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Abstract: Underactuated mechanical systems with nonholonomic constraints find applications
in bioinspired robotics, such as snake-like robots and more recently in fish-like aquatic robots.
Animal locomotion suggests that in such bioinspired robots, gaits or cyclic changes in kinematics
or shape variables lead to efficient and agile motion. Path tracking in such nonholonomic systems
that are not purely kinematic can be a challenging problem. In this paper we consider the
problem of path tracking by a modified Chaplygin sleigh with a ‘tail’ which is a four degree
of freedom nonholonomic system, possessing a single internal reaction wheel as an actuator.
We develop a curriculum based deep Reinforcement Learning (RL) optimal control approach
for simultaneous velocity and path tracking for this system. The curriculum based learning
approach first leads to a policy for optimal tracking of limit cycles in a reduced velocity space
and then in a next step to track a path. This curriculum approach allows an RL agent to learn
the 'mechanics on invariant manifolds’ of the system and can be a useful approach in the motion

control of high degree of freedom robots with increasing model complexity.
Copyright © 2022 The Authors. This is an open access article under the CC BY-NC-ND license

(https://creativecommons.org/licenses/by-nc-nd/4.0/)
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1. INTRODUCTION

Nonholonomic constraints are common in the dynamics
of mobile robots, see Li and Canny [1993], Laumond
et al. [1994]. Robots with wheels are a classic example.
More unusual examples of nonholonomic constraints occur
in bioinpsired snake-like robots, see for example Wright
et al. [2007], Liljebdck et al. [2012], or even models for
aquatic robots as has been demonstrated for example in
Tallapragada [2015], Tallapragada and Kelly [2016]. Ani-
mal locomotion suggests that in such bioinspired robots,
gaits or cyclic changes in kinematics or shape variables
lead to efficient and agile motion. Path tracking in such
nonholonomic systems that are not purely kinematic such
as in Laumond et al. [1994], Murray [1993] can be a chal-
lenging problem. This paper investigates the problem of
path tracking for a modified Chaplygin sleigh with a ‘tail’
which is a four degree of freedom nonholonomic system,
possessing a single internal reaction wheel as an actuator.
The Chaplygin sleigh is a well known planar three degree
of freedom nonholonomic system, see Bloch [2003] and for
a historical review Borisov and Mamaev [2003]. Further,
this system is underactuated, possessing a single internal
reaction wheel that can deliver a torque on the leading
segment. Cyclic motion of the reaction wheel generates
periodic torques that lead to limit cycles in a reduced
velocity space as shown in Fedonyuk and Tallapragada
[2018] reminiscent of central pattern generators (Guertin
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[2009]) seen in biological systems. Such an underactuated,
internally actuated nonholonomic system is a useful model
to investigate gaits and resonances in both ground based
and aquatic mobile robots, but can present challenges in
motion control.

Parametric optimization approaches have been used for
gait optimization in the context of other bioinspired robots
with periodic motions such as for a quadruped robot,
using optimization routines such as genetic algorithms
(Chernova and Veloso [2004]) or policy gradients (Kohl
and Stone [2004]). Other work has used a discretized
action space to numerically optimize a sequence of actions
that results in an optimal gait (Belter and Skrzypczyniski
[2010]). By contrast, we seek a feedback controller in a
continuous state-action space that generates the desired
gait. Modern data-driven control strategies, such as Rein-
forcement Learning (RL), offer a new numerical framework
to develop optimal control for systems where analytical
approaches are intractable. By considering the control
policy (or actor) as an arbitrary nonlinear state feedback,
control policies can generally be developed without a-priori
understanding of the structure of the optimal control.
However, many RL algorithms, such as the Go algorithm
AlphaGo (Silver et al. [2016]), discard this generality and
first train the policies to mimic the actions of human
experts in a supervised manner before beginning to use
RL, which greatly reduces training time. The new field
of curriculum learning expands this idea to multiple steps
of training: an RL policy is trained on successively more
difficult tasks, each of which converges quickly, as opposed
to very slow convergence directly to the complex task, or
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potentially no convergence at all (Narvekar et al. [2020]).
Curriculum-based RL learning has recently had success in
learning a gait for a bipedal robot (Rodriguez and Behnke
[2021]) where joint kinematics are fully prescribed by the
policy. In contrast, we extend curriculum learning to a
highly underactuated system where the input is a single
torque.

