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Abstract. Objects moving in water or stationary objects in streams create a vortex
wake. Such vortex wakes encode information about the objects and the flow conditions.
Underwater robots that often function with constrained sensing capabilities can benefit
from extracting this information from vortex wakes. Many species of fish do exactly
this, by sensing flow features using their lateral lines as part of their multimodal
sensing. To replicate such capabilities in robots, significant research has been devoted
to developing artificial lateral line sensors that can be placed on the surface of a
robot to detect pressure and velocity gradients. We advance an alternative view of
embodied sensing in this paper; the kinematics of a swimmer’s body in response to
the hydrodynamic forcing by the vortex wake can encode information about the vortex
wake. Here we show that using artificial neural networks that take the angular velocity
of the body as input, fish-like swimmers can be trained to label vortex wakes which
are hydrodynamic signatures of other moving bodies and thus acquire a capability to
‘blindly’ identify them.

1. Introduction

Mimicking the locomotion of fish and other aquatic swimmers has been a goal for
underwater robotics research because of the many desirable characteristics of biological
swimmers, such as energy efficiency, agility, and stealth [1-6]. A significant part of
the agility and maneuverability of fish swimming can be attributed to the multimodal
sensing of the fluid flow that provides information about surrounding objects in the flow
in the absence of visual information [7-10]; in the most extreme cases blind fish can
school quite well [7]. Flow information in this context could be one or more of the fluid
velocity field, vorticity field, pressure distribution on a body or hydrodynamic force or
moment experienced by a body. As an object moves in a fluid medium the surrounding
fluid particles move relative to each other producing shear layers in the fluid which detach
from the object resulting in the formation of a wake. Information about fluid flow and
the objects that create these flows is encoded in the spatiotemporal evolution of the
vortical structures, whether the body creating them are cylinders, airfoils, swimming,
or flying creatures [11-19]. A problem of considerable interest in improving the sensory
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suites of robots and their agility is whether a vortex wake created by a body can be
sensed by a trailing robot to determine characteristics of the wake sources motion.

Fish extract such information about the source of a vortex field from the fluid
flow using a grouping of mechanosensors, called the lateral line [20-27]| which are made
up of hundreds of neuromasts spread over their body that can detect subtle water
motion and pressure gradients [28]. Considerable research and engineering has been
devoted to creating artificial lateral lines through a variety of electromechanical sensors
such as miniature pressure sensors [29-33|, ionic polymer-metal composite sensors
[34, 35], multi-layered silicon beams [36], and micro-fabricated hot-wire anemometry
sensors [37]. While fish lateral lines and their artificial counterparts have received
considerable attention, proprioceptive sensing, the ability to use the kinematics or
motion of the body or parts of it to sense, has been unexplored in bioinspired swimming
robots. Proprioception has been demonstrated to be used by fish as part of their
multimodal sensing. For instance, the rays and membranes of fins have been shown
to act as mechanosensors in catfish [38], bluegill sunfish [39], and wrasses [40]. Fin
mechanosensation has been found to encode the velocity of fin bending as well as respond
to cyclic stimuli of biologically relevant frequencies with the mechanosensory system
being capable of providing stroke by stroke feedback [41]. Such recent research in the
proprioceptive ability of fish fins suggests that in the context of bioinspired robots,
useful information about the flow and in particular the vortex field around a robot can
be inferred from the kinematics of the robot or a part of it such as its tail. This would be
significant because kinematic measurements such as acceleration and angular velocity
can be made with high accuracy and temporal resolution using accelerometers, gyros
or inertial measurement units (IMUs), which are inexpensive and robust compared to
the pressure sensors used in artificial lateral lines [32]. Such kinematic measurements
are usually made in most robots to provide feedback to control systems, but could
potentially be used as a flow sensing measurement.

