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Abstract: In this paper we investigate the problem of stabilizing the roll dynamics of a
nonholonomic system that is inspired by a Chaplygin sleigh whose center of mass is at some
height above the ground. The sole actuation for the extruded Chaplygin sleigh, is via the motion
of an internal reaction wheel which applies a torque in the yaw direction. This torque is used to
propel the Chaplygin sleigh as well as stabilize its roll. This system is motivated by the problem
of the stabilization of the roll of a fish-like underwater swimmer. The dynamics of a fish-like
swimmer have been shown to be similar to that of a Chaplygin sleigh. We propose a feedback
control, by considering the associated linear representation due to the action of a Koopman
operator on the observables. Using the Koopman operator, a constrained optimal control
problem is formulated in the lifted space which we solve using model predictive control. The
approach has the advantage of being systematically generalized for increased model complexity
for nonholonomic systems and actuator saturation.
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1. INTRODUCTION

In this paper we investigate the problem of stabilizing the
roll dynamics of a nonholonomic system that is inspired
by a Chaplygin sleigh see (Bloch, 2003),(Borisov and
Mamaev, 2003; Borisov et al., 2007) and (Neimark and
Fufaev, 1972) for a review. The Chaplygin sleigh is a planar
system, with configuration manifold SE(2) and a single
nonholonomic constraint on its velocity. We consider a
modified Chaplygin sleigh whose center of mass is not
at ground height, with a configuration manifold S1 ×
SE(2). Such a rigid body has a tendency to “fall down”
since the upward position of the center of mass is an
unstable equilibrium. The only actuator for the system
under consideration is an internal reaction wheel. The
motion of the reaction wheel produces a torque on the
Chaplygin sleigh that can propel it with side-to-side sway
and yaw motion and is intended to simultaneously stabilize
the roll motion of the sleigh.

The modified Chaplygin sleigh with roll dynamics is in-
spired by recent research on underwater fish-like swim-
mers. The dynamics of such swimmers, in the approxi-
mation of in-viscid flow, have been shown to possess a
nonholonomic constraint similar to that of the Chaply-
gin sleigh in (Tallapragada, 2015) and (Tallapragada and
Kelly, 2016) and has found application in the design and
control of underwater robots (Pollard and Tallapragada,
2017; Free et al., 2020). The simplified dynamics of such
swimmers are entirely planar and do not consider the
effects of unstable roll motion; the geometric shapes of
such robots are such that roll motion is negligible due
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to the buoyancy force. This comes at the cost of agility
and efficiency while highly efficient and agile biological
swimmers tend to be roll unstable (Webb and Weihs,
2015).

The problem investigated in this paper adds to the well
studied class of problems related to the stabilizing of a
unicycle’s dynamics. The stability of the unicycle and its
variations has been investigated using geometric methods,
see for example (Zenkov et al., 1999) and (Bloch et al.,
1997), feedback linearization of the kinematic unicycle in
(De Luca et al., 2000) and sliding mode control for example
by (Thomas et al., 2019). The work in this paper is distinct
from such research in a few key aspects. The dynamics of
the Chaplygin sleigh with roll motion are different from
that of the unicycle. The spin angular momentum of a
unicycle has a stabilizing effect on its roll motion, at fast
spin speeds a unicycle with a rider is easily stabilized as
shown in (Zenkov et al., 1999) and (Zenkov et al., 2002).
The Chaplygin sleigh has no such spin angular momentum.

The proposed approach in this paper uses the linear dy-
namics on a lifted space via the Koopman operator. Us-
ing the Koopman operator, a constrained optimal control
problem is formulated in this lifted space which we solve
using model predictive control.This approach is inspired by
recent progress on Koopman operator methods to control
systems, see for example (Korda and Mezic, 2018; Ma
et al., 2019) and particularly for robotics see for example
(Abraham et al., 2017; Y. Han and Vaidya, 2020; Otto
and Rowley, 2021). In particular (Korda and Mezic, 2018)
proposes an approach to formulate a high dimensional
linear control system that is amenable to model predictive
control (MPC).
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Kelly, 2016) and has found application in the design and
control of underwater robots (Pollard and Tallapragada,
2017; Free et al., 2020). The simplified dynamics of such
swimmers are entirely planar and do not consider the
effects of unstable roll motion; the geometric shapes of
such robots are such that roll motion is negligible due
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to the buoyancy force. This comes at the cost of agility
and efficiency while highly efficient and agile biological
swimmers tend to be roll unstable (Webb and Weihs,
2015).