In this work, we extend the ideas of curriculum learning
to policy learning on invariant manifolds. Specifically, we
train a policy to control a two-link Chaplygin sleigh model
on a limit cycle in a four-dimensional reduced velocity
space with the control input defined as a torque on the
front link exerted by an onboard reaction wheel. The
resulting limit cycle is trained to track a specified average
velocity and heading angle. This is achieved by first pre-
training the policy to mimic a prescribed sine wave, which
is known to result in a sub-optimal periodic gait. This
policy is then updated using the Deep Deterministic Policy
Gradient (DDPG) algorithm (Silver et al. [2014], Lillicrap
et al. [2016]) to update the policy towards the target
velocity and heading angle. The target velocity is then
taken as a state and allowed to vary with time, at first
slightly and later performing increasingly large oscillations
as the policy learns. This trained policy is then integrated
into a pure-pursuit algorithm to perform path tracking.

2. SYSTEM MODEL

A schematic of the two-link Chaplygin sleigh is shown
in Fig. 1, where a and b represent the length of each of
the segments. The front segment (shown in orange) will
referred to as the ‘head’ and the rear segment (in blue)
will be referred to as the ‘tail’. The body frame xp — yp is
collocated at the joint C' between the two links, with x
aligned with the longitudinal axis of the tail segment. The
configuration space of the system is Q = SE2 x S'. The
generalised coordinates and velocities of the system can be
written as ¢ = [z,y,0,d] and ¢ = [&, ¥, w1, wa] respectively.
Point P is modelled as having a small knife edge or a
wheel that cannot slip in the transverse direction (along
yp direction). This is a nonholonomic constraint and can
be written as

Uy = —sin fdx + cos Ody + b0 = 0. (1)
where u,, is the transverse velocity at point P in the body
frame. The stiffness of the joint is modelled by a torsional
spring of stiffness K. The sleigh is actuated by a torque
7(t) = AsinQt acting on the head link. This torque is
assumed to be generated by the angular acceleration of
an internal reaction wheel. The mass of the tail link is
denoted by m, and that of the head link is denoted m,..
I. and I, are the moments of inertia of the two links.
The angle made by the sleigh with respect to the inertial
frame of reference is denoted 6, and & € S! is the relative
inter-link angle between the tail and head, with 6 = 0
when the longitudinal axes of the head and tail are aligned.
The governing dynamics of this system are reviewed here
briefly and further details can be found in Rodwell and
Tallapragada [2022].

The Lagrangian of the system is £ = 147 M(q)¢ — V(9)
where T(q,¢ = %q'TM(q)q is the kinetic energy, M
represents the mass matrix and V(§) = 3K6? represents
elastic the potential energy of the system. The kinetic

Fig. 1. Multi-Link Chaplygin sleigh

energy can be written explicitly as 7(q,q) = $me(d? +
7%) + %1592 + %mr(w}z + y',,z) + %IT(H +9)? where z,. and
yr are the coordinates of the center of mass of the head
link, R = $(cy(dcosf + ysinh)? + ¢, 6% + c,,6%) is the
Rayleigh (viscous) dissipation function, ¢, is the damping
for velocity at the constraint, c,,, is the rotational damping
of the tail link and ¢, is the interlink rotational damping
constant. The Euler-Lagrange equations can be written in
the form

d (0L oL OR
o <8ql) _@_W”)\J —Tqﬂrﬂ(t), (2)
where )\; is the Lagrange multiplier for each j constraint
and 7; is the external torque or forces acting on sleigh. Here
1 corresponds to each of the generalized co-ordinates. After
straightforward calculations the Euler Lagrange equations
can be written in matrix form as

[J\V\/,l %VT:| [/q\] _ [C(g{/g)d} +% L), (3)

o) h
where Cjj, = % ( /B\;’”

OMyi 9Mi; ) are the Christof-
aq] q

fel symbols of the first kind. The equations can be trans-
formed to a body frame as

[y} =R {0] and {y} =R [0} +w; xR [O} , (4)
where R is the rotation matrix transforming body
frame velocities to spatial velocities. In order to non-
dimensionalize the equations the following substitutions

2 Cw u —
are used: v = ¢, c, = 2k, ¢, = =, o, = -
a=0-¢ol, b=¢e, m.=1—-¢em, m.=¢em, I
yme(1? +4€%1%), I, = ym,(?+4(1—€)%?), K' = /L5,
7' = —Iz. For convenience the superscripts are dropped
from the variables we set ¢ = ¢, = ¢,1 = cuo rescaled
stiffness K = 10 and damping ¢ = 1 throughout the paper.
Since the Lagrangian £ is SE?2 invariant, the equations
governing the body frame velocities are decoupled from the
evolution of configuration variables. The reduced velocity
equations of motion are expressed in matrix form as

