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Abstract— Objects moving in water or stationary objects in
streams create a vortex wake. An underwater robot encounter-
ing the wake created by another body experiences disturbance
forces and moments. These disturbances can be associated with
the disturbance velocity field and the bodies creating them.
Essentially the vortex wakes encode information about the
objects and the flow conditions. Underwater robots that often
function with constrained sensing capabilities can benefit from
extracting this information from vortex wakes. Many species of
fish do exactly this, by sensing flow features using their lateral
lines as part of their multimodal sensing. Besides the necessary
sensing hardware, a more important aspect of sensing is related
to the algorithms needed to extract the relevant information
about the flow. This paper advances a framework for such
an algorithm using the setting of a pitching hydrofoil in the
wake of a thin plate (obstacle). Using time series pressure
measurements on the surface of the hydrofoil and the angular
velocity of the hydrofoil, a Koopman operator is constructed
that propagates the time series. The Koopman modes associated
with this operator are then used by a convolutional neural
network (CNN) to estimate the distance and location of the
plate. The hydrofoil (or a bioinspired robot) thus acquires
the capability to ‘blindly’ sense obstacles using time-varying
pressure measurements.

I. INTRODUCTION

The locomotion of fish and other aquatic swimmers has
many desirable characteristics such as energy efficiency,
agility, and stealth [1], [2], which have inspired mimicry
in bioinspired robots [3], [4]. Closely related to and aiding
the locomotion is the ability of fish to sense and process
the spatiotemporal information in the water around them.
Objects moving in water or stationary objects in streams
create a vortex wake. An underwater robot encountering the
wake created by another body experiences disturbance forces
and moments. These disturbances can be associated with
the disturbance velocity field and the bodies creating them.
Essentially, information about fluid flow and the objects that
create these flows is encoded in the spatiotemporal evolution
of the vortical structures, whether the bodies creating them
are cylinders, hydrofoils, underwater robots or fish. Under-
water robots that often function with constrained sensing
capabilities can benefit from extracting this information from
vortex wakes. Many species of fish do exactly this, by
sensing flow features using their lateral lines as part of their
multimodal sensing [1], [5], [6].
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The complexity and high (infinite) dimensionality of fluid
flows around a swimmer present significant challenges to
emulate fish-like hydrodynamic sensing and extract the rele-
vant information from sensor data of the flow. This particular
challenge is not restricted to bioinspired fish-like swimmers,
but has been present in the broad areas of fluid flow es-
timation, model reduction, and active flow control. Proper
orthogonal decomposition (POD) [7], [8] and the gappy POD
[9] have been tools for model reduction in turbulent flows
for decades, and have also been applied for unsteady flow
sensing past an hydrofoil and estimation of surface pressure
[10], [11]. Model reduction of complex flows using the
Koopman operator approach has extended the POD approach
to a dynamical systems framework [12], [13]. Subsequent
developments in the application of machine learning in
dynamical systems have created algorithms for learning
the dynamic modes or Koopman modes of a dynamical
system from often sparse data [14]–[16]. Similar methods
combining machine learning with dynamical systems are
increasingly playing an important role in model reduction
in fluid mechanics [17]–[24]. Flow estimation in the near
field of a body that combines traditional filtering approaches
with the lifted dynamics induced by the associated Koopman
operator have been studied recently in [25], [26].

This paper considers a different but related problem mo-
tivated by underwater robots where on-board sensors such
as IMUs and pressure sensors can usually measure only
dynamic and kinematic variables of the robot itself and not
measure the ambient velocity field. We consider the problem
of the estimation of the spatial location of an up stream
obstacle in a flow past a pitching hydrofoil. It is assumed
that pressure on the surface of the hydrofoil can be measured
at fixed locations on the body along with the pitch angular
velocity of the hydrofoil. Using time series pressure measure-
ments on the surface of the hydrofoil and the angular velocity
of the hydrofoil, a Koopman operator is constructed that
propagates the snapshots of data forward in time. The modes
from a spectral decomposition of this operator are then used
to create ‘images’. These images are input to a convolutional
neural network (CNN) to estimate the distance and location
of the plate (obstacle). The hydrofoil (or a bioinspired robot)
thus acquires the capability to blindly sense obstacles using
proprioception. Segments of an underwater could then act as
sensors and flow controllers [27].

