned crossbar.

3

2

1

0

3

2

1

0

0 1 2 3
0 1 2 3

(b) Implementing two neuron func-

tions in a partitioned crossbar .

(c) Proposed crossbar architec-

ture.

Fig. 10. Proposed neuromorphic PE architecture partitioned using isolation transistors.

(and between every pair of wordlines) and on every wordline (and between every pair of bitlines) ś a total of 24
isolation transistors for this example 4× 4 crossbar (in general, 2N (N − 1) for an N ×N crossbar). This ine-grained
partitioned PE architecture ofers lexibility in energy management incorporating crossbar utilization, but leads
to a signiicant increase in the area, latency, and system overhead to control isolation transistors.

To overcome these limitations while improving energy eiciency, we enable a coarse-grained partitioning in a
crossbar as illustrated in Figure 10c. In this example, isolation transistors are inserted selectively on every bitline
(between wordlines 3 and 4) and on every wordline (between bitlines 2 and 3). This coarse-grained partitioned
PE architecture requires a total of 8 isolation transistors (in general, 2N for an N × N crossbar). To reduce the
control overhead, isolation transistors on wordlines of a crossbar are controlled using a single control signal

ACM Trans. Embedd. Comput. Syst.

Design-Technology Co-Optimization for NVM-based Neuromorphic Processing Elements • 1:11

wl_iso_ctrl and those on bitlines using the signal bl_iso_ctrl. Through these two control signals, we enable
four distinct conigurations of the crossbar, which are summarized in Table 1.

Table 1. Diferent PE configurations enabled using the two new crossbar control signals.

Crossbar Control Key Parameters

wl_iso_ctrl bl_iso_ctrl Dimension Energy Latency

Baseline PE Architecture

ś ś 4 × 4 ∝ 4*4
Best-case: t1,1
Worst-case: t4,4

Proposed Partitioned PE Architecture

0 0 3 × 2 ∝ 3*2
Best-case: t1,1
Worst-case: t3,2 − ∆

0 1 4 × 2 ∝ 4*2
Best-case: t1,1
Worst-case: t4,2 − ∆ + tON

1 0 3 × 4 ∝ 3*4
Best-case: t1,1
Worst-case: t3,4 − ∆ + tON

1 1 4 × 4 ∝ 4*4
Best-case: t1,1
Worst-case: t4,4 + 2 · tON

In a baseline PE architecture, a crossbar dimension is ixed to 4x4. Its static energy is proportional to the
number of memory cells, which is 4*4 = 16 in this example. Latency in the crossbar varies from t1,1 (nearest cell
or best-case) to t4,4 (farthest cell or worst-case).
In the proposed partitioned PE architecture, there are four conigurations.
In coniguration ‘00’, the crossbar is conigured as a 3x2 array with its static energy proportional to 3x2 = 6

memory cells. This is when the unutilized region is power-gated. The best-case latency is t1,1 and the worst-case
latency is t3,2 − ∆, where ∆ is the reduction in parasitic delay due to shorter bitlines and wordlines.
In coniguration ‘01’, the crossbar is conigured as a 4x2 array with its static energy proportional to 4x2 = 8

memory cells. The best-case latency is t1,1 and worst-case latency is t4,2 − ∆ + tON , where tON is the delay of the
isolation transistor on current paths.
In coniguration ‘10’, the crossbar is conigured as a 3x4 array with its static energy proportional to 3x4 = 12

memory cells. The best-case latency is t1,1 and the worst-case latency is t3,4 − ∆ + tON .
In coniguration ‘11’, the crossbar is conigured as the baseline 4x4 array with its static energy proportional to

4x4 = 16 memory cells. The best-case latency is t1,1 while the worst-case latency is t4,4 + 2 · tON . Observe that on
the longest current path there are now two isolation transistors, resulting in higher worst-case latency than in
the baseline design.

Our proposed system software (whichwe discuss in Section 5)minimizes the use of coniguration ‘11’, improving
both performance and energy eiciency.
Single Control: The proposed partitioned PE architecture also supports using a single control signal for all

the isolation transistors in a crossbar. When using a single control, only the conigurations ‘00’ and ‘11’ are used,
implementing a 3 × 2 and a 4 × 4 array, respectively.
To generalize the discussion for an N × N crossbar, assume that isolation transistors are inserted on every

bitline (between wordlines P and P + 1) and on every wordline (between bitlines Q and Q + 1). Then, the four
conigurations are: 00’: a PxQ array; ‘01’: a NxQ array; ‘10’: a PxN array; and ‘11’: a NxN array. Formally,
⟨N , Nh, Nl , P, Q⟩ represents the proposed partitioned PE architecture. Equation 6 summarizes the notations.

ACM Trans. Embedd. Comput. Syst.

1:12 • Song, et al.

⟨N ⟩ = a baseline N × N crossbar

⟨N , Nh, Nl ⟩ = N × N crossbar with tech. enhancement (Sec. 3)

⟨N , Nh, Nl , P, Q⟩ = N × N crossbar with tech. & arch. enhancements

(see Sec. 3 & 4) (6)

We introduce the following four terminologies: 1) expanded mode: in this mode, a crossbar is operated in
coniguration ‘11’, 2) collapsed mode: in this mode, a crossbar is operated in conigurations ‘00’, ‘01’, and ‘10’, 3)
collapsed region, this is the reduced dimension of the crossbar when operating in conigurations ‘00’, ‘01’, and
‘10’, and 4) far region, this is the region of the crossbar excluding the collapsed region.

In our design methodology, the far region of a crossbar is power-gated using the two control signals at design-
time considering the crossbar’s utilization. This is achieved during mapping of neurons and synapses to the
hardware. Since neuron and synapse mapping does not change during inference, there is no dynamic power
management needed. Consequently, there is also no latency and energy overhead involved in switching the far
region on/of at run-time.

4.1 Placing Isolation Transistors in a Crossbar

To illustrate the design space exploration involved in placing isolation transistors in a crossbar, Figure 11(a)
illustrates a baseline crossbar with four current path that are activated during mapping of neurons and synapses.
Figures 11(b)-(d) show three alternative placements of isolation transistors in the crossbar. In Figure 11(b), P
and Q values are kept small. The size of the far region is large. In this igure, only two of the current paths (1 &
2) stays within the collapsed region of the crossbar, while the other two current paths (3 & 4) traverse via the
far region. This means that the latency of paths 3 & 4 increases due to the delay of the isolation transistors on
current paths. Additionally, the far region cannot be power gated, so there is a limited scope for energy reduction
using power gating. Increasing P and Q values further (Figure 11(c)), the far region reduces in size as illustrated
in the igure. Although three of the four current paths stay in the collapsed region, the far region still cannot be
power-gated due to the presence of path 4 in this region. Finally, Figure 11(d) illustrates a possibility where all
current paths stay in the collapsed region. The far region can therefore be power-gated. However, because of
the small size of the far region, the energy beneits may not be signiicant. We explore this latency and energy
tradeofs.

iso. transistors separating the

active region of a crossbar

1 2 3 4

Q

P

(a)
1 2 3 4

(b)

Q

P

1 2 3 4

(c)

Q

P

1 2 3 4

(d)

far region

Fig. 11. Placing isolation transistors in a crossbar.

ACM Trans. Embedd. Comput. Syst.

Design-Technology Co-Optimization for NVM-based Neuromorphic Processing Elements • 1:13

Figure 12 shows the latency and energy tradeofs in selecting the values of P and Q for the ResNet inference
workload implemented on 128 × 128 crossbars in a neuromorphic hardware. Latency and energy numbers are
normalized to baseline. We make the following two key observations.