U
M (w1 | =
o

where M is a 3 x 3 symmetric matrix with My, = 1,
M12 = M13 = 7(1 76)2 sin5, M22 = (712’773)64’ (12"}/+
7)62 — 463 + oy + 1+ 46(1 — 62) cosd, Moz = M3y = (1 —
€)(4e?y — 8ey + 1 —2¢ + €2 + 5y + 2ecos § — 2€% cos )

and Mz3 = (1—¢)(4e?y —8ey+5y+1—2¢e+¢2). When the

Cuwy
l2 b

€(2 — w12 + (w1 + wa?)(1 — €)% cos§ — cuu

(dwrwa 4 2w3) (1 — €)2esin § + (e(e — 2)
—(1- 6)2 cos d)uwy — Cwy w1 + T

2 (5)

—(1 — €)% cos duwy — 2e(1 — €)? sin w2 — K6
—Cwow2 + T
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torque 7 is periodic, the dynamical system (5) has stable
limit cycle solutions for most parameters (Fedonyuk and
Tallapragada [2018]) and sample limit cycle is shown in
Fig. 2.

Fig. 2. A limit cycle trajectory in the (u,w;,w2) space due
to a periodic forcing 7(t) = 2.5sint. This trajectory
is symmetrical about both w; and w, and generates
motion on a serpentine path about a line in (z,y)
space.

3. DDPG ALGORITHM

We approach this problem of path tracking by the two
link Chaplygin sleigh as a general RL problem where
the control input is the torque applied to the head-link.
Here our action space is continuous, so instead of artifi-
cially discretizing it and losing resolution, we consider a
continuous deterministic policy, which can be derived by
the DDPG algorithm. DDPG (Lillicrap et al. [2016]) is
a policy gradient algorithm where a deterministic policy
1(S) has an associated critic Q,,(S, A) which encodes the
discounted value of a given state-action pair, allowing the
policy gradient to be calculated at every point in the
state-space, which can be more data-efficient compared
to Monte-Carlo methods, where the policy gradient is
calculated over trajectories. Both Q(S, A) and p(S) are
general functions, which are approximated by neural net-
works with weights 6, and 60, respectively. Convergence
of the DDPG algorithm to a specific set of actor weights
6, implies that they represent a (locally) optimal set of
weights. Because we have only one actor, we drop the
subscript on @. The ) value of a state-action pair can
be calculated by the discounted Bellman equation

qr = 1+ YQ(St41, 1(St+110,)104), (6)
where ¢ is the updated estimate of Q(S;, A;), r is the
reward calculated by a reward function at time step ¢ and
Q(St+1, 1(St4110,)]04) is the Q-value calculated for the
next states and action (Sgy1, Ary1) at the next time step.
There is a discount factor v attached to @¢+1 which helps
to determine the importance of the reward at future time
steps. At each time step the critic weights 6, are updated

by stochastic gradient descent such that they minimize
the temporal difference loss, which is defined as the mean-
squared error over a batch of of times ¢t € {0...T} of
Lg.+(8,), where

Lq,+(04) = (Q(St, Arlby) — g1)*. (7)
Iteratively updating this approximator of @) using the dis-
counted Bellman equation is known as temporal difference
learning, and typically results in convergence to accurate
@ values.

The weights of policy p(s|6,) are updated by a policy
gradient. The deterministic policy gradient is the gradient
of the critic Q(S, A) with respect to the parameters of
the actor network 6, (Silver et al. [2014]). The gradient
ascent step can instead be written as an optimization that
minimizes the loss between the current and desired policy
outputs, where the loss at each time is

Ly t(0) = (u(Sel0) — A7)° (8)
where desired action A} is defined as

At = p(Se]0u) + aV aQ(St, 1o (St|0,)164) (9)
where « is the learning rate. The one dimensional gradient
VaQ(S, 1(56,)]0,) can be efficiently calcuated by finite
differences, written as

dQ(S,A|9q) - Q(S,A|9q) —QA+dA(S,A+dA‘9q) (10)
A dA ’
where dA is chosen to be sufficiently small that the slope
of the secant is representative of the tangent slope at A.
The optimization of the actor-critic pair is difficult and
prone to convergence issues because the @ function is
valid for a specific actor, so every update of the actor
necessitates retraining the @ function. For this reason, the
losses Lg and L, are typically minimized sequentially, and
the sequence is repeated until the overall change in both

losses over an iteration is low.