II. EMBODIED SENSING AND ESTIMATION OF OBSTACLES

The simulation setup for the estimation problem is shown
in Fig. 1. A fish shaped body (a NACA 0018 hydrofoil) is



pinned at a distance b downstream from a thin flat plate. The
hydrofoil’s pitching motion is restrained by a torsional spring
of stiffness k and a dashpot of damping coefficient c. A free
stream velocity U∞ is prescribed to as shown. Pressure is
measured in the simulation at N points in the surface of the
hydrofoil; these ‘pressure sensors’ are distributed uniformly
around the length of the hydrofoil. Furthermore the angular
velocity Ω(t) of the hydrofoil is also measured. The hydrofoil
pitches in response to both the free stream velocity as well
as the disturbance wake created by the plate. The effects
of disturbance wake produced by the flat plate obstacle are
felt in the pressure and angular velocity measurements. The
estimation problem considered in this paper is to estimate
the values of b and d.

Fig. 1: A hydrofoil of length 1 m is pinned at its leading
edge a distance of b downstream from an obstacle of height
1 m and thickness 0.1 m. The upstream obstacle is placed
at a height of d from the center line. A torsional spring of
stiffness k = 1 Nm/rad and damping c = 1 Nms/rad
resists rotation of the foil. Pressures are recorded at the 50
points indicated on the surface of the foil.

A. Fluid flow simulations and data generation

The coupled dynamics of the fluid flowing past the plate
and the hydrofoil are simulated using OpenFOAM®. The hy-
drofoil (NACA 0018) has chord length of 1 m and thickness
of 0.18 m; the flat plate is also of length 1 m and is 0.1
m wide. A two-dimensional computational domain of length
6.2 m and height 4.4 m is constructed with a foil pinned at
its leading edge to a point in the middle of the domain at a
distance of 3.2 m from the left edge of the domain. The top
and bottom of the domain have a slip boundary, but allow
no normal velocity; the left edge (where the fluid enters the
domain) is chosen to have a constant pressure of p = 0 and
U∞ = 20 m/s. The foil and obstacle both have no-slip and
no-normal velocity boundary conditions. These conditions
serve to simulate a portion of a water tunnel environment.
The fluid is chosen to have unit density and Newtonian shear
with kinematic viscosity ν = 1× 10−6m2/s.

The simulation of this environment takes place in several
steps. Before the foil and plate geometry are introduced,
a rigid sparse square mesh with edge length 0.043 m is
generated across the empty computational domain with the
blockMesh utility. From there the bodies are introduced and

a finer boundary mesh with edge lengths near the body
of roughly 0.0056 m is generated and ‘snapped’ to them
with the snappyHexMesh utility. To accurately capture the
boundary layer, the local mesh is divided into 3 layers which
become increasingly sparse at a distance from the body, until
they are spliced into the block mesh at the outer boundary,
resulting in a total of roughly 400,000 mesh points. A steady-
state flow field is then approximated by fixing the foil rigidly
and applying 3000 iterations of the SIMPLE (Semi-Implicit
Method for Pressure Linked Equations) algorithm to the
mesh using simpleFoam. This flow field is taken as an initial
condition for the transient solution with foil motion solved
using the pimpleFoam implementation of the PISO (Pressure-
Implicit with Splitting of Operators) algorithm. Mesh motion
is calculated automatically, with meshes within range 0.3
m of the body translating rigidly with the body, meshes at
greater than 1 m distance remaining stationary, and meshes in
the 0.3 m to 1 m region deforming without topology change.
Three seconds of simulation data are generated and stored at
intervals of 0.01 seconds. The data include the foil angular
velocity and 50 pressure readings interpolated to fixed points
on the foil surface (indicated in Fig. 1). The simulations are
performed on a parametric grid where b varies uniformly
from 0 m to 1 m and d varies uniformly from 1 to 3m,
resulting in 121 simulations for the 121 pairs of (b, d).
Additional test data is then generated at 50 random pairs
(b, d) ∈ [0, 1]× [2, 3].