Extracting useful information about the fluid vortex field using even direct
measurements of the fluid velocity field is, in general, a non-trivial problem [42-44];
extracting such information using only the kinematic information of a body immersed
in the fluid is even more challenging due to the inherent complexities associated
with coupled fluid-body dynamics. Machine learning can play an important role in
deciphering the pertinent fluid flow information from the kinematic data of a moving
body immersed in the fluid. Tools from machine learning have in the last decade been
applied to decipher the complex dynamics of fluids, see for example [45] for a survey.
In this paper we consider the important problem of a trailing fish-like body identifying
and labeling vortex fields associated with different motions of another leading fish-like
body. In a significant difference from many of the past papers on classification of flows
through supervised learning which have usually used as input data the variables of fluid
flow such as velocity, vorticity or pressure; we have chosen to use the kinematics of a body
immersed in the fluid as the input data set for supervised learning. The trailing body
can be taught to recognize different vorticity fields associated with different motions of
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the leading body through supervised learning. In particular, artificial neural networks
are well suited for this problem [46] because of the complex nonlinear phenomenon of
vortex shedding and the interaction of a body with a vortex field.

To the authors’ best knowledge, the only use of neural networks for classification of
wakes created by Joukowski foils are found in [42-44]. The current paper draws upon
the approach of using neural networks for wake classification in these papers [42-44].
In [42-44] the input information to the neural networks was obtained through immersed
boundary layer or potential flow simulations and the input consisted of velocity, pressure,
or vorticity measurements of the fluid in small regions around the body or directly in
the flow field. Accurately recording these measurements from localized sensors can be
difficult to obtain in practice especially outside a laboratory. On the other hand in
this paper, the input data presented herein is obtained from experiments performed
in a water tunnel which therefore makes no computational fluid dynamic modeling
assumptions. The experimental input data is related to the kinematics of a trailing
hydrofoil which is easily obtained using on-board sensors. The results in this paper can,
therefore, be extended in the future to enable ‘blind’ steering of swimming robots.

2. Summary of Experiments

We created an experimental setup with two bioinspired hydrofoils placed in a water
tunnel as shown in Fig. 1(a). The experiments were conducted in a Rolling Hills
Research Corporation model 0710 water tunnel. The water tunnel has a working length
of 45 cm and a testing cross-section of 450 cm? and is capable of producing laminar flow
at speeds up to 7 cm/s. The trailing foil is modeled after a NACA 0030 airfoil with
a chord length of 87.3 mm, and the leading foil has a chord length of 72.4 mm. The
trailing foil is tethered to a bar of extruded aluminum, which doesn’t contact the water;
so the movement of the foil is solely the result of its body interacting with the vortex
wake. The tether is a lightweight fishing line that is 10 mm long to limit the heaving
motion in the trailing foil. The hydrofoil at the front of the water tunnel test section is
oscillated by a Power HD servo controlled by an Arduino Mega. The leading hydrofoil
is actuated to execute yaw oscillations in the free stream of the water tunnel with the
angular orientation of the foil with respect to the free stream described by the equation

HLZQMCOS% (1)

where ), is the oscillation amplitude, ¢ is time and f is the frequency of oscillations.
The trailing hydrofoil is free to execute yaw oscillations in response to the hydrodynamic
forcing created by the leading hydrofoil. The free stream velocity Uy, in the water tunnel
and the oscillations of the leading hydrofoil are controlled to produce unique vortex
wakes which encode the information about the oscillations of the leading foil, see Fig.
1(b). The oscillations of the trailing foil are the response to the vortex wake created by
the leading body, as shown in Fig. 1(c).
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Figure 1: (a) Experimental setup showing the leading and trailing foils inside the water
tunnel. (b) A schematic of the two foils with the vortex wake shed by the leading foil
forcing the oscillatory response of the trailing foil. (c¢) Angular velocities of the of leading
Qp and Qypqiting from an experiment.