The problem investigated in this paper adds to the well
studied class of problems related to the stabilizing of a
unicycle’s dynamics. The stability of the unicycle and its
variations has been investigated using geometric methods,
see for example (Zenkov et al., 1999) and (Bloch et al.,
1997), feedback linearization of the kinematic unicycle in
(De Luca et al., 2000) and sliding mode control for example
by (Thomas et al., 2019). The work in this paper is distinct
from such research in a few key aspects. The dynamics of
the Chaplygin sleigh with roll motion are different from
that of the unicycle. The spin angular momentum of a
unicycle has a stabilizing effect on its roll motion, at fast
spin speeds a unicycle with a rider is easily stabilized as
shown in (Zenkov et al., 1999) and (Zenkov et al., 2002).
The Chaplygin sleigh has no such spin angular momentum.

The proposed approach in this paper uses the linear dy-
namics on a lifted space via the Koopman operator. Us-
ing the Koopman operator, a constrained optimal control
problem is formulated in this lifted space which we solve
using model predictive control.This approach is inspired by
recent progress on Koopman operator methods to control
systems, see for example (Korda and Mezic, 2018; Ma
et al., 2019) and particularly for robotics see for example
(Abraham et al., 2017; Y. Han and Vaidya, 2020; Otto
and Rowley, 2021). In particular (Korda and Mezic, 2018)
proposes an approach to formulate a high dimensional
linear control system that is amenable to model predictive
control (MPC).
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1. INTRODUCTION

In this paper we investigate the problem of stabilizing the
roll dynamics of a nonholonomic system that is inspired
by a Chaplygin sleigh see (Bloch, 2003),(Borisov and
Mamaev, 2003; Borisov et al., 2007) and (Neimark and
Fufaev, 1972) for a review. The Chaplygin sleigh is a planar
system, with configuration manifold SE(2) and a single
nonholonomic constraint on its velocity. We consider a
modified Chaplygin sleigh whose center of mass is not
at ground height, with a configuration manifold S1 ×
SE(2). Such a rigid body has a tendency to “fall down”
since the upward position of the center of mass is an
unstable equilibrium. The only actuator for the system
under consideration is an internal reaction wheel. The
motion of the reaction wheel produces a torque on the
Chaplygin sleigh that can propel it with side-to-side sway
and yaw motion and is intended to simultaneously stabilize
the roll motion of the sleigh.

The modified Chaplygin sleigh with roll dynamics is in-
spired by recent research on underwater fish-like swim-
mers. The dynamics of such swimmers, in the approxi-
mation of in-viscid flow, have been shown to possess a
nonholonomic constraint similar to that of the Chaply-
gin sleigh in (Tallapragada, 2015) and (Tallapragada and
Kelly, 2016) and has found application in the design and
control of underwater robots (Pollard and Tallapragada,
2017; Free et al., 2020). The simplified dynamics of such
swimmers are entirely planar and do not consider the
effects of unstable roll motion; the geometric shapes of
such robots are such that roll motion is negligible due

⋆ This work was supported by grant 2021612 from the National
Science Foundation and grant 13204704 from the Office of Naval
Research.

to the buoyancy force. This comes at the cost of agility
and efficiency while highly efficient and agile biological
swimmers tend to be roll unstable (Webb and Weihs,
2015).

The problem investigated in this paper adds to the well
studied class of problems related to the stabilizing of a
unicycle’s dynamics. The stability of the unicycle and its
variations has been investigated using geometric methods,
see for example (Zenkov et al., 1999) and (Bloch et al.,
1997), feedback linearization of the kinematic unicycle in
(De Luca et al., 2000) and sliding mode control for example
by (Thomas et al., 2019). The work in this paper is distinct
from such research in a few key aspects. The dynamics of
the Chaplygin sleigh with roll motion are different from
that of the unicycle. The spin angular momentum of a
unicycle has a stabilizing effect on its roll motion, at fast
spin speeds a unicycle with a rider is easily stabilized as
shown in (Zenkov et al., 1999) and (Zenkov et al., 2002).
The Chaplygin sleigh has no such spin angular momentum.

The proposed approach in this paper uses the linear dy-
namics on a lifted space via the Koopman operator. Us-
ing the Koopman operator, a constrained optimal control
problem is formulated in this lifted space which we solve
using model predictive control.This approach is inspired by
recent progress on Koopman operator methods to control
systems, see for example (Korda and Mezic, 2018; Ma
et al., 2019) and particularly for robotics see for example
(Abraham et al., 2017; Y. Han and Vaidya, 2020; Otto
and Rowley, 2021). In particular (Korda and Mezic, 2018)
proposes an approach to formulate a high dimensional
linear control system that is amenable to model predictive
control (MPC).

The physical system investigated in this paper, a Chap-
lygin sleigh with roll dynamics, as well as the application
of the control approach using the lifted dynamics via the
Koopman operator to stabilization problems in nonholo-
nomic systems are novel. The physical system modeling
can be extended to high degree of freedom nonholonomic
ground systems as well as to fish-like swimming robots.
More importantly the control approach is amenable to
incorporate further constraints like actuator saturation, to
increasing model complexity seen in a realistic robot and
to achieve other goals like simultaneous path tracking.