Fig. 2: The magnitude of the velocity field with b = 3 m
and d = 0.8 m at time 0.43 s. Periodic vortex shedding from
the plate is evident, and the interaction between that wake
and the foil leads to secondary vortices being shed off of the
foil.

B. Koopman modes

The motion of the fluid has complex patterns with some
clear periodic features in a visual inspection of the pressure
field as shown in Fig. 3, as well as some patterns that
are difficult to discern. The underlying dynamics of the
coupled foil-fluid are very high dimensional. The objective
is to take a very small set of observables, specifically
surface pressure and angular velocity of the foil, in the
estimation of the parameters b and d. Knowledge of the
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Fig. 3: The static pressure profile around the foil with b = 3
m and d = 0.8 m at (a) t=0.17 s and (b) t=0.44 s. Interaction
with the upstream wake causes substantial variation in the
local pressure field, both spatially and temporally.

velocity field of the fluid is not assumed. Model reduction
and reconstruction of reduced order models in such complex
dynamical systems where only limited data on observables is
available can be possible via the framework of the Koopman
operator, a topic that has attracted much attention in recent
years [14]–[16], especially in the context of fluid dynamical
systems [28], [29]. Denoting the observables as g(t) =
[P1(t), ..., PN (t),Ω(t)]T where Pi(t) denotes the pressure
on the foil at location i at time t and Ω(t) denotes the foil
angular velocity similarly at time t, the Koopman operator
K is a linear operator K : L2 7→ L2 and propagates the
observables forward in time

KT g(t) = g(t+ T ). (1)

Because in experiments and simulations the observables are
measured at discrete times (t0, t1, ..., ts), we denote the
observables as [g(t1), ..., g(ts)] where a projected Koopman
operator K : RN+1 7→ RN+1 can be redefined as one that
propagates the observables forward in discrete time

Kg(tm) = g(tm+1). (2)

Due to linearity, Kmg(t0) = g(tm). The definition of the
projected Koopman operator is not unique and is only one
of convenience, as the projected Koopman operator can also
be defined to act on any other finite dimensional subspace
of L2. The projected operator K cannot usually propagate
the observables without any error, and a choice of an
approximate operator is made such that ||Kg(tm)−g(tm+1)||
is small, under a norm || · ||.

In the time series data generated by the OpenFOAM
simulations, the observables are measured at equally spaced
time intervals, ∆t = tm+1− tm = 0.01 s for all 0 ≤ m < s.
Assembling a matrix of m sequential time snapshots of the
observables as G(i) = [g(ti), ...g(ti+m)] for any i ≥ 0 and
m < s−i, the Koopman operator propagates these sequential
snapshots of observations as

G(i+ 1) = KG(i). (3)

The operator K can then be redefined as one that minimizes
the matrix norm ||KG(i) −G(i + 1)||. We can then find K
that best fits the data as

K = G(i+ 1) G(i)+ (4)

where A+ indicates the Moore-Penrose pseudoinverse of
A. Figure 4(a) shows the time series data for pressure at
4 arbitrary locations and Fig. 4(b) shows the error in the
propagated values of these pressure observations where K
is constructed with i = 0 and m = 99, i.e., G(0) =
[g(t0), ..., g(t99)] and G1 = [g(t1), ..., g(t100)]. The error in
the propagated values of the pressure is within 3% even for
future times as large k = 200 instants (2 seconds).

(a) (b)

Fig. 4: (a) A sampling of rows of G corresponding to
pressure data at select sensors for b=2.7 m and d=0.8 m
and (b) the error in an approximation of those pressures
constructed by from the pressure at t = 0, p0, as Knp0
for timestep n. The Koopman operator is constructed using
only the first second of pressure values, but continues to fit
the data well beyond that point, indicating capture of the
underlying dynamics beyond simple curve fitting.

The spectral decomposition of the Koopman operator K
is used in the subsequent machine learning. This spectral
content is obtained via the singular value decomposition

UΣV ∗ = K (5)

with the diagonal elements of Σii > Σjj if i > j. The
columns of matrices U and V then form an orthogonal basis
for RN+1 and Rm respectively. We choose m = 100, i.e. 1
second of measured sensor data, to estimate K. Associated
with a G(i), an operator K(i) and its associated singular
vectors U(i) and V (i)∗ and singular values Σi are computed.
Figure 5 shows the image U(1) from one of the simulations.
A clear pattern of horizontal bands is evident, the shape
of which is unique to these flow parameters. Such features
in the spectral content of the Koopman operator can be
extracted and identified using convolutional neural networks,
a standard method in identifying features in images.