4. SLEIGH AGENT AND TRAINING

DDPG requires two deep neural networks (or equivalent
deep function approximators) which are illustrated in the
‘Training’ panel in Fig. 3. There are 6 inputs to the
policy network: the states u, wi, wa, 6, 4, and the target
velocity u'(t). The @ network shares the same inputs as
the policy network, with an additional input of the control
variables, in this case just rotor torque. The aim of training
this DDPG agent is to have a controller that can track
an average velocity. We later implement a pure-pursuit
algorithm, so the policy does not need to itself be able
to track a path, it simply needs to regulate the tail angle
0 and velocity u to the values specified by the pursuit
algorithm. While direct training can accomplish these
objectives for this relatively simple system, in this case
we attempt a curriculum learning strategy to demonstrate
the applicability of a curriculum approach to this type
of underactuated nonholonomic system. As defined in
Narvekar et al. [2020], this strategy is used to optimize
the learning process by optimizing the agent experience to
facilitate faster and more data-efficient training.

4.1 Curriculum learning

A curriculum for the sleigh is devised on the basis of
knowledge of the sleigh’s behaviour in an environment. In
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Fig. 3. Here we illustrate the training process. On the left, the DDPG actor p(.S) is trained to mimic a given 7(t). In the
center, the actor is updated over multiple episodes e of DDPG, where the target velocity function u/(¢) is changed

between episodes according to the curriculum, resulting
velocity tracking.

Rodwell and Tallapragada [2022] and in Fedonyuk et al.
[2020] the two-link sleigh exhibits rich dynamics when
subjected to periodic inputs. These observations lead to
the curriculum for learning. Initially the agent is exposed
to observation of the dynamics of the sleigh under a
periodic input, in this case a sinusoidal forcing, in order
to encode the concept of a periodic gait into the policy.
The goal of pre-training is to generate a policy u(S|6,)
that generates a similar periodic gait to that generated
by the time-dependent forcing 7(¢) = 0.25sin¢. This is
achieved by collecting state and action vectors (S, A) of
a trajectory using the latter time-dependent policy, and
finding the weights 6, that minimize the vector expression
(A — pu(S)60,,))?* using stochastic gradient descent over the
trajectory. The results after pre-training are shown in
Fig. 4, with the agent being able to track limit cycles in
the reduced velocity space. The reward function used for
training is defined as

re = —0.8 | s, —u'(t) | — | maz(] sp — 0; |,0.25) — 0.25 | .
4.2 Training

The training stage is where the agent is trained based
on the curriculum shown in Fig. 5. The task of changing
velocity is divided by using a method of task simplification
where the task is divided into three training sub-tasks
or skills, which is similar to skill-chaining (Konidaris
and Barto [2009]) or task based sub-goals where at the
end of each sub-goal the agent reaches an initialization
sequentially approaching high rewards on the main task
(Narvekar et al. [2020]). The hierarchy of the process
shown in Fig. 3 is such that there are a finite number
of episodes e in training and within each episode there are
finite number of time steps 7" = 100. At the start of every
episode, an environment simulation is performed, and the
states and actions are collected into matrices Se, A.. The
states at each of the time steps within these matrices are
then referred to as (S, A¢). The update algorithm iterates
over every time in the episode; the critic network accesses
both observed states and actions while the actor network

in a fully-trained actor capable of simultaneous path and

0.1
g 001
—0.1— .
0.00 0.02 0.04
u
(a)
0.1
w 00
-0.1 i i i i ‘
0 20 40 60 80 100
time

(b)

Fig. 4. The pre-trained torque 7(t) = p(S¢60,) (b) and
resulting trajectory in (u,w;) space (a) for the pre-
training step. The selected gait is intentionally a poor
fit for the u/(¢) = 1 of the next training step, but
illustrates that teaching an arbitrary periodic gait is
an effective starting point for training.

accesses the observed states. The critic network evaluates
the current action as well as the action at time step ¢ + 1
to implement ((7)). After the update is performed, a new
episode begins and new trajectory is generated. An e-
greedy action selection method is used in order to maintain
a balance between exploration and exploitation. A random
action is chosen from a normal distribution (1 — €) times
during an episode as shown in Fig. 3 where € is taken
as 0.8. In this case, each task for training has the same
type of w/(¢) function and is further divided into smaller
stages on basis of difficulty of the target function wu’(¥)
or deviation from the mean target velocity ug. The first
task in Fig. 5(a) is to go from the pre-trained policy to
tracking a noisy target velocity of u'(t) ~ N(1,0). This
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is designated as task 1 and is divided into smaller sub-
tasks where each sub-task has a standard deviation larger
than the previous stage. Over the entire duration of task 1,
the standard deviation o starts from 0.01 at first sub-task
increasing to 0.1 at the final sub-task. Task 1 of training
requires approximately 200 episodes. Task 1 starts at the
point reached by the pre-trained actor. The final result at
the end of task 1 training is shown in Fig. 5(a).