The vortex wakes are labeled by the Strouhal number, St defined as

St = ULL sin 20, 2)

o0

where L is the distance from the center of rotation to the trailing edge of the leading
foil, as shown in Fig. 1(b). The non-dimensional Strouhal number, frequently used in
fluid mechanics and specifically in the context of fish swimming to describe the periodic
motion of the flapping bodies and the associated vortex wakes [47], is a suitable label
that encodes information about the motion of the body generating the vortex wake for
body Reynolds numbers ranging from 10® to 10% [18]. The Strouhal number, in this
case, contains information about the frequency of the vortex shedding, the distance
between the consecutively shed vortices, and the length of the source body that creates
the vorticity. Sixteen different wakes, labelled 1 to 16 were created by altering f, 65, and
Us shown in the table 1 in increasing order of Strouhal number. The body Reynolds
number using the length of the leading of foil and the free stream velocity range from
4437 to 6090. The Strouhal number range chosen in the experiments is intended to
mimic the Strouhal numbers associated with efficient natural swimmers such as sharks,



Wake Class Strouhal Number f[Hz| Uy [m/s| 6y [°]
1 0.215 0.500 0.07 15
2 0.236 0.500 0.064 15
3 0.262 0.500 0.057 15
4 0.263 0.400 0.07 25
5 0.286 0.667 0.07 15
6 0.289 0.400 0.064 25
7 0.295 0.500 0.051 15
8 0.315 0.667 0.064 15
9 0.321 0.400 0.057 25
10 0.329 0.500 0.07 25
11 0.350 0.667 0.057 15
12 0.361 0.400 0.051 25
13 0.362 0.500 0.064 25
14 0.393 0.667 0.051 15
15 0.402 0.500 0.057 25
16 0.452 0.500 0.051 25

Table 1: The different combinations of input parameters and the associated Strouhal
numbers. The free stream velocity was measured in inches/second in the water tunnel
but it is converted here to the units m/s with an accuracy upto three decimal places.

dolphins, and bony fish which ranges from 0.2 to 0.45 [47].

2.1. Data Acquisition, Smoothing and Filtering

The trailing hydrofoil has six markers on its surface that are tracked in videos of the
experiments. Videos of the trailing foil motion are recorded at a rate of 30 frames
per second for a duration of 45 minutes each. Each experiment was recorded using
the 12-megapixel rear facing camera on a Samsung Galaxy Note 9 fixed directly above
the trailing foil. At each Strouhal number, 45 minutes of video data of the motion of
the trailing foil was collected at a rate of 30 frames per second. The pixel locations
of the six circle centers are calculated throughout the videos using a Hough transform
implemented in MATLAB’s image processing toolbox. Once the center locations are
known we calculate the angle of lines connecting dots 1-2, 1-3, 4-2, 4-3, 5-2, 5-3, and 5-6
(shown in Fig. 1(b). The angular velocity is calculated using finite differencing between
sequential camera frames and then the angular velocity from all seven measurements was
averaged to get the average angular velocity of the foil between the camera snapshots.

The raw data of the angular velocity, V) of the trailing foil is smoothed by a



three-point averaging method,

©) ©) (4)
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Next, the data is passed through a low pass Butterworth filter with a cutoff

frequency of 3Hz. The cutoff frequency was chosen such that it is at least four and
a half times larger than any of the forcing frequency values. The output vector of
column j from the Butterworth filter is x\9), which is then normalized by,

(x0) — p9))

Xl(’ljo)rm = ) Fx G (4)
max([(x — 1))

In (4), ,u,(f ) is the mean of the entries in vector x9). The normalized angular velocity
X is bounded to the interval [—1,1] independent of the distance D between the
foils and the free stream velocity Us,. The normalization reduces this influence of the
parameters D and U, and ensures the combined effect through the Strouhal number
St determines the response of the target foil.

Following the image processing of each frame in the video as explained in the
Methods section the positions of the markers can be obtained allowing the calculation
of the trailing foil’s angular velocity. At each Strouhal number, the response of the
trailing foil was measured at three different distances, D from the leading foil producing
three 15 minute sets of data. These distances, measured from the shaft of the leading
foil to the leading edge of the trailing foil, were 20.67cm, 23.2 cm, and 24.47 cm and are
approximately three to four body lengths away from the leading foil. It can be expected
that the hydrodynamic effect on the target foil is larger when this distance D is small
and decreases as D increases.