First, energy is lower for smaller P and Q values. This is because by reducing P and Q, the size of the collapsed
region of a crossbar reduces. Therefore, there are more memory cells in the far region that can be power-gated
to lower energy.
Second, latency also reduces with a reduction in P and Q values (until P = Q = 80). This is due to shorter

bitlines and wordlines of the collapsed region. However, with P = Q = 64 or 72, more clusters of ResNet need
crossbars in the expanded mode of operation. This is because synapses in these clusters can no longer it onto
the reduced dimension of a collapsed crossbar. This increases latency due to isolation transistors on current paths.
For ResNet, P = Q = 80 is the tradeof point. The tradeof point is diferent for diferent applications. To select
a single crossbar coniguration that gives good results for all applications, we perform similar analysis for all
evaluated applications (see Section 6.3). Based on such analysis, P = Q = 96 is the selected coniguration for the
128 × 128 crossbar at 16nm technology node.

64 72 80 88 96 104 112

P,Q

0.2

0.4

0.6

0.8

N
or
m
al
iz
ed

E
n
er
gy

0.8

0.9

1.0

N
or
m
al
iz
ed

L
at
en
cy

V
ar
ia
ti
on

Fig. 12. Selecting P and Q values for the ResNet application.

5 EXPLOITING TECHNOLOGICAL AND ARCHITECTURAL IMPROVEMENTS VIA THE SYSTEM

SOFTWARE

To describe the system software, the left subigure of Figure 13 shows the inal crossbar design with isolation
transistors that allow each neuromorphic PE to operate in a collapsed or expanded mode. The right subigure
shows control signals for these transistors generated from a centralized controller implemented inside the system
software.
Without loss of generality, Figure 14 shows modiications to the baseline system software [61] to exploit the

proposed design changes. A trained machine learning model is irst partitioned to generate clusters, where each
cluster can it onto a crossbar. These clusters are stored in a cluster queue (clQ). In the baseline design, each
cluster from the clQ is mapped to an N × N array (exactly replicating the crossbar dimension of the hardware).
The mapping is programmed to the hardware using the cluster placement block. In the proposed design, each
cluster of clQ is mapped on four separate arrays ś a P ×Q array, a N ×Q array, a P ×N array, and a N ×N array.
These mappings go to a coniguration selection block, which selects the inal mapping for the cluster and the
coniguration of the corresponding PE based on energy-latency tradeofs. The coniguration is programmed to
the hardware by coniguring the two control signals wl_iso_ctrl and bl_iso_ctrl. This allows to power-gate
the far region of the crossbar. It is important to note that since we power-gate unused resources of a crossbar only
at design-time when admitting an application, we minimize the switching overhead. In the future, we will extend
this work to also consider dynamic power management by dynamically controlling the isolation transistors.

ACM Trans. Embedd. Comput. Syst.

1:14 • Song, et al.

A

(HRS)

B

(LRS)

C

(prog.)

C

(prog.)

0

64

128

0 64 12896

96

PE PE PE PE

Controller

PE PE PE PE

iso. transistors separating the

active region of a crossbar

Fig. 13. Final crossbar design using the isolation transistors. The right subfigure shows the control signals generated from

the controller when using the proposed partitioned PE architecture in a neuromorphic system.

Model

 Training
Clustering

PxQ NxQ PxN NxN

Configuration Selector

clQ

Neuromorphic

Hardware

Cluster

Placement

System SoftwareML Algorithm

Fig. 14. Proposed system sotware. All changes are indicated in red.

In selecting the inal mapping, the coniguration selector irst checks to see if a cluster can be mapped to a
P ×Q array. If this is possible, then the mapping to the P ×Q array is selected as the inal mapping for the cluster,
and the corresponding PE is set to operate in coniguration ‘00’ (collapsed mode). Otherwise, the coniguration
selector checks to see if the cluster can be mapped to N ×Q or P × N array. If so, the corresponding mapping is
selected, and the PE is set to operate in conigurations ‘01’ or ‘10’, respectively. If the cluster cannot be mapped to
either N ×Q or P × N arrays, the mapping to N × N array is selected as the inal mapping of the cluster with
the PE set to operate in coniguration ‘11’ (expanded mode). In this way, the proposed system software uses
expanded mode only when it is absolutely necessary to do so. Otherwise, it selects the collapsed region to map
synapses, improving both latency and energy.

6 EVALUATION METHODOLOGY

6.1 Simulation Framework

We evaluate the proposed design-technology co-optimization approach for OxRRAM-based neuromorphic PEs.
Our simulation framework includes NeuroXplorer [12], a cycle-level in-house neuromorphic simulator [12] with
programmable crossbar parameters. We conigure this framework to simulate crossbars with parameters listed in
Table 2.

Circuit-level simulations are performed with technology parameters from the predictive technology model
(PTM) [102] and OxRRAM-speciic parameters from [19]. We note that, comparing diferent chip technologies
or recommending one technology node over another is not the focus of this work. Instead, we show that for a

ACM Trans. Embedd. Comput. Syst.

Design-Technology Co-Optimization for NVM-based Neuromorphic Processing Elements • 1:15

Table 2. Major simulation parameters extracted from [29].

Neuron technology 16nm CMOS (original design is at 14nm FinFET)

Synapse technology HfO2-based OxRRAM [65]

Supply voltage 1.0V

Energy per spike 23.6pJ at 30Hz spike frequency

Energy per routing 3pJ

Switch bandwidth 3.44 G. Events/s

given process technology node, design optimizations can reduce energy and latency variations. Furthermore, the
proposed design-technology co-optimization methodology can be used by system designers to choose the best
technology node for their neuromorphic designs by exploring the energy-performance tradeofs.

Model

Training

SNN

Conversion

Model

Clustering

Cluster

Mapping

ML

Application

Hardware

Simulation

Process Voltage Technology

SynapseNeuron

Many-core Design

(a) Design Pipeline

(b) Modeling Hierarchy

(c) Statistics Collection Framework

Fig. 15. Design pipeline using NeuroXplorer.

Neuromorphic simulations are performed on a Lambda workstation, which has AMD Threadripper 3960X with
24 cores, 128 MB cache, 128 GB RAM, and 2 RTX3090 GPUs. Figure 15(a) shows the design pipeline implemented
using NeuroXplorer. A machine learning model is irst trained using frameworks such as Keras and PyTorch.
Subsequently, the trained model is converted into SNN using [5, 77]. The trained model is also simulated using
an SNN simulator such as CARLsim [22]. NeuroXplorer integrates PyCARL [4], which allows the SNN model
to be simulated using other SNN simulators such as Nengo [14], Neuron [44], and Brian [40]. Keras [42] and
CARLsim [22] both uses the two GPUs to accelerate model training and SNN functional simulation, respectively.
The SNN simulated model is clustered using the best-efort technique of [11], which maximizes cluster

utilization. Clusters of the SNN are mapped to the hardware using the SpineMap technique [8]. Finally, we
perform cycle-accurate simulation of the clusters using NeuroXplorer [12].

ACM Trans. Embedd. Comput. Syst.

1:16 • Song, et al.

Figure 15(b) shows the modeling hierarchy of the simulator. At the highest level is the many-core design,
which is a tile-based architecture, similar to Loihi [29]. Each PE consists of a crossbar, which is an organization
of neurons and synapses. A neurons is modeled using [49] and a synaptic circuit using [65]. At the lowest level
are the technology models (see Table 2).
Finally, Figure 15(c) shows the statistics collection framework in NeuroXplorer. It facilitates global statistics

collection, where spike arrival times are recorded for each PE (shown as C in the igure). These spike times are
then used to compute the ISI distortion (see Appendix B).

6.2 Power Consideration for Isolation Transistors

The additional power required to control the isolation transistors when accessing the RRAM cells in the far region
is approximately 3x that of raising a wordline, since raising a wordline requires driving one access transistor per
bitline, while accessing the RRAM cells in the far region requires driving two isolation and one access transistor
per bitline. The power overhead for accessing RRAM cells in the collapsed mode ‘01’ and ‘10’ is approximately 2x
(one isolation and one access transistor) [57, 80, 84]. The energy numbers reported in Section 7.1 incorporates
these overheads.