2. SYSTEM MODELING

2.1 Kinematics

The Chaplygin sleigh or cart, shown in Fig. 1, has a
knife edge or a small inertia-less wheel at the rear at
point P and is supported on a single caster wheel at the
front that allows motion in any direction. The sleigh is
also assumed to have an internal reaction wheel, whose
angular acceleration can transfer a torque on the sleigh.
The configuration manifold of the physical system is Q =
SE(2)×S1 parameterized locally by q = (xc, yc, θ, ψ), with
generalized velocities q̇ ∈ TqQ the tangent space to q ∈ Q.

Fig. 1. Geometric model for the Chaplygin sleigh with
rolling dynamics. Top and back view showing yawing
and rolling motion respectively.

Here we do not include a generalized coordinate associated
with the internal reaction wheel, but instead include the
torque generated by it is as a control input in the latter

equations of motion. The spatial frame is denoted by FS

with axes Xs − Ys − Zs. The center of mass of the sleigh
is at point C with coordinates (xc, yc,−h) in the spatial
frame (Xs, Ys, Zs) and point B is its projection on the
ground with coordinates (xc, yc, 0). Additionally the body
frame collocated at B and rotated by the yaw angle θ with
respect to the spatial frame is denoted by FB with axes
Xb−Yb−Zb; body frame attached at point C and rotated
by the yaw angle ψ with respect to the frame B is denoted
by Fc with axes Xc − Yc − Zc. The coordinates of P in
frame Fb are (−b, 0, 0). The angular velocity of the frame
Fb with respect to the spatial frame is

[ωB ] =




ψ̇

θ̇ sinψ

θ̇ cosψ


 (1)

The velocity (ẋc, ẏc) in the spatial frame transform to
(u, v) in the FB frame as

[u v]⊺ = Rsb · [ẋc ẏc]
⊺ (2)

With this notation the velocity of the center of mass C in
frame Fc is

V c
C =



u− hθ̇ sinψ

v + hψ̇ cosψ

hψ̇ sinψ


 (3)

We assume that the rear wheel at P prevents slipping
in the transverse (Xb) direction but rolls without any
slipping in the longitudinal direction along (Yb). While
dim(TqQ) = 4, the nonholonomic constraint at point P
given by

V B
P = [− sin θ cos θ − b 0][ẋ ẏ θ̇ ψ̇ 0]⊺ = 0

or v − bθ̇ = 0 (4)

restricts the velocity q̇ ∈ W (q) ⊂ TqQ, where
dim(W (q)) = 3. Therefore a reduced set of velocities

(u, θ̇, ψ̇) span the space W (q) of allowable velocities.

2.2 Equations of motions

Suppose the mass of the Chaplygin sleigh is m, its moment
of inertia tensor is IB , the Lagrangian for the Chaplygin
sleigh is L = T − V where

T =
1

2


V c
C ·M · V c

C + ω⊺
B · IB · ωB



is the kinetic energy with M as a 3 × 3 diagonal mass
tensor with diagonal entries being m and potential energy
is V = mgh · cosψ. We also assume viscous dissipation of
energy with Raleigh dissipation function

R(u, θ̇, ψ̇) =
1

2
(Cuu

2 + Cψψ̇
2 + Cθ θ̇

2)

defined in terms of the reduced velocities (u, θ̇, ψ̇). The
same dissipation function can also be written in the spatial
velocities by transforming the velocity [u, v] = R⊺

sb[u 0]⊺

and using the nonholonomic constraint v = bθ̇ giving
R(ẋc, ẏc, θ̇, ψ̇) = R(R⊺

sb[u 0]⊺, θ̇, ψ̇).

The Euler Lagrange equations for the Chaplygin sleigh are
then

d

dt

 ∂

∂q̇k
L

− ∂L

∂qk
= Cjkλk +Qk + Γ

Where, Qk = ∂
∂q̇k

R(ẋc, ẏc, θ̇, ψ̇) is the force due to viscous

dissipation along longitudinal velocity and damping in the
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The physical system investigated in this paper, a Chap-
lygin sleigh with roll dynamics, as well as the application
of the control approach using the lifted dynamics via the
Koopman operator to stabilization problems in nonholo-
nomic systems are novel. The physical system modeling
can be extended to high degree of freedom nonholonomic
ground systems as well as to fish-like swimming robots.
More importantly the control approach is amenable to
incorporate further constraints like actuator saturation, to
increasing model complexity seen in a realistic robot and
to achieve other goals like simultaneous path tracking.