Figure 1(c) shows a sample graph of the angular velocities of the leading foil and the
trailing foil. The angular velocity of the leading foil is therefore not a pure sinusoid but
instead has many harmonics because a stepper motor drives the motion of the leading
foil and the fluid-body interactions resulting from the vortex wake [48]. Secondly the
fluid-body interactions result in a non sinusoidal angular velocity on the foil even if a
periodic torque is app Figures 2(a) and 2(b) show the power spectral density (plotted
as decibels(dB)) of the angular velocities of the leading and trailing foil respectively for
wake class 1 for D = 20.67cm. The local maxima in this plot correspond to the integer
multiples of the forcing frequency f = 0.5 Hz. However, some of the harmonics in
the response are missing, such as at 3 Hz and 4.5 Hz. As the free stream velocity,
U, and the distance D change the relationship between the forcing and response
frequency spectrum emerges to be more complicated. A plot of only the local maxima
in the power spectral density for the set of wake classes {1,2,3,7} is shown in Fig.
2(c). The distance D affects the magnitude (or amplitude) of the forcing by the vortex
wake created by the leading foil, with the forcing decreasing as the distance increases.
Frequency responses that scale linearly with the amplitude of forcing are a hallmark of
linear systems. However, Fig. 2(c) shows that the response of the trailing foil at different
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Figure 2: Power spectral density of the angular velocity of the (a) leading foil and (b)
trailing foil for wake class 1 at D = 20.67 cm. (c) The local maxima in the power
spectral density of the angular velocity of the trailing foil for vortex wakes {1,2,3,7}
at three different distances Dy, Dy and Dj3. The vertical axis is power(dB). Legend -
Response due to wakes of class 1 are in red, class 2 are in blue, class 3 are in green and
class 7 are in black. Response at D; are denoted by *, at Dy by a [J and at D3 by o.

harmonics does not scale linearly with the distance. For example, the frequency response
magnitude of the trailing foil is higher at distance D, than at D; at 1.5Hz for wake class
1; for wake class 2, the expected linear relationship is completely inverted at frequencies
1 and 1.5 Hz; for wake class 3 this inversion is seen at frequencies 1 Hz, 2 Hz and
2.5 Hz. The frequency response of the trailing foil for different wake classes in Fig.
2(c) shows a forcing amplitude dependence, that is characteristic of nonlinear systems.
Proprioceptive wake classification therefore cannot be accomplished through standard
frequency response analysis used in linear systems.

3. Neural network architecture to classify the wakes

We used a neural network (NN) consisting of an input layer, one hidden layer, and
an output layer as shown in Fig. 3. Each layer of the NN is fully connected to the
previous layer. The input to the NN is a time series vector of filtered and smoothed
angular velocity data of the trailing foil, represented throughout this paper by %* for
kth data set. While each video data set for a wake label consists of Ny = 81000 frames
of images (15 minutes at 30 frames per second at 3 different distances D), each input
vector consists of a small data set, that spans a time interval At¢. Four choices of the
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variable At were made values of 1s, 2s, 3s or 4s with each choice of At being used to
train a separate set of neural networks. With the free stream velocity Us, (see 1) used
in these experiments, these values of At imply that vortex wake spanning one to four
body lengths is used in the training, validation, and testing of NNs. The corresponding
output from the neural network is a probability vector ¥* where each entry g is the
probability that the wake label is 7. The entirety of the inputs and outputs is represented
by the matrices [fq and [Y} respectively,

X] = [z %@ .. ™ and [Y] = |y y® . y®™

| | | (30AtxN) | | | (NwxN)
(5)

N .
>, the total number of input

vectors, depends on At. To train the NN, [5(} is split into three unique subsets of

where N, = 16 is the number of wake labels and N =

data: training [Xtmn}, validation [Xvahd] and testing [Xtest}. The sequence of the
input column in vectors [Xtrain} is randomized in each training epoch. The number
of independent data vectors in the testing and validation data sets (Niest, Nvaiia) €ach
take 10% of the entire data set N, which leaves the remaining 80% for training ( Niyain)-
The first layer of the neural network contains N; nodes and performs the affine linear

Nonl.lnear Linear Mapping Output Layer
activation: a®)

Input Layer Linear Mapping
yAOS [w(Z)]a(k) +b,

_expz,®)
b exp(z,®)

(k)

|| min{max {0, sz_l} o 12}'