6.3 Evaluated Workloads

We select 10 machine learning inference programs that are representative of three most commonly-used neural
network classes: convolutional neural network (CNN), multi-layer perceptron (MLP), and recurrent neural
network (RNN). Table 3 summarizes the topology, number of neurons and synapses, number of spikes per image,
and baseline quality of these applications on hardware.

Table 3. Applications used to evaluate the proposed approach.

Baseline Obtained

Class Applications Dataset Neurons Synapses Avg. Spikes/Frame Quality Quality

CNN

LeNet CIFAR-10 80,271 275,110 724,565 86.3% 87.1%

AlexNet CIFAR-10 127,894 3,873,222 7,055,109 66.4% 66.9%

ResNet CIFAR-10 266,799 5,391,616 7,339,322 57.4% 58.0%

DenseNet CIFAR-10 365,200 11,198,470 1,250,976 46.3% 46.5%

VGG CIFAR-10 448,484 22,215,209 12,826,673 81.4 % 81.6%

HeartClass [25] Physionet 170,292 1,049,249 2,771,634 63.7% 63.9%

MLP

MLPDigit MNIST 894 79,400 26,563 91.6% 96.4%

EdgeDet [22] CARLsim 7,268 114,057 248,603 SSIM = 0.89 0.99

ImgSmooth [22] CARLsim 5,120 9,025 174,872 PSNR = 19 22.2

RNN RNNDigit [31] MNIST 1,191 11,442 30,508 83.6% 83.7%

6.4 Evaluated Approaches

We evaluate the following techniques.

• Baseline [8]. The Baseline approach irst clusters a machine-learning inference model to minimize the
inter-cluster spike communication. Clusters are then mapped to neuromorphic PEs of the hardware with
synapses of each cluster implemented on memory cells of a crossbar without incorporating latency variation.
Neuromorphic PEs are not optimized to reduce latency variation, i.e., any resistance state (LRS or HRS) can

ACM Trans. Embedd. Comput. Syst.

Design-Technology Co-Optimization for NVM-based Neuromorphic Processing Elements • 1:17

be programmed on any current path (long or short). Unused crossbars are power-gated to reduce energy
consumption. This is the coarse-grained power management technique implemented in many state-of-the-art
many-core neuromorphic designs such as Loihi [29], DYNAPs [67], and µBrain [94].

• Baseline + Design Changes. This is the Baseline mapping approach implemented on the proposed latency-

optimized partitioned neuromorphic PE design. In the proposed design, HRS state, which takes long time to
sense, is used only on shorter current paths, ones that have lower parasitic delays. Similarly, LRS state is
used only on loner current paths. In addition to coarse-grained power management, we facilitate power
gating at a iner granularity in the proposed design. Speciically, by controlling the isolation transistors, we
power-gate unused resources within each crossbar.

• Proposed. This is the proposed solution where the system software is optimized to exploit the design changes.

7 RESULTS AND DISCUSSIONS

7.1 Energy Eficiency

Figure 16 plots the energy eiciency of the evaluated techniques normalized to Baseline. We make the following
two key observations.

Le
N
et

A
le
xN
et

R
es
N
et

D
en
se
N
et

V
G
G

H
ea
rt
C
la
ss

M
LP
D
ig
it

E
dg
eD
et

Im
gS
m
oo
th

R
N
N
D
ig
it

AV
E
R
A
G
E

0.0

0.5

1.0

1.5

N
or
m
al
iz
ed

E
n
er
gy

Baseline Baseline + Design Changes Proposed

Fig. 16. Energy consumption normalized to Baseline.

First, with the proposed design changes, energy reduces by only 7% compared to Baseline. This is because,
both in Baseline and Baseline with the proposed design changes, synapses of a cluster are implemented randomly
on NVM cells of a crossbar causing them to be distributed across the crossbar dimension. Therefore, there
remains a limited scope to collapse the crossbar and use power-gating to save energy. Second, the proposed
design-technology co-optimization approach has the lowest energy (22% lower than Baseline and 16% lower than
Baseline with the proposed design changes). This improvement is due to the proposed system software, which
exploits the design changes in implementing machine learning inference on neuromorphic PEs. In particular,
synapses are implemented to maximize the utilization of the collapsed region in each crossbar of the hardware.
If all of a cluster’s synapses it into the collapsed region, then the far region can be isolated from the collapsed
region using isolation transistors and power-gated to save energy.

7.2 Latency Variation

Figure 17 plots the latency variation normalized to Baseline. We make the following three key observations.
First, with the proposed design changes, latency variation increases compared to Baseline by average 1%. This

is because of the increase in latency associated with the delay of isolation transistors on current paths. Second,
the latency variation using the proposed approach is 30% lower than Baseline and 32% lower than Baseline with

ACM Trans. Embedd. Comput. Syst.

1:18 • Song, et al.

Le
N
et

A
le
xN
et

R
es
N
et

D
en
se
N
et

V
G
G

H
ea
rt
C
la
ss

M
LP
D
ig
it

E
dg
eD
et

Im
gS
m
oo
th

R
N
N
D
ig
it

AV
E
R
A
G
E

0.0

0.5

1.0

1.5

N
or
m
al
iz
ed

L
at
en
cy

V
ar
ia
ti
on

Baseline Baseline + Design Changes Proposed

Fig. 17. Latency variation normalized to Baseline.

the proposed design changes. The reason for these improvements is three fold ś 1) optimizing NVM resistance
states in a crossbar such that the state that takes the longest time to sense is programmed on current paths that
have the least propagation delay, 2) isolating the collapsed region of a crossbar from the far region, to reduce
current propagation delay, and 3) exploiting these changes during the implementation of a machine learning
inference using the proposed system software, which uses the far region of a crossbar only when it is absolutely
necessary to do so. Otherwise, it improves both latency and energy by operating the crossbar in the collapsed
mode.

Finally, the latency variation using the proposed approach varies across diferent applications. This is because
the proposed approach exploits the latency and energy tradeofs diferently for diferent applications. The latency
variation is similar to the Baseline for ResNet, while it is signiicantly lower than the Baseline for HeartClass.

Using the results from Sections 7.1 and 7.2, we conclude that the proposed approach introduces maximum
gain for applications where the latency and energy tradeofs can be better exploited. For all other applications, it
either minimizes energy or minimizes latency variation.

7.3 Real-time Performance

One of the key hardware performance metrics for neuromorphic computing is real-time performance, which is a
function of the crossbar latency. To evaluate real-time performance, Figure 18 plots the crossbar latency of the
proposed approach and the Baseline for the evaluated applications. Results are normalized to the Baseline.

Le
N
et

A
le
xN
et

R
es
N
et

D
en
se
N
et

V
G
G

H
ea
rt
C
la
ss

M
LP
D
ig
it

E
dg
eD
et

Im
gS
m
oo
th

R
N
N
D
ig
it

AV
E
R
A
G
E

0.9

1.0

1.1

N
or
m
al
iz
ed

L
at
en
cy Baseline Proposed

Fig. 18. Crossbar latency normalized to Baseline.

ACM Trans. Embedd. Comput. Syst.

Design-Technology Co-Optimization for NVM-based Neuromorphic Processing Elements • 1:19

We observe that the crossbar latency using the proposed approach is on average 4.5% lower than the Baseline.
This reduction is because the proposed approach places synapses with the HRS state on shorter current paths,
which lowers the overall spike latency on those synapses. We have elaborated this in Section 3.2.

7.4 Inference uality

Figure 19 shows the improvement in inference quality using the proposed approach, normalized to Baseline. We
observe that the image quality improves by an average of 4%. This is due to the reduction in ISI distortion caused
by a reduction of the latency variation in neuromorphic PEs using the proposed changes, which we have analyzed
in Section 7.2. In addition, the improvement of inference quality with PSNR and SSIM metrics for EdgeDet and
ImgSmooth is higher than other inference tasks with accuracy metrics. This is because PSNR and SSIM metrics
are computed on individual images where we see a large improvement in quality. For accuracy-based tasks, we
observe that feature representation in hidden layers of these models changes due to ISI distortion, but not all
such changes lead to misclassiication. So the accuracy of these inference tasks is comparable to Baseline.