Task 2, shown in Fig. 5(b), is where sinusoidal functions
with unit mean are used. The frequency and amplitude of
the sinusoidal functions are varied at each sub-task. The
frequency is first increased gradually from 0.01 to 0.1 and
then the amplitude is steadily increased from 0.1 to 1. The
objective of changing the amplitude is to achieve a higher
velocity and for facilitating acceleration or deceleration of
the sleigh. This is important for the path tracking case that
is considered in the next section. Since the path tracking
objective is to make the sleigh track a sharp corner with
the least cornering radius it is necessary for the sleigh to
slow down as it is reaching the corner and then change
its velocity for the rest of the path. This is the reason for
defining the final sub-task as u/(t) = 1 + sin(t).

l,
P (a)
0+ . :
0 50 100
2_
B (b
0] - -
0 50 100
101
= 5 (c)
0+— : T
0 50 100
time

Fig. 5. Training curriculum for the policy. In (a) the target
velocity for each time interval is sampled from normal
distribution u/(t) ~ N(1,0?%), where o increases be-
tween iterations. In (b) the agent learns a policy to
track a sinusoidal «’(¢) with increasing amplitude and
frequency. In (c) the agent learns to track monotoni-
cally increasing velocities to a maximum of v’ (¢t) = 10.

Task 3, shown in Fig. 5(c), trains the agent over a wider
range of velocities. In this case the range considered is
0 < /(t) < 10. Because of the width of this velocity range
compared to the range encountered in the previous task,
we first consider a subtask with 0 < w/(t) < 5, before
advancing to the full range. This task is slow compared to
the previous task, as each sub-task takes 100 episodes to
match u/(t). Here u/(t) is a low frequency sine function as
shown in Fig. 5(c). Tasks 1, 2, and 3 form the curriculum of
the training stage and the sequence of the curriculum is a
recursive manual process where the curriculum is modified
by modifying sub-tasks according to the progress of the
agent’s learning.

5. PATH TRACKING RESULTS

The algorithm used for path-tracking is a pure pursuit
algorithm. The angle 6; between the body and spatial
frames is the target angle being tracked at a fixed sight
distance. The path tracking algorithm relies on two states
of the sleigh: the current tail angle § and the velocity
u of the sleigh. In the pure pursuit path tracking, the
agent receives feedback in the form of correction angle
and a velocity target. The correction angle is defined as
the difference between the tail angle and the target angle
in the spatial frame. Fig. 6 illustrates the pure pursuit
algorithm for this system. The circle of diameter d centered
at the constraint point shows the visible area for pursuit.
At point B the sight horizon intersects the forward path,
and a pursuit vector rg,p from P to B is calculated. Using
the policy, the tail angle is regulated towards the angle of
the pursuit vector.

Fig. 6. Schematic diagram of pure pursuit.

The use of the pure pursuit algorithm in combination
with the previously trained RL agent is shown through a
numerical simulation where the sleigh is required to track
a path shown by the red lines in Fig. 7 (a) at a target
velocity shown by the red graph in Fig. 7 (b) that varies
with time. Tracking the piecewise constant target velocity
is generates switches between different limit cycles in the
reduced velocity space as shown in Fig. 7 (c).

6. CONCLUSION

The results in this paper demonstrate the control of
an underactuated and nonholonomic two-link Chaplygin
sleigh using Reinforcement Learning with a DDPG agent.
A curriculum based on known physics of the system was
found to result in rapid convergence to a gait that satisfies
a target velocity and heading angle. In combination with a
pure-pursuit algorithm, this policy was found to accurately
track a prescribed path while simultaneously following a
prescribed velocity. The curriculum learning approach can
be used to teach an RL agent the qualitative state space
features which can speed up its learning of the policy.
Curriculum learning can also be used to train an agent,
to not just perform tasks of growing complexity, but in
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5.0
> 257 sleigh path
reference path
0.0 —d
0 10 20

Fig. 7. (a) The trajectory of the constraint point (b)
translational velocity of the sleigh as it tracks a
prescribed path with prescribed target velocity u/(¢)
and (c) the trajectory (u,w) in the reduced velocity
space.

fact to change the physics of the systems itself in growing
levels of complexity. This is equivalent to learning a policy
for a simpler physical system first and progressing to more
complex physical systems.
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