2. SYSTEM MODELING

2.1 Kinematics

The Chaplygin sleigh or cart, shown in Fig. 1, has a
knife edge or a small inertia-less wheel at the rear at
point P and is supported on a single caster wheel at the
front that allows motion in any direction. The sleigh is
also assumed to have an internal reaction wheel, whose
angular acceleration can transfer a torque on the sleigh.
The configuration manifold of the physical system is Q =
SE(2)×S1 parameterized locally by q = (xc, yc, θ, ψ), with
generalized velocities q̇ ∈ TqQ the tangent space to q ∈ Q.

Fig. 1. Geometric model for the Chaplygin sleigh with
rolling dynamics. Top and back view showing yawing
and rolling motion respectively.

Here we do not include a generalized coordinate associated
with the internal reaction wheel, but instead include the
torque generated by it is as a control input in the latter

equations of motion. The spatial frame is denoted by FS

with axes Xs − Ys − Zs. The center of mass of the sleigh
is at point C with coordinates (xc, yc,−h) in the spatial
frame (Xs, Ys, Zs) and point B is its projection on the
ground with coordinates (xc, yc, 0). Additionally the body
frame collocated at B and rotated by the yaw angle θ with
respect to the spatial frame is denoted by FB with axes
Xb−Yb−Zb; body frame attached at point C and rotated
by the yaw angle ψ with respect to the frame B is denoted
by Fc with axes Xc − Yc − Zc. The coordinates of P in
frame Fb are (−b, 0, 0). The angular velocity of the frame
Fb with respect to the spatial frame is

[ωB ] =




ψ̇

θ̇ sinψ

θ̇ cosψ


 (1)

The velocity (ẋc, ẏc) in the spatial frame transform to
(u, v) in the FB frame as

[u v]⊺ = Rsb · [ẋc ẏc]
⊺ (2)

With this notation the velocity of the center of mass C in
frame Fc is

V c
C =



u− hθ̇ sinψ

v + hψ̇ cosψ

hψ̇ sinψ


 (3)

We assume that the rear wheel at P prevents slipping
in the transverse (Xb) direction but rolls without any
slipping in the longitudinal direction along (Yb). While
dim(TqQ) = 4, the nonholonomic constraint at point P
given by

V B
P = [− sin θ cos θ − b 0][ẋ ẏ θ̇ ψ̇ 0]⊺ = 0

or v − bθ̇ = 0 (4)

restricts the velocity q̇ ∈ W (q) ⊂ TqQ, where
dim(W (q)) = 3. Therefore a reduced set of velocities

(u, θ̇, ψ̇) span the space W (q) of allowable velocities.

2.2 Equations of motions

Suppose the mass of the Chaplygin sleigh is m, its moment
of inertia tensor is IB , the Lagrangian for the Chaplygin
sleigh is L = T − V where

T =
1

2


V c
C ·M · V c

C + ω⊺
B · IB · ωB



is the kinetic energy with M as a 3 × 3 diagonal mass
tensor with diagonal entries being m and potential energy
is V = mgh · cosψ. We also assume viscous dissipation of
energy with Raleigh dissipation function

R(u, θ̇, ψ̇) =
1

2
(Cuu

2 + Cψψ̇
2 + Cθ θ̇

2)

defined in terms of the reduced velocities (u, θ̇, ψ̇). The
same dissipation function can also be written in the spatial
velocities by transforming the velocity [u, v] = R⊺

sb[u 0]⊺

and using the nonholonomic constraint v = bθ̇ giving
R(ẋc, ẏc, θ̇, ψ̇) = R(R⊺

sb[u 0]⊺, θ̇, ψ̇).

The Euler Lagrange equations for the Chaplygin sleigh are
then

d

dt

 ∂

∂q̇k
L

− ∂L

∂qk
= Cjkλk +Qk + Γ

Where, Qk = ∂
∂q̇k

R(ẋc, ẏc, θ̇, ψ̇) is the force due to viscous

dissipation along longitudinal velocity and damping in the
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yaw and roll motion. The Lagrange multiplier λk are the
constraint forces and Cjk are the coefficients of the pfaffian
one form, with kth row Ck = [− sin θ cos θ −b 0] and
τ is the torque generated by the reaction wheel in the yaw
direction. Straight forward calculations yield the equations
of motion as

M(ψ)ξ̇ + C(ψ, ψ̇, θ̇)ξ + G(ψ) = Γ (5)

where M is the mass matrix, C the centrifugal terms, G
are the gravitational terms with ξ = [u, θ̇, ψ̇, ψ] and

M11 = −m , M33 = −(ICx +mh2) , M44 = 1

M22 = −
(
m(h2 sin2(ψ) + b2) + Icy sin

2(ψ) + Icz cos
2(ψ)

)

M12 = M21 = mh sinψ , M23 = M32 = mh sin(ψ)

C11 = −Cu , C12 = m(bθ̇ + 2hψ̇ cosψ)