Figure 3: Architecture of the neural network used to classify vortex wakes. The inputs

exp (Zm(k))
2 exp(Z,09)

V1 =

are the angular velocity of the trailing foil and the output is a probability vector for
the wake labels. The sequence of the inputs are randomized in each epoch of training
phases.

transformation z®) = [W;]x® + b; with the N; x 30At weight matrix [W;] and a
30At x 1 bias vector b;. Each zgk) is passed through the Cutoff Rectified Linear Unit

function (CReLU) activation function

att) = min (max(0, z™), 12). (6)



The second layer of the network, begins with a linear transformation,
Z®) = [Wyla®) + b, (7)

where the weight matrix [Wy] is of size [N,, x Ny| and the bias vector b® is of size
N,, x 1. The output of this affine transformation eq.(7) is then input into the softmax
activation function,

~(k:) eXp(Z(k))
Yy = .
SN exp(ZM)

The output ¥* is the probability vector whose ith entry y
%*) belongs to wake class .

(8)

(k

i ) is the probability that

The performance of a neural network depends on the choice of the number of nodes
in each layer and the initialization of the weighting and bias matrices/vectors, ©. The
convergence of the weight matrices and bias vectors may also depend on the sequence
of inputs used in the training. We changed the number of nodes in the first layer
between 50 and 400. For each number of nodes Nj, we trained several (50 to 180)
neural networks with varying initializations of the weight matrices and bias vectors. In
each training iteration, the error in the classification is quantified using the cross-entropy
error function, that allows fast training of neural networks [49]

Np

n 2
Fp;@' (9)

T, -~ T -
c® = —(y) In(y)—(1—y) In(1—y)+
The vector ©2 in (9) is the Ly regularization of all the NN parameters; it contains all of
the entries in the weighting matrices and bias vectors. Once the error for iteration k is
known, the weighting matrices and bias vectors are updated using the gradient descent

method (10).

k+1 o k aC(k) k+1 k aC(k)

W =W g BT P (10)
k+1 k o0k i1 L 00W

[W2} = |:W2i| - EW and b2+ = b2 — € 8b§

In (10), € is the learning rate of the neural network. For the first 40 iterations ¢ = 0.002,
after 40 iterations € is adjusted based on the change in C' between iterations,

. { € Te <5 (11)
e x 0.75 Z—g >5
where o¢ is the standard deviation in C' between the last ten training iterations and
1o is the mean of C' from the last ten training iterations. The purpose of adjusting the
learning rate is to decrease the error in the final network while keeping the computational
costs of training as low as possible.
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In the validation phase the error for an individual data vector i is either zero or
one. If the row with the largest entry of the output y’,., corresponds to the row of
Y. containing a one then the error is Cl.ia = 0 otherwise C%, ., = 1. After every
column of [Xvahd] has been pushed through the NN the total error is

Nyalia

Cepoch Z vahd (12>

vahd
i=

where the superscript & is the epoch number. To avoid overﬁtting the NN we used an
early stopping method. Training is stopped when Cf o, < Cily < .. < C520 ) ie

when total error, Cepocn, is increasing for 20 consecutive epochs. When the training is
stopped the neural network corresponding to the £ — 20th epoch is chosen. The limit of
20 was set because in the initial iterations it is likely that the total error between epochs
will fluctuate. The fluctuations could cause the NN to prematurely exit the training
loop.Once the NN exits the training/validation loops we assess its accuracy when applied
to the test data. We trained several hundred neural networks by back-propagating the
cross-entropy error in each iteration. The results of the best neural network, the one

with the highest accuracy, are presented in the next section.