Le
N
et

A
le
xN
et

R
es
N
et

D
en
se
N
et

V
G
G

H
ea
rt
C
la
ss

M
LP
D
ig
it

E
dg
eD
et

Im
gS
m
oo
th

R
N
N
D
ig
it

AV
E
R
A
G
E

1.00

1.05

1.10

1.15

N
or
m
al
iz
ed

In
fe
re
n
ce

Q
u
al
it
y

Baseline Proposed

Fig. 19. Inference quality normalized to Baseline.

7.5 Single vs. Double Control Design

Figure 20 plots the energy eiciency of the proposed design with single control signal and the default, which uses
two control signals for each PE. We observe that using single control, energy reduces by only 2% compared to
Baseline. This is because most crossbars are operated in the expanded mode due to limited scope to collapse the
crossbar. Our default design leads to 14.4% lower energy than with single control. This is because in the default
design, a crossbar can be collapsed along X- and Y- dimensions independently, leading to three collapsed array
conigurations. Therefore, the system software has a higher probability to use the collapsed mode, leading to a
reduction in energy.

7.6 Die Area Analysis

Adding an isolation transistor to the bitline increases the height of the crossbar, whereas that on the wordline
increases the width. Without the isolation transistors, the height of a baseline crossbar is equal to the sum of
height of the memory cells and the sense-ampliier, while the width is equal to the sum of the width of the
memory cells. For RRAM-based neuromorphic PEs, a sense ampliier in the peripheral circuit and a isolation
transistor is approximately 384x and 9.6x taller than an individual RRAM cell, respectively [18, 65, 97]. In terms
of width, an isolation transistor is only 1.3x wider than an RRAM cell. Therefore, for a crossbar with 128 RRAM

ACM Trans. Embedd. Comput. Syst.

1:20 • Song, et al.

Le
N
et

A
le
xN
et

R
es
N
et

D
en
se
N
et

V
G
G

H
ea
rt
C
la
ss

M
LP
D
ig
it

E
dg
eD
et

Im
gS
m
oo
th

R
N
N
D
ig
it

AV
E
R
A
G
E

0.0

0.5

1.0

1.5

N
or
m
al
iz
ed

E
n
er
gy

Proposed-Single Control Proposed-Dual Control

Fig. 20. Partitioned PE architecture with single and double control.

cells per bitline and wordline (i.e., 128 × 128 array), the overhead along the height of the crossbar is 9.6
384+128 = 1.83%,

and the overhead along the width of the crossbar is 1.3
128 = 1.01%.

8 CONCLUSIONS

We present a design-technology co-optimization approach to implement energy-eicient machine-learning
inference on NVM-based neuromorphic processing elements (PEs). First, we optimize the NVM resistance state
such that the state that takes the longest time to sense is placed on current paths with fewer parasitics, and
hence incurs lower propagation delay, and vice versa. Second, we use isolation transistors to partition a PE into
collapsed and far regions such that the NVM cells of the far region can be opportunistically power-gated to
save both energy and latency. Finally, we use the system software to exploit the design changes, maximizing
the utilization of the collapsed region of each PE in the hardware. Our system software uses the far region
only when it is absolutely necessary to do so, otherwise it improves both latency and energy by operating the
PE in the collapsed mode. We evaluate our design-technology co-optimization approach for a state-of-the-art
neuromorphic architecture. Evaluations with diferent machine-learning inference tasks show that the proposed
approach improves both latency and energy without incurring signiicant cost-per-bit.

ACKNOWLEDGMENTS

This work is supported by 1) U.S. Department of Energy under Award Number DE-SC0022014, 2) the National
Science Foundation Award CCF-1937419 (RTML: Small: Design of System Software to Facilitate Real-Time
Neuromorphic Computing) and 3) the National Science Foundation Faculty Early Career Development Award
CCF-1942697 (CAREER: Facilitating Dependable Neuromorphic Computing: Vision, Architecture, and Impact on
Programmability).

REFERENCES

[1] [n.d.].

[2] Arnon Amir, Pallab Datta, William P Risk, Andrew S Cassidy, Jefrey A Kusnitz, Steve K Esser, Alexander Andreopoulos, Theodore M

Wong, Myron Flickner, Rodrigo Alvarez-Icaza, et al. 2013. Cognitive computing programming paradigm: a corelet language for

composing networks of neurosynaptic cores. In IJCNN.

[3] Aayush Ankit, Abhronil Sengupta, and Kaushik Roy. 2017. TraNNsformer: Neural network transformation for memristive crossbar

based neuromorphic system design. In ICCAD.

[4] Adarsha Balaji, Prathyusha Adiraju, Hirak J Kashyap, Anup Das, Jefrey L Krichmar, Nikil D Dutt, and Francky Catthoor. 2020. PyCARL:

A PyNN interface for hardware-software co-simulation of spiking neural network. In IJCNN.

ACM Trans. Embedd. Comput. Syst.

Design-Technology Co-Optimization for NVM-based Neuromorphic Processing Elements • 1:21

[5] Adarsha Balaji, Federico Corradi, Anup Das, Sandeep Pande, Siebren Schaafsma, and Francky Catthoor. 2018. Power-accuracy trade-ofs

for heartbeat classiication on neural networks hardware. JOLPE (2018).

[6] Adarsha Balaji and Anup Das. 2019. A Framework for the Analysis of Throughput-Constraints of SNNs on Neuromorphic Hardware.

In ISVLSI.

[7] Adarsha Balaji and Anup Das. 2020. Compiling Spiking Neural Networks to Mitigate Neuromorphic Hardware Constraints". In IGSC

Workshops.

[8] Adarsha Balaji, Anup Das, Yuefeng Wu, Khanh Huynh, Francesco G. Dell’anna, Giacomo Indiveri, Jefrey L. Krichmar, Nikil D. Dutt,

Siebren Schaafsma, and Francky Catthoor. 2020. Mapping spiking neural networks to neuromorphic hardware. TVLSI (2020).

[9] Adarsha Balaji, Thibaut Marty, Anup Das, and Francky Catthoor. 2020. Run-time mapping of spiking neural networks to neuromorphic

hardware. JSPS (2020).

[10] Adarsha Balaji, Shihao Song, Anup Das, Nikil Dutt, Jef Krichmar, Nagarajan Kandasamy, and Francky Catthoor. 2019. A framework to

explore workload-speciic performance and lifetime trade-ofs in neuromorphic computing. CAL (2019).

[11] Adarsha Balaji, Shihao Song, Anup Das, Jefrey Krichmar, Nikil Dutt, James Shackleford, Nagarajan Kandasamy, and Francky Catthoor.

2020. Enabling Resource-Aware Mapping of Spiking Neural Networks via Spatial Decomposition. ESL (2020).

[12] Adarsha Balaji, Shihao Song, Twisha Titirsha, Anup Das, Jefrey Krichmar, Nikil Dutt, James Shackleford, Nagarajan Kandasamy, and

Francky Catthoor. 2021. NeuroXplorer 1.0: An Extensible Framework for Architectural Exploration with Spiking Neural Networks. In

ICONS.

[13] Adarsha Balaji, Yuefeng Wu, Anup Das, Francky Catthoor, and Siebren Schaafsma. 2019. Exploration of segmented bus as scalable

global interconnect for neuromorphic computing. In GLSVLSI.

[14] Trevor Bekolay, James Bergstra, Eric Hunsberger, Travis DeWolf, Terrence C Stewart, Daniel Rasmussen, Xuan Choo, Aaron Voelker,

and Chris Eliasmith. 2014. Nengo: a Python tool for building large-scale functional brain models. Frontiers in Neuroinformatics (2014).

[15] Sumon Bose, Jyotibdha Acharya, and Arindam Basu. 2019. Is my neural network neuromorphic? Taxonomy, recent trends and future

directions in neuromorphic engineering. ACSSC (2019).