C33 = −Cψ , C31 = −mhθ̇ cosψ , C23 = mbhψ̇ sin(ψ)

C43 = 1 , C22 = −Cθ θ̇ − ψ̇ sin(2ψ)(mh2 + Icy − Icz)

C21 = −mbθ̇ , C32 =
(θ̇ sin(2ψ)(mh2 + Icy − Icz))

2
Γ = [0 τ 0 0]⊺ , G = [0 0 −mg cos(ψ) 0]⊺

The matrix terms not mentioned are 0. The dynamical
system (5) is four dimensional, with states ξ being only the
reduced velocity and the internal shape variable ψ. The
equations of motion of the Chaplygin are SE2 invariant
enabling the decoupling of the reduced velocity equations
from equations governing the evolution of (x, y, θ). The
solution (x(t), y(t), θ(t)) can be obtained by integrating
(2).

3. KOOPMAN LIFTING AND MPC FORMULATION

The control problems with non-linear dynamics have been
extensively studied and there are abundant modern opti-
mal control techniques with numerical optimization tools
like modern predictive control, feedback linearization and
sliding mode control etc. These various nonlinear control
techniques help in computing satisfactory solutions for
nonlinear and high fidelity systems but the challenge here
is to implement these techniques in real time and with
accuracy in uncertain environment which is important for
robotic systems. Therefore to overcome this balance of
high computational cost and model accuracy, approximate
linear models representing the nonlinear systems are used.
The models created through local linearization around a
trajectory or fixed point are valid only locally which may
result in sub-optimal or even inaccurate solutions due to
deviations from the local region. To address these chal-
lenges a linear predictor is needed which encapsulates the
non-linearity of the system for better accuracy. One such
linear predictor is the Koopman operator which transforms
or lifts a nonlinear system into a higher dimensional lin-
ear system on which linear control methodologies can be
applied.

3.1 Linear predictor (Koopman Operator)

While the control system in (5) is continuous in time,
we consider a discrete time system in the formulation for

the control problem. Consider a discrete time dimensional
dynamical system

xt+1 = F (xt) (6)

with states x ∈ X ⊂ Rn. The map F : Rn × Rm → Rn

is equivalent to the flow map of a continuous time control
system advances for a chosen time step. The Koopman
operator is an infinite dimensional linear operator which
propagates observable functions of the states forward in
time under the dynamics of the system. The action of the
Koopman operator K : L∞(X) → L∞(X) on an observable
function g : X → X is given as follows

Kg(xt) = (g ◦ F )(xt) = g(xt+1) (7)

see (Lasota and Mackey, 1994) or (Budisic et al., 2012) for
a review of the Koopman operator in dynamical systems.
To approximate the infinite dimensional operator K, we
take the approach of extended dynamic mode decompo-
sition (EDMD), as proposed in Williams et al. (2015),
by projecting the observable function g onto the space
spanned by a set, D, of dictionary functions,

D = {ψ1, ψ2, . . . , ψk} (8)

That is, we make the approximation

Kg(xt) ≈ K(cΨ⊺)(xt) ≈ c⊺K⊺Ψ(xt) (9)

where Ψ : X → Rk is a column-vector valued function
where the elements are given by [Ψ(x)]i = ψi(x), c ∈ Rk

is a column vector of coefficients, and K ∈ Rk×k is
the projection of Koopman operator onto the space of
functions spanned by the dictionary D.

To compute the matrix approximation K of the Koopman
operator from data, we gather and store data in the form
of snapshot matrices

X = [x1 , · · · , xm] (10)

Y = [y1 , · · · , ym] (11)

where the matrices X and Y contain m state observations
on the columns. Here we assume that the observables are
the states themselves, i.e. y = g(x). We then lift the
measurement data by evaluating the dictionary functions
at each measurement to obtain the lifted data matrices
ΨX ,ΨY ∈ Rk×m as follows.

ΨX = [Ψ(x1) , · · · , Ψ(xm)] (12)

ΨY = [Ψ(y1) , · · · , Ψ(ym)] (13)

Then, following from Eqs. (7) and (9), we have

ΨY = K⊺ΨX (14)

With this, K can be approximately computed by the
following least-squares minimization

min
K

∥ΨY Ψ
⊺
X −K⊺ΨXΨ⊺

X∥22 (15)

where the least squares problem has been written in
normal form so that the minimization only depends on
the number of dictionary functions used in the projection,
not on the number of measurements.