C. Convolutional neural network

Convolutional neural networks (CNNs) are an algorithm
modeled after biological vision processing [30] that has seen
recent success in problems with high-dimensional input such
as image and sound classification. They operate based on
kernels, which are dense neural networks (DNNs) that can
only see data in a limited window. Those windows are then
moved along the input and the kernel output for each window
becomes the input to the next layer. The relatively low
number of parameters involved compared to DNNs allows for



Fig. 5: The left singular matrix U(1) for b = 2.739 m and
d = 0.481 m. A clear pattern of horizontal bands is evident,
the shape of which is unique to these flow parameters.

better generalization of the data, and reducing the operation
to multiple windows offers equivariance to shifted input. This
property is particularly useful in processing periodic time-
series data such as the pressure data here: The initial phase
of the pressure for any given simulation is arbitrary, and a
slight difference in that phase can cause a large difference in
the magnitude of pressure at a given point in time. DNNs,
which work primarily by analyzing the magnitude of an
input, are challenged by this, but CNNs, which focus on
the relationship between near points, can perform well.

From each simulation with corresponding parameter val-
ues (bk, dk) we choose 40 unique time windows of data
that are 1 second long (100 consecutive time snapshots) and
construct the matrices Gj(i) for j = 1, ..., 40 and where
i is randomly chosen. Because a value of j identifies a
specific time instant ti, is dropped in further references to
G(i). The set of inputs for the CNN from the kth simulation
is Hk = (G1

k, ..., G
40
k ) with parameters (bk, dk). The shift

in input phase between the 40 windows helps to train the
CNNs to identify inputs of unknown phase and reduces
the risk of overfitting. The set of inputs Hk are used to
directly train CNNs to establish a baseline case for estimation
of the obstacle’s location using direct sensor measurements
without using the spectral content of a Koopman operator.
For each set of inputs Hk = (G1

k, ..., G
40
k ) the corresponding

set of left singular vectors of the Koopman operator Ek =
(U1

k , ..., U
40
k ) is calculated. The set of inputs Ek are used to

train another CNN to estimate the pair (bk, dk). The overall
framework for the estimation of the parameters (bk, dk) is
shown in Fig. 6. The left and right parallel estimates of
(bk, dk) in Fig. 6 use direct sensor measurements Hk versus
the spectral content Ek of a Koopman operator respectively,
allowing for a comparison between the two approaches.

Fluid Simulation

Split into n windows of length m

[
PN×m

Ωm

]

n

Calculate [K], [U ], [Σ]

CNNCNN

Estimate b̄, d̄Estimate b̄, d̄

Extract [P ]i(t), [Ω](t)

Extract [U ]N×N

Fig. 6: The overall classification algorithm. A fluid sim-
ulation is performed and the pressure and velocity data
extracted. This data is then combined into a set Hk, which
are the inputs to a CNN classifier. The set Hk is also
processed into the Koopman spectral input Ek, which are
similarly passed as inputs to a similar CNN classifier.

Hyperparameters for the CNNs are selected through a trial-
and-error approach, and the same parameters are used on
all the varieties of images. The first layer of both features
5 kernels with Rectified Linear Unit (ReLU) activation
functions that operate on a 7 × 7 input window, with no
padding at the edges, generating 5 convolved images. A
pooling operation is then performed on each image, splitting
each into 2×2 grids and keeping only the largest value from
each. This convolution-pooling routine is then repeated again
with the same parameters before the results are flattened into
a 1-dimensional tensor. That tensor is then processed by
a 4-layer dense neural network, with ReLU activation and
200, 100, 100, and 50 nodes, respectively. The estimates
for b and d are then chosen as a linear superposition of
the outputs of the final dense layer. The parameters of this
network are optimized to minimize the mean square error
of the estimation on the training set, which corresponds to
40 images per each of 121 simulations for a total of 4,840
images per network. The accuracy of the network is then
evaluated on 50 designated test simulations again with 40
images each, and the saved estimate for each simulation is
the average estimate over its images.