4. Results

The performance of each NN is quantified through a confusion matrix A. Figure 4 shows
the confusion matrix A associated with the best performing NN. In Fig. 4, the entry
A, represents the fraction of wake ¢ sample that were classified as wake j. The diagonal
elements of this matrix A,; represent the fraction of correctly classified wakes of label
i. For example A;; = 0.853, i.e. 85.3% of wake 1 samples were correctly classified by
the NN as wake 1. The worst classification was for wake 13, where A;3,3 = 0.706. In
the case of four of vortex wake classes: 10, 13, 15, and 16 the accuracy of the NN is less
than 0.8. The comparatively poor performance of the NN in classifying these wakes can
be attributed to the large value of 6, = 25° combined with the higher frequencies of
oscillations associated with these wakes. The vortex wakes created in these cases collide
with the water tunnel walls, rebound, and create more complex spatiotemporal patterns
than in other cases. The differences in wake pattern between such cases and one with
a more orderly pattern such as for wake type 7 is captured in the dye visualizations of
the wakes in Fig. 5. We intentionally included vortex wakes with such complexity to
incorporate significant effects of walls and other boundaries that will be encountered by
a robot outside a lab environment.

We further performed statistical hypothesis testing on the classification shown in
Fig. 7 to see how likely the classification was just a lucky outcome. We assumed
the null hypothesis, Hy to be “the proposed Neural network model using the angular
velocity of the target foil cannot classify the 16 different types of wakes". Under this
null hypothesis, the probability that the ith angular velocity response of the target foil
is of class j is 1/16 for all i and j, i.e every entry in the matrix A should be z. We
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1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 |0.015
2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
3 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
4 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
g 5 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
:‘C:é 6 0.059]| 0.0 0.0 0.0 0.0 0.0 0.0 0.0
C.g 7 0.0 |0.015]| 0.0 0.0 0.0 0.0 0.0 0.0
% 8 0.0 0.015] 0.0 0.0 0.0 0.0 0.0
g 9 0.0 0.0 0.0 [0.015] 0.0 (0.162]| 0.0 0.0 |0.015]| 0.0 0.0 0.0 0.0
—_ 10 0.015( 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.103] 0.0
g 11 0.0 0.0 0.0 0.0 0.0 0.0 0.0 ]0.029| 0.0 0.0 0.0
E 12 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
13 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.162]0.029
14 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
15 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 |0.103| 0.0 0.0 (0.059
16 0.029( 0.0 0.0 0.0 [0.015] 0.0 |0.029] 0.0 0.0 [0.029] 0.0 0.0 [0.044
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Figure 5: Dye visualizations of wake 16 (left) and 7 (right). The vortex wake in the left
figure collides with the walls of the water tunnel while the one on the right has a width
that is smaller than that of the water tunnel.

used the p-value to accept or reject the null hypothesis with the significance level, o set
at 5%, which is very commonly used. Using the y? test, the p-value was found to be
p = 0.0104 which is below the chosen « level. Therefore the null hypothesis is rejected.
The value p = 0.0104 implies that the probability that the null hypothesis being true is
at most 0.0104. The observed confusion matrix in Fig. 7 would be extremely unlikely
if the null hypothesis is true.

The variations in the accuracy of the 180 independent NNs trained on four-second
data intervals is shown in Fig. 6. The blue boxes show the first and third quartile of
the accuracy with the median shown by the red horizontal line. For instance, of the 180
NNs Fig. 6 shows that the highest accuracy of any of the NNs in classifying wake 13 is
0.81 and the lowest accuracy of the NNs is 0.37. The best NN (whose confusion matrix
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Figure 6: Whisker plot of the accuracy from the 180 independently trained NNs with a
data truncation of At =4 on test data sets.

is shown in Fig. 4) was defined as one whose min(A;;) is the highest; i.e. where the
lowest accuracy of classification of any wake was the highest amongst all the NNs. The
whisker plot Fig. 6 shows that the largest variations in the accuracy of the NNs due to
the variations in hyperparameters is for wakes 10, 13, 15 and 16 which are precisely the
ones with the most complex spatiotemporal vortex wake patterns due to interference by
walls of the water tunnel.