3.2 Controlled systems

For a control system of the form

xt+1 = Fu(xt, τt) (16)

where τt ∈ U ⊂ Rp is the control input and Fu : X ×
U → X, we take a similar approach to obtain a linear

representation of the system in a lifted space. That is, we
seek a linear approximation of the form

Ψ(xt+1) = AΨ(xt) +Bτt (17)

where A ∈ Rk×k and B ∈ Rk×p are linear predictors
computed from observed trajectory data. To obtain such
an approximation from data, we gather data in the form
of snapshot matrices

X = [x1 , · · · , xm] (18)

Y = [y1 , · · · , ym] (19)

Γ = [τ1 , · · · , τm] (20)

as before, where we now have m state observations with
yi = Fu(xi, ui) for i = 1, . . . ,m. We then lift the X and Y
data as in Eqs. (12) and (13) and perform the minimization

min
A,B

∥ΨY −AΨX −BΓ∥22 (21)

or as a least squares problem,

min
M

∥V −MW∥22 (22)

where

W =

[
ΨX

Γ

] [
ΨX

Γ

]⊺
, V = ΨY

[
ΨX

Γ

]⊺
, M = [A B]

A is given by the first k columns of M , and B is given by
the final p columns of M ∈ Rk×(k+p).

The lifted states are brought back to the lower dimensional
original states using the matrix C which is calculated again
by solving a least square minimization

min
C

∥X − CΨX∥22 (23)

3.3 Koopman Operator for Chaplygin Sleigh

The control-affine nonlinear system (5) can be represented
in discrete time

ξt+1 = fd(ξt) + fc(τt) (24)

with ξt = [ut, θ̇t, ψ̇t, ψt] ∈ R4 and the control input
torque (τt) being the time discretized torque; with p = 1.
The lifted functions (Ψ) chosen in this paper are monomial

functions of the four states ξ = [u, θ̇, ψ, ψ̇] upto degree
of 4. These basis functions exclude the yaw angle, θ or the
position of the sleigh in the plane (xc, yc) as equations of
motion (5) are SE2 invariant. The lifted functions are

Ψi(ξ) = ui1 · θ̇i2 · ψi3 · ψ̇i4 (25)

where (i1, i2, i3, i4) are positive integers and 0 ≤ [i1 +
i2 + i3 + i4] ≤ 4 which creates Nl = 70 basis vectors for
the lifted space. We then create the learning data set by
discretizing the full nonlinear system (5) into nonlinear
discrete system (24) using a fourth order Runge-Kutta
method and time step δt = 0.001. The learning data set
was collected by selecting random Ntr initial conditions
of the four states. Then simulated the discrete system
for Ntr initial conditions over Nk time-step and hence
collected m = Ntr × Nk data points. This gives us the
required snapshot matrix X, and Y of size (n × Ntr ·
(Nk + 1)). The control input (τ) for the simulation was
generated randomly with uniform distribution over the
interval [−75, 75]Nm and has a size of (p×Ntr ·Nk). The
uniformly distributed random initial conditions selected
for longitudinal velocity (u) in the range [0, 20]m/s and

for yaw rate (θ̇) it is [−40, 40]rad/s. For the roll (ψ)

the range is [−2π, 2π] and the range for roll rate (ψ̇) is
[−20, 20]rad/s. The random initial condition for roll and
roll rate is collected in Gaussian distribution with zero
mean. These collected snapshot data is lifted to higher
dimensional by vector-valued functions (Ψ) and then used
to obtain matrices A, B and C through least square
minimization shown above (22) or analytical solution given
in (Korda and Mezic, 2018). The Koopman operator (K)
is approximated by A and B which acts as one step
linear predictor for the system (24). In our case the lifting
functions contain the states itself and therefore Ψ can be
re-arranged to obtain C = [In×n 0n×(k−n)]. The Koopman
operator is constructed with Ntr = 200 and Nk = 1000 is
compared with the nonlinear system for its response to
control inputs arbitrarily given to generate a trajectory.
The goal here is to see if our Koopman operator is a good
linear predictor of the nonlinear Chaplygin sleigh with
rolling dynamics (5), which is simulated through numerical
integration using fourth order Runge-Kutta method or
ode45. The constant parameters of the system (5) selected
for simulation are mass (m = 2.5 kg), [Cu, Cθ, Cψ] =
[0.85, 0.85, 0.9], height of center of mass h = 5 cm and
co-ordinate of point P is b = 15 cm. The Fig.(2) shows
Koopman linear system prediction in dotted red trajectory
and the blue trajectory are the solutions of integration of
the whole nonlinear system using numerical integration
method such as ode45.