[16] Geofrey W. Burr, Robert M. Shelby, Abu Sebastian, Sangbum Kim, Seyoung Kim, Severin Sidler, Kumar Virwani, Masatoshi Ishii,

Pritish Narayanan, Alessandro Fumarola, Lucas L. Sanches, Irem Boybat, Manuel Le Gallo, Kibong Moon, Jiyoo Woo, Hyunsang Hwang,

and Yusuf Leblebici. 2017. Neuromorphic computing using non-volatile memory. Advances in Physics: X (2017).

[17] Francky Catthoor, Srinjoy Mitra, Anup Das, and Siebren Schaafsma. 2018. Very large-scale neuromorphic systems for biological signal

processing. In CMOS Circuits for Biological Sensing and Processing.

[18] Pai-Yu Chen, Zhiwei Li, and Shimeng Yu. 2016. Design tradeofs of vertical RRAM-based 3-D cross-point array. TVLSI (2016).

[19] Pai-Yu Chen and Shimeng Yu. 2015. Compact modeling of RRAM devices and its applications in 1T1R and 1S1R array design. TED

(2015).

[20] Yangyin Chen. 2020. ReRAM: History, status, and future. TED (2020).

[21] Yi-Hsuan Chiu, Yi-Bo Liao, Meng-Hsueh Chiang, Chia-Long Lin, Wei-Chou Hsu, Pei-Chia Chiang, Yen-Ya Hsu, Wen-Hsing Liu,

Shyh-Shyuan Sheu, Keng-Li Su, et al. 2010. Impact of resistance drift on multilevel PCM design. In ICDT.

[22] Ting Chou, Hirak Kashyap, Jinwei Xing, Stanislav Listopad, Emily Rounds, Michael Beyeler, Nikil Dutt, and Jefrey Krichmar. 2018.

CARLsim 4: An open source library for large scale, biologically detailed spiking neural network simulation using heterogeneous

clusters. In IJCNN.

[23] Dennis V Christensen, Regina Dittmann, Bernabé Linares-Barranco, Abu Sebastian, Manuel Le Gallo, Andrea Redaelli, Stefan Slesazeck,

Thomas Mikolajick, Sabina Spiga, Stephan Menzel, et al. 2021. 2021 Roadmap on Neuromorphic Computing and Engineering. arXiv

(2021).

[24] Serena Curzel, Nicolas Bohm Agostini, Shihao Song, Ismet Dagli, Ankur Limaye, Cheng Tan, Marco Minutoli, Vito Giovanni Castellana,

Vinay Amatya, Joseph Manzano, et al. 2021. Automated Generation of Integrated Digital and Spiking Neuromorphic Machine Learning

Accelerators. In ICCAD.

[25] Anup Das, Francky Catthoor, and Siebren Schaafsma. 2018. Heartbeat classiication in wearables using multi-layer perceptron and

time-frequency joint distribution of ECG. In CHASE.

[26] Anup Das and Akash Kumar. 2018. Datalow-Based Mapping of Spiking Neural Networks on Neuromorphic Hardware. In GLSVLSI.

[27] A. Das, P. Pradhapan, W. Groenendaal, P. Adiraju, R.T. Rajan, F. Catthoor, S. Schaafsma, J.L. Krichmar, N. Dutt, and C. Van Hoof. 2018.

Unsupervised heart-rate estimation in wearables with Liquid states and a probabilistic readout. Neural Networks (2018).

[28] Anup Das, Yuefeng Wu, Khanh Huynh, Francesco Dell’Anna, Francky Catthoor, and Siebren Schaafsma. 2018. Mapping of local and

global synapses on spiking neuromorphic hardware. In DATE.

[29] Mike Davies, Narayan Srinivasa, Tsung Han Lin, Gautham Chinya, Yongqiang Cao, Sri Harsha Choday, Georgios Dimou, Prasad Joshi,

Nabil Imam, Shweta Jain, Yuyun Liao, Chit Kwan Lin, Andrew Lines, Ruokun Liu, Deepak Mathaikutty, Steven McCoy, Arnab Paul,

Jonathan Tse, Guruguhanathan Venkataramanan, Yi Hsin Weng, Andreas Wild, Yoonseok Yang, and Hong Wang. 2018. Loihi: A

neuromorphic manycore processor with on-chip learning. IEEE Micro (2018).

ACM Trans. Embedd. Comput. Syst.

1:22 • Song, et al.

[30] Michael V. Debole, Brian Taba, Arnon Amir, Filipp Akopyan, Alexander Andreopoulos, William P. Risk, Jef Kusnitz, Carlos Ortega

Otero, Tapan K. Nayak, Rathinakumar Appuswamy, Peter J. Carlson, Andrew S. Cassidy, Pallab Datta, Steven K. Esser, Guillaume J.

Garreau, Kevin L. Holland, Scott Lekuch, Michael Mastro, Jef Mckinstry, Carmelo Di Nolfo, Jun Sawada, Brent Paulovicks, Kai

Schleupen, Benjamin G. Shaw, Jennifer L. Klamo, Myron D. Flickner, John V. Arthur, and Dharmendra S. Modha. 2019. TrueNorth:

Accelerating from zero to 64 million neurons in 10 years. Computer (2019).

[31] Peter Diehl and Matthew Cook. 2015. Unsupervised learning of digit recognition using spike-timing-dependent plasticity. Front. in

Comp. Neuroscience (2015).

[32] J Doevenspeck, R Degraeve, A Fantini, S Cosemans, A Mallik, P Debacker, D Verkest, R Lauwereins, and W Dehaene. 2021. OxRRAM-

Based Analog in-Memory Computing for Deep Neural Network Inference: A Conductance Variability Study. TED (2021).

[33] B Rasitha Fernando, Yangjie Qi, Chris Yakopcic, and Tarek M Taha. 2020. 3D Memristor Crossbar Architecture for a Multicore

Neuromorphic System. In IJCNN.

[34] Mohammed E Fouda, Ahmed M Eltawil, and Fadi Kurdahi. 2017. Modeling and analysis of passive switching crossbar arrays. TCAS I

(2017).

[35] Mohammed E Fouda, Jongeun Lee, Ahmed M Eltawil, and Fadi Kurdahi. 2018. Overcoming crossbar nonidealities in binary neural

networks through learning. In NANOARCH.

[36] Mohammed E Fouda, Sugil Lee, Jongeun Lee, Gun Hwan Kim, Fadi Kurdahi, and Ahmed Eltawil. 2020. IR-QNN Framework: An IR

Drop-Aware Oline Training Of Quantized Crossbar Arrays. IEEE Access (2020).

[37] Mohammed E Fouda, E Neftci, Ahmed Eltawil, and F Kurdahi. 2019. Efect of asymmetric nonlinearity dynamics in RRAMs on spiking

neural network performance. In ACSSC.

[38] Charlotte Frenkel. 2020. Bottom-up and top-down neuromorphic processor design: Unveiling roads to embedded cognition. Ph.D. Dissertation.

PhD thesis, UCL-Université Catholique de Louvain.

[39] Francesco Galluppi, Sergio Davies, Alexander Rast, Thomas Sharp, Luis A Plana, and Steve Furber. 2012. A hierachical coniguration

system for a massively parallel neural hardware platform. In Computing Frontiers. 183ś192.

[40] Dan FM Goodman and Romain Brette. 2009. The brian simulator. Frontiers in Neuroscience (2009).

[41] Roshan Gopalakrishnan, Yansong Chua, Pengfei Sun, Ashish Jith Sreejith Kumar, and Arindam Basu. 2020. HFNet: A CNN Architecture

Co-designed for Neuromorphic Hardware With a Crossbar Array of Synapses. Frontiers in Neuroscience (2020).

[42] Antonio Gulli and Sujit Pal. 2017. Deep learning with Keras.

[43] Yintao He, Ying Wang, Xiandong Zhao, Huawei Li, and Xiaowei Li. 2020. Towards state-aware computation in ReRAM neural networks.