Effect of frequency and amplitude of oscillations on the accuracy of NN

Errors arising in the classification of wake classes are influenced primarily by the
frequency and amplitude of oscillations of the leading foil. For example, choosing cases
wake classes 1, 2, 3, 7 have the same frequency (0.5Hz), and amplitude (6, = 15°) of
oscillations of the leading foil and differ only in the free stream velocity. An examination
of rows 1, 2, 3 and 7 in the confusion matrix shows that mislabeling of these classes
is confined to this same set of four wake classes. For example, wake class 3 when
mislabeled is classified as either wake class 1, 2, or 7. Exceptions arise for mislabeling
wake classes 1 and 7 with a small fraction of the wakes being classified as either wake
class 10 or 16. Interestingly wake classes 10 and 16 have the same frequency, f = 0.5
Hz, but a different oscillation amplitude. A similar conclusion emerges when analyzing
the classification of the two sets of wake classes {4,6,9,12} and {5,8,11,14} which
have the same frequency and oscillation amplitude. Even in the set of wake classes
{10,13, 15,16} where the vortex wake experiences significant wall effects, mislabeling of
wakes is primarily confined to the same set of four wakes. For example, when wake 13
is wrongly labeled, it is mislabeled as wake 10, 15, or 16.
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Effect of the choice of time interval

When the sample time interval At is smaller than one time period of oscillation of the
leading foil, an insufficient amount of hydrodynamic information is transmitted to the
trailing foil. Therefore it can be expected that for smaller values of At, the accuracy of
the NN decreases. To assess the effect of the time interval, At, the accuracy the best
performing NNs for each At as a function of the training epoch are shown in Fig. 7. The
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Figure 7: Accuracy of the best NN for each choice of At as a function of the training
epoch.

accuracy of the NN for At = 1 is about 17% lower than that of the NN with At = 2.
This difference in accuracy emerges in less than 10 training epochs and persists even
at 250 training epochs. The better accuracy as At increases is not an artifact of the
number of training epochs. Moreover the gains in accuracy with increasing At decrease

very rapidly with the accuracy for At = 4 being only marginally higher than that for
At = 3.

Discussion

We have presented a novel concept of using proprioceptive sensing data from a hydrofoil
to classify vortex wakes created by the motion of a leading object. We verified this
concept with experiments in a water tunnel with a periodically yawing leading foil and
a trailing foil free to execute yaw oscillations due to the hydrodynamic forcing. The
response of the trailing foil is nonlinear and, in general, the interaction between the foil
and the fluid is complex thus rendering standard system identification tools of linear
systems ineffective. An artificial neural network trained on experimental data of the
angular velocity of the trailing foil can classify vortex wakes into 16 labels with accuracy
ranging from 70.6% to 100%; with the lower accuracy values resulting for cases with a
complex interaction of vortex wakes with the walls of the water tunnel.
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The relevance of the results in this paper goes beyond the experiments described.
The significance of the results are two fold. The first is that proprioceptive means using
the kinematics of the passive segments of a swimming body can be used to sense and
detect objects in the vicinity of the body. The second is that artificial neural networks
could be used to train a swimming body to sense and identify objects by the vortex wakes
they create. Moving objects in water display vortex signatures associated with their
geometry and different gaits. Such ‘blind’ sensing and cognition can be incorporated
into a multimodal sensing and cognition suite that can improve the low-level navigation
and maneuvering ability of swimming robots. The findings in the paper are especially
significant in the context of the underwater environment which imposes significant power
limitations on many types of sensors or where requirements of stealth limit the use of
other sensors. We also make the observation that in light of recent research showing
that internal rotors not in contact with the water can propel a swimmer [50-53] and
that passive tails can act as embodied controllers to improve the agility of swimming
robots [54]; the findings in this paper suggest that passive tail or fin segments on a
swimming robot could act as both embodied sensors and actuators.

The results in this paper motivate future paths to applications to underwater robots.
The present paper focuses exclusively on the Strouhal number as a class label to establish
that vortex wakes can be classified through proprioceptive means. One research direction
that is suggested by this paper is the use of other other labels such as the body Reynolds
number to further classify objects into sub classes that can identify leading body length
or velocity scales. The second research direction is to adopt a transfer learning model,
whereby model knowledge achieved in training on data sets of experiments in water
tunnels could be used as a starting point to train on data sets. An intermediate step
here could be the use of convolutional neural networks to first extract features in the
kinematic data that relate to specific vortex wake features and apply this knowledge in
transfer learning models. Lastly a path to applications is to directly train robots with
a specific morphology to use their kinematic data to sense and identify vortex wakes.
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