3.4 MPC Formulation

The identified linear Koopman operator now can be
used to control the nonlinear system with linear control
techniques, here we use linear Model predictive Control
method. MPC is a multi variable control algorithm which
consist of a cost function, a dynamic model, state-input
constraints and an optimizer that minimizes the cost func-
tion for a specific sample time on a receding horizon. The
MPC iterates the process of optimization by first sampling
the states for the current time step (ti) and then for Np

(prediction horizon) time steps it computes a cost minimiz-
ing control strategy that predicts future states and control
inputs while satisfying constraints. A part of the predicted
solution is implemented for Nc (control horizon) time step.
Then again the system states are updated and the process
continues. MPC for the linear Koopman system obtained
in previous section is given as a quadratic optimization
problem.

min
Ψ, τ

ti+Np∑
j=ti

1

2

(
Ψ⊺ ·Qj ·Ψ+ τ⊺ ·Rj · τj

)

subject to

Ψj+1 = A Ψj +B τj , j = ti. . . . . Np

ξj = C Ψj

τmin ≤ τj ≤ τmax

Where, Q and R are positive semidefinite weight matrices,
ti is the initial time and Np is the prediction horizon.
Our goal is to design a Model predictive controller (MPC)
that stabilizes the statically unstable roll motion of the
modified chaplygin sleigh. We select a diagonal Q matrix
with weights that activates cost on divergence of state
variable ψ from the reference 0◦ and also minimizing the
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representation of the system in a lifted space. That is, we
seek a linear approximation of the form

Ψ(xt+1) = AΨ(xt) +Bτt (17)

where A ∈ Rk×k and B ∈ Rk×p are linear predictors
computed from observed trajectory data. To obtain such
an approximation from data, we gather data in the form
of snapshot matrices

X = [x1 , · · · , xm] (18)

Y = [y1 , · · · , ym] (19)

Γ = [τ1 , · · · , τm] (20)

as before, where we now have m state observations with
yi = Fu(xi, ui) for i = 1, . . . ,m. We then lift the X and Y
data as in Eqs. (12) and (13) and perform the minimization

min
A,B

∥ΨY −AΨX −BΓ∥22 (21)

or as a least squares problem,

min
M

∥V −MW∥22 (22)

where

W =

[
ΨX

Γ

] [
ΨX

Γ

]⊺
, V = ΨY

[
ΨX

Γ

]⊺
, M = [A B]

A is given by the first k columns of M , and B is given by
the final p columns of M ∈ Rk×(k+p).

The lifted states are brought back to the lower dimensional
original states using the matrix C which is calculated again
by solving a least square minimization

min
C

∥X − CΨX∥22 (23)

3.3 Koopman Operator for Chaplygin Sleigh

The control-affine nonlinear system (5) can be represented
in discrete time

ξt+1 = fd(ξt) + fc(τt) (24)

with ξt = [ut, θ̇t, ψ̇t, ψt] ∈ R4 and the control input
torque (τt) being the time discretized torque; with p = 1.
The lifted functions (Ψ) chosen in this paper are monomial

functions of the four states ξ = [u, θ̇, ψ, ψ̇] upto degree
of 4. These basis functions exclude the yaw angle, θ or the
position of the sleigh in the plane (xc, yc) as equations of
motion (5) are SE2 invariant. The lifted functions are

Ψi(ξ) = ui1 · θ̇i2 · ψi3 · ψ̇i4 (25)

where (i1, i2, i3, i4) are positive integers and 0 ≤ [i1 +
i2 + i3 + i4] ≤ 4 which creates Nl = 70 basis vectors for
the lifted space. We then create the learning data set by
discretizing the full nonlinear system (5) into nonlinear
discrete system (24) using a fourth order Runge-Kutta
method and time step δt = 0.001. The learning data set
was collected by selecting random Ntr initial conditions
of the four states. Then simulated the discrete system
for Ntr initial conditions over Nk time-step and hence
collected m = Ntr × Nk data points. This gives us the
required snapshot matrix X, and Y of size (n × Ntr ·
(Nk + 1)). The control input (τ) for the simulation was
generated randomly with uniform distribution over the
interval [−75, 75]Nm and has a size of (p×Ntr ·Nk). The
uniformly distributed random initial conditions selected
for longitudinal velocity (u) in the range [0, 20]m/s and

for yaw rate (θ̇) it is [−40, 40]rad/s. For the roll (ψ)

the range is [−2π, 2π] and the range for roll rate (ψ̇) is
[−20, 20]rad/s. The random initial condition for roll and
roll rate is collected in Gaussian distribution with zero
mean. These collected snapshot data is lifted to higher
dimensional by vector-valued functions (Ψ) and then used
to obtain matrices A, B and C through least square
minimization shown above (22) or analytical solution given
in (Korda and Mezic, 2018). The Koopman operator (K)
is approximated by A and B which acts as one step
linear predictor for the system (24). In our case the lifting
functions contain the states itself and therefore Ψ can be
re-arranged to obtain C = [In×n 0n×(k−n)]. The Koopman
operator is constructed with Ntr = 200 and Nk = 1000 is
compared with the nonlinear system for its response to
control inputs arbitrarily given to generate a trajectory.
The goal here is to see if our Koopman operator is a good
linear predictor of the nonlinear Chaplygin sleigh with
rolling dynamics (5), which is simulated through numerical
integration using fourth order Runge-Kutta method or
ode45. The constant parameters of the system (5) selected
for simulation are mass (m = 2.5 kg), [Cu, Cθ, Cψ] =
[0.85, 0.85, 0.9], height of center of mass h = 5 cm and
co-ordinate of point P is b = 15 cm. The Fig.(2) shows
Koopman linear system prediction in dotted red trajectory
and the blue trajectory are the solutions of integration of
the whole nonlinear system using numerical integration
method such as ode45.