In DAC.

[44] Michael L Hines and Nicholas T Carnevale. 1997. The NEURON simulation environment. Neural Computation (1997).

[45] Alain Hore and Djemel Ziou. 2010. Image quality metrics: PSNR vs. SSIM. In ICPR.

[46] Miao Hu, Hai Li, Yiran Chen, Qing Wu, Garrett S Rose, and Richard W Linderman. 2014. Memristor crossbar-based neuromorphic

computing system: A case study. TNNLS (2014).

[47] Miao Hu, John Paul Strachan, Zhiyong Li, Emmanuelle M Grafals, Noraica Davila, Catherine Graves, Sity Lam, Ning Ge, Jianhua Joshua

Yang, and R Stanley Williams. 2016. Dot-product engine for neuromorphic computing: Programming 1T1M crossbar to accelerate

matrix-vector multiplication. In DAC.

[48] Phu Khanh Huynh, M. Lakshmi Varshika, Ankita Paul, Murat Isik, Adarsha Balaji, and Anup Das. 2022. Implementing Spiking Neural

Networks on Neuromorphic Architectures: A Review. arXiv (2022).

[49] Giacomo Indiveri. 2003. A low-power adaptive integrate-and-ire neuron circuit. In ISCAS.

[50] YeonJoo Jeong, Mohammed A Zidan, and Wei D Lu. 2017. Parasitic efect analysis in memristor-array-based neuromorphic systems.

TNANO (2017).

[51] Yu Ji, YouHui Zhang, ShuangChen Li, Ping Chi, CiHang Jiang, Peng Qu, Yuan Xie, and WenGuang Chen. 2016. NEUTRAMS: Neural

network transformation and co-design under neuromorphic hardware constraints. In MICRO.

[52] Yongtae Kim, Yong Zhang, and Peng Li. 2012. A digital neuromorphic VLSI architecture with memristor crossbar synaptic array for

machine learning. In SOCC.

[53] Yongtae Kim, Yong Zhang, and Peng Li. 2015. A reconigurable digital neuromorphic processor with memristive synaptic crossbar for

cognitive computing. JETC (2015).

[54] Olga Krestinskaya, Aidana Irmanova, and Alex Pappachen James. 2019. Memristive non-idealities: Is there any practical implications

for designing neural network chips?. In ISCAS.

[55] Shamik Kundu, Kanad Basu, Mehdi Sadi, Twisha Titirsha, Shihao Song, Anup Das, and Ujjwal Guin. 2021. Special Session: Reliability

Analysis for ML/AI Hardware. In VTS.

[56] Minh Le and Son Ngoc Truong. 2021. Memristor Crossbar Circuits for Neuromorphic pattern Recognition. In ISOCC.

[57] Donghyuk Lee, Yoongu Kim, Vivek Seshadri, Jamie Liu, Lavanya Subramanian, and Onur Mutlu. 2013. Tiered-latency DRAM: A low

latency and low cost DRAM architecture. In HPCA.

ACM Trans. Embedd. Comput. Syst.

Design-Technology Co-Optimization for NVM-based Neuromorphic Processing Elements • 1:23

[58] Tianjian Li, Xiangyu Bi, Naifeng Jing, Xiaoyao Liang, and Li Jiang. 2017. Sneak-path based test and diagnosis for 1R RRAM crossbar

using voltage bias technique. In DAC.

[59] Yesheng Li and Kah-Wee Ang. 2021. Hardware Implementation of Neuromorphic Computing Using Large-Scale Memristor Crossbar

Arrays. Advanced Intelligent Systems (2021).

[60] C-Y Liao, K-Y Hsiang, F-C Hsieh, S-H Chiang, S-H Chang, J-H Liu, C-F Lou, C-Y Lin, T-C Chen, C-S Chang, et al. 2021. Multibit

Ferroelectric FET Based on Nonidentical Double Hf ZrO2 for High-Density Nonvolatile Memory. EDL (2021).

[61] Chit-Kwan Lin, Andreas Wild, Gautham N. Chinya, Tsung-Han Lin, Mike Davies, and Hong Wang. 2018. Mapping Spiking Neural

Networks onto a Manycore Neuromorphic Architecture. In PLDI.

[62] Chenchen Liu, Bonan Yan, Chaofei Yang, Linghao Song, Zheng Li, Beiye Liu, Yiran Chen, Hai Li, Qing Wu, and Hao Jiang. 2015. A

spiking neuromorphic design with resistive crossbar. In DAC.

[63] Xiaoxiao Liu, Wei Wen, Xuehai Qian, Hai Li, and Yiran Chen. 2018. Neu-NoC: A high-eicient interconnection network for accelerated

neuromorphic systems. In ASP-DAC.

[64] Wolfgang Maass. 1997. Networks of spiking neurons: The third generation of neural network models. Neural Networks (1997).

[65] A Mallik, D Garbin, A Fantini, D Rodopoulos, R Degraeve, J Stuijt, AK Das, S Schaafsma, P Debacker, G Donadio, et al. 2017. Design-

technology co-optimization for OxRRAM-based synaptic processing unit. In VLSIT.

[66] Carver Mead. 1990. Neuromorphic electronic systems. Proc. of the IEEE (1990).

[67] Saber Moradi, Ning Qiao, Fabio Stefanini, and Giacomo Indiveri. 2017. A scalable multicore architecture with heterogeneous memory

structures for dynamic neuromorphic asynchronous processors (DYNAPs). TBCAS (2017).

[68] Onur Mutlu. 2013. Memory scaling: A systems architecture perspective. In IMW.

[69] Onur Mutlu and Lavanya Subramanian. 2015. Research problems and opportunities in memory systems. SUFI (2015).

[70] Nishant S Nukala, Niranjan Kulkarni, and Sarma Vrudhula. 2014. Spintronic threshold logic array (STLA)ÐA compact, low leakage,

non-volatile gate array architecture. JPDC (2014).

[71] Ankita Paul, Shihao Song, and Anup Das. 2021. Design Technology Co-Optimization for Neuromorphic Computing. In IGSC Workshop.

[72] Ankita Paul, Shihao Song, Twisha Titirsha, and Anup Das. 2022. On the Mitigation of Read Disturbances in Neuromorphic Inference

Hardware. D&T (2022).

[73] Bipin Rajendran, Abu Sebastian, Michael Schmuker, Narayan Srinivasa, and Evangelos Eleftheriou. 2019. Low-power neuromorphic

hardware for signal processing applications: A review of architectural and system-level design approaches. Signal Processing Magazine

(2019).

[74] M Rakka, ME Fouda, R Kanj, Ahmed Eltawil, and FJ Kurdahi. 2020. Design Exploration of Sensing Techniques in 2T-2R Resistive

Ternary CAMs. TCAS II: Express Briefs (2020).

[75] Wonbo Shim, Yandong Luo, Jae-sun Seo, and Shimeng Yu. 2020. Impact of read disturb on multilevel RRAM based inference engine:

Experiments and model prediction. In IRPS.

[76] Shihao Song, Adarsha Balaji, Anup Das, Nagarajan Kandasamy, and James Shackleford. 2020. Compiling spiking neural networks to

neuromorphic hardware. In LCTES.

[77] Shihao Song, Harry Chong, Adarsha Balaji, Anup Das, James Shackleford, and Nagarajan Kandasamy. 2021. DFSynthesizer: Datalow-

based synthesis of spiking neural networks to neuromorphic hardware. TECS (2021).

[78] Shihao Song and Anup Das. 2020. A case for lifetime reliability-aware neuromorphic computing. In MWSCAS.

[79] Shihao Song and Anup Das. 2020. Design Methodologies for Reliable and Energy-eicient PCM Systems. In IGSC Workshops.

[80] Shihao Song, Anup Das, and Nagarajan Kandasamy. 2020. Exploiting Inter- and Intra-Memory Asymmetries for Data Mapping in

Hybrid Tiered-Memories. In ISMM.