III. RESULTS

Figure 7 shows the results of the estimation on the test data
set. The CNN trained on the matrices Ek = (U1

k , ..., U
40
k )

that contain the spectral content of the Koopman operator
vastly outperforms the CNN trained using direct sensor mea-
surements. In general, the parameter d is easier to estimate
than b, which may be intuitive considering the underlying
dynamics: wakes tend to maintain their shape as they travel
downstream which confounds the estimation of b, but the
pressure profile changes greatly normal to the direction of
wake translation, which should make the data more sensitive
to changes in d and thus make the estimation simpler.

(a) (b)

(c) (d)

Fig. 7: Estimated vs. true values using (a,c) the set of E
matrices and (b,d) the set of H matrices.

The estimation of the parameter b has comparatively large
errors in the range where 2.25 < b < 2.5. Incorporating
angular velocity Ω into the homogeneous data input G
creates difficulties for the CNN since the angular velocity
is at least an order of magnitude smaller than the pressure.
As a downside of their generality, CNNs lose this ability to
treat parts of the data differently: because the same kernel
is used for every window, Ω must be processed with the
same weights as a pressure, even though it has different
units, scale, and physical meaning. This corrupts the output
of the lowest row of windows, which propagates through
the multiple CNN and pool layers to corrupt the output.
More importantly, the angular velocity of the pitching foil
is merely the time integral of the angular acceleration of the
body which in turn is the result of surface integral of the
hydrodynamic moment due to the pressure on infinitesimal
lengths of the surface of the body. This provides no new in-
formation and perhaps only confuses a CNN by incorporating

a scaled spatiotemporal mean of the pressure measurements
as an independent measurement.

To check if the estimation accuracy improves with the
exclusion of the angular velocity input, two alternative CNNs
were trained. The inputs for these CNNs were in one
case direct pressure measurements, i.e. Hk but without the
last row of measurements of the angular velocity. In the
second case the input was the set singular vectors F k =
(u1k, ..., u

40
k ), where the singular vectors u are computed

from the SVD of the Koopman operator that propagates only
pressure observables. The results of the estimation of the
parameters (b, d) in test data using these CNNs is shown in
Fig. 8. Once again the CNN trained on inputs based on the
singular vectors of a Koopman operator vastly outperforms
the CNN trained on inputs that are direct sensor measure-
ments. More interestingly, excluding the angular velocity
from the observables improves the estimation accuracy. This
improved accuracy is seen in slightly better estimation in the
values of d which lie closer to the straight line of unit slope
and improves the estimation of b in the range (2.5, 3).

(a) (b)

(c) (d)

Fig. 8: Estimated vs. true values using (a,c) the U matrix and
(b,d) the G matrix, both constructed purely with pressure
data. The Koopman operator approach vastly outperforms
direct estimation of the parameters (b, d) from sensor mea-
surements.

The superior estimation ability of the Koopman operator
approach remains even when noise is added to the sensor
measurements as shown in Fig 9. Each pressure and angular
velocity measurement is perturbed by a 2% noise sampled
from Gaussian distribution with zero mean and unit vari-
ance. The Koopman operator essentially filters the noise and
reproduces estimates that are close to the case where the
measurements have no noise.



(a) (b)

(c) (d)

Fig. 9: Estimated vs. true values using (a,c) the set H with
added noise and (b,d) the set G with added noise.

IV. CONCLUSION

The paper puts forward a framework that can enable the
sensing and estimation of the features in the near field of
an underwater swimmer based only on onboard measure-
ments. This embodied sensing uses the spectral content of a
Koopman operator associated with the sensor measurements
(the observables). In the specific problem investigated in this
paper, the singular vectors of the Koopman operator are used
to train a CNN to estimate the location of an obstacle relative
to an hydrofoil in an otherwise empty flow field. This method
vastly outperforms a CNN that is trained to do the same
estimation using direct pressure and velocity measurements.
The spectral content of the Koopman operator captured in the
ordered arrangement of the singular vectors in the input to the
CNN contain features that are otherwise absent or hidden in
an input matrix consisting of direct pressure measurements.
This relatively high performance can also be expected to be
true in the presence of sensor noise as shown by the results
in this paper.
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