3.4 MPC Formulation

The identified linear Koopman operator now can be
used to control the nonlinear system with linear control
techniques, here we use linear Model predictive Control
method. MPC is a multi variable control algorithm which
consist of a cost function, a dynamic model, state-input
constraints and an optimizer that minimizes the cost func-
tion for a specific sample time on a receding horizon. The
MPC iterates the process of optimization by first sampling
the states for the current time step (ti) and then for Np

(prediction horizon) time steps it computes a cost minimiz-
ing control strategy that predicts future states and control
inputs while satisfying constraints. A part of the predicted
solution is implemented for Nc (control horizon) time step.
Then again the system states are updated and the process
continues. MPC for the linear Koopman system obtained
in previous section is given as a quadratic optimization
problem.

min
Ψ, τ

ti+Np∑
j=ti

1

2

(
Ψ⊺ ·Qj ·Ψ+ τ⊺ ·Rj · τj

)

subject to

Ψj+1 = A Ψj +B τj , j = ti. . . . . Np

ξj = C Ψj

τmin ≤ τj ≤ τmax

Where, Q and R are positive semidefinite weight matrices,
ti is the initial time and Np is the prediction horizon.
Our goal is to design a Model predictive controller (MPC)
that stabilizes the statically unstable roll motion of the
modified chaplygin sleigh. We select a diagonal Q matrix
with weights that activates cost on divergence of state
variable ψ from the reference 0◦ and also minimizing the
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Fig. 2. The figure compares the prediction of the con-
structed Koopman operator at each time-step with
that of nonlinear system simulated through numerical
integration using ODE45. The initial condition for
the states is [u, θ̇, ψ, ψ̇] = [0, 0.1, 0.15, 0]. The
input torque is the periodic function of time τ = 20 ·
sin(30t) + 25 · cos(20t)

control action with weight matrix R. The cost function
then becomes

J =

ti+Np∑
j=ti

qψ,j · ψ2
j + rj · τ2j

here, qψ,j is the diagonal element of the Qj matrix that
activates the cost on deviation of roll angle and rj is the
diagonal element of the R matrix that activates the cost
on the control action.

4. RESULTS

Let Np = 0.01 and Nc = 0.001, the initial states are

[u, θ̇, ψ, ψ̇] = [2, 0, 0.35, 0.15] and the maximum
torque available is ±50 Nm. In these results the Koopman
MPC after every 10 time steps updates the system states
through feedback from the true system that is in this
case through the numerical integration of equations of
motions. The control torque obtained through this method
is applied to the true system. The Fig.(3) shows the
unstable nonlinear system with small perturbation can be

stabilized using the control obtained through Koopman
MPC.
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Fig. 3. Koopman MPC with no disturbance in the system.
Using weights qψ = 10 and r = 10−7

We also test our Koopman MPC with random disturbance
(|d| ≤ 10−3) in the system among the four states with
similar perturbed initial conditions as shown in Fig.(4).
The MPC with the weights qψ = 10, r = 10−7 stabilizes
the system with initial periodic torque to bring the roll
angle to zero and then counters the disturbance to keep
the roll angle at zero reference.

5. CONCLUSION

The model of the dynamics of a Chaplygin sleigh with
additional roll dynamics is a useful starting point for fish-
like aquatic robots and personal transportation systems. It
is also a useful addition to the class of problems related to
the stabilization of an inverted pendulum. We framed the
problem of stabilizing the pendulum on an underactuated
nonholonomic system as an optimal control problem by
first considering a linear representation of the dynamics
in a lifted space via the Koopman operator. Monomials
of upto degree 4 in the reduced velocities formed the
bases for the lifted space. In this high dimensional linear
setting, the resulting constraints are linear in the lifted
states. This linear optimal control problem is solved using
MPC resulting in a torque (the control) that stabilizes
the roll angle of the Chaplygin sleigh. We showed through
numerical simulations that stabilization was possible with
and without disturbances in the roll angular velocity.

The approach in this paper has the advantage of being
systematically generalized for stabilization of equilibria of
systems with increased model complexity due to additional
degrees of freedom, additional nonholonomic constraints,
hydrodynamic effects in the case of aquatic robots, model
uncertainty and actuator saturation. It can also be gener-
alized to problems of path tracking.
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Fig. 4. Koopman MPC results with the weights qψ = 10
and r = 10−7 with random disturbance among the
states
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