[81] Shihao Song, Anup Das, and Nagarajan Kandasamy. 2020. Improving dependability of neuromorphic computing with non-volatile

memory. In EDCC.

[82] Shihao Song, Anup Das, Onur Mutlu, and Nagarajan Kandasamy. 2019. Enabling and Exploiting Partition-Level Parallelism (PALP) in

Phase Change Memories. TECS (2019).

[83] Shihao Song, Anup Das, Onur Mutlu, and Nagarajan Kandasamy. 2020. Improving Phase Change Memory Performance with Data

Content Aware Access. In ISMM.

[84] Shihao Song, Anup Das, Onur Mutlu, and Nagarajan Kandasamy. 2021. Aging-Aware Request Scheduling for Non-Volatile Main

Memory. In ASP-DAC.

[85] Shihao Song, Jui Hanamshet, Adarsha Balaji, Anup Das, Jef Krichmar, Nikil Dutt, Nagarajan Kandasamy, and Francky Catthoor. 2021.

Dynamic reliability management in neuromorphic computing. JETC (2021).

[86] Shihao Song, Lakshmi Varshika Mirtinti, Anup Das, and Nagarajan Kandasamy. 2021. A Design Flow for Mapping Spiking Neural

Networks to Many-Core Neuromorphic Hardware. In ICCAD.

[87] Shihao Song, Twisha Titirsha, and Anup Das. 2021. Improving Inference Lifetime of Neuromorphic Systems via Intelligent Synapse

Mapping. In ASAP.

ACM Trans. Embedd. Comput. Syst.

1:24 • Song, et al.

[88] Sherin A Thomas, Sahibia Kaur Vohra, Rahul Kumar, Rohit Sharma, and Devarshi Mrinal Das. 2021. Analysis of Parasitics on CMOS

based Memristor Crossbar Array for Neuromorphic Systems. In MWSCAS.

[89] Twisha Titirsha and Anup Das. 2020. Reliability-Performance Trade-ofs in Neuromorphic Computing. In IGSC Workshops.

[90] Twisha Titirsha and Anup Das. 2020. Thermal-Aware Compilation of Spiking Neural Networks to Neuromorphic Hardware. In LCPC.

[91] Twisha Titirsha, Shihao Song, Adarsha Balaji, and Anup Das. 2021. On the Role of System Software in Energy Management of

Neuromorphic Computing. In CF.

[92] Twisha Titirsha, Shihao Song, Anup Das, Jefrey Krichmar, Nikil Dutt, Nagarajan Kandasamy, and Francky Catthoor. 2021. Endurance-

Aware Mapping of Spiking Neural Networks to Neuromorphic Hardware. TPDS (2021).

[93] Shikhar Tuli, Marco Rios, Alexandre Levisse, and David Atienza ESL. 2020. RRAM-VAC: A variability-aware controller for RRAM-based

memory architectures. In ASP-DAC.

[94] M Lakshmi Varshika, Adarsha Balaji, Federico Corradi, Anup Das, Jan Stuijt, and Francky Catthoor. 2022. Design of Many-Core Big

Little µBrains for Energy-Eicient Embedded Neuromorphic Computing. In DATE.

[95] Zhehui Wang, Huaipeng Zhang, Tao Luo, Weng-Fai Wong, Anh Tuan Do, Paramasivam Vishnu, Wei Zhang, and Rick Siow Mong Goh.

2020. NCPower: Power Modelling for NVM-based Neuromorphic Chip. In ICONS.

[96] Parami Wijesinghe, Aayush Ankit, Abhronil Sengupta, and Kaushik Roy. 2018. An all-memristor deep spiking neural computing

system: A step toward realizing the low-power stochastic brain. TETCI (2018).

[97] Cong Xu, Xiangyu Dong, Norman P Jouppi, and Yuan Xie. 2011. Design implications of memristor-based RRAM cross-point structures.

In DATE.

[98] Cheng-Xin Xue, Wei-Hao Chen, Je-Syu Liu, Jia-Fang Li, Wei-Yu Lin, Wei-En Lin, Jing-Hong Wang, Wei-Chen Wei, Ting-Wei Chang,

Tung-Cheng Chang, et al. 2019. 24.1 a 1Mb multibit ReRAM computing-in-memory macro with 14.6 ns parallel MAC computing time

for CNN based AI edge processors. In ISSCC.

[99] Steven R Young, Pravallika Devineni, Maryam Parsa, J Travis Johnston, Bill Kay, Robert M Patton, Catherine D Schuman, Derek C

Rose, and Thomas E Potok. 2019. Evolving energy eicient convolutional neural networks. In Big Data.

[100] Shimeng Yu, Yexin Deng, Bin Gao, Peng Huang, Bing Chen, Xiaoyan Liu, Jinfeng Kang, Hong-Yu Chen, Zizhen Jiang, and H-S Philip

Wong. 2014. Design guidelines for 3D RRAM cross-point architecture. In ISCAS.

[101] Xinjiang Zhang, Anping Huang, Qi Hu, Zhisong Xiao, and Paul K Chu. 2018. Neuromorphic computing with memristor crossbar.

Physica Status Solidi (a) (2018).

[102] Wei Zhao and Yu Cao. 2007. Predictive technology model for nano-CMOS design exploration. JETC 1 (2007).

[103] Zhenhua Zhu, Jilan Lin, Ming Cheng, Lixue Xia, Hanbo Sun, Xiaoming Chen, Yu Wang, and Huazhong Yang. 2018. Mixed size crossbar

based RRAM CNN accelerator with overlapped mapping method. In ICCAD.

A SPIKING NEURAL NETWORKS

Spiking Neural Networks (SNNs) enable powerful computations due to their spatio-temporal information encoding
capabilities [64]. An SNN consists of neurons, which are connected via synapses. A neuron can be implemented as
an integrate-and-ire (IF) logic, which is illustrated in Figure 21 (left). Here, an input current U (t) (i.e., spike from
a pre-synaptic neuron) raises the membrane voltage of the neuron. When this voltage crosses a threshold Vth , the
IF logic emits an output spike, which propagates to is post-synaptic neuron. Figure 21 (middle) illustrates the
membrane voltage of the IF neuron due to an input spike train. The moment of threshold crossing is illustrated
in Figure 21 (right). These are the iring times of the output spike train of the neuron.

SNNs can implement many machine learning approaches such as supervised learning, unsupervised learning,
reinforcement learning, and lifelong learning. We focus on supervised machine learning, where an SNN is
pre-trained with representative data. Machine learning inference refers to feeding live data points to this trained
SNN to generate the corresponding output.

B QUALITY OF INFERENCE

The quality of machine learning inference can be expressed in terms of accuracy [5], Mean Square Error
(MSE) [27], Peak Signal-to-Noise Ratio (PSNR) [22], and Structural Similarity Index Measure (SSIM) [45]. While
accuracy is commonly used for assessing the quality of supervised learning, e.g., using Convolution Neural
Networks (CNNS), there are also applications such as edge detection, where the quality is assessed using other
metrics such as SSIM. In our prior work [8], we have shown that these quality metrics are a function of the

ACM Trans. Embedd. Comput. Syst.

Design-Technology Co-Optimization for NVM-based Neuromorphic Processing Elements • 1:25

Fig. 21. A leaky integrate-and-fire (LIF) neuron with current input U (t) (let). The membrane potential over time of the

neuron (middle). The spike output of the neuron representing its firing time (right).

inter-spike interval (ISI) between neurons. Therefore, any deviation of ISI (called ISI distortion) from its trained
value may lead to quality loss. To describe ISI, let {t1, t2, · · · , tK } denote a neuron’s iring times in the time interval
[0, T], the average ISI of this spike train is

I =

K
∑

i=2

(ti − ti−1)/(K − 1). (7)

To illustrate how a change in ISI, called ISI distortion, impacts inference quality, we use a small SNN in which
three input neurons are connected to an output neuron. Figure 22 illustrates the impact of ISI distortion on the
output spike. In the top sub-igure, a spike is generated at the output neuron at 22µs due to spikes from the input
neurons. In the bottom sub-igure, the second spike from input 3 is delayed, i.e., it has an ISI distortion. Due to
this distortion, there is no output spike generated. Missing spikes can impact inference quality, as spikes encode
information in SNNs.

Figure 23 shows the impact of ISI distortion on the quality of image smoothing implemented using an SNN [22].
Figure 23a shows the input image, which is fed to the SNN. Figure 23b shows the output of the image smoothing
application with no ISI distortion. PSNR of the output with reference to the input is 20. Figure 23c shows the output
with ISI distortion due to variation in latency within neuromorphic PEs of the hardware. PSNR of this output
with respect to the input is 19. A reduction in PSNR indicates that the output image quality with ISI distortion is
lower than the one without distortion. In fact, image quality deteriorates with increase in ISI distortion. We use
ISI distortion as a measure of the quality of machine learning inference [8]. Our aim is to improve this inference
quality via technological and architectural enhancements that reduce ISI distortion when the inference task is
implemented on neuromorphic PEs of a hardware.

C HARDWARE IMPLEMENTATION OF MACHINE LEARNING INFERENCE

Most neuromorphic hardware platforms are implemented as tiled-based architectures [17, 29, 30, 38, 73, 94],
where the tiles are interconnected via a shared interconnect such as Network-on-Chip [63] and Segmented
Bus [13]. Figure 24 illustrates a tile-based neuromorphic hardware platform, where the tiles can communicate
concurrently. Each tile includes 1) a neuromorphic PE, which consists of neuron and synapse circuitries and 2) a
network interface, which encodes spikes into Address Event Representation (AER) and communicates these AER
packets to the switch for routing to their destination tiles. A common design practice is to use analog crossbars
to implement a neuromorphic PE [3, 8, 46, 53, 56, 59, 62, 101]. Within a crossbar, a pre-synaptic neuron circuit
acts as a current driver and is placed on a wordline, while a post-synaptic neuron circuit acts as a current sink
and is placed on a bitline as illustrated in Figure 1 (left).

ACM Trans. Embedd. Comput. Syst.

1:26 • Song, et al.

0 5 10 15 25 30 35 4020

Time (us)

Output

Input 3

Input 2

Input 1

N
e

u
ro

n

0 5 10 15 25 30 35 4020

Time (us)

Output

Input 3

Input 2

Input 1

N
e

u
ro

n

ISI Distortion

no output spike

input spikes
output spike

Fig. 22. Impact of ISI distortion on accuracy [4]. Top sub-figure shows a scenario where an output spike is generated based

on the spikes received from the three input neurons. Botom sub-figure shows a scenario where the second spike from neuron

3 is delayed. There are no output spikes generated.

Since a crossbar can accommodate only a limited number of neurons and synapses, a machine learning model
is irst partitioned into clusters, where each cluster can be implemented on a crossbar of the hardware. Partitioned
clusters are then mapped to diferent crossbars when admitting the model to the hardware platform. To this
end, several heuristic approaches are proposed in literature. PSOPART [28] minimizes spike latency on the
shared interconnect, SpiNeMap [8] minimizes interconnect energy, DFSynthesizer [77] maximizes throughput,
DecomposedSNN [11] maximizes crossbar utilization, EaNC [91] minimizes overall energy of a machine learning
task by targeting both computation and communication energy, TaNC [90] minimizes the average temperature of
each crossbar, eSpine [92] maximizes NVM endurance in a crossbar, RENEU [81] minimizes the circuit aging in a
crossbar’s peripheral circuits, and NCil [87] reduces read disturb issues in a crossbar, improving the inference
lifetime. Beside these techniques, there are also other software frameworks [2, 6, 7, 10, 12, 24, 26, 39, 48, 51, 55, 61,
72, 76, 78, 79, 86, 89] and run-time approaches [9, 85], addressing one or more of these optimization objectives.

We investigate the internal architecture of a crossbar and ind that the parasitic components introduce delay in
propagating current from a pre-synaptic neuron to a post-synaptic neuron as illustrated in Figure 1 (right). This

ACM Trans. Embedd. Comput. Syst.

Design-Technology Co-Optimization for NVM-based Neuromorphic Processing Elements • 1:27

(a) Original Image. (b) Output with no ISI distor-

tion (PSNR = 20).

(c) Output with ISI distortion

(PSNR = 19).

Fig. 23. Impact of ISI distortion on image smoothing.

Interconnect

Tile Tile Tile

Tile Tile Tile

Interconnect

Tile Tile Tile

Tile Tile Tile

Interconnect

Tile Tile Tile

Tile Tile Tile

Interconnect

Tile Tile Tile

Tile Tile Tile

Interconnect

Tile Tile Tile

Tile Tile Tile

Interconnect

Tile Tile Tile

Tile Tile Tile

Fig. 24. Tile-based neuromorphic hardware, representative of hardware platforms such as TrueNorth [30], Loihi [29],

DYNAPs [67], and µBrain [94].

delay depends on the speciic current path used in the mapping. Higher the number of parasitic components
on a current path, larger is its propagation delay. Parasitic components on bitlines and wordlines are a major
source of latency at scaled process technology nodes and they create signiicant latency variation in a crossbar.
Speciically, the latency of a synaptic connection in an SNN depends precisely on the memory cell in the crossbar
that is used to implement it. Such latency variation can introduce ISI distortion (Section B), which may impact
the quality of an inference task.

D NON-VOLATILE MEMORY TECHNOLOGY

RRAM technology presents an attractive option for implementing memory cells of a crossbar due to its demon-
strated potential for low-power multilevel operation and high integration density [65]. An RRAM cell is composed
of an insulating ilm sandwiched between conducting electrodes forming a metal-insulator-metal (MIM) structure
(see Figure 25). Recently, conducting ilament-based metal-oxide RRAM implemented with transition-metal-oxides

ACM Trans. Embedd. Comput. Syst.

1:28 • Song, et al.

such as HfO2, ZrO2, and TiO2 has received considerable attention due to their low-power and CMOS-compatible
scaling.

Fig. 25. Operation of an RRAM cell with the HfO2 layer sandwiched between the metals Ti (top electrode) and TiN (botom

electrode). The right subfigure shows the formation of LRS/SET state. The let subfigure shows the HRS/RESET state.

Synaptic weights are represented as conductance of the insulating layer within each RRAM cell. To program
an RRAM cell, elevated voltages are applied at the top and bottom electrodes, which re-arranges the atomic
structure of the insulating layer. Figure 25 shows the High-Resistance State (HRS) and the Low-Resistance State
(LRS) of an RRAM cell. An RRAM cell can also be programmed into intermediate low-resistance states, allowing
its multilevel operations [19].

ACM Trans. Embedd. Comput. Syst.

	Abstract
	1 Introduction
	2 Design-Technology Tradeoff Analysis
	2.1 Cost-per-Bit Analysis for a Neuromorphic PE
	2.2 Latency Variation in a Neuromorphic PE
	2.3 Varying Latency to Sense NVM Resistance States

	3 Proposed Technological Improvements
	3.1 Reduction in Latency Variation
	3.2 Impact on Latency

	4 Architectural Enhancements to Neuromorphic PE
	4.1 Placing Isolation Transistors in a Crossbar

	5 Exploiting Technological and Architectural Improvements via the System Software
	6 Evaluation Methodology
	6.1 Simulation Framework
	6.2 Power Consideration for Isolation Transistors
	6.3 Evaluated Workloads
	6.4 Evaluated Approaches

	7 Results and Discussions
	7.1 Energy Efficiency
	7.2 Latency Variation
	7.3 Real-time Performance
	7.4 Inference Quality
	7.5 Single vs. Double Control Design
	7.6 Die Area Analysis

	8 Conclusions
	Acknowledgments
	References
	A Spiking Neural Networks
	B Quality of Inference
	C Hardware Implementation of Machine Learning Inference
	D Non-Volatile Memory Technology

